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Abstract

Human-like agents have long been one of the goals in pursuing artificial intelligence.
Although reinforcement learning (RL) has achieved superhuman performance in
many domains, relatively little attention has been focused on designing human-like
RL agents. As a result, many reward-driven RL agents often exhibit unnatural
behaviors compared to humans, raising concerns for both interpretability and
trustworthiness. To achieve human-like behavior in RL, this paper first formu-
lates human-likeness as trajectory optimization, where the objective is to find an
action sequence that closely aligns with human behavior while also maximizing
rewards, and adapts the classic receding-horizon control to human-like learning as a
tractable and efficient implementation. To achieve this, we introduce Macro Action
Quantization (MAQ), a human-like RL framework that distills human demonstra-
tions into macro actions via Vector-Quantized VAE. Experiments on D4RL Adroit
benchmarks show that MAQ significantly improves human-likeness, increasing
trajectory similarity scores, and achieving the highest human-likeness rankings
among all RL agents in the human evaluation study. Our results also demonstrate
that MAQ can be easily integrated into various off-the-shelf RL algorithms, open-
ing a promising direction for learning human-like RL agents. Our code is available
at https://rlg.iis.sinica.edu.tw/papers/MAQ.

1 Introduction

Designing human-like agents has been an important goal on the path toward artificial intelligence.
One of the most well-known benchmarks is the Turing Test, which evaluates whether an agent can
perform intelligent behavior that is indistinguishable from a human. To pass the Turing Test, agents
are designed not only to achieve the goal of the given task but also to behave in a human-like manner.

While the pursuit of human-like agents has been investigated in natural language processing (NLP),
such as in large language models (LLMs) that aim to generate responses aligned with human
preferences [1], it has not yet been widely explored in the field of deep reinforcement learning (DRL).
In recent years, DRL has made significant progress in various domains, such as gaming [2, 3, 4] or
robotics control [5, 6]. However, researchers have noticed RL agents often exhibit unnatural behaviors,
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making they easily distinguishable from those of human players, e.g., smoothness [7, 8, 9, 10],
navigation issues [11, 12, 13], and (unnatural) shaking and spinning actions [14]. Although RL agents
can accomplish these tasks, they fail to achieve the goal of designing human-like intelligence. This
disparity raises an important and underexplored challenge in human-like RL research: How to design
agents that not only succeed in tasks but also behave like humans?

To address this challenge, this paper proposes to formulate human-likeness in reinforcement learning
as a trajectory optimization problem, where the objective is to produce trajectories that closely align
with human behavior. Following the principle of receding-horizon control, we optimize over short
action segments rather than entire trajectories to capture human behavior more effectively. To achieve
this, we introduce Macro Action Quantization (MAQ), a human-likeness aware RL framework for
developing competitive agents with human-like behavior. MAQ first distills human behavior into
macro actions – sequences of actions – from offline human demonstrations using a conditional
Vector-Quantized Variational Autoencoder (VQVAE) [15]. The VQVAE generates a discrete set of
macro actions, stored in a learned codebook, where each entry represents possible human behavior
segments for a given state. By leveraging these macro actions, MAQ transforms the action space
from low-level primitive actions to high-level, human-like macro actions, effectively constraining the
agent to operate within a human-like behavioral space.

We evaluate MAQ on one of the standard RL benchmarks, the Adroit tasks in D4RL [16], which
has readily available human demonstrations. We apply MAQ to three RL algorithms, including IQL,
SAC, and RLPD. Experimental results show that MAQ not only achieves higher success rates in task
completion but also substantially improves human-likeness. When measuring trajectory similarity
using Dynamic Time Warping (DTW) and Wasserstein distance metrics, MAQ significantly increases
the similarity scores across all tasks. In addition, we conduct a human evaluation study – similar to
the Turing Test – in which participants are asked to distinguish between human demonstrations and
agent behaviors. The results show that while participants can easily identify traditional RL agents
as non-human, they struggle to distinguish MAQ agents from humans. In conclusion, our findings
demonstrate that MAQ effectively captures human-like behavior, offering a promising direction for
future research in human-like RL studies.

2 Background

2.1 Human-like Reinforcement Learning

While most RL research focuses on designing reward-driven RL agents, there are a few works
exploring human-like RL in two directions. The first involves adopting behavioral constraints to
enforce human-likeness. For example, Fujii et al. [17] proposed to penalize actions identified as
non-human, while Ho et al. [14] introduced the adaptive behavior cost to discourage non-human-like
behavior, such as spinning and shaking. Although effective, these methods rely on pre-defined
behavior constraints or rule-based penalties, requiring substantial effort for handcrafted design. An
alternative approach to avoid the handcrafted design of behavior costs is to directly learn from offline
human datasets. Notably, human demonstrations are available and widely used for RL training in
various domains, such as Atari games [18], self-driving car [19], and robot arm manipulation [16].
These pre-collected demonstrations can be used to capture the characteristics of human behavior
through imitation learning [20], such as behavior cloning or inverse RL [21]. However, while
imitation learning improves human likeness, its performance is often limited by the quality of human
demonstrations and fails to compete with the non-human-like RL benchmarks. In summary, how to
effectively train human-like RL agents remains an open and underexplored challenge.

2.2 Semi-Markov Decision Process and Macro Action

Semi-Markov Decision Process (SMDP) extends MDP by incorporating macro actions, which
are sequences of consecutive actions executed over multiple timesteps. Given a state st, a macro
action with a length L is defined as mt = (at, at+1, . . . , at+L−1). Compared to MDP, SMDP is
denoted by (S,M,R,P, γ), where M is the set of macro actions and R is the cumulative reward
obtained over the macro actions: R(st,mt) = Σt+L−1

k=t r(sk, ak) [22]. Similarly, the objective
is to learn a policy that selects macro actions to maximize the cumulative rewards: J(πθ) =
E(st,mt)∼πθ

[Σ∞
t=0γ

tR(st,mt)], where mt ∈ M , and t represents the timestep for selecting macro
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actions. SMDP simplifies complex tasks by enabling agents to focus on long-term planning, as macro
actions reduce decision-making frequency while capturing sequential dependencies.

2.3 VQVAE

Vector quantized variational autoencoder (VQVAE) [15], an extension of the variational autoencoder
(VAE) [23], is a generative model that incorporates vector quantization to learn discrete latent
embeddings. VQVAE consists of an encoder, a codebook of discrete latent embeddings, and a
decoder. The encoder transforms input data into a latent vector, which is then quantized by replacing
it with the nearest vectors from the codebook. The decoder aims to reconstruct the same input data
using this discrete latent code. By utilizing discrete latent representations, VQVAE allows learning
more structured representations.

Recent studies have explored the application of VQVAE in reinforcement learning. For example,
Ozair et al. [24] and Antonoglou et al. [25] propose using conditional-VQVAE [26] as a state transition
model in stochastic environments, using the codebook’s latent vectors to represent possible chance
events. Given a state and a latent embedding (chance event) from the codebook, the decoder aims to
generate the corresponding next states. In addition, Luo et al. [27] proposes utilizing conditional-
VQVAE to discretize continuous action spaces in robotic control tasks. Specifically, each latent
embedding in the codebook represents a possible action for a given state. The decoder reconstructs
the action from the corresponding latent embedding. This approach transforms continuous action
spaces into discrete action spaces, improving learning efficiency in robotic control tasks.

3 Human-Like Trajectory Optimization

Trajectory optimization. The canonical trajectory optimization problem is formulated based on an
MDP (S,A,P, R, γ, T, p0) with continuous state space S and action space A, transition function
P : S ×A → ∆(S)3, reward function R : S ×A → R, discount factor γ∈ [0, 1), episode length T ,
and initial state distribution p0. Let τ = (s0, a0, · · · , sT−1, aT−1, sT ) denote a trajectory generated
under an action sequence a0:T−1 := (a0, a1, · · · , aT−1). Our goal is to find an action sequence that
can maximize the total discounted return.

a∗0:T−1 := argmaxa0:T−1∈AT E
[ T−1∑

t=0

γtR(st, at)
∣∣∣s0 ∼ p0; a0:T−1

]
, (1)

where the expectation is taken over the randomness of the initial state, reward realizations, and state
transitions.

Human-like receding-horizon control (HRC). As exact full-horizon optimization in equation (1)
can be intractable even for moderately large T , we resort to the technique of receding-horizon control,
which is a generic control method that involves repeatedly solving a optimization problem on a short
moving time horizon to choose action sequences. Specifically, at the decision step t, receding-horizon
control would find an action sequence of length H (usually much smaller than T ) by solving

argmaxat:t+H−1
E
[ t+H−1∑

i=t

γ i−tR(si, ai)
∣∣∣st; at:t+H−1

]
. (2)

Notably, under receding-horizon control, such short-term replanning is done every k steps (with
1 ≤ k ≤ H), i.e., the first j actions in a∗t:t+H−1 ( 1≤ j ≤H ) are executed and the environment
returns st+j and equation (2) is re-optimized. This receding-horizon loop reproduces the closed-loop
robustness observed in [28] while bounding per-step computation.

To enforce human-likeness, we introduce the concept of human-like sequence constraint as follows:
Let D = {τ (i)}Ni=1 be a set of human-generated action sequences and define human manifold
H = {τ | τ ∈ D}. Accordingly, human-likeness can be enforced by constraining the search space of
action sequences to H. Hence, human-like receding-horizon control can be formally described as
finding an action sequence as

a∗t:t+H−1 = argmaxat:t+H−1∈H E
[ t+H−1∑

i=t

γ i−tR(si, ai)
∣∣∣st; at:t+H−1

]
. (3)

3Throughout this paper, we use ∆(X ) to denote the set of all probability distributions over a set X .
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Under HRC, executing a larger prefix j of the H-step action sequence generates longer, uninterrupted
human-style motion, whereas j = 1 maximizes reactivity.

Action-segment quantization for efficient HRC. Implementing equation (3) presents two ob-
stacles: (1) Searching for all |H| demonstration segments at every step is prohibitively slow. (2)
Although the dataset records each visited state, the starting state of a stored segment still rarely
matches the current state st exactly, so naively re-using segments requires expensive alignment
or local optimization. To alleviate these issues, we propose to perform segment-level planning:
HRC first proposes a complete H-step sequence (at, at+1, . . . , at+H−1), executes all H actions,
observes the resulting state st+H , and then replans a new H-step action sequence from that state.
This commit-and-replan loop amortizes the optimization overhead over fixed-length segments while
fully re-using each trajectory rollout.

Moreover, searching for this segment in continuous action space is still computationally very costly,
so we propose to adopt the macro action quantization strategy. Inspired by [27], we replace each
segment of continuous actions with a compact sequence of discrete codebook indices, effectively
reducing the search over the full space AH to a lookup on a finite codebook. Since all demonstrations
can be rolled out and scored offline, the HRC controller needs only a constant-time table lookup at
runtime, slashing planning latency while still retaining the multi-step look-ahead and human-style
fidelity provided by H-step segments.

4 Macro Action Quantization

To concretize the trajectory optimization introduced in Section 3, we propose a human-likeness aware
framework called Macro Action Quantization (MAQ). MAQ addresses the challenges of enforcing
human-likeness in receding-horizon control by learning a quantized set of action segments – macro
actions – from offline human demonstrations. These macro actions serve as H-step segments in
the trajectory optimization process. The primary goal of MAQ is to achieve high performance
while preserving the key characteristics of human-like behavior. We present the details of the MAQ
framework as follows.
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Figure 1: The overall training process of MAQ. (1) Human behavior distillation: A Conditional-
VQVAE is trained on the state (st) and the macro action (mt = (at, at+1, . . . , at+H−1)) to learn a
discrete codebook; the macro actions (mt) are extracted from human demonstrations via a sliding
window over action trajectories. (2) Reinforcement learning with MAQ: An online policy (πθ) acts
in the learned discrete code space by selecting codebook indices, which the VQVAE decodes into
macro action executed in the environment.

Human behavior distillation. To capture the characteristics of human behavior, specifically the
action sequence patterns, we propose training a Conditional-VQVAE to distill macro actions from
human demonstrations, as illustrated on the left in Figure 1. Specifically, given a state st and a
macro action mt, where mt = (at, at+1, ..., at+H−1) represents a sequence of H consecutive actions
executed by a human at st, the encoder generates a latent vector e. This vector e is then compared
with the codebook to identify the nearest latent vector ek. Finally, ek along with the state st is passed
to the decoder to produce a reconstructed macro action m̃t, which aims to replicate the original macro
action mt. During training, the loss function is updated as follows:

L = ||m− m̃||2 + ||sg[e]− ek||2 + β||e− sg[ek]||2, (4)
where sg denotes the stop-gradient operation and β is the coefficient of commitment loss. MAQ

not only captures the human behavior of a specific state and macro action pair (st,mt) but also
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generalizes the macro actions across similar states, with the codebook serving as a collection of
human-like behaviors mapped to different states.

MAQ significantly reduces the macro action space. Since macro actions consist of sequences of
actions, the number of possible macro actions grows exponentially with the sequence length. For
example, given a sequence length H and assuming each state has n potential primitive actions, there
are nH possible macro actions. Fortunately, as the goal of MAQ is to capture human-like behavior, a
vast number of these macro actions can be disregarded in practice since they do not appear in human
demonstration. Therefore, we limit the codebook size to K, focusing only on macro actions that align
with human behavior, effectively reducing the action space and distilling the key macro actions.

Reinforcement learning with MAQ. MAQ can be seamlessly integrated into any reinforcement
learning algorithm. Conceptually, by quantizing macro actions, the action space is transformed from
primitive actions (MDP) to macro actions (SMDP), while all other aspects of the RL training remain
unchanged. Since these macro actions are distilled from human demonstration, RL agents aim to
achieve high performance while operating within the constraints of human-like behaviors.

Specifically, we train a policy πθ to select the index k corresponding to the codebook entry. The policy
πθ takes a given state s as input and produces a distribution with K policy logits, each corresponding
to one macro action embedding in the codebook. At each state st, πθ samples an index according to
the policy distribution. Suppose the index k is selected, the corresponding latent vector ek is then
retrieved from the codebook. With this latent vector ek and the state st, the decoder reconstructs a
macro action m̃t to interact with the environment, as illustrated on the right in Figure 1.

To optimize πθ, we follow equation (3) to find a macro action that maximizes the expected reward

m⋆
t = argmaxmt∈H E

[
R(st,mt)

∣∣∣st;mt

]
, (5)

where mt = at:t+H−1 is the macro action and R(st,mt) =
∑t+H−1

i=t γ i−tR(si, ai) is the cumu-
lative reward over the segment. Through this process, MAQ allows agents to plan and act with
human-like behavior while optimizing for long-term return.

5 Experiments

This section empirically evaluates the proposed MAQ framework. Our experiments are designed
to answer the two main questions: Q1) Can MAQ accomplish tasks while optimizing trajectories
that align with human demonstrations, and Q2) Can MAQ exhibit human-like behavior and convince
human evaluators into believing it is human in a Turing Test evaluation?

5.1 Experiment Setup

Our experiments are conducted on four Adroit tasks from D4RL [16], including Door (opening a
door), Hammer (hammering a nail), Pen (twirling a pen), and Relocate (lifting and moving a ball).
We first train three off-the-shelf RL algorithms, including IQL [29], SAC [30], and the state-of-the-art
offline algorithm RLPD [6]. Next, we apply MAQ to each of these algorithms, resulting in three
human-like RL agents – MAQ+IQL, MAQ+SAC, and MAQ+RLPD – to evaluate their generality
across different RL algorithms. When incorporating MAQ, each RL algorithm learns a policy over a
discrete codebook, replacing the original primitive action space with macro actions distilled from
human demonstrations. This flexibility makes MAQ easy to apply to a wide range of RL algorithms.
Note that to support the discrete action space introduced by MAQ, we adopt Discrete SAC (DSAC)
[31] when applying it to SAC. In addition, we train a Behavioral Cloning (BC) [32] agent as a
baseline for evaluating human-likeness.

Each task includes 25 human demonstration trajectories, which are split into training and testing
datasets with a 9:1 ratio. Agents that require human demonstrations, including BC, IQL, and all
MAQ-based agents, are trained on the same training datasets. All agents are evaluated based on
trajectory similarity on the testing dataset. To ensure a fair comparison, all agents (including baseline
and MAQ-based agents) are trained for a total of 106 steps. For IQL and MAQ+IQL, which include
both offline and online training stages, we train 106 steps to each stage. For MAQ-based agents, we
first train a VQVAE on human demonstrations to obtain the macro action codebook. The VQVAE is
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trained with β = 0.25 in Eq. (4), a hidden size of 256, a batch size of 32, and 100 training episodes.
The same trained VQVAE is shared across all MAQ-based agents to ensure consistency. Other
detailed hyperparameters are provided in Appendix A.

5.2 Trajectory Similarity Evaluation

5.2.1 Evaluation Metrics

To evaluate how closely agent behaviors align with human demonstrations, we use two trajectory
similarity metrics: Dynamic Time Warping (DTW) and the Wasserstein Distance (WD). DTW
measures the alignment between trajectories, while WD captures distributional similarity. Both
metrics are computed between agent and human trajectories from the same testing dataset.

Dynamic time warping. DTW is a technique used to measure the similarity between two se-
quences, even if they differ in length or timing. It finds the optimal alignment between two
sequences by stretching or compressing segments to minimize the overall distance. Generally,
a lower distance indicates higher similarity. Specifically, let T H = {τH1 , τH2 , . . . , τHn } and
T A = {τA1 , τA2 , . . . , τAm} denote the sets of trajectories played by the human and the agent, consist-
ing of n and m trajectories, respectively. The DTW distance between T H and T A is calculated by
DTW = 1

n

∑n
i=1(

1
m

∑m
j=1 DTW (τH , τA)). Moreover, we compare two types of DTW distances:

state distance DTWs and action distance DTWa. The DTWs and DTWa are calculated by applying
DTW to the state and action sequences in DTW (τH , τA), respectively. A lower DTWs indicates
that the agent frequently encounters states in a similar order to those in human demonstrations, while
a lower DTWa suggests that the agent performs actions in an order similar to human demonstrations.

Wasserstein distance. Compared to DTW, WD evaluates distributional similarity with the Wasser-
stein distance between the agent and human demonstrations: W

(
ρagent, ρhuman

)
. The calculation is

performed on the same normalized feature space used for DTW and uses the POT library’s emd2
solver to compute the Wasserstein distance. Similar to DTW, we evaluate two Wasserstein variants:
state-based Wasserstein WDs and action-based Wasserstein WDa. The WDs and WDa are calculated
by applying W

(
ρagent, ρhuman

)
to the state and action.

5.2.2 Performance of MAQ-based Agents

Table 1 summarizes results for the four Adroit tasks, reporting state and action-based Dynamic
Time Warping (DTWs, DTWa) and Wasserstein distance (WDs, WDa) scores together with task
success rates. For better comparability across tasks, we normalize the similarity scores for each task
using 1− agent score−human score

random score−human score , where the agent score is the similarity between the agent and human
trajectories, the human score is the similarity between human trajectories, and the random score is
the similarity between a random agent and human trajectories. After transformation, higher values
indicate more human-like behavior.

Table 1 shows that incorporating MAQ significantly increases trajectory similarity across all tasks,
according to both DTW and WD scores. For example, in the Door task, DTWs improves from 0.43
with IQL to 0.84 with MAQ+IQL, from -0.39 with SAC to 0.8 with MAQ+SAC, and from -0.06 with
RLPD to 0.76 with MAQ+RLPD. Similarly, in the Hammer task, WDa improves from -0.19 with
SAC to 0.78 with MAQ+SAC, and from 0.2 with RLPD to 0.85 with MAQ+RLPD. Most importantly,
these improvements in trajectory similarity are achieved without significantly sacrificing task success
rate. In addition, although the BC agent learns directly from human demonstrations and achieves
moderate similarity scores, it performs the worst in terms of task success rate among all agents.
This is because the BC agent learns to imitate state-action pairs from the demonstrations, without
optimizing for successful outcomes. Overall, the largest improvement is observed between SAC and
MAQ+SAC, where the average DTWs increases from -0.49 to 0.56. This is because SAC learns
solely from environment interaction without using any human demonstrations, unlike IQL and RLPD.
As a result, its trajectories deviate more significantly from those of humans. Our findings also suggest
that MAQ has significant potential when applied to more complex problems, such as tasks requiring
intricate scenarios with numerous macro actions (e.g., continuous action spaces).
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Table 1: The results for Adroit benchmark from D4RL. The baseline of each algorithm incorproate
with MAQ generally improves all of the original algorithm similarity score in each control task.

Tasks BC IQL MAQ+IQL SAC MAQ+SAC RLPD MAQ+RLPD

Door

DTWs(↑) 0.18 ± 0.09 0.43 ± 0.06 0.84 ± 0.06 -0.39 ± 0.10 0.80 ± 0.08 -0.06 ± 0.04 0.76 ± 0.04
DTWa(↑) 0.42 ± 0.13 0.61 ± 0.04 0.95 ± 0.01 -0.25 ± 0.04 0.91 ± 0.03 0.28 ± 0.08 0.91 ± 0.05
WDs(↑) 0.32 ± 0.05 0.48 ± 0.05 0.75 ± 0.05 -0.28 ± 0.02 0.71 ± 0.08 -0.14 ± 0.04 0.71 ± 0.03
WDa(↑) 0.41 ± 0.08 0.50 ± 0.02 0.81 ± 0.03 -0.15 ± 0.02 0.77 ± 0.07 0.10 ± 0.02 0.76 ± 0.03
Success(↑) 0.02 ± 0.01 0.16 ± 0.06 0.93 ± 0.04 0.43 ± 0.23 0.56 ± 0.50 0.96 ± 0.07 0.93 ± 0.05

Hammer

DTWs(↑) -0.16 ± 0.07 -0.14 ± 0.34 0.64 ± 0.17 -1.10 ± 0.35 0.61 ± 0.21 -0.03 ± 0.14 0.68 ± 0.17
DTWa(↑) 0.47 ± 0.02 0.45 ± 0.20 0.92 ± 0.06 -0.33 ± 0.11 0.91 ± 0.10 0.37 ± 0.08 0.94 ± 0.07
WDs(↑) 0.11 ± 0.06 0.12 ± 0.13 0.75 ± 0.03 -0.44 ± 0.09 0.64 ± 0.12 -0.03 ± 0.08 0.76 ± 0.04
WDa(↑) 0.30 ± 0.03 0.30 ± 0.10 0.84 ± 0.02 -0.19 ± 0.04 0.78 ± 0.11 0.20 ± 0.03 0.85 ± 0.03
Success(↑) 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 1.00 ± 0.00 0.56 ± 0.37

Pen

DTWs(↑) 0.53 ± 0.13 0.34 ± 0.09 0.55 ± 0.17 0.06 ± 0.20 0.58 ± 0.17 0.48 ± 0.24 0.54 ± 0.18
DTWa(↑) 0.58 ± 0.05 0.51 ± 0.05 0.58 ± 0.09 -0.34 ± 0.16 0.58 ± 0.11 0.40 ± 0.17 0.59 ± 0.13
WDs(↑) 0.59 ± 0.12 0.54 ± 0.11 0.59 ± 0.13 0.29 ± 0.10 0.61 ± 0.12 0.49 ± 0.08 0.59 ± 0.12
WDa(↑) 0.65 ± 0.14 0.63 ± 0.12 0.66 ± 0.15 0.22 ± 0.15 0.67 ± 0.14 0.44 ± 0.12 0.66 ± 0.14
Success(↑) 0.40 ± 0.03 0.40 ± 0.05 0.42 ± 0.07 0.32 ± 0.09 0.41 ± 0.01 0.62 ± 0.09 0.42 ± 0.05

Relocate

DTWs(↑) 0.09 ± 0.14 0.20 ± 0.20 0.52 ± 0.06 -0.55 ± 0.20 0.25 ± 0.19 0.03 ± 0.13 0.27 ± 0.14
DTWa(↑) 0.47 ± 0.15 0.51 ± 0.11 0.82 ± 0.01 -0.10 ± 0.16 0.66 ± 0.09 0.32 ± 0.13 0.69 ± 0.10
WDs(↑) 0.27 ± 0.15 0.36 ± 0.06 0.47 ± 0.07 -0.22 ± 0.06 0.40 ± 0.07 0.02 ± 0.07 0.38 ± 0.09
WDa(↑) 0.45 ± 0.12 0.50 ± 0.04 0.65 ± 0.03 -0.05 ± 0.03 0.61 ± 0.03 0.20 ± 0.03 0.55 ± 0.08
Success(↑) 0.01 ± 0.02 0.00 ± 0.00 0.20 ± 0.10 0.00 ± 0.00 0.14 ± 0.07 0.14 ± 0.03 0.17 ± 0.10

Average

DTWs(↑) 0.16 ± 0.29 0.21 ± 0.25 0.63 ± 0.14 -0.49 ± 0.48 0.56 ± 0.23 0.10 ± 0.25 0.56 ± 0.21
DTWa(↑) 0.49 ± 0.07 0.52 ± 0.06 0.82 ± 0.17 -0.26 ± 0.11 0.76 ± 0.17 0.34 ± 0.05 0.78 ± 0.17
WDs(↑) 0.32 ± 0.20 0.38 ± 0.18 0.64 ± 0.14 -0.17 ± 0.32 0.59 ± 0.14 0.08 ± 0.28 0.61 ± 0.17
WDa(↑) 0.45 ± 0.15 0.48 ± 0.14 0.74 ± 0.10 -0.04 ± 0.18 0.71 ± 0.08 0.24 ± 0.15 0.70 ± 0.13
Success(↑) 0.11 ± 0.19 0.14 ± 0.19 0.39 ± 0.40 0.19 ± 0.22 0.28 ± 0.25 0.68 ± 0.40 0.52 ± 0.32

5.2.3 Human-Like Trajectory Optimization with Different Macro Action Lengths

We examine how the macro action length H in the MAQ codebook affects the human-likeness
similarity score. We evaluate the MAQ+RLPD across different sequence lengths (H = 1 to 9), using
the same five metrics illustrated in Table 1, averaged over the four Adroit tasks. Figure 2 shows the
results, where each cell is color-coded with darker shades indicating higher values. The color scale is
normalized independently for each metric. The results show that H = 9 yields the highest similarity
scores as well as the best task success rate. Notably, WDa remains relatively stable across all values
of H , likely due to the nature of the Adroit action space, which consists solely of Shadow Hand joint
positions. This suggests that even shorter sequences can appear human-like in action space without
being effective at completing the task. As H increases, both trajectory similarity and success rate
improve, indicating that longer macro actions not only enhance human-likeness similarity score but
also contribute to more effective task execution, highlighting the benefits of temporally extended
planning in human-like trajectory optimization. We have also provided additional analysis of MAQ
in Appendix B.

5.3 Human Evaluation Study

While the trajectory similarity scores demonstrate that MAQ-based agents align more closely with
human behavior compared to other methods, we also conduct a human evaluation study with 19
human evaluators to verify whether their behavior is recognized as human-like by human evaluators.
Specifically, each evaluator study is asked to complete two sets of questions, including a Turing Test
and a human-likeness ranking test. Detailed settings for human evaluation stduy are provided in
Appendix C. The following subsections provide the results on each evaluation test.

5.3.1 Turing Test

In the Turing Test, we conduct several two-alternative forced-choice (2AFC) questions, where
evaluators are shown two videos – one from human demonstrations and the other from one of the
seven trained agents listed in Table 1 – and asked to choose which one was performed by humans. To
ensure fairness, the evaluation consists of seven questions for each Adroit task, each corresponding to
a different agent. Namely, each agent appears exactly once, and the order of appearance is randomized
for each evaluator.

7



DTWs DTWa WDs WDa Success
Metrics

9

8

7

6

5

4

3

2

1

S
eq

ue
nc

e
L

en
gt

h

0.56±0.21 0.78±0.17 0.61±0.17 0.70±0.13 0.52±0.32

0.51±0.24 0.77±0.19 0.56±0.19 0.69±0.14 0.42±0.32

0.54±0.19 0.77±0.18 0.58±0.13 0.69±0.13 0.47±0.30

0.57±0.20 0.80±0.16 0.60±0.15 0.71±0.12 0.40±0.27

0.52±0.22 0.76±0.20 0.57±0.15 0.69±0.13 0.37±0.38

0.47±0.28 0.72±0.19 0.54±0.16 0.65±0.13 0.42±0.38

0.46±0.26 0.76±0.17 0.52±0.17 0.68±0.12 0.38±0.37

0.45±0.23 0.73±0.15 0.53±0.14 0.67±0.10 0.30±0.26

0.46±0.17 0.73±0.17 0.54±0.11 0.70±0.10 0.25±0.25

Figure 2: Trajectory similarity scores and success rates with different lengths in MAQ+RLPD.
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Figure 3: Turing Test. Error bars represent 96% confidence intervals.

Figure 3 shows the results of the Turing Test. Bars indicate the win rate of each agent, i.e., the
percentage of questions in which evaluators were fooled by the agent and believed its behavior
was more human-like than the human demonstration. The results are consistent with the findings
in Subsection 5.2, where MAQ-based agents achieve higher win rates compared to RL algorithms
without MAQ. This further corroborates that optimizing trajectories with longer macro action lengths
is strongly correlated with human-likeness. Overall, when comparing the average win rate across
four tasks, the win rate evaluated by the evaluators is: MAQ+RLPD (39%) > MAQ+SAC (34%) >
MAQ+IQL (32%) > BC (24%) = RLPD (24%) > SAC (19%) > IQL (13%). Notably, MAQ+RLPD
improves a win rate of 15% higher than non-MAQ agents, demonstrating that our method significantly
enhances the perceived human-likeness of agent behavior.

The figure also shows some interesting results. The Pen task exhibits the highest win rate for all
agents, indicating that evaluators have the greatest difficulty distinguishing agent behavior from
human demonstrations in this setting. This suggests that pen manipulating is relatively easy for agents
to master, and that the visual differences between human and agent behavior are subtle, making
deception more likely. In addition, the SAC agent shows nearly 0% win rates in the Door task. Despite
achieving a 43% success rate, its behavior remains noticeably different from human demonstrations.
This discrepancy clearly demonstrates that reward-driven RL agents are not necessarily human-like.

5.3.2 Human-Likeness Ranking Test

The questions in the human-likeness ranking test are similar to those in the Turing Test, but with
a key difference, as described below. Since the goal is to compare human-likeness among agents,
each question presents evaluators with two videos; however, both videos may be from trained agents.
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Evaluators are asked to choose the video that appears more human-like. For fairness, each agent
pair appears only once per evaluator, and not all possible agent pairs are shown for evaluators to
reduce fatigue. Each evaluator is asked to complete approximately 17 questions during this test. After
completing the test, each evaluator is shown two videos – one selected from the most human-like and
the other from the least human-like agents or humans based on their responses – and is invited to
leave comments explaining their choices.
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Figure 4: Human-likeness ranking test.

Figure 4 summarizes the results across the four tasks. The heatmap shows the win rate, where each
cell indicates how often evaluators judged agents on the y-axis to behave more human-like than
agents on the x-axis when comparing their videos directly. Overall, the results are consistent with the
Turning Test, where the overall ranking among all agents and humans as follows: Human (74%) >
MAQ+RLPD (71%) > MAQ+SAC (61%) = MAQ+IQL (61%) > BC (43%) > RLPD (38%) = IQL
(38%) > SAC (14%). Interestingly, the ranking order remains the same as in the Turing Test, except
that the positions of IQL and SAC are reversed. This indicates that human evaluators are consistent
in their judgments and can distinguish between human behavior and that of RL agents. Moreover,
MAQ+RLPD achieves a 71% win rate across all agent pairs, achieving performance comparable to
the human demonstration’s 74% win rate. This suggests that MAQ+RLPD can convincingly fool
human evaluators into believing its behavior is human-like.

5.3.3 Human Feedback on Behavior Analysis

We further investigate the feedback provided by human evaluators. Figure 5 shows video clips in
Door. The MAQ+RLPD agent demonstrates precise control by firmly holding, rotating the door
handle, and pulling to open the door, closely mimicking human behavior. In contrast, while the
RLPD agent achieves a high success rate in this task, it employs an unnatural method to open the
door – using its backhand to press the handle while simultaneously pulling the door without properly
holding the handle. Although this approach successfully opens the door, the behavior appears less
human-like. Therefore, several evaluators judged the MAQ+RLPD agent to be more human-like. As
one evaluator noted, “Because it shows how a human casually opens a door — the grip on the handle
is stable, without forcefully grabbing it all the way". Conversely, many evaluators believe RLPD
agent does not exhibit human-like behavior, remarking, “Instead of grabbing, it is glitching its hand
through the door handle" and “Its wrist performed a weird gesture and opened the door rudely."

6 Discussions

In this paper, we discuss a critical and yet underexplored challenge in reinforcement learning for
designing human-like agents. We first formulate human-likness as a trajectory optimization problem,
and realize this formulation by proposing MAQ, a human-likeness aware framework that distills
human behaviors into macro actions. Our experiments show that MAQ not only completes tasks but
also aligns with human behaviors by improving the trajectory similarity scores across four Adroit
control tasks, and achieves the highest human-likeness rankings in human evaluation. These results
demonstrate that MAQ agents are both effective and convincingly human-like.
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(a) MAQ+RLPD

(b) RLPD

Figure 5: Agent behavior in Door.

Although MAQ exhibits more human-like behavior, one limitation is its reliance on human demonstra-
tions to distill macro actions. The quality of these demonstrations can affect the effectiveness of MAQ.
However, since our primary goal is to pursue human-likeness, obtaining human demonstrations is both
necessary and appropriate within the scope of this work. Moreover, our experiments demonstrate that
MAQ can be easily integrated into various RL algorithms. We also show that MAQ has the potential
to generalize to more complex domains, such as real-time strategy games, where agents often act at
unnaturally high frequencies to maximize performance. Rather than relying on manually designed
constraints (e.g., delaying action execution [3]), MAQ naturally regulates decision frequency through
learned human-like macro actions, allowing agents to behave more realistically. In conclusion, MAQ
offers a promising direction for learning human-like RL agents.

Broader Impact

This work investigates human-like reinforcement learning by introducing a human-likeness aware
framework, called MAQ, that allows AI agents to behave in a more natural and human-like manner.
Human-like behavior can offer practical benefits in real-world applications, particularly in scenarios
involving human-robot collaboration. For example, a robot that assists with human-like movements
can improve safety and trust, reducing the risk of accidents. On the other hand, human-like agents
may be misused in deceptive or manipulative ways, such as cheating in competitive games. In
summary, the proposed method and human-likeness metrics provide a standardized approach for
evaluating and quantifying human-like behavior, benefiting the broader RL community.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Our contributions are summarized in both the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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Justification: We describe our assumption in Section 3.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information for reproducing the results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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A Experimental settings

Experimental Setup We conducted our experiments on a machine equipped with an E5-2678 CPU
and four NVIDIA GeForce GTX 1080 Ti GPUs. Training was performed on various games, each
requiring a different number of GPU hours depending on the specific task. Our method begins by
training a VQVAE with varying sequence lengths H and codebook sizes K. For each game, we
used three different random seeds: 1, 10, and 100. On average, VQVAE training required less than
5 minutes. Each MAQ-based method is built upon a pre-trained VQVAE. All MAQ variants share
the same VQVAE model when trained with the same random seed. We consistently selected the
model from the final training iteration as the VQVAE used in our online reinforcement learning
(RL) experiments. For online RL training, we evaluated the best performing checkpoint using two
similarity metrics: Dynamic Time Warping (DTW) and Wasserstein distance. Among all variants,
MAQ+IQL was the most computationally intensive, requiring 9 GPU hours per training run. In
contrast, MAQ+SAC and MAQ+RLPD required only 1 GPU hour each. Regarding the vanilla RL,
IQL, and RLPD, the training required approximately 8 GPU hours per run, and SAC training required
1 GPU hour per run. This difference stems from the experimental setup: MAQ+IQL was trained
in a single-environment setting, while MAQ+SAC and MAQ+RLPD were trained using 8 parallel
environments. As a result, the training time for MAQ+IQL was approximately 8 times longer, and for
MAQ+SAC and MAQ+RLPD, updates were performed 8 times per iteration.

Hyperparameters All hyperparameters used in the online RL methods are detailed in Table 2, and
those for Conditional VQVAE are listed in Table 3. For SAC, we used the default hyperparameters
from Stable-Baselines3 [33]. For IQL [29], we adopted the PyTorch implementation by gwthomas’s
repository released on Github [34], which most closely follows the original paper. For RLPD [6], we
used the official implementation released on GitHub.

In our MAQ-based methods, we made the following modifications. In MAQ+IQL, we built upon
the IQL codebase and integrated the VQVAE decoder after the policy, enabling the policy to make
decisions conditioned on the codebook size K. In MAQ+SAC, we extended the implementation of
Discrete SAC [31] by incorporating the VQVAE decoder. For MAQ+RLPD, we built on MAQ+SAC
and additionally implemented the symmetric sampling scheme from RLPD, using a symmetric ratio
of 0.5 (equivalent to the offline ratio shown in Table 2).

Dataset Segmentation For data partitioning, we used the human dataset provided by D4RL. Each
task consists of 25 successful human demonstrations, which we split into training and testing sets in
a 9:1 ratio, resulting in 22 trajectories for training and 3 for testing. We used the testing dataset to
evaluate similarity between agents. The normalization procedure mentioned in the paper involves
generating a random agent and using its performance on the testing dataset to normalize the similarity
scores. Table 4 presents all the detailed results, including the raw data, training data, and testing data.

Training Curves for All Environments Figure 6 presents the training curves of the experiments
described in Subsection 5.2. The results are based on the normalized rewards across different
environments. For Offline-to-Online RL (O2ORL) methods such as IQL and MAQ+IQL, training
curves are plotted in environment steps and the x-axis is scaled by 0.5, so that 2M steps are compressed
to the same span as 1M steps in other settings. Shaded regions indicate the standard deviation across
three different random seeds.

Environment Reward and Success Rate In D4RL, the success rate indicates whether the agent
completes the task within the episode limit (e.g., opening the Door within 200 steps). In contrast, the
normalized reward is a heuristic score defined by the environment that reflects how close the agent is
to completing the task. For example, in the Door task, the reward increases as the door approaches a
fully open state, but the episode is marked as successful only when the door is completely opened.

As shown in Figure 6 and summarized in Table 4, RLPD and MAQ+RLPD achieve similar success
rates. However, their normalized rewards differ substantially: RLPD tends to maximize reward by
opening the door quickly, whereas MAQ+RLPD opens the door more slowly and naturally while
maintaining the same success rate.

Computational Cost Analysis of MAQ Since there are 25 trajectories per task, the VQVAE can
be trained in a very short time. Specifically, training VQVAE takes only 3 to 4 minutes, whereas RL
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training requires several hours. While MAQ-based RL introduces some additional computational
overhead, Table 5 presents a comparison of inference time for each RL algorithm, with and without
MAQ.

It is also worth noting that MAQ can offer better inference efficiency, as it executes an entire macro
action (e.g., 9 consecutive actions in the paper) with a single forward pass, whereas vanilla RL must
do a forward pass at every timestep. In this case, MAQ-based RL can even achieve lower overall
inference time than vanilla RL, especially when longer action sequences are used.

Table 2: Hyperparameters for training Adroit tasks.

Parameter BC IQL MAQ+IQL SAC MAQ+SAC RLPD MAQ+RLPD

Batch size 256 256 256 128 128 256 128
Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 - -

Actor learning rate - - - - - 3e-4 3e-4
Critic learning rate - - - - - 3e-4 1e-3

Temperature learning rate - - - - - 3e-4 3e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam

Offline training steps 1M 1M 1M - - - -
Online training steps - 1M 1M 1M 1M 1M 1M

Discount factor γ - 0.99 0.99 0.99 0.99 0.99 0.99
Warm-up steps - - - 1e2 8e3 1e4 8e3
Update epoch - - - 1 8 1 8
Value coeff - - - - - - -

Entropy coeff - - - auto auto auto auto
Offline ratio - - - - - 0.5 0.5

Temperature alpha α - - - - - 0.2 1.0
Replay buffer size - 2M 2M 1M 1M 1M 1M

Target network update rate τ - 0.005 0.005 0.005 0.005 0.005 0.005
Advantage coeff λ - - - - - - -

Asymmetric loss coeff τ - 0.7 0.7 - - - -
Inverse temperature β - 3.0 3.0 - - - -

Std of Gaussian exploration noise - 0.03 0.03 - - - -
Range to clip noise - 0.5 0.5 - - - -

MAQ Codebook size K - - 16 - 8 - 16
MAQ Macro action length H - - 9 - 8 - 9

Table 3: Hyperparameters of training MAQ’s Conditional-VQVAE.

Parameter Adroit

Latent size 256
Learning rate 3e-4

Codebook size K [8, 16, 32]
Batch size 32

Commitment loss coeff β 0.25
Macro length H [1 ... 9]

Optimizer Adam

Table 4: Detailed numerical results corresponding to the main table, including raw scores, training
and testing data, and normalization baselines used for similarity evaluation.

Tasks BC IQL MAQ+IQL SAC MAQ+SAC RLPD MAQ+RLPD Training Dataset Testing Dataset Random

Door

DTWs(↓) 564.738 ± 39.892 451.199 ± 27.652 266.994 ± 26.499 820.125 ± 47.292 283.977 ± 34.359 672.954 ± 19.864 302.186 ± 19.757 285.085 ± 21.432 193.165 ± 30.694 643.789 ± 23.380
DTWa(↓) 700.093 ± 110.944 536.414 ± 33.763 237.304 ± 6.737 1285.045 ± 37.101 274.658 ± 24.079 823.852 ± 70.334 275.200 ± 41.988 299.011 ± 11.922 192.035 ± 12.539 1068.101 ± 26.872
WDs(↓) 6.721 ± 0.261 5.864 ± 0.263 4.388 ± 0.258 9.988 ± 0.127 4.561 ± 0.455 9.230 ± 0.213 4.587 ± 0.189 4.307 ± 0.134 3.013 ± 0.322 8.446 ± 0.188
WDa(↓) 6.017 ± 0.531 5.429 ± 0.109 3.446 ± 0.212 9.697 ± 0.162 3.701 ± 0.437 8.076 ± 0.116 3.734 ± 0.201 3.304 ± 0.118 2.176 ± 0.046 8.738 ± 0.093
Success(↑) 0.020 ± 0.010 0.163 ± 0.055 0.930 ± 0.040 0.433 ± 0.232 0.563 ± 0.497 0.957 ± 0.067 0.933 ± 0.049 1.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Hammer

DTWs(↓) 894.540 ± 24.821 887.642 ± 129.362 595.441 ± 63.226 1246.982 ± 131.710 607.021 ± 79.326 845.877 ± 52.838 578.816 ± 62.884 642.887 ± 48.775 459.715 ± 96.337 834.893 ± 45.341
DTWa(↓) 1056.832 ± 19.802 1083.427 ± 223.472 551.378 ± 72.545 1959.679 ± 118.135 570.395 ± 111.008 1178.736 ± 91.087 528.520 ± 81.925 654.830 ± 59.219 465.388 ± 104.728 1588.783 ± 81.516
WDs(↓) 8.792 ± 0.335 8.718 ± 0.696 5.243 ± 0.176 11.836 ± 0.509 5.893 ± 0.649 9.571 ± 0.443 5.202 ± 0.207 5.457 ± 0.166 3.892 ± 0.292 9.393 ± 0.251
WDa(↓) 6.670 ± 0.206 6.667 ± 0.586 3.371 ± 0.093 9.601 ± 0.234 3.751 ± 0.686 7.252 ± 0.185 3.320 ± 0.209 3.390 ± 0.077 2.394 ± 0.254 8.469 ± 0.105
Success(↑) 0.000 ± 0.000 0.010 ± 0.010 0.000 ± 0.000 0.007 ± 0.012 0.000 ± 0.000 1.000 ± 0.000 0.557 ± 0.368 1.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Pen

DTWs(↓) 745.007 ± 52.333 819.542 ± 37.199 737.831 ± 70.104 932.027 ± 80.278 726.706 ± 68.144 767.026 ± 94.645 740.454 ± 73.628 765.896 ± 61.689 556.756 ± 104.488 957.856 ± 64.804
DTWa(↓) 666.036 ± 16.540 688.794 ± 14.848 666.253 ± 29.119 950.579 ± 50.449 665.579 ± 34.040 722.633 ± 53.414 664.746 ± 38.493 727.791 ± 27.489 537.667 ± 62.392 845.175 ± 10.401
WDs(↓) 8.555 ± 0.782 8.865 ± 0.689 8.559 ± 0.793 10.498 ± 0.616 8.461 ± 0.737 9.211 ± 0.491 8.550 ± 0.736 8.112 ± 0.360 5.965 ± 0.285 12.305 ± 1.054
WDa(↓) 6.066 ± 0.695 6.166 ± 0.568 6.040 ± 0.727 8.212 ± 0.715 5.970 ± 0.687 7.101 ± 0.572 6.051 ± 0.672 5.868 ± 0.298 4.367 ± 0.336 9.275 ± 1.150
Success(↑) 0.397 ± 0.025 0.400 ± 0.053 0.423 ± 0.065 0.320 ± 0.085 0.407 ± 0.006 0.617 ± 0.085 0.417 ± 0.045 1.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Relocate

DTWs(↓) 654.866 ± 70.151 599.541 ± 102.262 443.821 ± 31.627 978.131 ± 102.574 579.314 ± 93.509 686.462 ± 65.869 564.726 ± 69.751 348.860 ± 25.274 201.109 ± 51.059 702.083 ± 91.180
DTWa(↓) 999.567 ± 214.562 931.336 ± 152.154 503.071 ± 18.131 1786.058 ± 216.580 731.311 ± 128.301 1205.731 ± 182.452 691.590 ± 132.459 410.301 ± 29.469 257.894 ± 49.510 1646.299 ± 229.892
WDs(↓) 8.812 ± 1.036 8.158 ± 0.445 7.389 ± 0.483 12.312 ± 0.445 7.903 ± 0.467 10.574 ± 0.525 8.048 ± 0.640 5.960 ± 0.360 3.627 ± 0.150 10.730 ± 0.308
WDa(↓) 6.937 ± 0.938 6.574 ± 0.319 5.345 ± 0.274 10.897 ± 0.254 5.692 ± 0.245 8.930 ± 0.237 6.127 ± 0.615 4.113 ± 0.212 2.559 ± 0.047 10.516 ± 0.329
Success(↑) 0.013 ± 0.015 0.000 ± 0.000 0.203 ± 0.095 0.000 ± 0.000 0.143 ± 0.065 0.137 ± 0.025 0.173 ± 0.098 1.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000
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Table 5: Comparison of computational costs with and without MAQ

Vanilla RL (ms) MAQ (ms) Ratio (MAQ/Vanilla RL)

SAC/MAQ+SAC 1.31 1.35 1.03
IQL/MAQ+IQL 0.81 1.12 1.39
RLPD/MAQ+RLPD 0.28 0.81 2.93
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Figure 6: Training curves for Adroit tasks.
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B Further Analysis

In this section, we analyze MAQ from several aspects: (i) the effect of codebook size in Conditional-
VQVAE (Appendix B.1); (ii) robustness to suboptimal demonstrations, including randomly shuffled
and sorted datasets (Appendix B.2); (iii) the impact of extending the environment horizon on success
rates in the Hammer task (Appendix B.3).

B.1 Impact of Codebook Size on Similarity Score in MAQ

As discussed in Section 5.2.3, we previously observed that longer sequence lengths in VQVAE tend
to lead to higher similarity scores when compared against human demonstrations. In this subsection,
we further investigate whether varying the codebook size K exhibits a similar trend. We detail the
models used in this experiment and analyze how different codebook sizes influence the similarity
scores across MAQ variants, including MAQ+IQL, MAQ+SAC, and MAQ+RLPD. It is important to
note that the similarity score is a metric we define to approximate the behavioral similarity between
agents and human demonstrations. While it provides a quantitative means of comparison, it does not
capture the full semantics or intent of human-like behavior. As also mentioned in Section 5.2.3, in
D4RL control tasks, the action space only includes the positions of the Shadow Hand, while the state
space contains additional information about the target object. Accordingly, we evaluate how different
codebook sizes affect the similarity score for different MAQ agents. Due to the computational
constraints, we limited our experiments to VQVAEs trained with codebook sizes of 8, 16, and 32.

As shown in Figures 7, 8, and 9, we observe a consistent trend across all MAQ variants: as the macro
action length increases, the similarity score also improves, regardless of the codebook size. Moreover,
the similarity scores remain within a narrow variance range, indicating stable performance across
different configurations.
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Figure 7: Similarity heatmaps of MAQ+IQL under different codebook sizes, measured by DTW and
WD on state and action.
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Figure 8: Similarity heatmaps of MAQ+SAC under different codebook sizes, measured by DTW and
WD on state and action sequences.
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Figure 9: Similarity heatmaps of MAQ+RLPD under different codebook sizes, measured by DTW
and WD on state and action.
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In contrast, Figure 10 highlights how the effect of varying codebook sizes interacts differently with
each underlying RL algorithm. For MAQ+IQL, which benefits from offline pretraining, success
rates remain relatively consistent across different codebook sizes. MAQ+SAC, on the other hand,
struggles under sparse reward conditions and fails to achieve a success rate above 30% regardless of
codebook size or macro action length. Interestingly, MAQ+RLPD, which incorporates symmetric
sampling, achieves a significantly higher success rate of up to 52%, demonstrating its advantage in
such challenging environments.
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Figure 10: Similarity heatmaps of MAQ agents under different codebook sizes, measured by success
rates.

B.2 Impact of Using Suboptimal Demonstration

In this subsection, we evaluate MAQ under different demonstration qualities, including suboptimal
ones. We conduct an ablation study using subsets of trajectories with the lowest task rewards as well
as random subsets. The results are shown in Table 6.

In this experiment, using the Pen task as an example, the success rate remains stable across demon-
strations of varying quality. Moreover, MAQ trained on small subsets of demonstrations (e.g., 25%
of the dataset under random sampling or the bottom 25% in terms of trajectory-wise reward) can
still achieve higher similarity scores (DTW and WD values in the table are not normalized; lower
is better). Even when using different random subsets, which may include higher-return trajectories,
MAQ maintains a competitive success rate.
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Table 6: Ablation of MAQ trained on suboptimal demonstrations. Similarity scores remain stable
across demonstration ratios in random and lowest, and MAQ+RLPD achieves the best success rate
and similarity.

75% 75% 50% 50% 25% 25%
Tasks MAQ+RLPD random lowest random lowest random lowest

Door

DTWs(↓) 302.19 261.29 239.77 277.42 298.26 350.23 414.27
DTWa(↓) 275.20 257.20 242.36 263.66 294.37 335.20 408.44
WDs(↓) 4.59 4.38 4.70 4.42 4.77 5.19 5.85
WDa(↓) 3.73 3.37 3.85 3.27 3.77 4.10 4.49
Success(↑) 0.93 0.98 0.79 0.85 0.55 0.48 0.03

Hammer

DTWs(↓) 578.82 593.07 736.09 605.79 643.57 623.78 706.92
DTWa(↓) 528.52 519.13 641.82 515.70 550.62 545.67 519.61
WDs(↓) 5.20 5.37 5.54 5.15 5.26 5.48 6.34
WDa(↓) 3.32 3.37 3.53 3.21 3.40 3.40 3.58
Success(↑) 0.56 0.33 0.31 0.30 0.28 0.23 0.51

Pen

DTWs(↓) 740.45 679.96 590.02 669.14 649.56 686.26 686.74
DTWa(↓) 664.75 629.19 560.92 624.25 607.43 654.41 652.16
WDs(↓) 8.55 8.02 9.70 7.79 8.47 8.24 8.61
WDa(↓) 6.05 5.95 8.42 5.53 6.01 5.85 6.24
Success(↑) 0.42 0.33 0.32 0.33 0.23 0.23 0.20

Relocate

DTWs(↓) 564.73 582.06 596.79 641.00 625.72 652.59 637.79
DTWa(↓) 691.59 739.38 741.85 857.08 772.72 862.77 853.56
WDs(↓) 8.05 7.84 8.08 8.34 8.83 8.87 8.57
WDa(↓) 6.13 6.11 5.89 6.54 6.47 6.60 6.32
Success(↑) 0.17 0.08 0.04 0.04 0.02 0.00 0.01

B.3 Impact of Different Environment Horizon

In Appendix A, we discussed the distinction between environment reward and success rate, as well
as the score gap between RLPD and MAQ+RLPD in the training curves. In the Hammer task, the
success rates of RLPD and MAQ+RLPD still differ markedly. We conducted a deeper analysis of this
task. We found that in the 25 human demonstration trajectories, humans take an average of 451.4
steps to successfully complete the task. However, in the D4RL environment, the agent is restricted to
a maximum of 200 steps per trajectory, after which the episode is terminated and directly considered
a failure.

Since MAQ learns from human demonstrations, it tends to favor smooth but slow movements, while
non-human-like RL agents tend to complete the task more quickly but less naturally. To validate
this hypothesis, we increased the maximum episode length from 200 to 450 steps. As shown in
Table 7, MAQ+RLPD’s success rate improves significantly from 0.56 to 0.72 while maintaining
human-likeness scores.

Table 7: Ablation of MAQ+RLPD on Hammer under different training horizons h.

Tasks RLPD (h = 200) MAQ+RLPD (h = 200) MAQ+RLPD (h = 450)

Hammer

DTWs(↓) 845.88 578.82 648.32
DTWa(↓) 1178.74 528.52 637.25
WDs(↓) 9.57 5.20 6.17
WDa(↓) 7.25 3.32 4.15
Success(↑) 1.00 0.56 0.72
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C Details of Human-likeness Survey

C.1 Survey Setup and Evaluation Protocol

This subsection describes the interface shown to the evaluators. Each questionnaire contains four
“tasks," where each task is split into two stages, and each stage consists of a series of two-alternative
forced-choice (2AFC) trials.

Stage 1: Human-Detection Phase (Figure 11a). The assessors are told that at least one of the two
clips was produced by a human and must identify which one. They also mark their confidence on a
five-point scale, but our main analysis considers only the binary choice and ignores the confidence
scores.

Stage 2: Ranking Phase (Figure 11b). Here, we test whether the behavior generated by MAQ-
based agents appears more human-like than that of baseline agents or even the human demonstrations.
Model clips (optionally mixed with human reference clips) are presented in 2AFC pairs that are
scheduled with a shuffled single-elimination and round-robin mini-tournament. Up to eight clips
yield no more than 17 head-to-head comparisons; each win earns one point. Clips are ranked by
win-rate wi := winsi

appearancesi
, with mean reported confidence used only to break ties, producing an

ordering from the least to the most human-like one.

Post-ranking feedback. After the Ranking Phase, each evaluator is shown the clips judged the
most and the least human-like and may optionally explain those judgments in free text (Figure 11c).
We analyze these comments in Section C.2.

C.2 Additional Results of Human Feedback on Behavior Analysis

In this subsection, we discuss the additional behavioral results and the qualitative feedback received
for each game. Figure 12 displays the distribution of the Top-1 and Top-2 rankings obtained in the
Ranking Phase. Across all games, human demonstrations achieve the highest Top-1 probability,
confirming that evaluators can reliably identify genuine human behavior. Among the learned agents,
MAQ+IQL attains the second-highest Top-1 rate, followed by MAQ+RLPD, showing that our
methods frequently convince evaluators that their behavior is indeed human-like.

In the Hammer task, five evaluators placed the human demonstration at Rank 1. The next most
human-like agents were the MAQ variants—MAQ+RLPD and MAQ+IQL, each with four first-place
votes, followed by MAQ+SAC with one first-place vote.

What evaluators liked about MAQ policies. Comments converge on three strengths: deliberate
grip preparation, a realistic multi-strike rhythm, and a smooth follow-through.

“Is able to hammer the nail.”
“First takes hold of the hammer; because you need to aim, the first hit is lighter
and the second harder.”
“Humans can aim accurately when hammering a nail and probably won’t drive the
nail completely in at once.”
“It performs smoothly and hits the nail several times.”
“There is a back-and-forth hammer-swinging motion.”
“The feeling of driving it in on the last strike is very human-like.”

Why baseline agents were judged less human-like. Non-MAQ policies drew noticeably harsher
remarks:

“Can’t even lift the hammer.”
“It threw the hammer.”
“It fails the task.”
“It cannot even lift the hammer.”
“Hits too far from the nail and releases the hammer in an unnatural manner.”
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MAQ does more than replicating the gross kinematics of hammering: several evaluators remarked that
the policy “re-aims and strikes again" after an initial impact, a behavior they naturally expect from
humans. Figure 13 contrasts MAQ+RLPD with the plain RLPD agent. MAQ+RLPD delivers a series
of well-timed blows that gradually seat the nail, whereas RLPD drives the nail in a single, overly
forceful hit. Although MAQ+RLPD does not chase the maximum task score, it acts purposefully
the way a person would, delivering several well-timed blows, while vanilla RLPD, trained only to
maximize reward, drives the nail in a single, overly forceful hit that evaluators consistently judged
“unlike a human.”

In the Pen task, six evaluators placed MAQ+IQL at Rank 1 more than any other policy, while vanilla
RLPD received five first-place votes and the human demonstration received only two.

What evaluators liked about MAQ policies. Written feedback centers on a natural, well-
coordinated grip and fine adjustments that keep the pen aligned with the target:

“It is using all the fingers.”
“It feels like all fingers are used.”
“Humans would likely adjust the pen to be as close as possible to the target model.”
“The middle and ring fingers move with the rest of the hand, which aligns with
ergonomic principles.”
“Holding the pen like this is very steady and human-like.”
“The finger angles are not too strange and the task is completed quickly.”

Why baseline agents were judged less human-like. Agents trained without MAQ conditioning
were criticized for awkward finger placement and lack of re-aiming:

“It’s unnatural for a human to leave one finger open when trying to grasp.”
“I feel like fingers are out of control.”
“After holding the pen, I wouldn’t deliberately stick out a single finger.”
“It does not adjust the pen.”
“He basically shows no intention of aiming or aligning.”
“People don’t hold a pen vertically.”
“The angles of the fingers appear twisted.”

These remarks echo the ranking statistics: MAQ conditioning encourages full-hand coordination
and incremental alignment, which are features that evaluators intuitively associate with human pen
manipulation, whereas reward-only policies often adopt grasp patterns that look distinctly non-human.

In the Relocate task, six evaluators placed the human demonstration at Rank 1, but MAQ+IQL was a
close second with five first-place votes, followed by MAQ+RLPD (three) and MAQ+SAC (one).

What evaluators liked about MAQ policies. Positive remarks emphasize three recurring traits: a
direct, purposeful approach to the ball, continuous motion once the object is secured, and smooth
point-to-point transfer.

“It moves towards the ball.”
“After the ball is grasped, the motion continues without any pause.”
“Humans should smoothly move an object from the source to the destination point
the hand is gently and smoothly picking, moving, and putting.”
“At least it puts the ball near the target position.”
“The hand shows slight grasping motions, and the movement trajectory feels quite
natural.”
“People normally go straight to grab the ball.”

Why baseline agents were judged less human-like. When an agent broke the direct-and-smooth
pattern, the evaluators reacted strongly:
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“It moves away from the ball.”
“The hand stopped moving before it actually grasped the ball.”
“It looks like it can’t even pick up the ball.”
“It does not move the object at all.”
“The arm and finger movements are both very chaotic.”
“When I grab the ball, I would align my palm to the ball, not my wrist.”

Taken together, these comments show that MAQ conditioning steers agents toward the straight-
line reach, uninterrupted grasp-and-place sequence that evaluators intuitively associate with human
relocation behavior, whereas reward-only policies often hesitate, wander, or execute awkward wrist-
first contacts that look distinctly non-human.

Summary of MAQ Advantages. Across all appendix tasks, including Hammer, Pen, and Relocate,
the MAQ-conditioned agents consistently receive the highest human-likeness rankings among the
learned policies. Evaluators repeatedly highlight three qualities that MAQ alone imparts:

1. Preparatory alignment. MAQ policies re-aim, re-grip, or re-strike in ways that mirror how
humans make minor adjustments before the decisive action.

2. Appropriate force modulation. MAQ agents hammer with several well-timed taps, guide
the pen with gentle finger coordination, and transport the ball with a continuous grasp-and-
place sequence—behaviors evaluators intuitively regard as natural.

These observations reinforce our central claim: MAQ does not simply optimize task scores; it
systematically shapes behavior toward the timing, grip strategy, and motion fluidity that humans
recognize as their own.
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(a) Human Detection Phase. (b) Ranking Phase.

(c) Post-ranking feedback.

Figure 11: Evaluation protocol.
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Figure 12: Probability distribution of agents ranked top 1 and top 2 in Ranking Phase.

(a) MAQ+RLPD
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Figure 13: Agent behavior in Hammer.
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