
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Data Shifts Hurt CoT: A Theoretical Study

Anonymous Authors1

Abstract
Chain of Thought (CoT) has been applied to var-
ious large language models (LLMs) and proven
to be effective in improving the quality of out-
puts. In recent studies, transformers are proven to
have absolute upper bounds in terms of expressive
power, and consequently, they cannot solve many
computationally difficult problems. However, em-
powered by CoT, transformers are proven to be
able to solve some difficult problems effectively,
such as the k-parity problem. Nevertheless, those
works rely on two imperative assumptions: (1)
identical training and testing distribution, and (2)
corruption-free training data with correct reason-
ing steps. However, in the real world, these as-
sumptions do not always hold. Although the risks
of data shifts have caught attention, our work is
the first to rigorously study the exact harm caused
by such shifts to the best of our knowledge. Fo-
cusing on the k-parity problem, in this work we
investigate the joint impact of two types of data
shifts: the distribution shifts and data poisoning,
on the quality of trained models obtained by a
well-established CoT decomposition. In addition
to revealing a surprising phenomenon that CoT
leads to worse performance on learning parity
than directly generating the prediction, our techni-
cal results also give a rigorous and comprehensive
explanation of the mechanistic reasons of such
impact.

1. Introduction
Large language models (LLMs) based on the transformer
architecture has achieved tremendous success in the area
of artificial intelligence (Vaswani et al., 2017). However,
without intermediate guidance or supervision, they do not
perform well especially on complex reasoning problems

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

which require rigorous logical steps (Sakarvadia et al., 2023).
Chain of Thought (CoT) has empowered LLMs to a large
extent (Wei et al., 2022), making them much more capable
at multi-step reasoning (Nye et al., 2021; Wei et al., 2022;
Zelikman et al., 2022; Lightman et al., 2024), and more
effective against hallucinations (Dhuliawala et al., 2024).
From a theoretical point of view, CoT has recently been
proven to fundamentally improve the power of transformers
from a complexity-theoretic perspective (Merrill & Sab-
harwal, 2024; 2023; Merrill et al., 2022; Li et al., 2024).
Several works have applied the CoT mechanism to solve
concrete mathematical problems that are hard for primitive
models, such as function classes via in-context learning (Li
et al., 2023; Bhattamishra et al., 2024) and the k-parity
problem (Kim & Suzuki, 2025).

However, all previous works only took care of the case with
perfect training data for CoT reasoning. In practice, there
can be distribution shifts between training and testing data,
as well as some of the CoT reasoning steps used for training
can be incorrect. It is an open problem to assess the per-
formance of CoT under such shifts. Even for mathematical
problems with a clear structure, this question remains open
without a comprehensive answer.

In this paper, we conduct a comprehensive and theoretical
study of the impact of training data on CoT for the task of
learning parity functions. In one unified Theorem 4.2, we
characterize a necessary and sufficient condition for CoT
success on this task under the joint impact of distribution
shifts and data poisoning. The condition gives a decisive
criterion on the success of this training method by assessing
the parameters of the two types of data shifts concurrently.
To the best of our knowledge, this paper is the first work to
study this problem from a theoretical perspective.

Motivations. In this paper, we focus on answering the
following major question:

Is CoT still effective under data shifts?

To tackle this question, we choose the “generalized” k-
parity problem as a platform, where the term “generalized”
refers to a broad class of input generating distributions. They
will be rigorously defined in Section 2, and they roughly
divide the classes of k-parity problems into an “easy” class

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Data Shifts Hurt CoT: A Theoretical Study

and “hard” class; the level of “easiness” (or “hardness”) can
be precisely, quantitatively characterized by the parameter
of input generating distributions. At a high level, a non-
uniform distribution makes the problem easier by “leaking”
information on the locations of target bits. Another type of
shift is data poisoning in the training data of CoT steps. In
this work, we investigate the joint impact of both training
distributions and data poisoning in those steps on the per-
formance of CoT for the generalized k-parity problem. The
answers revealing this three-way relationship is our main
contribution in this work. The major question can further
be divided into the following more specific ones, and they
are the key topics being investigated in our work:

1. Does more information leak help the algorithm to iden-
tify the correct positions of relevant bits?

2. How severe is the impact of data poisoning? We divide
this question into two more specific ones:

(a) What is the threshold on the level of poisoning
that learning can tolerate?

(b) Is there a specific pattern of corruption that harms
learning?

3. How do both types of shifts affect the training if they
concurrently exist?

4. Can we explain the mechanism of such effect?

All five questions will be answered in Section 4.2.

Choice of the k-parity problem. The k-parity problem
aims to guess the sign of the product of k selected bits from
{−1, 1} among a large number of bits, and consequently
identify the relevant positions involved in the product. We
select it for two main reasons.

1. The major theme of our paper is about the impact of
distribution shifts and data poisoning. Any shift on
binary inputs for the k-parity problem can be easily,
objectively quantified. Similarly, at every step and
every position, an entry has only one correct value
given a number of bits, so anything other than the true
value is poisoning.

2. The quality of a parity predictor can be objectively
assessed as the correctness of the output has an absolute
criterion.

Contributions. Our contributions are summarized as fol-
lows.

1. In Theorem 4.1, first show that the imbalanced k-parity
problem is “easy”, meaning it indeed can be efficiently

solved by a one-layer transformer in one gradient up-
date without CoT, and the optimization landscape is
benign.

2. Next, we reveal the joint impact of the distribution
shift and data poisoning on the performance of the pre-
dictor trained by the successful CoT decomposition
of the k-parity problem introduced in (Kim & Suzuki,
2025). This three-way relationship is compressed into
one statement in Theorem 4.2, and characterizes a nec-
essary and sufficient condition on the amount of dis-
tribution shift and data poisoning to ensure successful
training. This result has several implications.

• The tolerance of corrupted CoT training samples
is only O(1/k), making the learning vulnerable
against data poisoning.

• Surprisingly, distribution shift always hurts: A
higher degree of shift always leads to worse train-
ing performance. In our setting, recall that non-
uniform distributions leak information on the lo-
cation of target bits, so intuitively it should help
the predictor to learn. However, our result sug-
gests the opposite, and Corollary 4.4 eliminates
the possibility of successful learning when the
locations are exposed to the maximum extent.

2. Related works
Empowerment of CoT. Starting from 2022, a line of work
investigates the expressive powers of transformers from
a complexity theoretic perspective. The most recent and
comprehensive works include (Merrill & Sabharwal, 2024)
and (Li et al., 2024). The first paper provides a comprehen-
sive complexity-theoretic relationship between CoT steps
and computational power. Almost concurrently, the second
paper proves tighter upper bounds for constant-precision
transformers. Together, these two works confirm that, with
sufficient (polynomial) CoT steps, transformers break their
original upper bound in computation and can compute any
problem in P/poly. Beyond theoretical soundness of those
works, more concrete implementations on CoT are also be-
ing studied, including concrete training paradigms (Li et al.)
and interactions with inference-time search and reinforce-
ment learning fine-tuning (Kim et al., 2025).

Empirical discoveries of limitations on CoT. Despite
both theoretical and empirical successes, recent empirical
works also revealed that sometimes CoT may worsen the per-
formance (Shaikh et al., 2023; Kambhampati et al., 2024).
The CoT mechanism has been shown to improve perfor-
mance mainly on mathematical and logical tasks, but less so
for other tasks (Sprague et al., 2025). For tasks where think-
ing can make human performance worse, the harm caused
by overthinking also holds for models with CoT (Liu et al.,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Data Shifts Hurt CoT: A Theoretical Study

2024). It was also found recently that transformers can still
solve problems with meaningless filler CoT tokens (Pfau
et al., 2024).

Parity and LLMs. It has been shown that if, with a posi-
tive probability, the relevant bits are uniformly 1 or −1, then
this “imbalanced” k-parity problem can be solved by an
one-layer neural network (Daniely & Malach, 2020). How-
ever, if all inputs are uniformly generated, then this uniform
k-parity problem has been proven not to be solvable by
any input-output learning algorithm based on gradient up-
dates (Shalev-Shwartz et al., 2017; Shamir, 2018). Recently,
thanks to developments of CoT, several works have made
significant progresses on solving uniform k-parity with task
decompositions as CoT steps. Success has been achieved
for recurrent neural networks in (Wies et al., 2023), and they
designed a task decomposition of k-parity into k − 1 struc-
tured steps. Afterwards, (Kim & Suzuki, 2025) extended
their results to autoregressive transformers.

3. Problem setup
Notation. We write [n] := {1, · · · , n} for any integer
n. The multi-linear inner product of vectors z1, . . . ,zr ∈
Rn for any r ∈ N is denoted as ⟨z1, · · · , zr⟩ :=∑n

i=1 z1,i · · · zr,i. In particular, ⟨z⟩ = z⊤1n and
⟨z1, z2⟩ = z⊤

1 z2. The transformer will be denoted by a
function TF(·) Unless specified, each binary vector x repre-
sents the ground truth, and x̂ is the generated vector by the
transformer. The definition of data poisoning or data cor-
ruption will be formally presented later, but if x is injected
with poisoning, then it is denoted by x̃.

3.1. The parity problem

Let d ≥ k ≥ 2 be integers, and P be an arbitrary subset
of [d] with k elements. In this paper, we study the k-parity
problem, where the output of the target parity function is
y =

∏
j∈P xj , so the function value called parity, entirely

depends on the coordinates at the locations determined by
P . Given n samples (xi, yi)i∈[n], our goal is to predict the
parity of any test input from {±1}d. We assume k = Θ(d).

It is known that, if all inputs xi of dimension d are uni-
formly generated, then this “uniform” k-parity problem is
fundamentally difficult and cannot be solved in polynomial
time by any finite-precision gradient-based algorithms (Wies
et al., 2023). Recently, it was proven that the uniform k-
parity problem can be solved by transformers with log k
reasoning steps (Kim & Suzuki, 2025).

On the other hand, for a particular kind of imbalanced dis-
tribution on the input bits for training, the k-parity problem
is proven to be solvable by neural networks (Daniely &
Malach, 2020). The “imbalanced” distribution is defined

as the following: For any number ρ ∈ [0, 1] and a subset P
of [d], the distribution DP

ρ is a distribution on the input bits
such that

• With probability ρ, all d bits are uniformly generated.

• With probability 1− ρ, all bits in [d] \P are uniformly
generated, but the bits in P are all 1 with probability
1/2, and all −1 also with probability 1/2.

If ρ = 1, DP
ρ = DP

1 reduces to the uniform distribution.
Intuitively, any distribution DP

ρ with ρ < 1 leaks informa-
tion for the relevant bits and consequently makes the parity
problem easier. As we will show later in Section 4.1, this
imbalanced k-parity can also be solved by a one-layer trans-
former. If the value of ρ is not specified, we categorize such
a problem a “generalized” k-parity problem.

3.2. Chain of Thought (CoT)

Designed and first implemented in 2022 (Wei et al., 2022),
the chain of thought (CoT) approach has been a powerful
technique to improve large language model’s performance
for reasoning tasks. At high level, CoT inquiries ask the
language model to generate intermediate steps instead of
outputting a final answer directly. The intermediate steps
are obtained by applying the transformer repetitively using
earlier intermediate tokens, and they can be regarded as a
“reasoning chain”.

Task decomposition as CoT. As in (Wies et al., 2023)
and (Kim & Suzuki, 2025), we assume k = 2v for sim-
plicity, where v ∈ N. The chain of thought protocol de-
composes the k-parity problem as a sequence of 2-parity
problems. Visually, this is expressed as a complete binary
tree of height v and 2k − 1 nodes. The lowest level on this
tree contains k nodes from P , and the remaining d− k irrel-
evant bits are isolated vertices and not part of the tree. All
remaining nodes represent reasoning steps, and are labeled
as xd+1, . . . , xd+k−1. The next level above contains k/2
nodes, then k/4, and so on until at level v, the unique node
xd+k−1 is the final prediction of the parity value. For each
d < m < d + k − 1, xm must have exactly two children
and they are denoted by c1[m] and c2[m]. At the same time,
it must have exactly one parent and it is denoted by p[m].
The height of the tree is denoted as h[m], the length of the
longest path in the graph. All d nodes corresponding to d
inputs are located at level zero; the height of any other node
is difference between h[m] and the number of edges from
itself to the root.

Feedforward layer. The feedforward layer carries a fixed
link function ϕ : [−1, 1] → [−1, 1], applied element-wise.
To exploit the decomposition of our task into 2-parities, we

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Data Shifts Hurt CoT: A Theoretical Study

h = 3

h = 2

h = 1

h = 0

x23 = y

x21 x22

x17 x18 x19 x20

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 1. A hierarchical decomposition of an 8-parity problem for
d = 16. Over here, x17 = x2x3, so c1[17] = 2, c2[17] = 3,
p[17] = 21, and h[17] = 1.

choose ϕ such that ϕ(0) = −1, ϕ(±1) = 1 so that sums are
converted into parities, i.e. ϕ(a+b

2) = ab for a, b ∈ {±1}.
Moreover, we require symmetry of ϕ, and that ϕ′(0) = 0.
Specifically, we choose the following function.

ϕ(x) =

{
d3x2 + d−3 − 1, x ∈ (−d−3, d−3);

2|x| − 1, otherwise.
(1)

The choice of this function ensures that ϕ is differentiable
everywhere on [−1, 1]. There is a discrepancy on ϕ(0) =
d−3 − 1 instead of −1, but the gap will be bounded as
perturbations and approach to zero as d becomes large.

Specific CoT process. For our case on k-parity, all input
bits x1, . . . ,xd are fixed, and the positions of later steps
before generation are null. The first intermediate token,
x̂d+1, is generated next and staying the same value through
the entire remaining process. Similarly, the next token is
generated by x̂d+2 = TF(2)(x1, · · · ,xd, x̂d+1;W), where
W is the transformer weights. Finally, the final prediction
is computed by repeating the computation for k − 1 times:

y = TF(k−1)(x1, . . . ,xd, x̂d+1, . . . , x̂d+k−2;W) (2)

Teacher forcing. For CoT implementations, we utilize
teacher forcing in our training process. Teacher forcing is a
form of process supervision, where in addition to the final
prediction, ground truth labels for CoT steps are provided
during training. Consequently, the accuracy of each CoT
step can be measured. Given n samples and model weights
W, the total loss takes every position d+1 ≤ m ≤ d+k−1
into account and is defined as

L(W) =
1

2n

d+k−1∑
m=d+1

||x̂m − xm||2

=
1

2n

d+k−1∑
m=d+1

||ϕ(ẑm)− xm||2,

(3)

where zm =
∑m−1

j=1 σj(wm)xj and σj(wj) are softmax
attention scores.

CoT data corruption. Intuitively, if all CoT steps are
correct for training, then indeed the final predictor will
accurately reflect the true target function thanks to correct
decomposition. However, correctness of CoT steps relies
on correct “ground truth” labels during the training steps.
If a high amount of such tokens are false, because of either
oversight or malicious attacks, then naturally, one may infer
that the quality of those intermediate steps may deteriorate.
In our case, the ground truth labels are either 1 or −1, and
corruption refers to flipping the signs of some inputs.

4. Theoretical results
4.1. Imbalance is easier than uniformity for

transformers without CoT

In this section, we assume ρ < 1 so information on relevant
bits in P are leaked. We assume ρ is never too small nor
too large, so ρ = Θ(1). The goal of this section is to
show that the imbalanced problem is indeed solvable by a
simple, one-layer transformer with a softmax attention layer.
Theorem 4.1 is the specific statement of this result. The
proof will be presented in the appendix.

Theorem 4.1. Given n samples where n = Ω(d2+ϵ), with
probability at least 1−exp(dϵ/2), a learning rate η = Θ(dϵ)
and all-zero initializations, the predictor ŷ after one-step
update satisfy |ŷ − y| ≤ O(d−1+ϵ) for any given input
x ∈ {±1}d and y =

∏
r∈P xr.

Proof sketch. The proof involves explicitly computing the
gradient with respect to each weight wj,m, and utilizing
the large differences on the gradients between relevant and
irrelevant bits (whether j ∈ P or not). Because the softmax
scores are identical at initialization, we can compute the in-
teraction terms among the tokens x1, . . . ,xd, x̂d+1, where
x̂d+1 is the vector of predictions.

Here is an example of interaction: ⟨xd+1, ẑm, ẑm⟩ =
⟨xd+1,xα,xβ⟩ /d2. If α, β ∈ P , then for each data sam-
ple, the parity xd+1xαxβ =

∏
i∈P\{α,β} xi is a random

variable with expectation 1− ρ > 0 if ρ < 1. If all bits are
uniformly generated, i.e. ρ = 1, then this variable has mean
zero. Since the training distribution DP

ρ is imbalanced, the
variable has a positive mean. But if at least one of α and β
is not in P , such variables are bounded with in a small value.
With a sufficiently large d and n, the computation leads to
positive weight updates for relevant bits, and negative up-
dates for others. Such a huge gap allows an attention layer
to identify relevant bits and make correct predictions.

4.2. Applying CoT for the generalized problem

In this section, the value of ρ ∈ [0, 1] is not restricted, and
we focus on the impact of CoT decomposition on solving the
generalized k-parity problem under two types of nuances:

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Data Shifts Hurt CoT: A Theoretical Study

(1) the information leaked (regulated by ρ), and (2) the level
of data poisoning, defined in Section 3.

Our main result Theorem 4.2 characterizes an equivalent
condition on successful training with this CoT decomposi-
tion with respect to (1) the distribution shift ρ and (2) the
quantity and distribution of data poisoning. Before stat-
ing the theorem, we first define a few ingredients for the
characterization.

Set of poisoning. We first define a few notations for quan-
tifying the data poisoning on different positions and their
interactions. Given n data samples of dimension d+ k − 1
including the CoT steps, for each node i ∈ {d+ 1, . . . , d+
k − 1}, let Ui ⊆ [n] be the set of indices with corrupted
samples. For any two nodes a, b ∈ {d+ 1, . . . , d+ k − 1},
define the set Ia,b = Ua ∩ Ub. For any i ∈ Ia,b, coordi-
nates a and b in the training sample xi are both flipped by
multiplying −1, so the effect of poisoning cancels out. For
three nodes a, b, c ∈ {d+ 1, . . . , d+ k − 1}, we define the
following set:

Ua,b,c = {(Ua ∪ Ub ∪ Uc) \ (Ia,b ∪ Ia,c ∪ Ib,c)}∪(Ua ∩ Ub ∩ Uc) .

For two nodes a and b, the set Ua,b = (Ua∪Ub)\(Ua∩Ub)
is defined with the same rationale. See Figure 2 and 3 for
visualizations. We will denote qa,b,c = |Ua,b,c| for the size
of this set.

Quantities for poisoning characterization. Exact quan-
tities of gradient updates ∂L/∂wj,m for every 1 ≤ j < m
depend on the indices of j and m. Those quantities are nec-
essary to characterize the poisoning and state our main result
Theorem 4.2, but they have considerably long expressions.

We define the following three functions. They are ingre-
dients to compute the differences for gradient updates be-
tween correct and incorrect nodes. The final expressions of
gradient updates have two major terms, the first term distin-
guished on (1) CoT steps of height one

(
d ≤ m < d+ k

2

)
d

or higher
(
d+ k

2 < m ≤ d+ k − 1
)
, and (2) location of

j: either h[j] = 0 or h[j] ≥ 1. The second term only
distinguishes on the latter.

For any 1 ≤ j ≤ m, the name Gh[m]=1 denotes the signal
difference for the CoT steps of height one with distinct
levels of j, and Gh[m]>1 is defined similarly for later CoT
steps. The S(m) is the coefficient of the signal difference
given by the second term between j on the lowest level
and on higher levels. Their expressions are formally stated
below.

Gh[m]=1(m, j, ρ) = −2(1− 2qm)

(m− 1)2
− 2(k − 1)(1− 2qm)

(m− 1)2
(1− ρ)

+

m−1∑
α=d+1

2(1− 2qm,α,j)

(m− 1)2
(1− ρ).

(4)

Figure 2. Given three sets Ua, Ub, and Uc, the set Ua,b,c is the
union of all three sets excluding elements that belong to exactly
one intersection of two sets. The shaded region represents the
impactful corruption. Corruption in the white region is cancelled
out.

Figure 3. Each axis represents samples of nodes a, b, and c.
Red segments show flipped samples. Flips from 0.2n–0.3n and
0.5n–0.7n cancel out due to two flips. Other red segments are
harmful: flipped at one node (0.1n–0.2n, 0.7n–0.9n) or all three
nodes (0.3n–0.5n).

Gh[m]>1(m, j, ρ) = −
2(1− 2qm,c1[m],c2[m])

(m− 1)2

−
∑

d<α<m,α̸=c′[m]

2(1− 2qm,c[m],j)

(m− 1)2
(1− ρ)

+
2k(1− 2qm)

(m− 1)2
(1− ρ).

(5)

S(m, j) = − 2(k − 1)

(m− 1)2
+

∑
d<α<m,α̸=j

2(1− 2qα)

(m− 1)2

+

m−1∑
α=d+1

8k(1− 2qα)

(m− 1)3
−

m−1∑
α,β=d+1

4(1− 2qα,β,j)

(m− 1)3

−
∑

α,β∈P

4(1− 2qm)

(m− 1)3
.

(6)

Note that for steps m with h[m] = 1, it always holds

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Data Shifts Hurt CoT: A Theoretical Study

that qm = qm,a,b if a, b ∈ [d] because the inputs have no
poisoning, so all flips in step m are harmful for computing
⟨xm,xa,xb⟩.

We now state our main theoretical result in this work. We
answer Question 3 by providing a comprehensive statement
on the impact of both distribution shift ρ and the poisoning
structure among the CoT steps on the final performance of
the predictor within the selected CoT decomposition. Such
impact leads to an equivalent (both necessary and sufficient)
condition on success of training.

Theorem 4.2. Let n = Ω(d2+ϵ) and µ > −2 − ϵ/4 for
ϵ > 0. Suppose d is sufficiently large. With softmax attention
and all-zero initializations on weights, a transformer with
the prescribed CoT mechanism can solve the uniform parity
problem with an error rate converging to zero as d → ∞ if
and only if all the following conditions hold.

• For every m ∈
{
d+ 1, · · · , d+ k

2

}
, the following in-

equality satisfies:

Bm = max
d<j<m

{−2ρ(1− 2qm)

(m− 1)2
,

Gh[m]=1(m, j, ρ) + (1− ρ)S(m, j)} < −O(dµ).

(7)

• For every m ∈
{
d+ k

2 + 1, · · · ,m− 1
}

, the follow-
ing inequality satisfies:

Bm = max
d<j<m

{−
2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2
,

Gh[m]>1(m, j, ρ)− (1− ρ)S(m, j)} < −O(dµ).

(8)

In particular, if the conditions above hold for every m, then
let B = max

d<m<d+k−1
Bm, for every input x ∈ {±1}d, the

true prediction y and the prediction ŷ by the trained predic-
tor after one step update with learning rate η = Θ(d−µ)
satisfy |ŷ−y| ≤ O(d−B(µ−2−ϵ/4)) with probability at least
1 − exp(dϵ/2). If the conditions fail for at least one CoT
step, then limd→∞ E [|ŷ − y|] = Ω(1).

Vulnerability against poisoning. The theorem provides
a rigid equivalent condition for the algorithm to succeed.
Even for one intermediate step m ∈ {d+1, · · · , d+k−1},
if qm,c1[m],c2[m] ≥ 0.5, then the condition in Equation (7) or
8 no longer holds, and consequently the training algorithm
would not succeed. Recall that for this task, there are (k −
1)n values in the training data set for all intermediate steps,
but 0.5n flips are sufficient to fail the training. Conclusively,
this algorithm has a low poisoning tolerance of 1

2(k−1) , and
this threshold approaches to zero as k become large. This
analysis answers Questions 2.(a) and 2.(b) in Section 1.

Regarding distributions shift, Theorem 4.2 leads to an im-
mediate corollary, which reveals a seemingly paradoxical
conclusion.

Corollary 4.3 (Maximum leakage of information). If ρ = 0,
i.e. all non-relevant bits are still uniformly generated but all
relevant bits are either all −1 or 1, then the training always
fails with this CoT decomposition.

Proof. If ρ = 0, then Bm = 0 for any intermediate node
m.

Explanation of the “paradox”. If ρ = 0, the locations
of relevant bits are exposed to the maximum extent, so in-
tuitively, the CoT protocol should be able to solve it even
more efficiently than the case when ρ = 1. However, within
this CoT design, this case leads to an immediate, absolute
failure. The exact reason will be briefly outlined in the proof
sketch and comprehensively presented in the full proof. At
a high level, when ρ = 0, the gradient update extracts identi-
cal information from correct nodes (children) and incorrect
nodes (non-children) during the CoT steps. However, iden-
tifying the location of the children is essential to ensure
that the final output is indeed the multiplication of the rele-
vant bits. If errors on this step exist, some relevant bits are
multiplied multiple times and therefore the output will be
different from the truth.

Ever-present harm of distribution shift. The impact of
ρ is concrete even if ρ > 0. Recall that for the uniform case
where ρ = 1, we have

Gh[m]=1(m, 1) = −2(1− 2qm)

(m− 1)2
= −

2(1− 2qm,c1[m],c2[m])

(m− 1)2
,

Gh[m]>1(m, 1) = −
2(1− 2qm,c1[m],c2[m])

(m− 1)2
.

(9)

Thus, Bm = −2(1− 2qm,c1[m],c2[m])/(m− 1)2 for any m
if ρ = 1. Let m′ = argmaxm Bm, then if ρ < 1, denote
the values computed in Equation (7) and 8 as {B′

m}d+k−1
m=d+1,

observe that Bm′ > Bm. Hence, B′ = maxm B′
m >

B′ and the convergence rate slows down for every ρ < 1.
Furthermore, clearly a lower ρ leads to a higher Bm. So,
we can conclude that distribution shift always damages the
training if it exists, and low shift is always better than high
shift. This answers Question 1.

Corollary 4.4 (Simple characterization without distribution
shift). If the training and testing distribution are identical,
i.e. ρ = 1, then the CoT decomposition succeeds if and
only if qm,c1[m],c2[m] ≤ 0.5 − O(dµ) for every m ∈ {d +
1, . . . , d+ k − 1}.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Data Shifts Hurt CoT: A Theoretical Study

Proof. If ρ = 1, then clearly

Gh[m]=1 + (1− ρ)S = Gh[m]>1 − (1− ρ)S

= −
2(1− 2qm,c1[m],c2[m])

(m− 1)2
.

(10)

Observe that if h[m] = 1, i.e. m ∈
{
d+ 1, · · · , d+ k

2

}
,

then qm = qm,c1[m],c2[m] because there is no poisoning in
the inputs.

We have answered all of Questions 1, 2 and 3 in the in-
troduction. We conclude this section by a proof sketch of
Theorem 4.2, which summarizes the technical analysis that
answers Question 4. The entire proof will be presented in
the appendix.

Proof sketch of Theorem 4.2. For the if direction, we di-
rectly compute the gradients, and found that the two quanti-
ties in Equation (7) and 8 are gradient differences between
correct and incorrect nodes. A low enough value of Bm for
every m ensures the two correct nodes have larger weights
than incorrect nodes, and the gap must be large enough for
the attention layer to distinguish correct and incorrect nodes
as d becomes large. As a result, the attention scores σj(wm)
is close to zero if p[j] ̸= m, and are close to 0.5 otherwise.

For the only if direction, we prove the contrapositive: If
the conditions do not hold, i.e. Bm is not low enough for
an intermediate step m. The key part is still analyzing the
gradient update, but since the condition fails for m, the
gradient update for at least one node j such that p[j] ̸= m is
now equal or higher than updates for children. Consequently,
the attention score for that incorrect node is equal or higher
than the scores for correct nodes. As a result, at least one
CoT step will not learn an accurate predictor. We will
show a lemma that non-vanishing error on any CoT node
crashes the final predictor and hence prove the failure in this
scenario.

5. Experiments
In this section, we provide numerical experiments which
support our theoretical analysis. The statement of Theo-
rem 4.2 holds with a large enough d to overcome low-order
error terms and perturbations. In our experiments, we im-
plement a more realistic setting on dimensions and learning
rates with an extensive period of training time. We train a
simple one-layer transformer with absolute encoding, soft-
max attention layer and the feedforward layer defined in
Section 3.2. The investigated problem is exactly the same
as the one in Section 4.2. We set the input dimension to be
128 and by default k = 64. The value of k can be easily
adjusted within 128, but for larger d, e.g. 256 or 512, the
computation becomes prohibitively slow even with A100
GPU.

Figure 4. Heatmap of testing loss with respect to both distribution
shift and poisoning structure. Each value on the horizontal axis is
the ratio of uniformly generated inputs, the same as ρ in Section 4.
The number inside each grid is the test loss under that particular
circumstance.

Our implementation automatically generates synthetic data
from {±1}128 and randomly selects k relevant bits. Once
the inputs are generated and relevant bits are selected, the
program then constructs a decomposition tree like the il-
lustration in Figure 1. Next, using the inputs, the program
computes the ground truth samples for CoT training by
multiplying the correct bits element-wise following the de-
composition tree structure.

The key parameters for our problem other than the stan-
dard ones above are the ratio of uniformly generated inputs
and structure/quantity of data poisoning. After the inputs
are generated, the program allows us to input the variable
uniform_prob, which is ρ defined in Section 4, and
then (1 − uniform_prob)n samples will have their co-
ordinates at target bits to be changed to either all −1 or 1,
both with probability 0.5. We may also easily inject poi-
soning with any quantity and structure by editing the list
flip_configurations.

We experimented over 35 cases with seven variants
of poisoning quantity and structure and five values of
uniform_prob. Figure 4 shows the training results after
5000 epochs in every case when d = 128 and k = 64. We
first note that the performance under no distribution shift
strictly surpasses any other case with distinct poisoning
structure and quantity, with the exception of the case where
the first and second CoT steps have 40% of ground truth
labels flipped. The high loss for this poisoning structure
even without distribution shift is justifiable as the level of
impact poisoning is high. We also observe that, even with-
out distribution shift, the empirical poisoning tolerance is
not as high as 50%, and the location of poisoning matters.
Theoretically, even with a poisoning of 40%, if d is large
enough the performance should not be different with the
performance under the case without any poisoning, and the

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Data Shifts Hurt CoT: A Theoretical Study

location of poisoning should not matter as long as the condi-
tions in Equation (4) and 5 matters. But an eligible d, as we
will show in the proof of Theorem 4.2, must be astronomi-
cally large and cannot be empirically tested. Nevertheless,
the heatmap shows that the performance degrades with low
ρ, and the impact of poisoning structure is real: The case
with 25% of poisoning in steps 33, 34 and 49 has a strictly
higher loss than the other two cases with the same poisoning
location.

The empirical results strengthens our theoretical discoveries
on the relationship between the CoT performance and data
shifts. Meticulous assessment of the data shifts is essential
to ensure the success of the CoT training with decomposition
in Section 3. We have ran the experiments multiple times
with stable results, and the details on variability in multiple
runs will be presented in the appendix.

6. Conclusion
In this work, we provide, to the best of our knowledge,
the first theoretical analysis of limitations of CoT applied
on a concrete problem. Because the k-parity problem is
well-defined and based on binary inputs, there are clear mea-
sures on success/failure, distribution shift, and poisoning
level. We derive a necessary and sufficient condition on
the distribution-shift parameter ρ and structured poisoning
levels qa,b,c that rigidly regulates the success of training.

Limitations. Despite the insights we gained, our study
has two major limitations. First, our focus is entirely on the
parity problem. In spite of the advantages of the problem,
real-world applications of CoT are much more nuanced and
may lead to different results. The other constraint is the
choice of CoT decomposition. Although this decomposition
has been proved to be successful, there might be alternatives
which may interact with data shifts differently. Future work
on a more diverse set of problems and CoT structures would
be inspiring for both theory and applications.

References
Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V.

Understanding in-context learning in transformers and
llms by learning to learn discrete functions. In The Twelfth
International Conference on Learning Representations,
2024.

Daniely, A. and Malach, E. Learning parities with neural
networks. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546.

Dhuliawala, S., Komeili, M., Xu, J., Raileanu, R.,

Li, X., Celikyilmaz, A., and Weston, J. Chain-of-
verification reduces hallucination in large language
models. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Findings of the Association for Computa-
tional Linguistics: ACL 2024, pp. 3563–3578, Bangkok,
Thailand, August 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-acl.
212. URL https://aclanthology.org/2024.
findings-acl.212/.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,
Stechly, K., Bhambri, S., Saldyt, L. P., and B Murthy,
A. Position: LLMs can’t plan, but can help plan-
ning in LLM-modulo frameworks. In Salakhutdinov,
R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scar-
lett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 22895–22907. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/kambhampati24a.html.

Kim, J. and Suzuki, T. Transformers provably solve par-
ity efficiently with chain of thought. In The Thirteenth
International Conference on Learning Representations,
2025.

Kim, J., Wu, D., Lee, J., and Suzuki, T. Metastable dynam-
ics of chain-of-thought reasoning: Provable benefits of
search, rl and distillation. In Proceedings of the 42nd
International Conference on Machine Learning, Proceed-
ings of Machine Learning Research. PMLR, 2025.

Li, H., Wang, M., Lu, S., Cui, X., and Chen, P.-Y. How do
nonlinear transformers acquire generalization-guaranteed
cot ability? In High-dimensional Learning Dynamics
2024: The Emergence of Structure and Reasoning.

Li, Y., Sreenivasan, K., Giannou, A., Papailiopoulos, D., and
Oymak, S. Dissecting chain-of-thought: compositionality
through in-context filtering and learning. In Proceedings
of the 37th International Conference on Neural Informa-
tion Processing Systems, NIPS ’23, Red Hook, NY, USA,
2023. Curran Associates Inc.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In The Twelfth International Conference on Learning
Representations, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024.

8

https://aclanthology.org/2024.findings-acl.212/
https://aclanthology.org/2024.findings-acl.212/
https://proceedings.mlr.press/v235/kambhampati24a.html
https://proceedings.mlr.press/v235/kambhampati24a.html

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Data Shifts Hurt CoT: A Theoretical Study

Liu, R., Geng, J., Wu, A. J., Sucholutsky, I., Lombrozo, T.,
and Griffiths, T. L. Mind your step (by step): Chain-of-
thought can reduce performance on tasks where thinking
makes humans worse. arXiv preprint arXiv:2410.21333,
2024.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl a 00562. URL https:
//aclanthology.org/2023.tacl-1.31/.

Merrill, W. and Sabharwal, A. The expressive power of
transformers with chain of thought. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Merrill, W., Sabharwal, A., and Smith, N. A. Sat-
urated transformers are constant-depth threshold cir-
cuits. Transactions of the Association for Computa-
tional Linguistics, 10:843–856, 2022. doi: 10.1162/tacl
a 00493. URL https://aclanthology.org/
2022.tacl-1.49/.

Nye, M., Andreassen, A., Gur-Ari, G., Michalewski, H. W.,
Austin, J., Bieber, D., Dohan, D. M., Lewkowycz,
A., Bosma, M. P., Luan, D., Sutton, C., and
Odena, A. Show your work: Scratchpads for in-
termediate computation with language models, 2021.
https://arxiv.org/abs/2112.00114.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot
by dot: Hidden computation in transformer language
models. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=NikbrdtYvG.

Sakarvadia, M., Ajith, A., Khan, A., Grzenda, D., Hud-
son, N., Bauer, A., Chard, K., and Foster, I. Mem-
ory injections: Correcting multi-hop reasoning failures
during inference in transformer-based language mod-
els. In Belinkov, Y., Hao, S., Jumelet, J., Kim, N.,
McCarthy, A., and Mohebbi, H. (eds.), Proceedings
of the 6th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pp. 342–356,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.
26. URL https://aclanthology.org/2023.
blackboxnlp-1.26/.

Shaikh, O., Zhang, H., Held, W., Bernstein, M., and Yang,
D. On second thought, let‘s not think step by step! bias
and toxicity in zero-shot reasoning. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 4454–
4470, Toronto, Canada, July 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.acl-long.

244. URL https://aclanthology.org/2023.
acl-long.244/.

Shalev-Shwartz, S., Shamir, O., and Shammah, S. Failures
of gradient-based deep learning. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 3067–3075. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/shalev-shwartz17a.html.

Shamir, O. Distribution-specific hardness of learning neu-
ral networks. J. Mach. Learn. Res., 19(1):1135–1163,
January 2018. ISSN 1532-4435.

Sprague, Z., Yin, F., Rodriguez, J. D., Jiang, D., Wadhwa,
M., Singhal, P., Zhao, X., Ye, X., Mahowald, K., and
Durrett, G. To cot or not to cot? chain-of-thought helps
mainly on math and symbolic reasoning. In The Thir-
teenth International Conference on Learning Representa-
tions, 2025.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Wies, N., Levine, Y., and Shashua, A. Sub-task decom-
position enables learning in sequence to sequence tasks.
In The Eleventh International Conference on Learning
Representations, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N.
Star: Bootstrapping reasoning with reasoning.
In Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 35, pp. 15476–15488. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.
pdf.

9

https://aclanthology.org/2023.tacl-1.31/
https://aclanthology.org/2023.tacl-1.31/
https://aclanthology.org/2022.tacl-1.49/
https://aclanthology.org/2022.tacl-1.49/
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://aclanthology.org/2023.blackboxnlp-1.26/
https://aclanthology.org/2023.blackboxnlp-1.26/
https://aclanthology.org/2023.acl-long.244/
https://aclanthology.org/2023.acl-long.244/
https://proceedings.mlr.press/v70/shalev-shwartz17a.html
https://proceedings.mlr.press/v70/shalev-shwartz17a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Data Shifts Hurt CoT: A Theoretical Study

A. Proof of Theorem 4.1

x17

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 5. The same parity function where P = {2, 3, 5, 7, 9, 11, 14, 16} as one represented by Figure 1, but without CoT decomposition.

By proving Theorem 4.1, we show that the k-parity problem can be solved by simple transformers if the data samples are
generated via the distribution DP

ρ for ρ < 1.

First, we visually understand the problem. We illustrated the case with CoT using Figure 1. If we omit CoT and use the
simple input-output model, then the tree only has depth one, where the root is the final output and its k children are relevant
bits, as illustrated in . Given n samples, the loss function is

L(W) =
1

2n
||x̂d+1 − xd+1||2∞ . (11)

Unlike the loss function for the case with CoT, the function here is a single summand because the only prediction during the
process is the output.

Using the softmax attention, some quantities in the original paper preserve. We will need the following expressions. For any
1 ≤ α, j < d+ 1, denote the δjα as the 0-1 indicator on j = α, we have

∂σα(wd+1)

∂wj,d+1
= (δjα − σα(wd+1))σj(wd+1) = (δjα − σj(wd+1))σα(wd+1); (12)

and

∂ẑd+1

∂wj,d+1
=

d∑
α=1

(δjα − σj(wd+1))σα(wd+1)xα = σj(wd+1)(xj − ẑd+1). (13)

Feedforward layer. Because of the nice properties of the 2-parity problem, we could apply a simple feedforward activation
ϕ as long as ϕ(0) = −1 and ϕ(±1) = 1. However, in this “flat” problem, we must choose a feedforward function ϕ to
satisfy: ϕ

(
x1+···+xk

k

)
= x1x2 · · ·xk. This leads to a few other quantitative requirements:

• ϕ(0) = 1. Because if x1 + · · ·+ xk = 0, then we have equally many 1’s and −1’s, so x1 · · ·xk = 1.

• ϕ
(
± 2

k

)
= ϕ

(
± 6

k

)
= · · · = ϕ

(
±k−2

k

)
= −1. This is the case when the difference between the numbers of 1’s and

−1’s is odd, and their product is −1.

• ϕ
(
± 4

k

)
= ϕ

(
± 8

k

)
= · · · = ϕ

(
±k

k

)
= 1. This is the case when the difference between the numbers of 1’s and −1’s is

even, and their product is 1.

A plausible choice is ϕ(x) = cos(0.5kπx); it satisfies all the properties above. When x is small, using Taylor expansion
we can approximate its derivative as ϕ′(x) ≈ −0.25(k2π2)x, and the remaining terms can be approximated as O(x3). To
simplify the notation, we will write ϕ′(x) = −2cx = −2ak2x where c = ak2 and a = π2/8.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Data Shifts Hurt CoT: A Theoretical Study

Therefore,

∂L

∂wj,d+1
(W) =

1

n
(ϕ(ẑd+1)− xd+1)

⊤ ∂ϕ(ẑd+1)

∂wj,d+1
=

σj(wd+1)

n
⟨ϕ(ẑd+1)− xd+1, ϕ

′(ẑd+1),xj − ẑd+1⟩ (14)

= − 1

nd
⟨xd+1,−2cẑd+1,xj − ẑd+1⟩ (15)

+
1

nd

〈
−1n + cẑ2

d+1, 2cẑd+1,xj − ẑd+1

〉
(16)

+
1

nd

〈
O(|ẑd+1|4),−2cẑd+1,xj − ẑd+1

〉
(17)

+
1

nd

〈
ϕ(ẑd+1)− xd+1, O(|ẑd+1|3),xj − ẑd+1

〉
. (18)

Like the original proof, we will show that the first term is the leading term and the other three vanish eventually. Recall
that under the CoT setting, thanks to the binary tree structure, the multi-linear product among a parent and two children is
always one.

In our case, however, this no longer holds: Suppose d = 16, k = 4, x17 is the root, and x2, x3, x6, x7 are relevant bits.
Observe that the product ⟨x17, x2, x7⟩ = x2x3x6x7x2x7 = x3x6 is a random variable instead of a fixed value.

Nevertheless, we will see the random variables are largely homogeneous. We first express the leading term in a more
readable way by substituting ẑd+1 = 1

d

∑
α xα. Observe that,

1

n
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

1

nd

∑
α

⟨xd+1,xα,xj⟩ −
1

nd2

∑
α,β

⟨xd+1,xα,xβ⟩, (19)

where the dummy indices α and β are taken to run over [d]. Before continuing, we prove a lemma that provides a
concentration bound for the interactions between the bits.

Lemma A.1. Using the distribution D, and let r ∈ [4], then for each of the following two cases:

1. r is odd

2. r is even but at least one of j1, . . . , jr is an irrelevant bit.

Then for any p > 0, it holds with probability at least 1− p that

max
r∈[4],{j1,...,jr⊈P}

|⟨xj1 , . . . ,xjr ⟩|
n

≤ κ :=

√
2

n
log

4d4

p
. (20)

Otherwise, if the indices of r bits are not any one of the two case above, then similarly, for any p > 0, it holds with
probability as least 1− p that

max
r∈[4],{j1,...,jr⊈P}

|⟨xj1 , . . . ,xjr ⟩ − (1− ρ)|
n

≤ κ :=

√
2

n
log

4d4

p
. (21)

Proof. We prove the cases when r is odd or r is even but at least one of j1, . . . , jr is an irrelevant bit. The proof
for the remaining scenario with non-zero mean is the same. Observe that, for each sample, the multi-linear product
⟨xj1 , . . . , xjr ⟩ = xj1 · · ·xjr is a random variable. Suppose r is odd, i.e. r = 1 or 3 and the bits are all relevant. Let j ∈ P ,
then PD(xj = 1) = ρ× 0.5 + (1− ρ)× 0.5 = 0.5 = PD(xj = −1), so ED[xj] = 0. Let j1, j2, j3 ∈ P , we have

PD(xj1xj2xj3 = 1) = ρ×
(
3
1

)
+
(
3
3

)
23

+ (1− ρ)× 1

2
= 0.5 = PD(xj1xj2xj3 = −1). (22)

Therefore, ED[xj1xj2xj3] = 0.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Data Shifts Hurt CoT: A Theoretical Study

Next, suppose j1 /∈ P , then clearly PD[xj1 = 1] = PD[xj1 = −1] = ρ × 0.5 + (1 − ρ) × 0.5 = 0.5, so
ED[xj1] = EUniform[xj1] = 0. Non-relevant bits are independent with respect to every other bit, so ED [⟨xj1 , . . . , xjr ⟩] =
EUniform [⟨xj1 , . . . , xjr ⟩] = 0.

Since all the variables discussed above have zero mean, by Hoeffding’s inequality, we have

PD (|⟨xj1 , . . . , xjr ⟩| ≥ λ) ≤ 2e−λ2/2n. (23)

If r = 1, there are exactly d− k such variables; if r = 2, there are d(k − 1); if r = 3, there are d(k − 1)(k − 2); if r = 4,
there are d(k − 1)(k − 2)(k − 3). Their sum is below 2d4. So, by union bounding, we have

P

(
max

r∈[4],{j1,...,jr⊈P}
|⟨xj1 , . . . ,xjr ⟩| ≥ λ

)
≤ 4d4e−λ2/2n. (24)

The lemma statement follows by substituting λ =
√

2
n log 4d4

p .

If we take n = Ω(d2+ϵ) and p = exp
(
−dϵ/2

)
, so κ = O

(
d−1−ϵ/4

)
.

A.1. Term (15)

We now proceed to analyze the quantity of the leading term when j ∈ P , i.e. j is a relevant bit. Thus, we can decompose
the two terms in Equation (19) as:

1

nd

∑
α

⟨xd+1,xα,xj⟩ =
1

nd

∑
α∈P

⟨xd+1,xα,xj⟩+
1

nd

∑
α/∈P

⟨xd+1,xα,xj⟩ (25)

=
1

nd

∑
α∈P

⟨xd+1,xα,xj⟩+
1

d
·O((d− k)κ) (26)

=
1

d
·Xk +

k − 1

d
·Xk−2 +

d− k

d
O(κ). (27)

Similarly,

1

nd2

∑
α

⟨xd+1,xα,xβ⟩ =
1

nd2

∑
α,β∈P

⟨xd+1,xα,xβ⟩+
1

nd2

∑
rest

⟨xd+1,xα′ ,xβ′⟩ (28)

=
1

nd2

∑
α,β∈P

⟨xd+1,xα,xβ⟩+O

(
d2 − k2

d2
· κ
)

(29)

=
k

d2
·Xk +

k(k − 1)

d2
·Xk−2 +

d2 − k2

d2
O(κ). (30)

Adding them up, we have that, if j ∈ P , then

1

n
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

d− k

d2
Xk +

(d− k)(k − 1)

d2
Xk−2 −

k(d− k)

d2
O(κ). (31)

Multiplying 2c
d = 2ak2

d , we finally have

2c

nd
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

2ak2(d− k)

d3
Xk +

2ak2(d− k)(k − 1)

d3
Xk−2 −

2ak3(d− k)

d3
O(κ). (32)

On the other hand, if j /∈ P , then we have

1

n
⟨xd+1, ẑm,xj⟩ =

1

nd

∑
α

⟨xd+1,xα,xj⟩ −
1

nd2

∑
α,β

⟨xd+1,xα,xβ⟩ (33)

=
1

d
Xk +

d− 1

d
O(κ)−

(
k

d2
Xk +

k(k − 1)

d2
Xk−2 +

d2 − k2

d2
O(κ)

)
(34)

=
d− k

d2
Xk − k(k − 1)

d2
Xk−2 +

k2 − d

d2
O(κ). (35)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Data Shifts Hurt CoT: A Theoretical Study

Again, multiplying 2c
d = 2ak2

d , we have

2c

nd
⟨xd+1, ẑm,xj⟩ =

2ak2(d− k)

d3
Xk − 2ak3(k − 1)

d3
Xk−2 +

2ak2(k2 − d)

d3
O(κ). (36)

Therefore, we have

Term (15) =

{
2ak2(d−k)

d3 Xk + 2ak2(d−k)(k−1)
d3 Xk−2 − 2ak3(d−k)

d3 O(κ), j ∈ P
2ak2(d−k)

d3 Xk − 2ak3(k−1)
d3 Xk−2 +

2ak2(k2−d)
d3 O(κ), j /∈ P

. (37)

A.2. Term (16)

We expand term (16) as the following:

1

nd

〈
−1n + cẑ2

d+1, 2cẑd+1,xj − ẑd+1

〉
= − 2c

nd
⟨ẑd+1,xj⟩+

2c

nd

〈
ẑ2
d+1

〉
+

2c2

nd

〈
ẑ3
d+1,xj

〉
− 2c2

nd

〈
ẑ4
d+1

〉
. (38)

A.2.1. FIRST TERM

1

n
⟨ẑd+1,xj⟩ =

1

nd

⟨xj ,xj⟩+
∑
α̸=j

⟨xα,xj⟩

 =
1

d
+

1

nd

∑
α ̸=j

⟨xα,xj⟩ (39)

=

{
1/d+ 1

nd

∑
α∈P\{j}⟨xα,xj⟩, j ∈ P

1/d+ d−1
d O(κ), j /∈ P

(40)

=

{
1/d+ k−1

d X2 +
d−k
d O(κ), j ∈ P

1/d+ d−1
d O(κ), j /∈ P

(41)

Multiplying the constant −2c, we have

− 2c

nd
⟨ẑd+1,xj⟩ =

{
− 2c

d2 − 2c(k−1)
d2 X2 − 2c(d−k)

d2 O(κ), j ∈ P

− 2c
d2 − 2c(d−1)

d2 O(κ), j /∈ P
(42)

=

{
− 2ak2

d2 − 2ak2(k−1)
d2 X2 − 2ak2(d−k)

d2 O(κ), j ∈ P

− 2ak2

d2 − 2ak2(d−1)
d2 O(κ), j /∈ P

(43)

A.2.2. SECOND TERM

Next,

1

n

〈
ẑ2
d+1

〉
=

1

nd2

∑
α

⟨xα,xα⟩+
∑
α̸=β

⟨xα,xβ⟩

 (44)

=
1

d
+

1

nd2

∑
α̸=β;α,β∈P

⟨xα,xβ⟩+
1

nd2

∑
rest

⟨xα,xβ⟩ (45)

=
1

d
+

k(k − 1)

d2
X2 +

(d+ k − 1)(d− k)

d2
O(κ) (46)

Therefore,

2c

nd

〈
ẑ2
d+1

〉
=

2c

d2
+

2ck(k − 1)

d3
X2 +

2c(d+ k − 1)(d− k)

d3
O(κ) (47)

=
2ak2

d2
+

2ak3(k − 1)

d3
X2 +

2ak2(d+ k − 1)(d− k)

d3
O(κ). (48)

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Data Shifts Hurt CoT: A Theoretical Study

A.2.3. FOURTH TERM

For the fourth order term, we have
1

n

〈
ẑ4
d+1

〉
=

1

nd4

∑
α,β,γ,δ

⟨xα,xβ ,xγ ,xδ⟩ (49)

We analyze all possible combinations of the indices by enumerating the size of the set {α, β, γ, δ}.

1. |{α, β, γ, δ}| = 1: There are d instances of ⟨xα,xα,xα,xα⟩.

2. |{α, β, γ, δ}| = 2: There are
(
d
2

)
pairs of distinct indices. For each pair (α, β), either:

(a) One appears three times. There are eight possibilities: We first choose the position of the unique index (four), and
both can be that unique index (multiplying two).

(b) Both appear twice. Clearly, there are six possibilities.

Therefore, there are totally 14
(
d
2

)
= 7d(d− 1) possible combinations in this case.

3. |{α, β, γ, δ}| = 3: Given a triple (α, β, γ), exactly one index must appear twice, so there are three possibilities for this
criteria. Once this choice is made, the identical indices may choose one of the six pairs among the four positions. Once
two spots are occupied, the remaining two indices may fill in either order. So, there are totally 36

(
d
3

)
= 6d(d−1)(d−2)

possible combinations in this case.

4. |{α, β, γ, δ}| = 4: Clearly, there are
(
d
4

)
groups of all distinct indices. For each group, they may be placed in 4! = 24

possible orders. So there are totally 24
(
d
4

)
= d(d− 1)(d− 2)(d− 3) possible combinations in this case.

Every instance in Cases 1 and 2.b has value exactly n, and there are d+6
(
d
2

)
= 3d2 − 2d such instances. Every instances in

Cases 2.a and 3 is a sum of n independent (data samples) random variables, and each of them is in the form ⟨xα, xβ⟩ such
that α ̸= β. Every instance in Case 4 is a sum of n independent random variables in the form ⟨xα, xβ , xγ , xδ⟩ such that
|{α, β, γ, δ}| = 4. So we further divide those d4 instance into three groups:

• Cases 1 and 2.b.

• Cases 2.a and 3. Among 6d3 − 14d2 + 8d such instances, exactly 8
(
k
2

)
+ 36

(
k
3

)
= 6k3 − 14k2 + 8k correspond to

random variables as multiplication of two bits in P . The rest of them have value O(κ).

• Case 4. Clearly 24
(
k
4

)
= k(k − 1)(k − 2)(k − 3) instances correspond to random variables as multiplication of four

bits in P . The rest of them have value O(κ).

The first group with 3d2 − 2d instances accumulates to

1

nd4
× (Cases 1 and 2.b) =

1

nd4
× n(3d2 − 2d) =

3d− 2

d3
. (50)

The second group leads to

1

nd4
× (Cases 2.a and 3) =

6k3 − 14k2 + 8k

d4
·X2 +

6(d3 − k3)− 14(d2 − k2) + 8(d− k)

d4
O(κ). (51)

The third group leads to

1

nd4
× (Case 4) =

k(k − 1)(k − 2)(k − 3)

d4
·X4 +

d(d− 1)(d− 2)(d− 3)− k(k − 1)(k − 2)(k − 3)

d4
O(κ). (52)

Adding everything up, we have

1

n

〈
ẑ4
d+1

〉
=

3d− 2

d3
+

6k3 − 14k2 + 8k

d4
·X2 +

k(k − 1)(k − 2)(k − 3)

d4
·X4 (53)

+
(d4 − k4)− 3(d2 − k2) + 2(d− k)

d4
O(κ). (54)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Data Shifts Hurt CoT: A Theoretical Study

Multiplying −2c2 = −2a2k4, we have

−2c2

nd

〈
ẑ4
d+1

〉
= −2a2k4(3d2 − 2d)

d5
− 2a2k4(6k3 − 14k2 + 8k)

d5
·X2 −

2a2k5(k − 1)(k − 2)(k − 3)

d5
·X4 (55)

−
2a2k4

[
(d4 − k4)− 3(d2 − k2) + 2(d− k)

]
d5

·O(κ). (56)

A.2.4. THIRD TERM

Finally, for the three order term, where the group {α, β, γ, δ} must contain a fixed j ∈ [d]. We have,

1

n

〈
ẑ3
d+1,xj

〉
=

1

nd3

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (57)

Like the previous four order term, we need to discuss multiple cases.

1. α = β = γ = j. We easily obtain 1
nd3 ⟨xj ,xj ,xj ,xj⟩ = 1/d3.

2. α = β = γ ̸= j. There are d− 1 possible combinations.

3. |{α, β, γ}| = |{α, β, γ, j}| = 2. This further divides into two sub-cases.

(a) Only one of them is j. We have d− 1 choices for α ̸= j, and three choices of spot for that unique j. Totally, there
are 3(d− 1) combinations.

(b) Two of them are j. Like the sub-case above, there are 3(d− 1) possible combinations.

4. |{α, β, γ}| = 2, but |{α, β, γ, j}| = 3. None of the three indices can be j, so there are
(
d−1
2

)
pairs of (α, β). For each

pair, we need to choose which index appears once between two elements. In total, there are 6
(
d−1
2

)
= 3(d− 1)(d− 2)

combinations.

5. |{α, β, γ}| = |{α, β, γ, j}| = 3. Exactly one of the three indices must be j, so there are
(
d−1
2

)
pairs of unequal indices.

There are three choices for j’s position, and every time we can flip the pair. Therefore, there are 6
(
d−1
2

)
= 3(d−1)(d−2)

combinations in this case.

6. |{α, β, γ}| = 3, and |{α, β, γ, j}| = 4. There are
(
d−1
3

)
triples (α, β, γ) and six combinations for each choice, so

there are 6
(
d−1
3

)
= (d− 1)(d− 2)(d− 3) combinations in total.

The unique case in Case 1 is trivial.

We first assume j /∈ P . Then Lemma A.1 directly applies to all summands and therefore the term sums to the following
with high probability:

2c2

nd

〈
ẑ3
d+1,xj

〉
=

2c2

nd4

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ =
2c2 · ⟨xα,xβ ,xγ ,xj⟩

nd4
× d3 =

2c2

d
·O(κ) =

2a2k4

d
O(κ). (58)

Now suppose j ∈ P . Exactly k − 1 combinations in Case 2 correspond to a sum of n independent X2, and the remaining
d− k combinations are O(κ). All instances in Case 3.a have product value n, and all instances in Case 3.b correspond to
n copies of X2. For Case 4, only j and the unique index matter. Exactly 2(k − 1)(d− 2) combinations correspond to n
copies of X2, and the rest are O(κ). For Case 5, the xj cancels out, so the sum for Case 5 can be expressed as∑

α̸=β;α,β∈[d]\{j}

⟨xα,xβ⟩. (59)

Clearly, only 3(k − 1)(k − 2) summands correspond to n copies of X2, and others are O(κ). Finally, for Case 6, there are
6
(
k−1
3

)
combinations that correspond to n copies of X4, and all others are O(κ). We can then express the three order term

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Data Shifts Hurt CoT: A Theoretical Study

as the following.

1

n

〈
ẑ3
d+1,xj

〉
=

1

nd3

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (60)

=
3d− 2

d3
+

(k − 1) + 3(d− 1) + 2(k − 1)(d− 2) + 3(k − 1)(k − 2)

d3
·X2 (61)

+
(k − 1)(k − 2)(k − 3)

d3
·X4 (62)

+
(d3 − k3)− 2dk + 3k2 − 4d+ k + 2

d3
·O(κ). (63)

Multiplying 2c2 = 2a2k4, we have

2c2

nd

〈
ẑ3
d+1,xj

〉
=

1

nd4

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (64)

=
2a2k4(3d− 2)

d4
+

2a2k4 [(k − 1) + 3(d− 1) + 2(k − 1)(d− 2) + 3(k − 1)(k − 2)]

d4
·X2 (65)

+
2a2k4(k − 1)(k − 2)(k − 3)

d4
·X4 (66)

+
2a2k4

[
(d3 − k3)− 2dk + 3k2 − 4d+ k + 2

]
d4

·O(κ). (67)

A.2.5. ADDING EVERYTHING UP

Adding everything up, we have

Term (16) = − 2c

nd
⟨ẑd+1,xj⟩+

2c

nd

〈
ẑ2
d+1

〉
+

2c2

nd

〈
ẑ3
d+1,xj

〉
− 2c2

nd

〈
ẑ4
d+1

〉
. (68)

Specifically,

• If j ∈ P , then

– The coefficient for constant is 0.
– The coefficient for X2 is

(4a2 · d2k5 + 6a2 · dk6 − 12a2 · k7) + (−2a · d3k3 + 2a2 · d2k4 − 24a2 · dk5 + 28a2 · k6)
d5

(69)

+
(2a · d3k2 − 2a · d2k3 + 12a2 · dk4 − 16a2k5)

d5
= O(d2). (70)

– The coefficient for X4 is

2ak4(d− k)(k − 1)(k − 2)(k − 3)

d5
≥ 0; ⇒ O(d3). (71)

– The coefficient for O(κ) is

−4a2d2k5 − 2a2d2k4 − 2a2dk7 + 6a2dk6 + 2a2dk5 + 2a2k8 − 6a2k6 + 4a2k5

d5
(72)

+
2ad3k3 − 2ad3k2 − 2ad2k3 + 2ad2k2

d5
= −O(d2). (73)

Hence, this term becomes −O(d1−ϵ/4).

• If j /∈ P , then

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Data Shifts Hurt CoT: A Theoretical Study

– The coefficient for constant is

−2a2k4(3d− 2)

d4
= −O(d). (74)

– The coefficient for X2 is

−12a2 · k7 + 2a · d2k4 + 28a2 · k6 − 2a · d2k3 − 16a2 · k5

d5
= −O(d2). (75)

– The coefficient for X4 is

−2a2k5(k − 1)(k − 2)(k − 3)

d5
= −O(d3). (76)

– The coefficient for O(κ) is

6a2d2k4 − 4a2dk4 + 2a2k7 − 6a2k6 + 4a2k5 − 2ad2k4 + 2ad2k3

d5
= O(d2). (77)

Hence, this term becomes O(d1−ϵ/4).

A.3. Terms (17) and (18)

Now we analyze term (17). Recall that
〈
|ẑd+1|4

〉
=
〈
ẑ4
d+1

〉
= O(n/d2) +O(n/d) ·X2 +O(n) ·X4 +O(nκ). Observe

that each component of ẑd+1 and xj − ẑd+1 are contained in [−1, 1] and [−2, 2] respectively, we have

1

nd

〈
O(|ẑd+1|4),−2cẑd+1,xj − ẑd+1

〉
= − 4c

nd
·O
(〈

|ẑd+1|4
〉)

(78)

= −4ak2

d

(
3d− 2

d3
+

6k3 − 14k2 + 8k

d4
·X2 +

k(k − 1)(k − 2)(k − 3)

d4
·X4 +O(d−2−ϵ/4)

)
(79)

= −O(d−1)−O(1) ·X2 −O(d) ·X4 −O(κ). (80)

Similarly, using the Cauchy-Schwarz inequality, we may bound the final term (18).

1

nd

〈
ϕ(ẑd+1)− xd+1, O(|ẑd+1|3),xj − ẑd+1

〉
=

4

nd
O
(
⟨|ẑd+1|⟩3

)
(81)

≤ 4

nd

〈
ẑ2
d+1

〉1/2 〈
ẑ4
d+1

〉1/2
(82)

≤ O
(
d1+0.5ϵ

)
(83)

Now, summing up the terms, we conclude that for relevant bits j ∈ P , its gradient ∂L/∂wd+1,j has the dominating term
O(d3) ·X4 = O(d3); for non-relevant bits j′ /∈ P , its gradient ∂L/∂wd+1,j′ has the dominating term O(d1−ϵ/4). Fix a
learning rate η = Θ(d−3+ϵ/8), then we obtain the following comparisons of the weights W(1) after one gradient update.
For j ∈ P and j′ /∈ P , we have

σj′(w
(1)
d+1)

σj(w
(1)
d+1)

= e
w

(1)

d+1,j′−w
(1)
d+1,j ≤ exp

(
−Ω(dϵ/8)

)
. (84)

Since attention scores sum up to one, we have
∑

j∈P σj(w
(1)) If both j, k ∈ P , then the higher order terms cancel out and

the perturbation terms for correct gradient updates become O(d−ϵ/4). Therefore, we have

σj(w
(1)
d+1)

σk(w
(1)
d+1)

=
σk(w

(1)
d+1)

σj(w
(1)
d+1)

≤ exp(O(d−2−ϵ/8)) ≤ 1 +O(d−2−ϵ/8), (85)

where the last inequality holds because et ≤ 1 +O(t) for small t > 0. The ratio holds for all k elements in P , so for any
j ∈ P , we have

1

k
−O(d−2−ϵ/8) ≤ σj(w

(1)) ≤ 1

k
+O(d−2−ϵ/8). (86)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Data Shifts Hurt CoT: A Theoretical Study

Therefore, for any d-dimensional input x, the prediction ŷ = x̂d+1 satisfies the following inequality:

|y − ŷ| = |ϕ(ẑd+1)− ϕ(zd+1)| (87)
≤ k × |ẑd+1 − zd+1| (88)

= k ×
∣∣∣O(d−2−ϵ/8) + (d− k)× exp

(
−Ω(dϵ/8)

)∣∣∣ (89)

= k ·O(d−2−ϵ/8) = O(d−1−ϵ/8). (90)

B. Proof of Theorem 4.2
The high-level ideas are identical with the previous proof. We still apply Lemma A.1 for this proof to bound the perturbation
terms. To reach the conclusion, we must compute the derivative of loss with respect to weights:

∂L

∂wj,m
(W) =

1

n(m− 1)
⟨ϕ(ẑm − xm), ϕ′(ẑm),xj − ẑm⟩ (91)

=
1

n(m− 1)
⟨2ẑm − 1− xm, ϕ′(ẑm),xj − ẑm⟩ . (92)

We can write ϕ′(ẑm) = 2d3ẑm, so the derivative becomes

∂L

∂wj,m
(W) =

1

n(m− 1)

〈
2ẑm − 1− xm, 2d3ẑm,xj − ẑm

〉
(93)

= − 1

n(m− 1)

〈
xm, 2d3ẑm,xj − ẑm

〉
(94)

+
1

n(m− 1)

〈
−1n + 2ẑm, 2d3ẑm,xj − ẑm

〉
(95)

The quadratic derivative only holds in [−d−3, d−3], and we will bound it asymptotically, we may replace it with 2 here.

The structure of the proof is then divided into three parts.

• Sections B.1-B.3 are computations of the gradients and gradient differences that lead to conditions in Equation (7) and
(8).

• Section B.4 is the if direction of Theorem 4.2.

• Section B.5 is the only if direction of the theorem.

B.1. The first term

We first rewrite the first term as

− 2

n(m− 1)
⟨xm, ẑm,xj − ẑm⟩ = − 2

n(m− 1)2

∑
α

⟨xm,xα,xj⟩+
2

n(m− 1)2

∑
α,β

⟨xm,xα,xβ⟩. (96)

The value of the single-sum term depends on the position of m and j. We compute the value of
∑

α⟨xm,xα,xj⟩
n(m−1) over all six

possible cases.

1. h[m] = 1. This condition restricts d < m < d+ k/2. This large case can be divided into three following sub-cases.

(a) Node j is a child of m, i.e. p[j] = m. In this case, if α = j′ is another child of m, then ⟨xm, xj′ , xj⟩ = 1−2qm,j′,j .
For all other α ∈ P \{j}, observe that the inner product ⟨xm, xα, xj⟩ is the product of an even number of relevant
input variables, so it is a random variable with mean 1− ρ. On the other hand, if d < α < m, then ⟨xm, xα, xj⟩
is the product of an odd number of relevant input variables, so it is a random variable with mean zero. Therefore,
we have

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
1− 2qm,c1[m],c2[m]

m− 1
+

∑
α∈P\{j}

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (97)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Data Shifts Hurt CoT: A Theoretical Study

(b) If h[j] = 0 but p[j] ̸= m. In this case, the inner product ⟨xm, xα, xj⟩ is never a determined value. Instead,
⟨xm, xα, xj⟩ is the product of an even number of relevant input variables whenever α ∈ P , and a variable of mean
zero otherwise. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
∑
α∈P

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (98)

(c) Finally, suppose h[j] = 1. Observe that if j is still an input, then the three-term interaction is a random variable
with mean zero; but if d < α < m, it is a product of four relevant inputs. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
m−1∑

α=d+1

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (99)

2. h[m] > 1. This condition restricts d+ k/2 < m ≤ d+ k − 1. Again, this case can be divided into three following
sub-cases.

(a) Suppose j ∈ P . Then the inner product ⟨xm, xα, xj⟩ is always a product of two, four, or six inputs if α ∈ P , or it
is a random variable with mean zero otherwise. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
∑
α∈P

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (100)

(b) If p[j] = m, then clearly h[j] = h[m]− 1 ≥ 1. If α = j′ is another child of m, then ⟨xm, xj′ , xj⟩ = 1− 2qm,j′,j .
On the other hand, if d < α < m and α ̸= j′, then any inner product is the product of an even number of relevant
input variables, so it is a random variable with mean 1− ρ. In all other cases, the inner product has mean zero.
Hence,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
1− 2qm,c1[m],c2[m]

m− 1
+

∑
d<α<m,α̸=j′

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (101)

(c) Now suppose h[j] > 0 but p[j] ̸= m. Then as long as d < α < m, any inner product is the product of an even
number of relevant input variables, so it is a random variable with mean 1− ρ. In all other cases, the inner product
has mean zero. Hence,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
m−1∑

α=d+1

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (102)

B.2. The second term

We now evaluate the second term.

1

n(m− 1)
⟨−1n + 2ẑm, 2ẑm,xj − ẑm⟩ (103)

=
1

n(m− 1)
⟨−1n, 2ẑm,xj − ẑm⟩+ 1

n(m− 1)

〈
2ẑm, 2d3ẑm,xj − ẑm

〉
(104)

= − 2

n(m− 1)
⟨ẑm, xj⟩+

2

n(m− 1)
⟨ẑ2

m⟩+ 4

n(m− 1)
⟨ẑ2

m,xj⟩ −
4

n(m− 1)
⟨ẑ3

m⟩. (105)

We focus on the first and third terms in the final expression. In particular, we compute the following:

1

n
⟨ẑm,xj⟩ =

1

n(m− 1)

∑
α

⟨xα,xj⟩ &
1

n
⟨ẑ2

m,xj⟩ =
1

n(m− 1)2

∑
α,β

⟨xα,xβ ,xj⟩.

For the first two-order term, we divide into two cases.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Data Shifts Hurt CoT: A Theoretical Study

1. h[j] = 0. Clearly, ⟨xj , xj⟩ = 1, and if α ∈ P \ {j}, the inner product is a product of two relevant bits, so it is a random
variable with mean 1− ρ. Otherwise, it is a variable with mean zero. Hence,

1

n
⟨ẑm,xj⟩ =

1

m− 1
+

k − 1

m− 1
(1− ρ) +O(κ). (106)

2. h[j] ≥ 1. Be aware that xj itself is a product of 2h[j] relevant input bits. Again, ⟨xj , xj⟩ = 1. If h[α] = 0, then the
inner product is a product of an odd number of input bits, so has mean zero. For all other cases, i.e. d < α < m and
α ̸= j, the product is the same as a product of an even number of relevant bits, and has mean 1− ρ without corruption.
Therefore,

1

n
⟨ẑm,xj⟩ =

1

m− 1
+

∑
d<α<m,α̸=j

1− 2qα,j
m− 1

(1− ρ) +O(κ). (107)

For the next three-order term, we again divide into two cases on the height of j.

1. h[j] = 0. Be aware that xj itself is a product of 2h[j] relevant input bits. Therefore, to transform a product ⟨xα, xβ , xj⟩
to an even multiplication of relevant bits, exactly one of α and β must have height at least one, and the other must have
height zero. The order can be different, so there are in total 2k(m− d− 1) possible combinations. Hence, the total
sum in this case is

1

n
⟨ẑ2

m,xj⟩ =
2k(1− 2qα)

(m− 1)2
(1− ρ) +O(κ). (108)

The summands only need to take care of the poisoning rate of the nodes with non-zero height because input bits are not
corrupted.

2. h[j] ≥ 1. In this case, observe that ⟨xα, xβ , xj⟩ has mean 1− ρ if and only if h[α] = h[β] = 0 or h[α], h[β] ≥ 1. So
there are in total k2 + (m− d− 1)2 possibilities:

1

n
⟨ẑ2

m,xj⟩ =
m−1∑

α,β=d+1

1− 2qα,β,j
(m− 1)2

(1− ρ) +
∑

α,β∈P

1− 2qj
(m− 1)2

(1− ρ) +O(κ). (109)

B.3. Differences of gradient updates

Given j ̸= j′ < m, we compute the differences of gradient updates for L with respect to wj,m and wj′,m as the following:

∆m,j,j′ =
∂L

∂wj,m
(W)− ∂L

∂wj′,m
(W) (110)

= − 1

n(m− 1)
⟨xm, 2ẑm,xj − xj′⟩+

1

n(m− 1)

〈
−1n + 2ẑm, 2d3ẑm,xj − xj′

〉
(111)

=

(
− 2

n(m− 1)
⟨xm, 2ẑm,xj⟩

)
−
(
− 2

n(m− 1)
⟨xm, 2ẑm,xj′⟩

)
(112)

+

(
2

n(m− 1)
⟨−1n + 2ẑm, ẑm,xj⟩

)
−
(

2

n(m− 1)
⟨−1n + 2ẑm, ẑm,xj′⟩

)
(113)

=

(
− 2

n(m− 1)2

∑
α

⟨xm,xα,xj⟩

)
−

(
− 2

n(m− 1)2

∑
α

⟨xm,xα,xj′⟩

)
(114)

+

(
− 1

n(m− 1)2

∑
α

⟨xα,xj⟩

)
−

(
− 1

n(m− 1)2

∑
α

⟨xα,xj′⟩

)
(115)

+

 1

n(m− 1)3

∑
α,β

⟨xα,xβ ,xj⟩

−

 1

n(m− 1)3

∑
α,β

⟨xα,xβ ,xj′⟩

 (116)

+O(d−2−ϵ/4). (117)

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Data Shifts Hurt CoT: A Theoretical Study

Observe that the first two terms depend on locations of all {m, j, j′}, while last four terms above do not depend on m but
only depend on the locations of j and j′. So we compute them separately. In particular, for each choice of m, we must first
compute the “correct” gradient ∂L/∂wc1[m],m = ∂L/∂wc2[m],m, and then compute the “incorrect” gradients depending
on the location of j. Concretely, the steps are the following.

1. Assume h[m] = 1, compute ∂L/∂wc1[m],m = ∂L/∂wc2[m],m.

(a) Compute the gradient ∂L/∂wj,m if h[j] = 0 but p[j] ̸= m.
(b) Compute the gradient ∂L/∂wj′,m if h[j′] > 0.
(c) Subtract the correct gradient with the previous two incorrect gradients.

2. Assume h[m] > 1, compute ∂L/∂wc1[m],m = ∂L/∂wc2[m],m.

(a) Compute the gradient ∂L/∂wj,m if h[j] = 0.
(b) Compute the gradient ∂L/∂wj′,m if h[j′] > 0 but p[j] ̸= m.
(c) Subtract the correct gradient with the previous two incorrect gradients.

For Step 1, the equation is(
− 2

m− 1

)
× Equation (97) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (118)

For Step 1.(a), the equation is(
− 2

m− 1

)
× Equation (98) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (119)

For Step 1.(b), the equation is(
− 2

m− 1

)
× Equation (99) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (120)

For Step 1.(c), the differences are(
− 2

m− 1

)
× Equation (97) −

(
− 2

m− 1

)
× Equation (98) = −2ρ(1− 2qm)

(m− 1)2
; (121)

and (
− 2

m− 1

)
× Equation (97) −

(
− 2

m− 1

)
× Equation (99) (122)

+

(
− 2

m− 1

)
× Equation (106) −

(
− 2

m− 1

)
× Equation (107) (123)

+

(
4

m− 1

)
× Equation (108) −

(
4

m− 1

)
× Equation (109). (124)

For Step 2, the equation is(
− 2

m− 1

)
× Equation (101) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (125)

For Step 2.(a), the equation is(
− 2

m− 1

)
× Equation (100) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (126)

For Step 2.(b), the equation is(
− 2

m− 1

)
× Equation (102) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (127)

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Data Shifts Hurt CoT: A Theoretical Study

For Step 2.(c), the differences are(
− 2

m− 1

)
× Equation (101) −

(
− 2

m− 1

)
× Equation (100) (128)

+

(
− 2

m− 1

)
× Equation (107) −

(
− 2

m− 1

)
× Equation (106) (129)

+

(
4

m− 1

)
× Equation (109) −

(
4

m− 1

)
× Equation (108); (130)

and (
− 2

m− 1

)
× Equation (101) −

(
− 2

m− 1

)
× Equation (102) = −

2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2
. (131)

We have computed one gradient difference for each case of m, and there is one remaining for each m. Observe that, we only
need to compute three following expressions:

Gh[m]=1(m, j, ρ) = − 2

m− 1
× (Equation (97) − Equation (99)) ; (132)

Gh[m]>1(m, j, ρ) = − 2

m− 1
× (Equation (101) − Equation (100)) ; (133)

and(
− 2

m− 1

)
×Equation (106)−

(
− 2

m− 1

)
×Equation (107)+

(
4

m− 1

)
×Equation (108)−

(
4

m− 1

)
×Equation (109).

(134)
Observe that the remaining gradients can be equivalently expressed as

Gh[m]=1(m, j, ρ) + Equation (134) & Gh[m]>1(m, j, ρ)− Equation (134). (135)

Using the ingredients from earlier results, for m ∈ {d+ 1, . . . , d+ k/2} and d < j < m, we have

Gh[m]=1(m, j, ρ) =
−2(1− 2qm)

(m− 1)2
+

−2(k − 1)(1− 2qm)

m− 1
(1− ρ)

−
m−1∑

α=d+1

−2(1− 2qm,α,j)

m− 1
(1− ρ) +O(d−2−ϵ/4).

(136)

Similarly, for m > d+ k/2 and d < j < m, we have

Gh[m]>1(m, j, ρ) =
−2(1− 2qm,c1[m],c2[m])

(m− 1)2
+

∑
d<α<m,α̸=j′

−2(1− 2qm,α,j)

(m− 1)2
(1− ρ)

− −2k(1− 2qm,α,j)

(m− 1)2
(1− ρ) +O(d−2−ϵ/4).

(137)

Observe that Equation (106)-(109) can all be factored out by 1− ρ, so we may have

Equation (134) = (1− ρ) · S(m, j) (138)

for an expression S(m, j). Using our results of Equation (106)-(109) earlier, we have

S(m, j) = − 2(k − 1)

(m− 1)2
+

∑
d<α<m,α̸=j

2(1− 2qα)

(m− 1)2
+

m−1∑
α=d+1

8k(1− 2qα)

(m− 1)3
−

m−1∑
α,β=d+1

4(1− 2qα,β,j)

(m− 1)3
−

∑
α,β∈P

4(1− 2qm)

(m− 1)3
. (139)

Finally, for each case of m, we conclude the differences between correct and incorrect gradients:

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Data Shifts Hurt CoT: A Theoretical Study

• h[m] = 1. Then the differences are{
−2ρ(1− 2qm)

(m− 1)2

}
&

{
Gh[m]=1(m, j, ρ) + (1− ρ)S(m, j), d < j < m

}
. (140)

• h[m] > 1. Then the differences are{
−
2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2

}
&

{
Gh[m]>1(m, j, ρ)− (1− ρ)S(m, j), d < j < m

}
. (141)

B.4. Conditions are sufficient

For any choice of m, if the condition in either Equation (7) or (8) (depending on the height of m) holds, then the condition
is equivalent with the fact: There exists a value µ > −2− ϵ/4 such that for any j < m, the differences between correct and
incorrect gradients satisfy the following

∆m,c1[m],j ,∆m,c2[m],j < −O(dµ). (142)

This means the gap between the correct and incorrect gradients is large. If we pick any µ′ ∈ (−µ, 2 + ϵ/4) and choose a
learning rate η = Θ(dµ

′
), then after one gradient update, the difference between weights for children of m and weights for

non-children is: ∣∣∣∆(1)
m,c1[m],j

∣∣∣ , ∣∣∣∆(1)
m,c2[m],j

∣∣∣ ≥ O(d−µ+µ′
) +O(d−2−ϵ/4+µ′

) = O(d−µ+µ′
). (143)

The last equality holds because, by the range of µ′, we must have −µ + µ′ > 0 and −2 − ϵ/4 + µ′ < 0; so the second
quantity is dominated by the first one.

The conditions imply that the incorrect weights are smaller than correct weights, so applying the softmax attention score
function, for j ̸= c1[m], c2[m] we have

σj(w
(1)
m) ≤ exp

(
−
∣∣∣∆(1)

m,c1[m],j

∣∣∣) ≤ exp
(
−Θ

(
d−µ+µ′

))
. (144)

Softmax scores must sum to 1, we must have

σc1[m](w
(1)
m) + σc2[m](w

(1)
m) ≥ 1− exp

(
−Θ

(
d−µ+µ′

))
. (145)

Moreover, we observe that in this case, the correct attention scores σc1[m](w
(1)
m) and σc2[m](w

(1)
m) are close enough:

σc1[m](w
(1)
m)

σc2[m](w
(1)
m)

= exp
(
w

(1)
c1[m],m − w

(1)
c2[m],m

)
≤ exp

(
O
(
d−2−ϵ/4+µ′

))
≤ 1 +O

(
d−2−ϵ/4+µ′

)
, (146)

where the last inequality holds because et ≤ 1 +O(t) for small t > 0. By symmetry, we have the same upper bound for
σc1[m](w

(1)
m)/σc2[m](w

(1)
m). As a result, we have

1

2
−O

(
d−2−ϵ/4+µ′

)
≤ σc1[m](w

(1)
m), σc2[m](w

(1)
m) ≤ 1

2
+O

(
d−2−ϵ/4+µ′

)
. (147)

The equation above implies that for each step d < m ≤ d+ k− 1, the attention layer at step m almost computes the average
of two children nodes, and all information from other non-children nodes are dominated and essentially vanish as d becomes
large.

We now show that using the attention scores, every prediction step, including the final output, has a vanishing loss. Let x be
a d-dimensional binary input vector. For every d < m ≤ d+ k − 1, let ẑ(1)m be the empirical output of the attention layer,

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Data Shifts Hurt CoT: A Theoretical Study

then ϕ(ẑ
(1)
m) is the empirical prediction, and the prediction loss for step m is

ϵm =

∣∣∣∣ϕ(ẑ(1)m

)
− ϕ

(
xc1[m] + xc2[m]

2

)∣∣∣∣ (148)

≤ 2×
∣∣∣∣ẑ(1)m −

xc1[m] + xc2[m]

2

∣∣∣∣ (149)

≤ 2×
∣∣∣∣ẑ(1)m −

x̂c1[m] + x̂c2[m]

2

∣∣∣∣+ 2×
∣∣∣∣xc1[m] + xc2[m]

2
−

x̂c1[m] + x̂c2[m]

2

∣∣∣∣ (150)

= 2d exp
(
−Θ

(
d−µ+µ′

))
+ 2×

∣∣∣∣σc1[m](w
(1)
m)− 1

2

∣∣∣∣+ 2×
∣∣∣∣σc2[m](w

(1)
m)− 1

2

∣∣∣∣+ 2ϵm−1 (151)

= O(d−2−ϵ/4+µ′
) +O(ϵm−1). (152)

If m = d + 1, then ϵm−1 = ϵd = 0 because the d-th value is still an input. Therefore, this upper bound holds for every
d < m ≤ d+k−1 and take m = d+k−1 so that xm = y, we conclude that |ŷ−y| = |x̂d+k−1−xd+k−1| = O(d−2−ϵ/4+µ′

).

B.5. Conditions are necessary

Now suppose there is at least one m such that the condition in Equation (7) or (8) (depending on the height of m) does
not hold. This implies that, for this m, there exists at least one non-child node j such that j < m and the gap between
this incorrect gradient ∂L/∂wm,j and the correct gradients ∂L/∂wm,c1[m], ∂L/∂wm,c2[m] is too small to be distinguished.
Precisely, there exists a number δ ≤ −2− ϵ/4 such that∣∣∣∆(1)

m,c1[m],j

∣∣∣ , ∣∣∣∆(1)
m,c2[m],j

∣∣∣ ≤ O(dδ) +O(d−2−ϵ/4) = O(d−2−ϵ/4) =
∣∣∣∆(1)

m,c1[m],c2[m]

∣∣∣ . (153)

Using the same analysis in the proof of sufficiency, the small gaps implies that the attention scores
σc1[m](w

(1)
m), σc2[m](w

(1)
m), σj(w

(1)
m) are close. Consider the optimal scenario under this case, that the condition in

Equation (7) or (8) (depending on the height of m) holds for any other j′ ̸= j, then we have σc1[m](w
(1)
m) + σc2[m](w

(1)
m) +

σj(w
(1)
m) = 1− e−Θ(dν) for some ν > 0 and for any a, b ∈ {c1[m], c2[m], j}, we have

σa(w
(1)
m)

σb(w
(1)
m)

≤ exp
(
O
(
d−2−ϵ/4

))
≤ 1 +O

(
d−2−ϵ/4

)
. (154)

Equivalently,

1

3
−O

(
d−2−ϵ/4

)
≤ σc1[m](w

(1)
m), σc2[m](w

(1)
m), σj(w

(1)
m) ≤ 1

3
+O

(
d−2−ϵ/4

)
(155)

For a sufficiently large d, i.e. as d → ∞, we may regard the predictor at step m is exactly the function x̂m =
ϕ
(
1
3xc1[m] +

1
3xc2[m] +

1
3xj

)
, where the ground truth must still be xm = ϕ

(
1
2xc1[m] +

1
2xc2[m]

)
. If the d-dimensional

inputs are uniformly generated, then with probability exactly 0.5, the sample satisfies the property that xc1[m] = −xc2[m],
so the true prediction for step m is xm = ϕ(0) = −1. On the other hand, the empirical prediction is x̂m = ϕ(xj/3) and
therefore fixed as ϕ(1/3) = ϕ(−1/3) = −1/3. Therefore, the the error for prediction at stepm m is lower bounded as the
following:

Ex∼Uniform({±1}d) |x̂m − xm| ≥ 1

2
×
∣∣∣∣−1 +

1

3

∣∣∣∣ = 1

3
= Ω(1). (156)

We conclude this proof by showing that, if one step m for some d < m ≤ d+ k − 1 has a non-negligible loss, then the loss
for the final prediction also has a non-negligible loss, i.e. |y − ŷ| = |xd+k−1 − x̂d+k−1| = Ω(1).

We first show that such an error of node m causes a non-negligible damage on its parent node p[m], i.e. |xp[m] − x̂p[m]| =
Ω(1). Denote m′ as the unique sibling of m, i.e. p[m] = p[m′]. Then clearly xp[m] = xmxm′ . Hence, the following

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Data Shifts Hurt CoT: A Theoretical Study

inequality satisfies; we abuse the notation by using E as the uniform generation.

Ex∼Uniform({±1}d)|xp[m] − x̂p[m]| = E|xmxm′ − x̂mx̂m′ | (157)
d→∞
= E|xmxm′ − xmx̂m′ | (158)

= E [|xm| · |xm′ − x̂m′ |] (159)
= E|xm′ − x̂m′ | = Ω(1). (160)

The inequality holds for every m regardless of its location, and inductively, this non-negligible error propagates to higher
ancestors of m, and ultimately to the root of the tree.

Recall that this is the “best” scenario when the condition in Equation (7) or (8) fails for m, i.e. only one non-child node
j has a prohibitively high attention score. If more non-children nodes fail, say f of them in the set F ⊆ [m − 1], then
ẑm =

∑
f∈F xf/(f − 1). By Hoeffding’s inequality, we have

P
(
ϕ

(∑
f∈F xf

f − 1

)
< 0

)
= P

(∑
f∈F xf

f − 1
<

1

2

)
≥ 1− e−Ω(f). (161)

Nevertheless, the true prediction is still uniform, so

E|xm − x̂m| ≥ 1

2

(
1− e−Ω(f)

)
=

1

2
− o(1) = Ω(1). (162)

Using the same argument for the root prediction for the case above, the final prediction also suffers an error of Ω(1), as
desired.

C. Experiment details
The feedforward layer function for the transformer is the same function in Section 3.2, i.e.

ϕ(x) =

{
d3x2 + d−3 − 1, x ∈ (−d−3, d−3);

2|x| − 1, otherwise.

The testing data are uniformly generated. Although for general tasks, it is natural to expect that the test error should be large
if the training and testing distributions are different. However, in this k-parity test, if the training is successful, the predictor
is expected to identify the positions of relevant bits, regardless the training distribution where it was learned. Therefore,
testing the predictor for all values of ρ ∈ {0, 0.25, 0.5, 0.75, 1} is the only fair measure of the predictor’s performance.

The experiments were ran for five times with d = 128 and k = 64. The mean and variance values for each case is illustrated
in Figure 6, which has the same format as Figure 4. For each grid, the mean and variance are computed by the following
standard formulas:

Mean(µ) =
∑n

i=1 xi

n
& Variance(σ2) =

∑n
i=1(xi − µ)2

n
.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Data Shifts Hurt CoT: A Theoretical Study

Figure 6. Mean and variance of the test losses after repetitions

26

