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Abstract

Vision transformers have demonstrated remark-
able success in a wide range of computer vision
tasks over the last years; however, their high com-
putational cost remains a significant barrier to
their practical deployment. In particular, the com-
plexity of transformer models is quadratic with
respect to the number of input tokens. Therefore
techniques that reduce the number of input tokens
that need to be processed have been proposed.
This paper introduces Learned Thresholds token
Merging and Pruning (LTMP), a novel approach
that leverages the strengths of both token merging
and token pruning. LTMP uses learned thresh-
old masking modules that dynamically determine
which tokens to merge and which to prune. Our
results demonstrate that LTMP achieves state-of-
the-art accuracy on ImageNet across various re-
duction rates while requiring only a single fine-
tuning epoch, which is an order of magnitude
faster than previous methods. Code is available at
https://github.com/Mxbonn/1tmp.

1. Introduction

The adoption of transformers (Vaswani et al., 2017), origi-
nally developed for natural language processing, in the field
of computer vision with Vision Transformers (ViT) (Doso-
vitskiy et al., 2021) has led to significant progress in the
field. But despite the impressive results of vision transform-
ers, their success has come with a cost; ViT models are
computationally expensive and require larger datasets (e.g.
ImageNet-21k instead of ImageNet-1k (Deng et al., 2009))
and prolonged training times (Dosovitskiy et al., 2021). In
order to benefit from their accuracy in downstream tasks
and applications, the use of pretrained models has become
essential. However, their adoption on resource-constrained
devices such as mobile and embedded platforms remains
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limited due to the high computational cost.

To reduce the computational cost of transformers, previous
work has focused on techniques such as distillation (Wu
et al., 2022), quantization (Liu et al., 2021b) and pruning.
Pruning techniques have explored pruning model weights
(Gordon et al., 2020), attention heads (Voita et al., 2019),
and input tokens (Rao et al., 2021). This last approach is
very effective, as the model complexity of a transformer is
quadratic to the number of tokens. In vision transformers,
the tokens are non-overlapping patches of an image, e.g. a
token may represent patches of 16 x 16 pixels. Token prun-
ing has attracted research interest as it matches our intuition
that not all parts of an image are equally important. The
self-attention mechanism in transformers, due to its ability
to process variable length inputs and its order-agnostic char-
acteristic, enables unstructured reduction of the number of
tokens between layers. This was previously non-trivial with
convolutional neural networks.

Most token pruning approaches calculate an importance
score for every token in each layer and remove the least
important tokens. While token pruning has been shown to
be an effective compression technique, removing tokens
results in loss of information which limits the amount of
tokens that can be pruned. In order to recover from this loss
of information, most pruning approaches require substantial
retraining to be effective. Additionally, some recent pruning
techniques have incorporated token combining techniques
where the pruned tokens are combined into a single token
that aggregates the information that would otherwise be lost
(Kong et al., 2022).

Token merging (ToMe) (Bolya et al., 2023) takes this com-
bining technique one step further. ToMe exclusively com-
bines pairs of tokens into new tokens rather than pruning
them. This has as advantage that it does not discard but sum-
marizes information, leading to better accuracy while being
equally effective in reducing computational complexity.

In this work, we introduce Learned Thresholds token Merg-
ing and Pruning (LTMP). Our approach combines the ben-
efits of token merging, which allows us to combine rather
than discard token information, with pruning, which al-
lows us to remove uninformative tokens. To the best of our
knowledge, this is the first work to extensively combine
these two reduction techniques which leads to improved
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Figure 1. Visualization of the merging and pruning as applied to image patches. In every layer the most similar tokens are merged and any
unimportant tokens are pruned. The visualizations show the remaining tokens after every layer in DeiT-S.

accuracy compared to previous work. Our approach uses
learned threshold masking modules, which allow the model
to learn thresholds that determine which tokens to prune
and which ones to merge in each layer. This enables adap-
tive token reduction, while only requiring two learnable
parameters per transformer block. As a result, our approach
converges within a single epoch, reducing the fine-tuning
cost by an order of magnitude compared to other learnable
pruning approaches.

Our contributions can be summarized as follows:

* We propose to combine token merging with token prun-
ing, enabling us to achieve high token reduction rates
with minimal loss of accuracy.

* Our method introduces learned threshold masking mod-
ules, which require only two learnable parameters per
transformer block, allowing our approach to converge
within a single epoch.

* We optimize the thresholds using a novel budget-aware
training loss for which we introduce a reduction target
Ttarget and an actual FLOPs reduction factor rpr,0o ps.
This allows us to create models of any size and allows
the model to freely distribute the reduction operations
across layers.

2. Related work

2.1. Efficient Vision Transformers

Initially, transformers (Vaswani et al., 2017) were adopted
from NLP to computer vision (Dosovitskiy et al., 2021) for
their impressive accuracy. But despite their success in many
vision tasks, ViT-based models could not compete with
lightweight CNNs for deployment on resource-constrained

platforms (Wang et al., 2022). To create efficient ViT mod-
els, several architecture changes have been proposed which
modify the expensive attention mechanisms (Kitaev et al.,
2019; Chen et al., 2021; Liu et al., 2021a; Li et al., 2021).
In this paper, we look at token pruning but other pruning
approaches that have been successfully applied to transform-
ers are, among others, weight pruning (Gordon et al., 2020)
and attention heads pruning (Voita et al., 2019).

2.2. Token Pruning

The flexibility of transformers with respect to the se-
quence length and order of the inputs allows token prun-
ing, something which was previously non-trivial to do in
convolutional-based models. Token pruning methods can
differ in various ways, such as the score used to determine
the importance of each token. Pruning methods can also
differ in the way that token reduction is applied. In fixed
rate pruning (Goyal et al., 2020; Rao et al., 2021; Bolya
et al., 2023; Liang et al., 2022; Xu et al., 2022) a predefined
number of tokens is removed per layer, while in adaptive
approaches (Kim et al., 2022; Yin et al., 2021; Liu et al.,
2022) the tokens are pruned dynamically based on the input.

The most recent pruning approaches do not only prune to-
kens but they also create a single additional token after each
pruning step. This token aggregates the information of the
pruned tokens and limits the loss of accuracy while pruning.
EViT (Liang et al., 2022), Evo-ViT (Xu et al., 2022) and
SPVIT (Kong et al., 2022) use a weighted average based on
the importance score to create the new fused token.

2.3. Token merging

Token Merging (ToMe) as introduced by (Bolya et al., 2023),
introduces a lightweight token matching algorithm to merge
similar tokens. It is as fast as pruning while being more
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Figure 2. Overview of our approach. LTMP contains a merging and pruning component, each with a learned threshold masking module.
The components are added between the Multi-head Self-Attention and MLP components of each transformer block.

accurate. ToMe partitions all tokens into two sets A and B
of roughly equal size by alternating and calculates similarity
scores for each token in A with every token in B. The
similarity score is defined as the cosine similarity between
the key vectors (K) used in the self-attention layer. The final
similarity score of a token in A is the highest similarity score
with any token in B. Based on this score, ToMe merges the
k most similar tokens through averaging and concatenates
the two sets back together.

3. Learned thresholds token merging and
pruning

3.1. Overview

An overview of our framework is shown in Figure 2. Given
any vision transformer, our approach adds merging (LTM)
and pruning (LTP) components with learned threshold mask-
ing modules in each transformer block between the Multi-
head Self-Attention (MSA) and MLP components. Based
on the attention in the MSA, importance scores for each
token and similarity scores between tokens are computed.
Learned threshold masking modules then learn the thresh-
olds that decide which tokens to prune and which ones to
merge.

3.2. Motivation

Although token merging is generally more accurate than
pruning as it combines tokens instead of discarding them, it
is not always better to merge tokens instead of discarding
them. In some cases, it may be more beneficial to prune
an unimportant token rather than merging the most similar
tokens, as the similarity between them may not be very high.

In this section, we explore whether token merging and to-
ken pruning are techniques that can be combined. Figure 3

visualizes tokens kept by pruning and by merging on one
specific image, we observe that the kept tokens are notice-
ably different between both approaches. To quantify the
relation between merging and pruning, we calculated the
Kendall tau rank correlation (Kendall, 1938) between the
importance scores used in token pruning and the similarity
scores used in token merging. We calculated the correlations
over 1000 images using a ViT-B where each layer pruned
and merged 8 tokens in a fixed top-k manner, and report the
results in Table 1. We find that the 7 correlations between
both scores are low, especially in the early layers where the
most important merging and pruning is done. We, therefore,
propose combining token merging and token pruning.

Table 1. Kendall 7 correlation between importance scores in token
pruning and similarity scores in token merging. The correlations
are calculated over 1000 images using a ViT-B where each layer
pruned and merged 8 tokens.

layer 1 3 5 7 9 11
T 0.01 0.14 021 0.19 0.15 0.22

Figure 3. Visualization of token pruning (middle) compared to
token merging (right). The visualization shows the remaining
tokens after the 10-th layer in ViT-B when pruning or merging 16
tokens per layer.
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3.3. Learned thresholds
3.3.1. LEARNED THRESHOLDS PRUNING

Our learned thresholds approach is conceptually similar to
learned token pruning as introduced in (Kim et al., 2022). In
each transformer block an importance score is calculated for
every token x;,4 € {1,...,n}, where n = hw is the number
of tokens'. A threshold 6 € R,l € {1,..., L}, where L is
the number of transformer blocks, determines which tokens
to keep and which to prune in each layer; only tokens with
an importance score above the threshold are kept.

In order to prune tokens adaptively, we introduce a threshold
masking module that, given the importance scores s’ € R™,
learns a pruning threshold ' and outputs which tokens to
keep.

1, ifst > @
0, otherwise

ey

However, in order to make 6 learnable during training, the
threshold masking module needs to be differentiable. We
achieve this by implementing the threshold masking module
as a straight-through estimator (Bengio et al., 2013), where
we estimate the masking function during backpropagation

as
L_ gt
Mo =30 ©)
T
where o () is the sigmoid function and 7 is the temperature

hyperparameter.

During inference we only keep the tokens in the [-th block
where M (sé, 6') = 1. However, during training, we can
not simply drop tokens as that does not allow the model to
backpropagate the influence of the threshold on the model
performance. We, therefore, create a mask indicating which
tokens are kept and which ones are pruned. Every threshold
masking module only updates the entries of the mask for
the tokens that have not yet been removed prior to that layer,
as tokens that are pruned in an earlier layer have to remain
pruned. We construct the pruning mask m! € [0,1]" as
follows:

_ 7
m; =

3

otherwise

, o M(sheh, ifmiTt =1
mlfl

The learned token pruning implementation in (Kim et al.,
2022), multiplies its mask with the tokens in order to create
zero valued tokens. However these tokens do not remain
zero due to bias terms in MLP layers, furthermore adding
zero valued tokens changes attention calculations compared
to removing those tokens. Instead, our approach makes

'We omit the [CLS] class token for simplicity, during pruning
and/or merging we always keep the [CLS] token.

changes to the only place where tokens influence each other:
the attention mechanism. 2

Recall the original formula for attention (Vaswani et al.,
2017):

T

. QK
Attention(Q, K, V) = softmax
QK.V) (e

Vo @

In order to avoid that the masked tokens influence the atten-

tion mechanism, we propose a modified function:
Attention_with_ mask(Q,K,V,m) =SV  (5)

where,

_ exp(Aij)mj
Y oiss exp(Aix)my

and,

A = QK" /\/d e R™" 9

Equation (6) computes a masked softmax, which is equiv-
alent to a softmax calculated with the pruned tokens re-
moved. Attention_with_mask is conceptually similar to
the masked attention as found in the transformer decoder
of language models. However, where the masking in trans-
former decoders is done by setting masked tokens to —oo,
our approach requires the influence of the straight-through
estimator mask to propagate to the thresholds during back-
propagation.

3.3.2. LEARNED THRESHOLDS MERGING

Token merging is originally a top-k approach, meaning
that it merges based on a fixed rate and has no learnable
parameters. We modify ToMe to use thresholds instead
of top-k by applying the same techniques as introduced
in Section 3.3.1; this is by adding our learned threshold
masking module, in which similarity scores above these
thresholds are selected for merging, and by changing the
attention function to Equation (5).

3.3.3. LEARNED THRESHOLDS MERGING AND PRUNING

With learnable thresholds, it is trivial to combine merging
and pruning, as we can simply add a learned threshold
masking module that learns thresholds for importance scores
and another module that learns thresholds for similarity
scores.

Technically, tokens also influence each other during layer nor-
malization, however as pruning is done on pretrained models, we
simply use the global statistics from pretraining during normaliza-
tion.
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3.4. Training Strategy
3.4.1. TRAINING OBJECTIVE

To effectively reduce the number of tokens in the trans-
former blocks, it is necessary to include a regularization
loss term in the training process. Without this loss, the
model has no incentive to prune any tokens and the pruning
thresholds will simply be set to 0 as the most accurate model
uses all inputs. We propose a budget-aware training loss
which introduces a reduction target rge; for the FLOPs of
the vision transformer.

Let us denote @modute (12, d) as a function that calculates the
FLOPs of a module based on the number of tokens n and
the embedding dimension d. The actual FLOPs reduction
factor rpops Of a ViT can then be computed as:

¢PE bk (n, d) [ dmsa(m!~In, d)

THLOPs = Z ¢>V1T n, d ( ¢>BLK(7% d)
i ¢MLP(m n, d)) duEap(m'n, d)

¢BLk (1, d) dvir(n,d)
¥

where m' = 1 3™ | m! is the percentage of input tokens

that are kept after the [-th threshold masking operation and
m" = 1. PE, BLK and HEAD denote the different compo-
nents of a vision transformer: the patch embedding module,
the transformer blocks and the classification head.

As the vast majority of the FLOPs in a vision transformer
occurs in the transformer blocks (= 99% in ViT-S), we
ignore the FLOPs in the patch embedding and classification

. ¢pe(nd) __ ¢ (n,d)
head: ¢5§ d) = gslAT?" o~ 0. That means that we can
simplify
PBLK (1, d) ~ l’ 9)
ovir(n,d) L

where L is the number of transformer blocks.

The FLOPs of a transformer block and its two components,
the MSA and MLP can be computed as:

dumsa(n,d) = dnd” + 2n*d (10)

duvp(n, d) = 8nd? (11)

b (1, d) = dumsa(n, d) + oumip(n, d) = 12nd* + 2n%d
(12)

Substituting Equations (10) to (12) into Equation (8) gives:

=1 2m'nd? 4 (mb'n)?d + 4mind?
"FLOPs 7~ Z L 6nd? + n2d
=1

13)

Given this FLOPs reduction factor rgops as a function of
the threshold masks, we define our regularization loss as the

squared error between the reduction target and the actual
FLOPs reduction factor:

Ereg = (Ttarget - TFLOPS)2 (14)
This regularization loss is then combined with the classifi-
cation loss, for which we adopt the standard cross entropy
loss.

L= ECE + )\Ereg (15)

The overall training objective is to learn thresholds that
optimize the model while reducing the model complexity
to a certain reduction target. The combination of learned
thresholds and our budget-aware loss enables the model to
optimally distribute merging and pruning across layers.

3.4.2. TRAINING SCHEDULE

LTMP only adds two learnable parameters per transformer
block (one for pruning and one for merging). As is common
in pruning it is applied to pretrained models. We there-
fore only update the thresholds during training and keep
all other trainable parameters fixed, allowing LTMP to con-
verge within a single epoch.

4. Experiments

We demonstrate our approach through experiments on the
ImageNet-1k classification task (Deng et al., 2009) using
various ViT variants (Steiner et al., 2022; Touvron et al.,
2021). All pretrained models are taken from the timm Py-
Torch library (Wightman, 2022).

All our experiments are trained for 1 epoch, using SGD
without momentum and a batch size of 128. The remaining
training settings such as augmentations are set to the default
values of timm. The hyperparameters that are introduced in
LTMP are set to 7 = 0.1 and A = 10. As the importance
scores and similarity scores have values in different ranges
we use separate learning rates for the thresholds in the prun-
ing modules and the merging modules: 5 - 1076 for the
pruning thresholds and 5 - 10~ for the merging thresholds.

4.1. Results

As most other pruning approaches require extensive fine-
tuning, the most commonly used baseline vision transformer
in other works is the data-efficient vision transformer DeiT
(Touvron et al., 2021), for this reason we also report on DeiT
models. In Appendix B, we additionally included results on
the standard ViT models. In Figure 4, we show our approach
applied to DeiT-Tiny, -Small and -Base. For each model we
vary T'yarget Such that we obtain a set of reduced models,
each with a different model size. Detailed accuracy and
FLOPs values can be found in Appendix A.
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Figure 4. Accuracy/FLOPs trade-offs for LTMP variants of DeiT-Tiny, -Small and -Base. FLOPs are plotted in logarithmic scale. ToMe

accuracy/FLOPs trade-offs shown as comparison.

4.2. Synergy between merging and pruning

In order to analyze the synergy between token merging and
token pruning, we have examined the distribution of merged
and pruned tokens across each layer of the vision trans-
former. The results, shown in Figure 5 for DeiT-S, reveal
that token merging is the dominant reduction operation in
the early layers of the transformer, while token pruning is
more prevalent in the final layers. This aligns with the find-
ings of (Bolya et al., 2023) that merging is more effective
than pruning, as it can summarize information. However,
once all similar tokens are merged, it is more beneficial
to prune the least informative tokens rather than merging
tokens that are not as similar. In other words, the first layers
are mainly used to combine similar patches and once this is
mostly done, token pruning removes the unimportant parts
of the input.

4.3. Comparison to other work

In Table 2, we compare the reported top-1 accuracy, FLOPs?,
and fine-tune epochs of other pruning approaches to our
work. The other approaches we compare with are SPViT
(Kong et al., 2022), DynamicVit (Rao et al., 2021), EViT
(Liang et al., 2022), EvoViT (Xu et al., 2022) and ToMe
(Bolya et al., 2023). Most works report on a pruned model
with around 3.0 GFLOPs, which for DeiT-S corresponds
t0 Ttarget ~ 0.65 in our approach. Only SPVIiT reports on
a different model size, which is why it is compared sepa-
rately. The results show that LTMP reaches state-of-the-art
accuracy at a fraction of the fine-tuning epochs required by
other learnable methods. The accuracy of LTMP matches
or exceeds the accuracy of other token pruning approaches
which require a minimum of 30 fine-tune epochs. Only
EVIiT is able to reach a higher accuracy than LTMP, but
only when drastically increasing the fine-tune epochs to
100, which is two orders of magnitude more than our ap-
proach. Because ToMe requires no fine-tuned checkpoints

3We follow the convention of reporting FLOPs as multiply-
adds.

for comparisons, we are able to compare LTMP to ToMe
more extensively over a wide range of model sizes. Figure 4
shows the accuracy/FLOPs trade-offs for LTMP and ToMe.
Our experiments show that LTMP consistently outperforms
ToMe across model sizes.

Table 2. Comparison to other token reduction approaches on DeiT-
S. Our method reaches state-of-the-art accuracy with significant
fewer fine-tune epochs than other learnable approaches.

fine-tune
Method FLOPs Accuracy epochs
DeiT-S (Baseline) 4.6G 79.8 -
SPViT 3.8G 79.8 75
LTMP (Ours) 3.8G 79.8 1
DynamicViT 2.9G 79.3 30
EViT 3.0G 79.5 30
EViT 3.0G 79.8 100
Evo-ViT 3.0G 79.4 300
ToMe 3.0G 79.3 0
LTMP (Ours) 3.0G 79.6 1

4.4. Design Choices

4.4.1. IMPORTANCE SCORE

A key component of pruning approaches is the importance
score used to determine which tokens to remove. The two
most common choices for the importance score are:

h
class attention score s; = Z S;oi (16)
=1

where S € R"*"X" is the multi-headed extension of the
attention softmax matrix (see Equation (6)) where values at
index O correspond to the [CLS] token, and

n

. 1
mean column attention score s; = T E Siki
“n
=1 k=1

)
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Figure 5. Distribution of the number of tokens (k) removed by the merging and pruning parts in each layer of LTMP DeiT-S rrrops =~ 0.5.

which can be interpreted as the normalized amount that all
tokens xy, attend to token x; (Kim et al., 2022).

The results in Table 3 are obtained from DeiT-S LTP models
and show that the mean column attention score performs
slightly better than the class attention score, but not by a
significant margin. For the remainder of this work, we use
the mean column attention score (Equation (17)) as the
importance score.

4.4.2. MERGING AND PRUNING ORDER

As shown earlier in Table 1, the correlation between the
pruning importance score and the merging similarity score
is low but not zero. This means that for small reduction
target values r, the same token might hit the thresholds for
both merging and pruning. In Table 3, we compare pruning
followed by merging (LTPM) with merging followed by
pruning (LTMP). The results confirm that the order has no
noticeable influence when the reduction rate is small, but
once more tokens need to be removed LTMP is superior to
LTPM. This is not surprising as merging has been shown to
be more accurate than pruning (Bolya et al., 2023) and that
in token merging and pruning, more tokens get merged than
pruned (see Figure 5).

Table 3. Ablation of the design choices regarding the pruning im-
portance score and the order in which to apply merging and prun-
ing. All experiments are performed on DeiT-S variants.

FLOPs 23G 277G 3.1G
Accuracy

class attention 76.26 78.15 79.17
column mean attention 76.51 78.22 79.16
LTPM 78.36  79.16 79.54
LTMP 78.61 79.26 79.65

4.5. Ablation

Our approach has two important components: the learned
thresholds and the combination of merging and pruning. In
Table 4, we ablate the main components of our approach on
DeiT-S for two different model sizes. We compare top-k
pruning and merging, where k tokens are pruned in each
transformer block, to learned thresholds variants. For merg-
ing, the top-k approach is equal to what is used in ToMe
(Bolya et al., 2023). Additionally, we compare merging and
pruning individually with the combined approach.

The results show that learned thresholds improve the ac-
curacy of pruning significantly, while for merging the im-
provements are only marginal. This difference in accuracy
between learned thresholds and top-k can be explained by
examining the distribution of removed tokens as shown in
Figure 6. In this box plot, we compare the distribution of the
number of removed tokens with LTM and LTP with uniform
top-k pruning (i.e. the dashed line in the figure). As can
be seen in the figure, the distribution of removed tokens
with LTM is close to the uniform top-k distribution, which
results in many of the same tokens being merged, while for
LTP the distribution is notably dissimilar.

We also observe that naively combining merging and prun-
ing by applying both techniques with an equal fixed rate is
worse than only token merging.

This ablation shows that both components are essential in
LTMP. Combining merging and pruning outperforms the in-
dividual techniques but only when using the learned thresh-
olds to balance the merging and pruning.

4.6. Inference speed

Throughout this paper, we have reported FLOPs as com-
plexity metric. While FLOPs are often regarded as a poor
proxy for latency, it has also been shown that latency im-
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Figure 6. Distribution of the number of tokens (k) removed in LTP

and LTM variants of DeiT-S rrrops =~ 0.5.

Table 4. Ablation of the two main components of LTMP on DeiT-S:
learned thresholds and combining merging with pruning.

Method Setting FLOPs Accuracy
pruning
Top-k k=16 2.3G 74.82
LTP TFLOPs — 0.5 2.3G 76.51
Top-k k=11 3.0G 77.88
LTP TFLOPs = 0.65 3.0G 79.17
Merging
Top-k ToMe) k=16 2.3G 78.09
LTM TFLOPs — 0.5 2.3G 78.16
Top-k (ToMe) k=11 3.0G 79.28
LTM TFLOPs — 0.65 3.0G 79.45
Merging & pruning
Top-k k=8+8 2.3G 77.60
LTMP TFLOPs = 0.5 2.3G 78.61
Top-k k=6+6 3.1G 78.98
LTMP TFLOPs — 0.65 3.0G 79.60

provements on one type of hardware often do not translate
to similar improvements on other hardware, especially in
mobile and embedded devices (Bonnaerens et al., 2022).
As our complexity improvements come from reducing the
input tokens and both our masking modules and pruning
and merging implementations are parallelized, we believe
FLOPs to be the best available metric to report complexity
improvements.

Nevertheless, to demonstrate our approach, we have
benchmarked it on a mobile device using PyTorch’s
optimize_for_mobile function and speed_benchmark
Android binary. Table 5 shows the latency of the baseline
DeiT-S and our LTMP (with 7.0 ps =~ 0.5) reduced vari-
ant. The benchmark is conducted on a Google Pixel 7 and
averaged over 200 runs (with 50 warm-up runs prior). The

results show that the latency improvements, which achieve
a reduction of 49.52%, are nearly identical to the theoretical
FLOPs improvements, which have a reduction of 50.12%.

LTMP is also faster than ToMe while not only merging but
also pruning. This likely comes from the argsort operator
that is used in top-k approaches such as ToMe and which
is not well supported in many frameworks (Prillo & Eisen-
schlos, 2020). Unfortunately, despite Evit, Evo-Vit and Dy-
namic Vit having an open-source PyTorch implementation,
they use operations that are not supported by TorchScript
which is required for the mobile speed_benchmark tool.

Table 5. Latency benchmark on a Google Pixel 7.

Method FLOPs Latency Accuracy
DeiT-S (Baseline) 4.6G 212 ms 79.8
LTMP (Ours) 2.3G 107 ms 78.6
ToMe 2.3G 118 ms 76.9

4.7. Limitations

Our learned thresholds approach requires a batch size of 1
during inference as each image is reduced differently. This
is not a limitation for most resource-constrained applications
which typically operate inference with a batch size of 1. Our
method could be extended to accommodate larger batch
sizes by incorporating masking or converting thresholds to
the average number of tokens removed per operation and
layer, and applying these values in a top-k adaptation.

4.8. Visualizations

In Figure 7, we illustrate the merging and pruning of the
tokens as they are processed through the vision transformer.
It can be observed how similar parts of the image get merged
and how unimportant parts of the image are pruned.

5. Conclusion

In this work, we introduced Learned Thresholds token Merg-
ing and Pruning (LTMP) for vision transformers. LTMP
makes it possible to reduce the computational cost of a vi-
sion transformer to any reduction target value with minimal
loss in accuracy. LTMP adaptively reduces the number of
input tokens processed by merging similar tokens and prun-
ing the unimportant ones. Our implementation uses learned
thresholds which enable different merging and pruning rates
between different images and allows the model to learn the
optimal trade-off between merging and pruning across lay-
ers. As LTMP only introduces two learnable parameters per
transformer block, our method is able to converge within a
single epoch, which is an order of magnitude quicker than
other learnable approaches.
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Figure 7. More visualization of the merging and pruning as applied to image patches. In every layer the most similar tokens are merged
and any unimportant tokens are pruned. The visualizations show the remaining tokens after every layer in DeiT-S.
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A. DeiT results

Table 6 lists the detailed results for the DeiT models as plotted in Figure 4 in the main paper. We included 7aret, Such that
our results can be reproduced. All variants are trained using the hyperparameters in the main text.

Table 6. Detailed results for DeiT models.
Model Ttarget FLOPs Accuracy Model Target FLOPs Accuracy Model Targe FLOPs  Accuracy

DeiT-T (Baseline) 1.258G 72.16 DeiT-S (Baseline) 4.608G 79.85 DeiT-B (Baseline) 17.583G 81.99
DeiT-T 0.85 1.091G 72.11 DeiT-S 0.85 3.940G 79.82 DeiT-B 0.85 15.007G 81.93
DeiT-T 0.80 1.029G 71.98 DeiT-S 0.80 3.753G 79.82 DeiT-B 0.80 14.152G 81.87
DeiT-T 0.75 0.974G 71.97 DeiT-S 0.75 3.518G 79.76 DeiT-B 0.75 13.403G 81.73
DeiT-T 0.70 0.918G 71.83 DeiT-S 0.70  3.326G 79.68 DeiT-B 0.70 12.571G 81.60
DeiT-T 0.65 0.866G 71.74 DeiT-S 0.65 3.155G 79.65 DeiT-B 0.65 11.754G 81.33
DeiT-T 0.60 0.813G 71.47 DeiT-S 0.60 2.955G 79.45 DeiT-B 0.60 11.022G 81.01
DeiT-T 0.55 0.752G 70.97 DeiT-S 0.55 2.722G 79.26 DeiT-B 0.55 10.276G 80.31
DeiT-T 0.50 0.703G 70.48 DeiT-S 0.50 2.523G 78.98 DeiT-B 0.50  9.608G 79.37
DeiT-T 045 0.652G 69.76 DeiT-S 045 2.314G 78.61 DeiT-B 045 9.003G 78.84
B. ViT results

The main paper reports on DeiT models as they are most commonly used in related pruning works. However the standard
pretrained ViT models as found in the timm library (Wightman, 2022; Steiner et al., 2022), are more accurate than the DeiT
models while having the same number of FLOPs. While DeiT models are often chosen because of their more efficient
training, LTMP requires only a single training epoch making the more accurate ViT models the preferred vision transformer
to prune. We therefore also include results on ViT models here. Figure 8 shows the Accuracy/FLOPs trade-off curve for
LTMP reduced ViT models. We also included the DeiT models as comparison. It can be observed that ViT is indeed often
the better choice, except for the heavily reduced variants of the ‘small’ sized models, where the performance of ViT degrades
faster than DeiT. More detailed listings of the results can be found in Table 7.
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Figure 8. Accuracy/FLOPs trade-offs for LTMP variants of ViT-Tiny, -Small and -Base. DeiT variants are also plotted as comparison.
FLOPs are plotted in logarithmic scale.
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Table 7. Detailed results for ViT models.

Model Targee FLOPs  Accuracy Model Ttarger FLOPs  Accuracy
ViT-T (Baseline) 1.258G 75.45  ViT-S (Baseline) 4.608G 81.37
ViT-T 0.85 1.094G 75.40 ViT-S 0.85 3.895G 81.41
ViT-T 0.80 1.029G 75.35 ViT-S 0.80 3.689G 81.13
ViT-T 0.75 0.970G 75.26 ViT-S 0.75 3.495G 81.08
VIiT-T 0.70 0.911G 75.19 ViT-S 0.70  3.309G 80.87
ViT-T 0.65 0.855G 74.86 ViT-S 0.65 3.134G 80.49
ViT-T 0.60 0.803G 74.56 ViT-S 0.60 2.915G 80.19
VIiT-T 0.55 0.737G 73.95 ViT-S 0.55 2.692G 79.76
VIiT-T 0.50 0.688G 73.00 ViT-S 0.50 2.501G 79.01
ViT-T 0.45 0.639G 71.72 ViT-S 045 2.321G 77.95
ViT-T 0.40 0.600G 70.35 ViT-S 0.40 2.248G 76.39

Model Targee ~ FLOPs  Accuracy
ViT-B (Baseline) 17.583G 84.54
ViT-B 0.85 15.024 84.45
ViT-B 0.80 14.258G 84.41
ViT-B 0.75 13.461G 84.29
ViT-B 0.70 12.685G 84.07
ViT-B 0.65 11.975G 83.75
ViT-B 0.60 11.152G 83.23
ViT-B 0.55 10.280G 82.76
ViT-B 0.50  9.559G 82.26
ViT-B 0.45 8.841G 81.34
ViT-B 0.40  8.465G 80.31




