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Abstract
Chain of Thought (CoT) has been applied to var-
ious large language models (LLMs) and proven
to be effective in improving the quality of out-
puts. In recent studies, transformers are proven to
have absolute upper bounds in terms of expressive
power, and consequently, they cannot solve many
computationally difficult problems. However, em-
powered by CoT, transformers are proven to be
able to solve some difficult problems effectively,
such as the k-parity problem. Nevertheless, those
works rely on two imperative assumptions: (1)
identical training and testing distribution, and (2)
corruption-free training data with correct reason-
ing steps. However, in the real world, these as-
sumptions do not always hold. Although the risks
of data shifts have caught attention, our work is
the first to rigorously study the exact harm caused
by such shifts to the best of our knowledge. Fo-
cusing on the k-parity problem, in this work we
investigate the joint impact of two types of data
shifts: the distribution shifts and data poisoning,
on the quality of trained models obtained by a
well-established CoT decomposition. In addition
to revealing a surprising phenomenon that CoT
leads to worse performance on learning parity
than directly generating the prediction, our techni-
cal results also give a rigorous and comprehensive
explanation of the mechanistic reasons of such
impact.

1. Introduction
Large language models (LLMs) based on the transformer
architecture has achieved tremendous success in the area
of artificial intelligence (Vaswani et al., 2017). However,
without intermediate guidance or supervision, they do not
perform well especially on complex reasoning problems

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.
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which require rigorous logical steps (Sakarvadia et al., 2023).
Chain of Thought (CoT) has empowered LLMs to a large
extent (Wei et al., 2022), making them much more capable
at multi-step reasoning (Nye et al., 2021; Wei et al., 2022;
Zelikman et al., 2022; Lightman et al., 2024), and more
effective against hallucinations (Dhuliawala et al., 2024).
From a theoretical point of view, CoT has recently been
proven to fundamentally improve the power of transformers
from a complexity-theoretic perspective (Merrill & Sab-
harwal, 2024; 2023; Merrill et al., 2022; Li et al., 2024).
Several works have applied the CoT mechanism to solve
concrete mathematical problems that are hard for primitive
models, such as function classes via in-context learning (Li
et al., 2023; Bhattamishra et al., 2024) and the k-parity
problem (Kim & Suzuki, 2025).

However, all previous works only took care of the case with
perfect training data for CoT reasoning. In practice, there
can be distribution shifts between training and testing data,
as well as some of the CoT reasoning steps used for training
can be incorrect. It is an open problem to assess the per-
formance of CoT under such shifts. Even for mathematical
problems with a clear structure, this question remains open
without a comprehensive answer.

In this paper, we conduct a comprehensive and theoretical
study of the impact of training data on CoT for the task of
learning parity functions. In one unified Theorem 4.2, we
characterize a necessary and sufficient condition for CoT
success on this task under the joint impact of distribution
shifts and data poisoning. The condition gives a decisive
criterion on the success of this training method by assessing
the parameters of the two types of data shifts concurrently.
To the best of our knowledge, this paper is the first work to
study this problem from a theoretical perspective.

Motivations. In this paper, we focus on answering the
following major question:

Is CoT still effective under data shifts?

To tackle this question, we choose the “generalized” k-
parity problem as a platform, where the term “generalized”
refers to a broad class of input generating distributions. They
will be rigorously defined in Section 2, and they roughly
divide the classes of k-parity problems into an “easy” class
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and “hard” class; the level of “easiness” (or “hardness”) can
be precisely, quantitatively characterized by the parameter
of input generating distributions. At a high level, a non-
uniform distribution makes the problem easier by “leaking”
information on the locations of target bits. Another type of
shift is data poisoning in the training data of CoT steps. In
this work, we investigate the joint impact of both training
distributions and data poisoning in those steps on the per-
formance of CoT for the generalized k-parity problem. The
answers revealing this three-way relationship is our main
contribution in this work. The major question can further
be divided into the following more specific ones, and they
are the key topics being investigated in our work:

1. Does more information leak help the algorithm to iden-
tify the correct positions of relevant bits?

2. How severe is the impact of data poisoning? We divide
this question into two more specific ones:

(a) What is the threshold on the level of poisoning
that learning can tolerate?

(b) Is there a specific pattern of corruption that harms
learning?

3. How do both types of shifts affect the training if they
concurrently exist?

4. Can we explain the mechanism of such effect?

All five questions will be answered in Section 4.2.

Choice of the k-parity problem. The k-parity problem
aims to guess the sign of the product of k selected bits from
{−1, 1} among a large number of bits, and consequently
identify the relevant positions involved in the product. We
select it for two main reasons.

1. The major theme of our paper is about the impact of
distribution shifts and data poisoning. Any shift on
binary inputs for the k-parity problem can be easily,
objectively quantified. Similarly, at every step and
every position, an entry has only one correct value
given a number of bits, so anything other than the true
value is poisoning.

2. The quality of a parity predictor can be objectively
assessed as the correctness of the output has an absolute
criterion.

Contributions. Our contributions are summarized as fol-
lows.

1. In Theorem 4.1, first show that the imbalanced k-parity
problem is “easy”, meaning it indeed can be efficiently

solved by a one-layer transformer in one gradient up-
date without CoT, and the optimization landscape is
benign.

2. Next, we reveal the joint impact of the distribution
shift and data poisoning on the performance of the pre-
dictor trained by the successful CoT decomposition
of the k-parity problem introduced in (Kim & Suzuki,
2025). This three-way relationship is compressed into
one statement in Theorem 4.2, and characterizes a nec-
essary and sufficient condition on the amount of dis-
tribution shift and data poisoning to ensure successful
training. This result has several implications.

• The tolerance of corrupted CoT training samples
is only O(1/k), making the learning vulnerable
against data poisoning.

• Surprisingly, distribution shift always hurts: A
higher degree of shift always leads to worse train-
ing performance. In our setting, recall that non-
uniform distributions leak information on the lo-
cation of target bits, so intuitively it should help
the predictor to learn. However, our result sug-
gests the opposite, and Corollary 4.4 eliminates
the possibility of successful learning when the
locations are exposed to the maximum extent.

2. Related works
Empowerment of CoT. Starting from 2022, a line of work
investigates the expressive powers of transformers from
a complexity theoretic perspective. The most recent and
comprehensive works include (Merrill & Sabharwal, 2024)
and (Li et al., 2024). The first paper provides a comprehen-
sive complexity-theoretic relationship between CoT steps
and computational power. Almost concurrently, the second
paper proves tighter upper bounds for constant-precision
transformers. Together, these two works confirm that, with
sufficient (polynomial) CoT steps, transformers break their
original upper bound in computation and can compute any
problem in P/poly. Beyond theoretical soundness of those
works, more concrete implementations on CoT are also be-
ing studied, including concrete training paradigms (Li et al.)
and interactions with inference-time search and reinforce-
ment learning fine-tuning (Kim et al., 2025).

Empirical discoveries of limitations on CoT. Despite
both theoretical and empirical successes, recent empirical
works also revealed that sometimes CoT may worsen the per-
formance (Shaikh et al., 2023; Kambhampati et al., 2024).
The CoT mechanism has been shown to improve perfor-
mance mainly on mathematical and logical tasks, but less so
for other tasks (Sprague et al., 2025). For tasks where think-
ing can make human performance worse, the harm caused
by overthinking also holds for models with CoT (Liu et al.,
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2024). It was also found recently that transformers can still
solve problems with meaningless filler CoT tokens (Pfau
et al., 2024).

Parity and LLMs. It has been shown that if, with a posi-
tive probability, the relevant bits are uniformly 1 or −1, then
this “imbalanced” k-parity problem can be solved by an
one-layer neural network (Daniely & Malach, 2020). How-
ever, if all inputs are uniformly generated, then this uniform
k-parity problem has been proven not to be solvable by
any input-output learning algorithm based on gradient up-
dates (Shalev-Shwartz et al., 2017; Shamir, 2018). Recently,
thanks to developments of CoT, several works have made
significant progresses on solving uniform k-parity with task
decompositions as CoT steps. Success has been achieved
for recurrent neural networks in (Wies et al., 2023), and they
designed a task decomposition of k-parity into k − 1 struc-
tured steps. Afterwards, (Kim & Suzuki, 2025) extended
their results to autoregressive transformers.

3. Problem setup
Notation. We write [n] := {1, · · · , n} for any integer
n. The multi-linear inner product of vectors z1, . . . ,zr ∈
Rn for any r ∈ N is denoted as ⟨z1, · · · , zr⟩ :=∑n

i=1 z1,i · · · zr,i. In particular, ⟨z⟩ = z⊤1n and
⟨z1, z2⟩ = z⊤

1 z2. The transformer will be denoted by a
function TF(·) Unless specified, each binary vector x repre-
sents the ground truth, and x̂ is the generated vector by the
transformer. The definition of data poisoning or data cor-
ruption will be formally presented later, but if x is injected
with poisoning, then it is denoted by x̃.

3.1. The parity problem

Let d ≥ k ≥ 2 be integers, and P be an arbitrary subset
of [d] with k elements. In this paper, we study the k-parity
problem, where the output of the target parity function is
y =

∏
j∈P xj , so the function value called parity, entirely

depends on the coordinates at the locations determined by
P . Given n samples (xi, yi)i∈[n], our goal is to predict the
parity of any test input from {±1}d. We assume k = Θ(d).

It is known that, if all inputs xi of dimension d are uni-
formly generated, then this “uniform” k-parity problem is
fundamentally difficult and cannot be solved in polynomial
time by any finite-precision gradient-based algorithms (Wies
et al., 2023). Recently, it was proven that the uniform k-
parity problem can be solved by transformers with log k
reasoning steps (Kim & Suzuki, 2025).

On the other hand, for a particular kind of imbalanced dis-
tribution on the input bits for training, the k-parity problem
is proven to be solvable by neural networks (Daniely &
Malach, 2020). The “imbalanced” distribution is defined

as the following: For any number ρ ∈ [0, 1] and a subset P
of [d], the distribution DP

ρ is a distribution on the input bits
such that

• With probability ρ, all d bits are uniformly generated.

• With probability 1− ρ, all bits in [d] \P are uniformly
generated, but the bits in P are all 1 with probability
1/2, and all −1 also with probability 1/2.

If ρ = 1, DP
ρ = DP

1 reduces to the uniform distribution.
Intuitively, any distribution DP

ρ with ρ < 1 leaks informa-
tion for the relevant bits and consequently makes the parity
problem easier. As we will show later in Section 4.1, this
imbalanced k-parity can also be solved by a one-layer trans-
former. If the value of ρ is not specified, we categorize such
a problem a “generalized” k-parity problem.

3.2. Chain of Thought (CoT)

Designed and first implemented in 2022 (Wei et al., 2022),
the chain of thought (CoT) approach has been a powerful
technique to improve large language model’s performance
for reasoning tasks. At high level, CoT inquiries ask the
language model to generate intermediate steps instead of
outputting a final answer directly. The intermediate steps
are obtained by applying the transformer repetitively using
earlier intermediate tokens, and they can be regarded as a
“reasoning chain”.

Task decomposition as CoT. As in (Wies et al., 2023)
and (Kim & Suzuki, 2025), we assume k = 2v for sim-
plicity, where v ∈ N. The chain of thought protocol de-
composes the k-parity problem as a sequence of 2-parity
problems. Visually, this is expressed as a complete binary
tree of height v and 2k − 1 nodes. The lowest level on this
tree contains k nodes from P , and the remaining d− k irrel-
evant bits are isolated vertices and not part of the tree. All
remaining nodes represent reasoning steps, and are labeled
as xd+1, . . . , xd+k−1. The next level above contains k/2
nodes, then k/4, and so on until at level v, the unique node
xd+k−1 is the final prediction of the parity value. For each
d < m < d + k − 1, xm must have exactly two children
and they are denoted by c1[m] and c2[m]. At the same time,
it must have exactly one parent and it is denoted by p[m].
The height of the tree is denoted as h[m], the length of the
longest path in the graph. All d nodes corresponding to d
inputs are located at level zero; the height of any other node
is difference between h[m] and the number of edges from
itself to the root.

Feedforward layer. The feedforward layer carries a fixed
link function ϕ : [−1, 1] → [−1, 1], applied element-wise.
To exploit the decomposition of our task into 2-parities, we
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h = 3

h = 2

h = 1

h = 0

x23 = y

x21 x22

x17 x18 x19 x20

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 1. A hierarchical decomposition of an 8-parity problem for
d = 16. Over here, x17 = x2x3, so c1[17] = 2, c2[17] = 3,
p[17] = 21, and h[17] = 1.

choose ϕ such that ϕ(0) = −1, ϕ(±1) = 1 so that sums are
converted into parities, i.e. ϕ(a+b

2 ) = ab for a, b ∈ {±1}.
Moreover, we require symmetry of ϕ, and that ϕ′(0) = 0.
Specifically, we choose the following function.

ϕ(x) =

{
d3x2 + d−3 − 1, x ∈ (−d−3, d−3);

2|x| − 1, otherwise.
(1)

The choice of this function ensures that ϕ is differentiable
everywhere on [−1, 1]. There is a discrepancy on ϕ(0) =
d−3 − 1 instead of −1, but the gap will be bounded as
perturbations and approach to zero as d becomes large.

Specific CoT process. For our case on k-parity, all input
bits x1, . . . ,xd are fixed, and the positions of later steps
before generation are null. The first intermediate token,
x̂d+1, is generated next and staying the same value through
the entire remaining process. Similarly, the next token is
generated by x̂d+2 = TF(2)(x1, · · · ,xd, x̂d+1;W), where
W is the transformer weights. Finally, the final prediction
is computed by repeating the computation for k − 1 times:

y = TF(k−1)(x1, . . . ,xd, x̂d+1, . . . , x̂d+k−2;W) (2)

Teacher forcing. For CoT implementations, we utilize
teacher forcing in our training process. Teacher forcing is a
form of process supervision, where in addition to the final
prediction, ground truth labels for CoT steps are provided
during training. Consequently, the accuracy of each CoT
step can be measured. Given n samples and model weights
W, the total loss takes every position d+1 ≤ m ≤ d+k−1
into account and is defined as

L(W) =
1

2n

d+k−1∑
m=d+1

||x̂m − xm||2

=
1

2n

d+k−1∑
m=d+1

||ϕ(ẑm)− xm||2,

(3)

where zm =
∑m−1

j=1 σj(wm)xj and σj(wj) are softmax
attention scores.

CoT data corruption. Intuitively, if all CoT steps are
correct for training, then indeed the final predictor will
accurately reflect the true target function thanks to correct
decomposition. However, correctness of CoT steps relies
on correct “ground truth” labels during the training steps.
If a high amount of such tokens are false, because of either
oversight or malicious attacks, then naturally, one may infer
that the quality of those intermediate steps may deteriorate.
In our case, the ground truth labels are either 1 or −1, and
corruption refers to flipping the signs of some inputs.

4. Theoretical results
4.1. Imbalance is easier than uniformity for

transformers without CoT

In this section, we assume ρ < 1 so information on relevant
bits in P are leaked. We assume ρ is never too small nor
too large, so ρ = Θ(1). The goal of this section is to
show that the imbalanced problem is indeed solvable by a
simple, one-layer transformer with a softmax attention layer.
Theorem 4.1 is the specific statement of this result. The
proof will be presented in the appendix.

Theorem 4.1. Given n samples where n = Ω(d2+ϵ), with
probability at least 1−exp(dϵ/2), a learning rate η = Θ(dϵ)
and all-zero initializations, the predictor ŷ after one-step
update satisfy |ŷ − y| ≤ O(d−1+ϵ) for any given input
x ∈ {±1}d and y =

∏
r∈P xr.

Proof sketch. The proof involves explicitly computing the
gradient with respect to each weight wj,m, and utilizing
the large differences on the gradients between relevant and
irrelevant bits (whether j ∈ P or not). Because the softmax
scores are identical at initialization, we can compute the in-
teraction terms among the tokens x1, . . . ,xd, x̂d+1, where
x̂d+1 is the vector of predictions.

Here is an example of interaction: ⟨xd+1, ẑm, ẑm⟩ =
⟨xd+1,xα,xβ⟩ /d2. If α, β ∈ P , then for each data sam-
ple, the parity xd+1xαxβ =

∏
i∈P\{α,β} xi is a random

variable with expectation 1− ρ > 0 if ρ < 1. If all bits are
uniformly generated, i.e. ρ = 1, then this variable has mean
zero. Since the training distribution DP

ρ is imbalanced, the
variable has a positive mean. But if at least one of α and β
is not in P , such variables are bounded with in a small value.
With a sufficiently large d and n, the computation leads to
positive weight updates for relevant bits, and negative up-
dates for others. Such a huge gap allows an attention layer
to identify relevant bits and make correct predictions.

4.2. Applying CoT for the generalized problem

In this section, the value of ρ ∈ [0, 1] is not restricted, and
we focus on the impact of CoT decomposition on solving the
generalized k-parity problem under two types of nuances:

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Data Shifts Hurt CoT: A Theoretical Study

(1) the information leaked (regulated by ρ), and (2) the level
of data poisoning, defined in Section 3.

Our main result Theorem 4.2 characterizes an equivalent
condition on successful training with this CoT decomposi-
tion with respect to (1) the distribution shift ρ and (2) the
quantity and distribution of data poisoning. Before stat-
ing the theorem, we first define a few ingredients for the
characterization.

Set of poisoning. We first define a few notations for quan-
tifying the data poisoning on different positions and their
interactions. Given n data samples of dimension d+ k − 1
including the CoT steps, for each node i ∈ {d+ 1, . . . , d+
k − 1}, let Ui ⊆ [n] be the set of indices with corrupted
samples. For any two nodes a, b ∈ {d+ 1, . . . , d+ k − 1},
define the set Ia,b = Ua ∩ Ub. For any i ∈ Ia,b, coordi-
nates a and b in the training sample xi are both flipped by
multiplying −1, so the effect of poisoning cancels out. For
three nodes a, b, c ∈ {d+ 1, . . . , d+ k − 1}, we define the
following set:

Ua,b,c = {(Ua ∪ Ub ∪ Uc) \ (Ia,b ∪ Ia,c ∪ Ib,c)}∪(Ua ∩ Ub ∩ Uc) .

For two nodes a and b, the set Ua,b = (Ua∪Ub)\(Ua∩Ub)
is defined with the same rationale. See Figure 2 and 3 for
visualizations. We will denote qa,b,c = |Ua,b,c| for the size
of this set.

Quantities for poisoning characterization. Exact quan-
tities of gradient updates ∂L/∂wj,m for every 1 ≤ j < m
depend on the indices of j and m. Those quantities are nec-
essary to characterize the poisoning and state our main result
Theorem 4.2, but they have considerably long expressions.

We define the following three functions. They are ingre-
dients to compute the differences for gradient updates be-
tween correct and incorrect nodes. The final expressions of
gradient updates have two major terms, the first term distin-
guished on (1) CoT steps of height one

(
d ≤ m < d+ k

2

)
d

or higher
(
d+ k

2 < m ≤ d+ k − 1
)
, and (2) location of

j: either h[j] = 0 or h[j] ≥ 1. The second term only
distinguishes on the latter.

For any 1 ≤ j ≤ m, the name Gh[m]=1 denotes the signal
difference for the CoT steps of height one with distinct
levels of j, and Gh[m]>1 is defined similarly for later CoT
steps. The S(m) is the coefficient of the signal difference
given by the second term between j on the lowest level
and on higher levels. Their expressions are formally stated
below.

Gh[m]=1(m, j, ρ) = −2(1− 2qm)

(m− 1)2
− 2(k − 1)(1− 2qm)

(m− 1)2
(1− ρ)

+

m−1∑
α=d+1

2(1− 2qm,α,j)

(m− 1)2
(1− ρ).

(4)

Figure 2. Given three sets Ua, Ub, and Uc, the set Ua,b,c is the
union of all three sets excluding elements that belong to exactly
one intersection of two sets. The shaded region represents the
impactful corruption. Corruption in the white region is cancelled
out.

Figure 3. Each axis represents samples of nodes a, b, and c.
Red segments show flipped samples. Flips from 0.2n–0.3n and
0.5n–0.7n cancel out due to two flips. Other red segments are
harmful: flipped at one node (0.1n–0.2n, 0.7n–0.9n) or all three
nodes (0.3n–0.5n).

Gh[m]>1(m, j, ρ) = −
2(1− 2qm,c1[m],c2[m])

(m− 1)2

−
∑

d<α<m,α̸=c′[m]

2(1− 2qm,c[m],j)

(m− 1)2
(1− ρ)

+
2k(1− 2qm)

(m− 1)2
(1− ρ).

(5)

S(m, j) = − 2(k − 1)

(m− 1)2
+

∑
d<α<m,α̸=j

2(1− 2qα)

(m− 1)2

+

m−1∑
α=d+1

8k(1− 2qα)

(m− 1)3
−

m−1∑
α,β=d+1

4(1− 2qα,β,j)

(m− 1)3

−
∑

α,β∈P

4(1− 2qm)

(m− 1)3
.

(6)

Note that for steps m with h[m] = 1, it always holds

5
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that qm = qm,a,b if a, b ∈ [d] because the inputs have no
poisoning, so all flips in step m are harmful for computing
⟨xm,xa,xb⟩.

We now state our main theoretical result in this work. We
answer Question 3 by providing a comprehensive statement
on the impact of both distribution shift ρ and the poisoning
structure among the CoT steps on the final performance of
the predictor within the selected CoT decomposition. Such
impact leads to an equivalent (both necessary and sufficient)
condition on success of training.

Theorem 4.2. Let n = Ω(d2+ϵ) and µ > −2 − ϵ/4 for
ϵ > 0. Suppose d is sufficiently large. With softmax attention
and all-zero initializations on weights, a transformer with
the prescribed CoT mechanism can solve the uniform parity
problem with an error rate converging to zero as d → ∞ if
and only if all the following conditions hold.

• For every m ∈
{
d+ 1, · · · , d+ k

2

}
, the following in-

equality satisfies:

Bm = max
d<j<m

{−2ρ(1− 2qm)

(m− 1)2
,

Gh[m]=1(m, j, ρ) + (1− ρ)S(m, j)} < −O(dµ).

(7)

• For every m ∈
{
d+ k

2 + 1, · · · ,m− 1
}

, the follow-
ing inequality satisfies:

Bm = max
d<j<m

{−
2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2
,

Gh[m]>1(m, j, ρ)− (1− ρ)S(m, j)} < −O(dµ).

(8)

In particular, if the conditions above hold for every m, then
let B = max

d<m<d+k−1
Bm, for every input x ∈ {±1}d, the

true prediction y and the prediction ŷ by the trained predic-
tor after one step update with learning rate η = Θ(d−µ)
satisfy |ŷ−y| ≤ O(d−B(µ−2−ϵ/4)) with probability at least
1 − exp(dϵ/2). If the conditions fail for at least one CoT
step, then limd→∞ E [|ŷ − y|] = Ω(1).

Vulnerability against poisoning. The theorem provides
a rigid equivalent condition for the algorithm to succeed.
Even for one intermediate step m ∈ {d+1, · · · , d+k−1},
if qm,c1[m],c2[m] ≥ 0.5, then the condition in Equation (7) or
8 no longer holds, and consequently the training algorithm
would not succeed. Recall that for this task, there are (k −
1)n values in the training data set for all intermediate steps,
but 0.5n flips are sufficient to fail the training. Conclusively,
this algorithm has a low poisoning tolerance of 1

2(k−1) , and
this threshold approaches to zero as k become large. This
analysis answers Questions 2.(a) and 2.(b) in Section 1.

Regarding distributions shift, Theorem 4.2 leads to an im-
mediate corollary, which reveals a seemingly paradoxical
conclusion.

Corollary 4.3 (Maximum leakage of information). If ρ = 0,
i.e. all non-relevant bits are still uniformly generated but all
relevant bits are either all −1 or 1, then the training always
fails with this CoT decomposition.

Proof. If ρ = 0, then Bm = 0 for any intermediate node
m.

Explanation of the “paradox”. If ρ = 0, the locations
of relevant bits are exposed to the maximum extent, so in-
tuitively, the CoT protocol should be able to solve it even
more efficiently than the case when ρ = 1. However, within
this CoT design, this case leads to an immediate, absolute
failure. The exact reason will be briefly outlined in the proof
sketch and comprehensively presented in the full proof. At
a high level, when ρ = 0, the gradient update extracts identi-
cal information from correct nodes (children) and incorrect
nodes (non-children) during the CoT steps. However, iden-
tifying the location of the children is essential to ensure
that the final output is indeed the multiplication of the rele-
vant bits. If errors on this step exist, some relevant bits are
multiplied multiple times and therefore the output will be
different from the truth.

Ever-present harm of distribution shift. The impact of
ρ is concrete even if ρ > 0. Recall that for the uniform case
where ρ = 1, we have

Gh[m]=1(m, 1) = −2(1− 2qm)

(m− 1)2
= −

2(1− 2qm,c1[m],c2[m])

(m− 1)2
,

Gh[m]>1(m, 1) = −
2(1− 2qm,c1[m],c2[m])

(m− 1)2
.

(9)

Thus, Bm = −2(1− 2qm,c1[m],c2[m])/(m− 1)2 for any m
if ρ = 1. Let m′ = argmaxm Bm, then if ρ < 1, denote
the values computed in Equation (7) and 8 as {B′

m}d+k−1
m=d+1,

observe that Bm′ > Bm. Hence, B′ = maxm B′
m >

B′ and the convergence rate slows down for every ρ < 1.
Furthermore, clearly a lower ρ leads to a higher Bm. So,
we can conclude that distribution shift always damages the
training if it exists, and low shift is always better than high
shift. This answers Question 1.

Corollary 4.4 (Simple characterization without distribution
shift). If the training and testing distribution are identical,
i.e. ρ = 1, then the CoT decomposition succeeds if and
only if qm,c1[m],c2[m] ≤ 0.5 − O(dµ) for every m ∈ {d +
1, . . . , d+ k − 1}.

6
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Proof. If ρ = 1, then clearly

Gh[m]=1 + (1− ρ)S = Gh[m]>1 − (1− ρ)S

= −
2(1− 2qm,c1[m],c2[m])

(m− 1)2
.

(10)

Observe that if h[m] = 1, i.e. m ∈
{
d+ 1, · · · , d+ k

2

}
,

then qm = qm,c1[m],c2[m] because there is no poisoning in
the inputs.

We have answered all of Questions 1, 2 and 3 in the in-
troduction. We conclude this section by a proof sketch of
Theorem 4.2, which summarizes the technical analysis that
answers Question 4. The entire proof will be presented in
the appendix.

Proof sketch of Theorem 4.2. For the if direction, we di-
rectly compute the gradients, and found that the two quanti-
ties in Equation (7) and 8 are gradient differences between
correct and incorrect nodes. A low enough value of Bm for
every m ensures the two correct nodes have larger weights
than incorrect nodes, and the gap must be large enough for
the attention layer to distinguish correct and incorrect nodes
as d becomes large. As a result, the attention scores σj(wm)
is close to zero if p[j] ̸= m, and are close to 0.5 otherwise.

For the only if direction, we prove the contrapositive: If
the conditions do not hold, i.e. Bm is not low enough for
an intermediate step m. The key part is still analyzing the
gradient update, but since the condition fails for m, the
gradient update for at least one node j such that p[j] ̸= m is
now equal or higher than updates for children. Consequently,
the attention score for that incorrect node is equal or higher
than the scores for correct nodes. As a result, at least one
CoT step will not learn an accurate predictor. We will
show a lemma that non-vanishing error on any CoT node
crashes the final predictor and hence prove the failure in this
scenario.

5. Experiments
In this section, we provide numerical experiments which
support our theoretical analysis. The statement of Theo-
rem 4.2 holds with a large enough d to overcome low-order
error terms and perturbations. In our experiments, we im-
plement a more realistic setting on dimensions and learning
rates with an extensive period of training time. We train a
simple one-layer transformer with absolute encoding, soft-
max attention layer and the feedforward layer defined in
Section 3.2. The investigated problem is exactly the same
as the one in Section 4.2. We set the input dimension to be
128 and by default k = 64. The value of k can be easily
adjusted within 128, but for larger d, e.g. 256 or 512, the
computation becomes prohibitively slow even with A100
GPU.

Figure 4. Heatmap of testing loss with respect to both distribution
shift and poisoning structure. Each value on the horizontal axis is
the ratio of uniformly generated inputs, the same as ρ in Section 4.
The number inside each grid is the test loss under that particular
circumstance.

Our implementation automatically generates synthetic data
from {±1}128 and randomly selects k relevant bits. Once
the inputs are generated and relevant bits are selected, the
program then constructs a decomposition tree like the il-
lustration in Figure 1. Next, using the inputs, the program
computes the ground truth samples for CoT training by
multiplying the correct bits element-wise following the de-
composition tree structure.

The key parameters for our problem other than the stan-
dard ones above are the ratio of uniformly generated inputs
and structure/quantity of data poisoning. After the inputs
are generated, the program allows us to input the variable
uniform_prob, which is ρ defined in Section 4, and
then (1 − uniform_prob)n samples will have their co-
ordinates at target bits to be changed to either all −1 or 1,
both with probability 0.5. We may also easily inject poi-
soning with any quantity and structure by editing the list
flip_configurations.

We experimented over 35 cases with seven variants
of poisoning quantity and structure and five values of
uniform_prob. Figure 4 shows the training results after
5000 epochs in every case when d = 128 and k = 64. We
first note that the performance under no distribution shift
strictly surpasses any other case with distinct poisoning
structure and quantity, with the exception of the case where
the first and second CoT steps have 40% of ground truth
labels flipped. The high loss for this poisoning structure
even without distribution shift is justifiable as the level of
impact poisoning is high. We also observe that, even with-
out distribution shift, the empirical poisoning tolerance is
not as high as 50%, and the location of poisoning matters.
Theoretically, even with a poisoning of 40%, if d is large
enough the performance should not be different with the
performance under the case without any poisoning, and the

7
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location of poisoning should not matter as long as the condi-
tions in Equation (4) and 5 matters. But an eligible d, as we
will show in the proof of Theorem 4.2, must be astronomi-
cally large and cannot be empirically tested. Nevertheless,
the heatmap shows that the performance degrades with low
ρ, and the impact of poisoning structure is real: The case
with 25% of poisoning in steps 33, 34 and 49 has a strictly
higher loss than the other two cases with the same poisoning
location.

The empirical results strengthens our theoretical discoveries
on the relationship between the CoT performance and data
shifts. Meticulous assessment of the data shifts is essential
to ensure the success of the CoT training with decomposition
in Section 3. We have ran the experiments multiple times
with stable results, and the details on variability in multiple
runs will be presented in the appendix.

6. Conclusion
In this work, we provide, to the best of our knowledge,
the first theoretical analysis of limitations of CoT applied
on a concrete problem. Because the k-parity problem is
well-defined and based on binary inputs, there are clear mea-
sures on success/failure, distribution shift, and poisoning
level. We derive a necessary and sufficient condition on
the distribution-shift parameter ρ and structured poisoning
levels qa,b,c that rigidly regulates the success of training.

Limitations. Despite the insights we gained, our study
has two major limitations. First, our focus is entirely on the
parity problem. In spite of the advantages of the problem,
real-world applications of CoT are much more nuanced and
may lead to different results. The other constraint is the
choice of CoT decomposition. Although this decomposition
has been proved to be successful, there might be alternatives
which may interact with data shifts differently. Future work
on a more diverse set of problems and CoT structures would
be inspiring for both theory and applications.
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A. Proof of Theorem 4.1

x17

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 5. The same parity function where P = {2, 3, 5, 7, 9, 11, 14, 16} as one represented by Figure 1, but without CoT decomposition.

By proving Theorem 4.1, we show that the k-parity problem can be solved by simple transformers if the data samples are
generated via the distribution DP

ρ for ρ < 1.

First, we visually understand the problem. We illustrated the case with CoT using Figure 1. If we omit CoT and use the
simple input-output model, then the tree only has depth one, where the root is the final output and its k children are relevant
bits, as illustrated in . Given n samples, the loss function is

L(W) =
1

2n
||x̂d+1 − xd+1||2∞ . (11)

Unlike the loss function for the case with CoT, the function here is a single summand because the only prediction during the
process is the output.

Using the softmax attention, some quantities in the original paper preserve. We will need the following expressions. For any
1 ≤ α, j < d+ 1, denote the δjα as the 0-1 indicator on j = α, we have

∂σα(wd+1)

∂wj,d+1
= (δjα − σα(wd+1))σj(wd+1) = (δjα − σj(wd+1))σα(wd+1); (12)

and

∂ẑd+1

∂wj,d+1
=

d∑
α=1

(δjα − σj(wd+1))σα(wd+1)xα = σj(wd+1)(xj − ẑd+1). (13)

Feedforward layer. Because of the nice properties of the 2-parity problem, we could apply a simple feedforward activation
ϕ as long as ϕ(0) = −1 and ϕ(±1) = 1. However, in this “flat” problem, we must choose a feedforward function ϕ to
satisfy: ϕ

(
x1+···+xk

k

)
= x1x2 · · ·xk. This leads to a few other quantitative requirements:

• ϕ(0) = 1. Because if x1 + · · ·+ xk = 0, then we have equally many 1’s and −1’s, so x1 · · ·xk = 1.

• ϕ
(
± 2

k

)
= ϕ

(
± 6

k

)
= · · · = ϕ

(
±k−2

k

)
= −1. This is the case when the difference between the numbers of 1’s and

−1’s is odd, and their product is −1.

• ϕ
(
± 4

k

)
= ϕ

(
± 8

k

)
= · · · = ϕ

(
±k

k

)
= 1. This is the case when the difference between the numbers of 1’s and −1’s is

even, and their product is 1.

A plausible choice is ϕ(x) = cos(0.5kπx); it satisfies all the properties above. When x is small, using Taylor expansion
we can approximate its derivative as ϕ′(x) ≈ −0.25(k2π2)x, and the remaining terms can be approximated as O(x3). To
simplify the notation, we will write ϕ′(x) = −2cx = −2ak2x where c = ak2 and a = π2/8.
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Therefore,

∂L

∂wj,d+1
(W) =

1

n
(ϕ(ẑd+1)− xd+1)

⊤ ∂ϕ(ẑd+1)

∂wj,d+1
=

σj(wd+1)

n
⟨ϕ(ẑd+1)− xd+1, ϕ

′(ẑd+1),xj − ẑd+1⟩ (14)

= − 1

nd
⟨xd+1,−2cẑd+1,xj − ẑd+1⟩ (15)

+
1

nd

〈
−1n + cẑ2

d+1, 2cẑd+1,xj − ẑd+1

〉
(16)

+
1

nd

〈
O(|ẑd+1|4),−2cẑd+1,xj − ẑd+1

〉
(17)

+
1

nd

〈
ϕ(ẑd+1)− xd+1, O(|ẑd+1|3),xj − ẑd+1

〉
. (18)

Like the original proof, we will show that the first term is the leading term and the other three vanish eventually. Recall
that under the CoT setting, thanks to the binary tree structure, the multi-linear product among a parent and two children is
always one.

In our case, however, this no longer holds: Suppose d = 16, k = 4, x17 is the root, and x2, x3, x6, x7 are relevant bits.
Observe that the product ⟨x17, x2, x7⟩ = x2x3x6x7x2x7 = x3x6 is a random variable instead of a fixed value.

Nevertheless, we will see the random variables are largely homogeneous. We first express the leading term in a more
readable way by substituting ẑd+1 = 1

d

∑
α xα. Observe that,

1

n
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

1

nd

∑
α

⟨xd+1,xα,xj⟩ −
1

nd2

∑
α,β

⟨xd+1,xα,xβ⟩, (19)

where the dummy indices α and β are taken to run over [d]. Before continuing, we prove a lemma that provides a
concentration bound for the interactions between the bits.

Lemma A.1. Using the distribution D, and let r ∈ [4], then for each of the following two cases:

1. r is odd

2. r is even but at least one of j1, . . . , jr is an irrelevant bit.

Then for any p > 0, it holds with probability at least 1− p that

max
r∈[4],{j1,...,jr⊈P}

|⟨xj1 , . . . ,xjr ⟩|
n

≤ κ :=

√
2

n
log

4d4

p
. (20)

Otherwise, if the indices of r bits are not any one of the two case above, then similarly, for any p > 0, it holds with
probability as least 1− p that

max
r∈[4],{j1,...,jr⊈P}

|⟨xj1 , . . . ,xjr ⟩ − (1− ρ)|
n

≤ κ :=

√
2

n
log

4d4

p
. (21)

Proof. We prove the cases when r is odd or r is even but at least one of j1, . . . , jr is an irrelevant bit. The proof
for the remaining scenario with non-zero mean is the same. Observe that, for each sample, the multi-linear product
⟨xj1 , . . . , xjr ⟩ = xj1 · · ·xjr is a random variable. Suppose r is odd, i.e. r = 1 or 3 and the bits are all relevant. Let j ∈ P ,
then PD(xj = 1) = ρ× 0.5 + (1− ρ)× 0.5 = 0.5 = PD(xj = −1), so ED[xj ] = 0. Let j1, j2, j3 ∈ P , we have

PD(xj1xj2xj3 = 1) = ρ×
(
3
1

)
+
(
3
3

)
23

+ (1− ρ)× 1

2
= 0.5 = PD(xj1xj2xj3 = −1). (22)

Therefore, ED[xj1xj2xj3 ] = 0.
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Next, suppose j1 /∈ P , then clearly PD[xj1 = 1] = PD[xj1 = −1] = ρ × 0.5 + (1 − ρ) × 0.5 = 0.5, so
ED[xj1 ] = EUniform[xj1 ] = 0. Non-relevant bits are independent with respect to every other bit, so ED [⟨xj1 , . . . , xjr ⟩] =
EUniform [⟨xj1 , . . . , xjr ⟩] = 0.

Since all the variables discussed above have zero mean, by Hoeffding’s inequality, we have

PD (|⟨xj1 , . . . , xjr ⟩| ≥ λ) ≤ 2e−λ2/2n. (23)

If r = 1, there are exactly d− k such variables; if r = 2, there are d(k − 1); if r = 3, there are d(k − 1)(k − 2); if r = 4,
there are d(k − 1)(k − 2)(k − 3). Their sum is below 2d4. So, by union bounding, we have

P

(
max

r∈[4],{j1,...,jr⊈P}
|⟨xj1 , . . . ,xjr ⟩| ≥ λ

)
≤ 4d4e−λ2/2n. (24)

The lemma statement follows by substituting λ =
√

2
n log 4d4

p .

If we take n = Ω(d2+ϵ) and p = exp
(
−dϵ/2

)
, so κ = O

(
d−1−ϵ/4

)
.

A.1. Term (15)

We now proceed to analyze the quantity of the leading term when j ∈ P , i.e. j is a relevant bit. Thus, we can decompose
the two terms in Equation (19) as:

1

nd

∑
α

⟨xd+1,xα,xj⟩ =
1

nd

∑
α∈P

⟨xd+1,xα,xj⟩+
1

nd

∑
α/∈P

⟨xd+1,xα,xj⟩ (25)

=
1

nd

∑
α∈P

⟨xd+1,xα,xj⟩+
1

d
·O((d− k)κ) (26)

=
1

d
·Xk +

k − 1

d
·Xk−2 +

d− k

d
O(κ). (27)

Similarly,

1

nd2

∑
α

⟨xd+1,xα,xβ⟩ =
1

nd2

∑
α,β∈P

⟨xd+1,xα,xβ⟩+
1

nd2

∑
rest

⟨xd+1,xα′ ,xβ′⟩ (28)

=
1

nd2

∑
α,β∈P

⟨xd+1,xα,xβ⟩+O

(
d2 − k2

d2
· κ
)

(29)

=
k

d2
·Xk +

k(k − 1)

d2
·Xk−2 +

d2 − k2

d2
O(κ). (30)

Adding them up, we have that, if j ∈ P , then

1

n
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

d− k

d2
Xk +

(d− k)(k − 1)

d2
Xk−2 −

k(d− k)

d2
O(κ). (31)

Multiplying 2c
d = 2ak2

d , we finally have

2c

nd
⟨xd+1, ẑd+1,xj − ẑd+1⟩ =

2ak2(d− k)

d3
Xk +

2ak2(d− k)(k − 1)

d3
Xk−2 −

2ak3(d− k)

d3
O(κ). (32)

On the other hand, if j /∈ P , then we have

1

n
⟨xd+1, ẑm,xj⟩ =

1

nd

∑
α

⟨xd+1,xα,xj⟩ −
1

nd2

∑
α,β

⟨xd+1,xα,xβ⟩ (33)

=
1

d
Xk +

d− 1

d
O(κ)−

(
k

d2
Xk +

k(k − 1)

d2
Xk−2 +

d2 − k2

d2
O(κ)

)
(34)

=
d− k

d2
Xk − k(k − 1)

d2
Xk−2 +

k2 − d

d2
O(κ). (35)
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Again, multiplying 2c
d = 2ak2

d , we have

2c

nd
⟨xd+1, ẑm,xj⟩ =

2ak2(d− k)

d3
Xk − 2ak3(k − 1)

d3
Xk−2 +

2ak2(k2 − d)

d3
O(κ). (36)

Therefore, we have

Term (15) =

{
2ak2(d−k)

d3 Xk + 2ak2(d−k)(k−1)
d3 Xk−2 − 2ak3(d−k)

d3 O(κ), j ∈ P
2ak2(d−k)

d3 Xk − 2ak3(k−1)
d3 Xk−2 +

2ak2(k2−d)
d3 O(κ), j /∈ P

. (37)

A.2. Term (16)

We expand term (16) as the following:

1

nd

〈
−1n + cẑ2

d+1, 2cẑd+1,xj − ẑd+1

〉
= − 2c

nd
⟨ẑd+1,xj⟩+

2c

nd

〈
ẑ2
d+1

〉
+

2c2

nd

〈
ẑ3
d+1,xj

〉
− 2c2

nd

〈
ẑ4
d+1

〉
. (38)

A.2.1. FIRST TERM

1

n
⟨ẑd+1,xj⟩ =

1

nd

⟨xj ,xj⟩+
∑
α̸=j

⟨xα,xj⟩

 =
1

d
+

1

nd

∑
α ̸=j

⟨xα,xj⟩ (39)

=

{
1/d+ 1

nd

∑
α∈P\{j}⟨xα,xj⟩, j ∈ P

1/d+ d−1
d O(κ), j /∈ P

(40)

=

{
1/d+ k−1

d X2 +
d−k
d O(κ), j ∈ P

1/d+ d−1
d O(κ), j /∈ P

(41)

Multiplying the constant −2c, we have

− 2c

nd
⟨ẑd+1,xj⟩ =

{
− 2c

d2 − 2c(k−1)
d2 X2 − 2c(d−k)

d2 O(κ), j ∈ P

− 2c
d2 − 2c(d−1)

d2 O(κ), j /∈ P
(42)

=

{
− 2ak2

d2 − 2ak2(k−1)
d2 X2 − 2ak2(d−k)

d2 O(κ), j ∈ P

− 2ak2

d2 − 2ak2(d−1)
d2 O(κ), j /∈ P

(43)

A.2.2. SECOND TERM

Next,

1

n

〈
ẑ2
d+1

〉
=

1

nd2

∑
α

⟨xα,xα⟩+
∑
α̸=β

⟨xα,xβ⟩

 (44)

=
1

d
+

1

nd2

∑
α̸=β;α,β∈P

⟨xα,xβ⟩+
1

nd2

∑
rest

⟨xα,xβ⟩ (45)

=
1

d
+

k(k − 1)

d2
X2 +

(d+ k − 1)(d− k)

d2
O(κ) (46)

Therefore,

2c

nd

〈
ẑ2
d+1

〉
=

2c

d2
+

2ck(k − 1)

d3
X2 +

2c(d+ k − 1)(d− k)

d3
O(κ) (47)

=
2ak2

d2
+

2ak3(k − 1)

d3
X2 +

2ak2(d+ k − 1)(d− k)

d3
O(κ). (48)
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A.2.3. FOURTH TERM

For the fourth order term, we have
1

n

〈
ẑ4
d+1

〉
=

1

nd4

∑
α,β,γ,δ

⟨xα,xβ ,xγ ,xδ⟩ (49)

We analyze all possible combinations of the indices by enumerating the size of the set {α, β, γ, δ}.

1. |{α, β, γ, δ}| = 1: There are d instances of ⟨xα,xα,xα,xα⟩.

2. |{α, β, γ, δ}| = 2: There are
(
d
2

)
pairs of distinct indices. For each pair (α, β), either:

(a) One appears three times. There are eight possibilities: We first choose the position of the unique index (four), and
both can be that unique index (multiplying two).

(b) Both appear twice. Clearly, there are six possibilities.

Therefore, there are totally 14
(
d
2

)
= 7d(d− 1) possible combinations in this case.

3. |{α, β, γ, δ}| = 3: Given a triple (α, β, γ), exactly one index must appear twice, so there are three possibilities for this
criteria. Once this choice is made, the identical indices may choose one of the six pairs among the four positions. Once
two spots are occupied, the remaining two indices may fill in either order. So, there are totally 36

(
d
3

)
= 6d(d−1)(d−2)

possible combinations in this case.

4. |{α, β, γ, δ}| = 4: Clearly, there are
(
d
4

)
groups of all distinct indices. For each group, they may be placed in 4! = 24

possible orders. So there are totally 24
(
d
4

)
= d(d− 1)(d− 2)(d− 3) possible combinations in this case.

Every instance in Cases 1 and 2.b has value exactly n, and there are d+6
(
d
2

)
= 3d2 − 2d such instances. Every instances in

Cases 2.a and 3 is a sum of n independent (data samples) random variables, and each of them is in the form ⟨xα, xβ⟩ such
that α ̸= β. Every instance in Case 4 is a sum of n independent random variables in the form ⟨xα, xβ , xγ , xδ⟩ such that
|{α, β, γ, δ}| = 4. So we further divide those d4 instance into three groups:

• Cases 1 and 2.b.

• Cases 2.a and 3. Among 6d3 − 14d2 + 8d such instances, exactly 8
(
k
2

)
+ 36

(
k
3

)
= 6k3 − 14k2 + 8k correspond to

random variables as multiplication of two bits in P . The rest of them have value O(κ).

• Case 4. Clearly 24
(
k
4

)
= k(k − 1)(k − 2)(k − 3) instances correspond to random variables as multiplication of four

bits in P . The rest of them have value O(κ).

The first group with 3d2 − 2d instances accumulates to

1

nd4
× (Cases 1 and 2.b) =

1

nd4
× n(3d2 − 2d) =

3d− 2

d3
. (50)

The second group leads to

1

nd4
× (Cases 2.a and 3) =

6k3 − 14k2 + 8k

d4
·X2 +

6(d3 − k3)− 14(d2 − k2) + 8(d− k)

d4
O(κ). (51)

The third group leads to

1

nd4
× (Case 4) =

k(k − 1)(k − 2)(k − 3)

d4
·X4 +

d(d− 1)(d− 2)(d− 3)− k(k − 1)(k − 2)(k − 3)

d4
O(κ). (52)

Adding everything up, we have

1

n

〈
ẑ4
d+1

〉
=

3d− 2

d3
+

6k3 − 14k2 + 8k

d4
·X2 +

k(k − 1)(k − 2)(k − 3)

d4
·X4 (53)

+
(d4 − k4)− 3(d2 − k2) + 2(d− k)

d4
O(κ). (54)
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Multiplying −2c2 = −2a2k4, we have

−2c2

nd

〈
ẑ4
d+1

〉
= −2a2k4(3d2 − 2d)

d5
− 2a2k4(6k3 − 14k2 + 8k)

d5
·X2 −

2a2k5(k − 1)(k − 2)(k − 3)

d5
·X4 (55)

−
2a2k4

[
(d4 − k4)− 3(d2 − k2) + 2(d− k)

]
d5

·O(κ). (56)

A.2.4. THIRD TERM

Finally, for the three order term, where the group {α, β, γ, δ} must contain a fixed j ∈ [d]. We have,

1

n

〈
ẑ3
d+1,xj

〉
=

1

nd3

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (57)

Like the previous four order term, we need to discuss multiple cases.

1. α = β = γ = j. We easily obtain 1
nd3 ⟨xj ,xj ,xj ,xj⟩ = 1/d3.

2. α = β = γ ̸= j. There are d− 1 possible combinations.

3. |{α, β, γ}| = |{α, β, γ, j}| = 2. This further divides into two sub-cases.

(a) Only one of them is j. We have d− 1 choices for α ̸= j, and three choices of spot for that unique j. Totally, there
are 3(d− 1) combinations.

(b) Two of them are j. Like the sub-case above, there are 3(d− 1) possible combinations.

4. |{α, β, γ}| = 2, but |{α, β, γ, j}| = 3. None of the three indices can be j, so there are
(
d−1
2

)
pairs of (α, β). For each

pair, we need to choose which index appears once between two elements. In total, there are 6
(
d−1
2

)
= 3(d− 1)(d− 2)

combinations.

5. |{α, β, γ}| = |{α, β, γ, j}| = 3. Exactly one of the three indices must be j, so there are
(
d−1
2

)
pairs of unequal indices.

There are three choices for j’s position, and every time we can flip the pair. Therefore, there are 6
(
d−1
2

)
= 3(d−1)(d−2)

combinations in this case.

6. |{α, β, γ}| = 3, and |{α, β, γ, j}| = 4. There are
(
d−1
3

)
triples (α, β, γ) and six combinations for each choice, so

there are 6
(
d−1
3

)
= (d− 1)(d− 2)(d− 3) combinations in total.

The unique case in Case 1 is trivial.

We first assume j /∈ P . Then Lemma A.1 directly applies to all summands and therefore the term sums to the following
with high probability:

2c2

nd

〈
ẑ3
d+1,xj

〉
=

2c2

nd4

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ =
2c2 · ⟨xα,xβ ,xγ ,xj⟩

nd4
× d3 =

2c2

d
·O(κ) =

2a2k4

d
O(κ). (58)

Now suppose j ∈ P . Exactly k − 1 combinations in Case 2 correspond to a sum of n independent X2, and the remaining
d− k combinations are O(κ). All instances in Case 3.a have product value n, and all instances in Case 3.b correspond to
n copies of X2. For Case 4, only j and the unique index matter. Exactly 2(k − 1)(d− 2) combinations correspond to n
copies of X2, and the rest are O(κ). For Case 5, the xj cancels out, so the sum for Case 5 can be expressed as∑

α̸=β;α,β∈[d]\{j}

⟨xα,xβ⟩. (59)

Clearly, only 3(k − 1)(k − 2) summands correspond to n copies of X2, and others are O(κ). Finally, for Case 6, there are
6
(
k−1
3

)
combinations that correspond to n copies of X4, and all others are O(κ). We can then express the three order term
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as the following.

1

n

〈
ẑ3
d+1,xj

〉
=

1

nd3

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (60)

=
3d− 2

d3
+

(k − 1) + 3(d− 1) + 2(k − 1)(d− 2) + 3(k − 1)(k − 2)

d3
·X2 (61)

+
(k − 1)(k − 2)(k − 3)

d3
·X4 (62)

+
(d3 − k3)− 2dk + 3k2 − 4d+ k + 2

d3
·O(κ). (63)

Multiplying 2c2 = 2a2k4, we have

2c2

nd

〈
ẑ3
d+1,xj

〉
=

1

nd4

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ (64)

=
2a2k4(3d− 2)

d4
+

2a2k4 [(k − 1) + 3(d− 1) + 2(k − 1)(d− 2) + 3(k − 1)(k − 2)]

d4
·X2 (65)

+
2a2k4(k − 1)(k − 2)(k − 3)

d4
·X4 (66)

+
2a2k4

[
(d3 − k3)− 2dk + 3k2 − 4d+ k + 2

]
d4

·O(κ). (67)

A.2.5. ADDING EVERYTHING UP

Adding everything up, we have

Term (16) = − 2c

nd
⟨ẑd+1,xj⟩+

2c

nd

〈
ẑ2
d+1

〉
+

2c2

nd

〈
ẑ3
d+1,xj

〉
− 2c2

nd

〈
ẑ4
d+1

〉
. (68)

Specifically,

• If j ∈ P , then

– The coefficient for constant is 0.
– The coefficient for X2 is

(4a2 · d2k5 + 6a2 · dk6 − 12a2 · k7) + (−2a · d3k3 + 2a2 · d2k4 − 24a2 · dk5 + 28a2 · k6)
d5

(69)

+
(2a · d3k2 − 2a · d2k3 + 12a2 · dk4 − 16a2k5)

d5
= O(d2). (70)

– The coefficient for X4 is

2ak4(d− k)(k − 1)(k − 2)(k − 3)

d5
≥ 0; ⇒ O(d3). (71)

– The coefficient for O(κ) is

−4a2d2k5 − 2a2d2k4 − 2a2dk7 + 6a2dk6 + 2a2dk5 + 2a2k8 − 6a2k6 + 4a2k5

d5
(72)

+
2ad3k3 − 2ad3k2 − 2ad2k3 + 2ad2k2

d5
= −O(d2). (73)

Hence, this term becomes −O(d1−ϵ/4).

• If j /∈ P , then
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– The coefficient for constant is

−2a2k4(3d− 2)

d4
= −O(d). (74)

– The coefficient for X2 is

−12a2 · k7 + 2a · d2k4 + 28a2 · k6 − 2a · d2k3 − 16a2 · k5

d5
= −O(d2). (75)

– The coefficient for X4 is

−2a2k5(k − 1)(k − 2)(k − 3)

d5
= −O(d3). (76)

– The coefficient for O(κ) is

6a2d2k4 − 4a2dk4 + 2a2k7 − 6a2k6 + 4a2k5 − 2ad2k4 + 2ad2k3

d5
= O(d2). (77)

Hence, this term becomes O(d1−ϵ/4).

A.3. Terms (17) and (18)

Now we analyze term (17). Recall that
〈
|ẑd+1|4

〉
=
〈
ẑ4
d+1

〉
= O(n/d2) +O(n/d) ·X2 +O(n) ·X4 +O(nκ). Observe

that each component of ẑd+1 and xj − ẑd+1 are contained in [−1, 1] and [−2, 2] respectively, we have

1

nd

〈
O(|ẑd+1|4),−2cẑd+1,xj − ẑd+1

〉
= − 4c

nd
·O
(〈

|ẑd+1|4
〉)

(78)

= −4ak2

d

(
3d− 2

d3
+

6k3 − 14k2 + 8k

d4
·X2 +

k(k − 1)(k − 2)(k − 3)

d4
·X4 +O(d−2−ϵ/4)

)
(79)

= −O(d−1)−O(1) ·X2 −O(d) ·X4 −O(κ). (80)

Similarly, using the Cauchy-Schwarz inequality, we may bound the final term (18).

1

nd

〈
ϕ(ẑd+1)− xd+1, O(|ẑd+1|3),xj − ẑd+1

〉
=

4

nd
O
(
⟨|ẑd+1|⟩3

)
(81)

≤ 4

nd

〈
ẑ2
d+1

〉1/2 〈
ẑ4
d+1

〉1/2
(82)

≤ O
(
d1+0.5ϵ

)
(83)

Now, summing up the terms, we conclude that for relevant bits j ∈ P , its gradient ∂L/∂wd+1,j has the dominating term
O(d3) ·X4 = O(d3); for non-relevant bits j′ /∈ P , its gradient ∂L/∂wd+1,j′ has the dominating term O(d1−ϵ/4). Fix a
learning rate η = Θ(d−3+ϵ/8), then we obtain the following comparisons of the weights W(1) after one gradient update.
For j ∈ P and j′ /∈ P , we have

σj′(w
(1)
d+1)

σj(w
(1)
d+1)

= e
w

(1)

d+1,j′−w
(1)
d+1,j ≤ exp

(
−Ω(dϵ/8)

)
. (84)

Since attention scores sum up to one, we have
∑

j∈P σj(w
(1)) If both j, k ∈ P , then the higher order terms cancel out and

the perturbation terms for correct gradient updates become O(d−ϵ/4). Therefore, we have

σj(w
(1)
d+1)

σk(w
(1)
d+1)

=
σk(w

(1)
d+1)

σj(w
(1)
d+1)

≤ exp(O(d−2−ϵ/8)) ≤ 1 +O(d−2−ϵ/8), (85)

where the last inequality holds because et ≤ 1 +O(t) for small t > 0. The ratio holds for all k elements in P , so for any
j ∈ P , we have

1

k
−O(d−2−ϵ/8) ≤ σj(w

(1)) ≤ 1

k
+O(d−2−ϵ/8). (86)
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Therefore, for any d-dimensional input x, the prediction ŷ = x̂d+1 satisfies the following inequality:

|y − ŷ| = |ϕ(ẑd+1)− ϕ(zd+1)| (87)
≤ k × |ẑd+1 − zd+1| (88)

= k ×
∣∣∣O(d−2−ϵ/8) + (d− k)× exp

(
−Ω(dϵ/8)

)∣∣∣ (89)

= k ·O(d−2−ϵ/8) = O(d−1−ϵ/8). (90)

B. Proof of Theorem 4.2
The high-level ideas are identical with the previous proof. We still apply Lemma A.1 for this proof to bound the perturbation
terms. To reach the conclusion, we must compute the derivative of loss with respect to weights:

∂L

∂wj,m
(W) =

1

n(m− 1)
⟨ϕ(ẑm − xm), ϕ′(ẑm),xj − ẑm⟩ (91)

=
1

n(m− 1)
⟨2ẑm − 1− xm, ϕ′(ẑm),xj − ẑm⟩ . (92)

We can write ϕ′(ẑm) = 2d3ẑm, so the derivative becomes

∂L

∂wj,m
(W) =

1

n(m− 1)

〈
2ẑm − 1− xm, 2d3ẑm,xj − ẑm

〉
(93)

= − 1

n(m− 1)

〈
xm, 2d3ẑm,xj − ẑm

〉
(94)

+
1

n(m− 1)

〈
−1n + 2ẑm, 2d3ẑm,xj − ẑm

〉
(95)

The quadratic derivative only holds in [−d−3, d−3], and we will bound it asymptotically, we may replace it with 2 here.

The structure of the proof is then divided into three parts.

• Sections B.1-B.3 are computations of the gradients and gradient differences that lead to conditions in Equation (7) and
(8).

• Section B.4 is the if direction of Theorem 4.2.

• Section B.5 is the only if direction of the theorem.

B.1. The first term

We first rewrite the first term as

− 2

n(m− 1)
⟨xm, ẑm,xj − ẑm⟩ = − 2

n(m− 1)2

∑
α

⟨xm,xα,xj⟩+
2

n(m− 1)2

∑
α,β

⟨xm,xα,xβ⟩. (96)

The value of the single-sum term depends on the position of m and j. We compute the value of
∑

α⟨xm,xα,xj⟩
n(m−1) over all six

possible cases.

1. h[m] = 1. This condition restricts d < m < d+ k/2. This large case can be divided into three following sub-cases.

(a) Node j is a child of m, i.e. p[j] = m. In this case, if α = j′ is another child of m, then ⟨xm, xj′ , xj⟩ = 1−2qm,j′,j .
For all other α ∈ P \{j}, observe that the inner product ⟨xm, xα, xj⟩ is the product of an even number of relevant
input variables, so it is a random variable with mean 1− ρ. On the other hand, if d < α < m, then ⟨xm, xα, xj⟩
is the product of an odd number of relevant input variables, so it is a random variable with mean zero. Therefore,
we have

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
1− 2qm,c1[m],c2[m]

m− 1
+

∑
α∈P\{j}

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (97)
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(b) If h[j] = 0 but p[j] ̸= m. In this case, the inner product ⟨xm, xα, xj⟩ is never a determined value. Instead,
⟨xm, xα, xj⟩ is the product of an even number of relevant input variables whenever α ∈ P , and a variable of mean
zero otherwise. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
∑
α∈P

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (98)

(c) Finally, suppose h[j] = 1. Observe that if j is still an input, then the three-term interaction is a random variable
with mean zero; but if d < α < m, it is a product of four relevant inputs. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
m−1∑

α=d+1

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (99)

2. h[m] > 1. This condition restricts d+ k/2 < m ≤ d+ k − 1. Again, this case can be divided into three following
sub-cases.

(a) Suppose j ∈ P . Then the inner product ⟨xm, xα, xj⟩ is always a product of two, four, or six inputs if α ∈ P , or it
is a random variable with mean zero otherwise. Therefore,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
∑
α∈P

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (100)

(b) If p[j] = m, then clearly h[j] = h[m]− 1 ≥ 1. If α = j′ is another child of m, then ⟨xm, xj′ , xj⟩ = 1− 2qm,j′,j .
On the other hand, if d < α < m and α ̸= j′, then any inner product is the product of an even number of relevant
input variables, so it is a random variable with mean 1− ρ. In all other cases, the inner product has mean zero.
Hence,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
1− 2qm,c1[m],c2[m]

m− 1
+

∑
d<α<m,α̸=j′

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (101)

(c) Now suppose h[j] > 0 but p[j] ̸= m. Then as long as d < α < m, any inner product is the product of an even
number of relevant input variables, so it is a random variable with mean 1− ρ. In all other cases, the inner product
has mean zero. Hence,

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ =
m−1∑

α=d+1

1− 2qm,α,j

m− 1
(1− ρ) +O(κ). (102)

B.2. The second term

We now evaluate the second term.

1

n(m− 1)
⟨−1n + 2ẑm, 2ẑm,xj − ẑm⟩ (103)

=
1

n(m− 1)
⟨−1n, 2ẑm,xj − ẑm⟩+ 1

n(m− 1)

〈
2ẑm, 2d3ẑm,xj − ẑm

〉
(104)

= − 2

n(m− 1)
⟨ẑm, xj⟩+

2

n(m− 1)
⟨ẑ2

m⟩+ 4

n(m− 1)
⟨ẑ2

m,xj⟩ −
4

n(m− 1)
⟨ẑ3

m⟩. (105)

We focus on the first and third terms in the final expression. In particular, we compute the following:

1

n
⟨ẑm,xj⟩ =

1

n(m− 1)

∑
α

⟨xα,xj⟩ &
1

n
⟨ẑ2

m,xj⟩ =
1

n(m− 1)2

∑
α,β

⟨xα,xβ ,xj⟩.

For the first two-order term, we divide into two cases.
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1. h[j] = 0. Clearly, ⟨xj , xj⟩ = 1, and if α ∈ P \ {j}, the inner product is a product of two relevant bits, so it is a random
variable with mean 1− ρ. Otherwise, it is a variable with mean zero. Hence,

1

n
⟨ẑm,xj⟩ =

1

m− 1
+

k − 1

m− 1
(1− ρ) +O(κ). (106)

2. h[j] ≥ 1. Be aware that xj itself is a product of 2h[j] relevant input bits. Again, ⟨xj , xj⟩ = 1. If h[α] = 0, then the
inner product is a product of an odd number of input bits, so has mean zero. For all other cases, i.e. d < α < m and
α ̸= j, the product is the same as a product of an even number of relevant bits, and has mean 1− ρ without corruption.
Therefore,

1

n
⟨ẑm,xj⟩ =

1

m− 1
+

∑
d<α<m,α̸=j

1− 2qα,j
m− 1

(1− ρ) +O(κ). (107)

For the next three-order term, we again divide into two cases on the height of j.

1. h[j] = 0. Be aware that xj itself is a product of 2h[j] relevant input bits. Therefore, to transform a product ⟨xα, xβ , xj⟩
to an even multiplication of relevant bits, exactly one of α and β must have height at least one, and the other must have
height zero. The order can be different, so there are in total 2k(m− d− 1) possible combinations. Hence, the total
sum in this case is

1

n
⟨ẑ2

m,xj⟩ =
2k(1− 2qα)

(m− 1)2
(1− ρ) +O(κ). (108)

The summands only need to take care of the poisoning rate of the nodes with non-zero height because input bits are not
corrupted.

2. h[j] ≥ 1. In this case, observe that ⟨xα, xβ , xj⟩ has mean 1− ρ if and only if h[α] = h[β] = 0 or h[α], h[β] ≥ 1. So
there are in total k2 + (m− d− 1)2 possibilities:

1

n
⟨ẑ2

m,xj⟩ =
m−1∑

α,β=d+1

1− 2qα,β,j
(m− 1)2

(1− ρ) +
∑

α,β∈P

1− 2qj
(m− 1)2

(1− ρ) +O(κ). (109)

B.3. Differences of gradient updates

Given j ̸= j′ < m, we compute the differences of gradient updates for L with respect to wj,m and wj′,m as the following:

∆m,j,j′ =
∂L

∂wj,m
(W)− ∂L

∂wj′,m
(W) (110)

= − 1

n(m− 1)
⟨xm, 2ẑm,xj − xj′⟩+

1

n(m− 1)

〈
−1n + 2ẑm, 2d3ẑm,xj − xj′

〉
(111)

=

(
− 2

n(m− 1)
⟨xm, 2ẑm,xj⟩

)
−
(
− 2

n(m− 1)
⟨xm, 2ẑm,xj′⟩

)
(112)

+

(
2

n(m− 1)
⟨−1n + 2ẑm, ẑm,xj⟩

)
−
(

2

n(m− 1)
⟨−1n + 2ẑm, ẑm,xj′⟩

)
(113)

=

(
− 2

n(m− 1)2

∑
α

⟨xm,xα,xj⟩

)
−

(
− 2

n(m− 1)2

∑
α

⟨xm,xα,xj′⟩

)
(114)

+

(
− 1

n(m− 1)2

∑
α

⟨xα,xj⟩

)
−

(
− 1

n(m− 1)2

∑
α

⟨xα,xj′⟩

)
(115)

+

 1

n(m− 1)3

∑
α,β

⟨xα,xβ ,xj⟩

−

 1

n(m− 1)3

∑
α,β

⟨xα,xβ ,xj′⟩

 (116)

+O(d−2−ϵ/4). (117)
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Observe that the first two terms depend on locations of all {m, j, j′}, while last four terms above do not depend on m but
only depend on the locations of j and j′. So we compute them separately. In particular, for each choice of m, we must first
compute the “correct” gradient ∂L/∂wc1[m],m = ∂L/∂wc2[m],m, and then compute the “incorrect” gradients depending
on the location of j. Concretely, the steps are the following.

1. Assume h[m] = 1, compute ∂L/∂wc1[m],m = ∂L/∂wc2[m],m.

(a) Compute the gradient ∂L/∂wj,m if h[j] = 0 but p[j] ̸= m.
(b) Compute the gradient ∂L/∂wj′,m if h[j′] > 0.
(c) Subtract the correct gradient with the previous two incorrect gradients.

2. Assume h[m] > 1, compute ∂L/∂wc1[m],m = ∂L/∂wc2[m],m.

(a) Compute the gradient ∂L/∂wj,m if h[j] = 0.
(b) Compute the gradient ∂L/∂wj′,m if h[j′] > 0 but p[j] ̸= m.
(c) Subtract the correct gradient with the previous two incorrect gradients.

For Step 1, the equation is(
− 2

m− 1

)
× Equation (97) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (118)

For Step 1.(a), the equation is(
− 2

m− 1

)
× Equation (98) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (119)

For Step 1.(b), the equation is(
− 2

m− 1

)
× Equation (99) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (120)

For Step 1.(c), the differences are(
− 2

m− 1

)
× Equation (97) −

(
− 2

m− 1

)
× Equation (98) = −2ρ(1− 2qm)

(m− 1)2
; (121)

and (
− 2

m− 1

)
× Equation (97) −

(
− 2

m− 1

)
× Equation (99) (122)

+

(
− 2

m− 1

)
× Equation (106) −

(
− 2

m− 1

)
× Equation (107) (123)

+

(
4

m− 1

)
× Equation (108) −

(
4

m− 1

)
× Equation (109). (124)

For Step 2, the equation is(
− 2

m− 1

)
× Equation (101) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (125)

For Step 2.(a), the equation is(
− 2

m− 1

)
× Equation (100) +

(
− 2

m− 1

)
× Equation (106) +

(
4

m− 1

)
× Equation (108). (126)

For Step 2.(b), the equation is(
− 2

m− 1

)
× Equation (102) +

(
− 2

m− 1

)
× Equation (107) +

(
4

m− 1

)
× Equation (109). (127)
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For Step 2.(c), the differences are(
− 2

m− 1

)
× Equation (101) −

(
− 2

m− 1

)
× Equation (100) (128)

+

(
− 2

m− 1

)
× Equation (107) −

(
− 2

m− 1

)
× Equation (106) (129)

+

(
4

m− 1

)
× Equation (109) −

(
4

m− 1

)
× Equation (108); (130)

and (
− 2

m− 1

)
× Equation (101) −

(
− 2

m− 1

)
× Equation (102) = −

2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2
. (131)

We have computed one gradient difference for each case of m, and there is one remaining for each m. Observe that, we only
need to compute three following expressions:

Gh[m]=1(m, j, ρ) = − 2

m− 1
× (Equation (97) − Equation (99)) ; (132)

Gh[m]>1(m, j, ρ) = − 2

m− 1
× (Equation (101) − Equation (100)) ; (133)

and(
− 2

m− 1

)
×Equation (106)−

(
− 2

m− 1

)
×Equation (107)+

(
4

m− 1

)
×Equation (108)−

(
4

m− 1

)
×Equation (109).

(134)
Observe that the remaining gradients can be equivalently expressed as

Gh[m]=1(m, j, ρ) + Equation (134) & Gh[m]>1(m, j, ρ)− Equation (134). (135)

Using the ingredients from earlier results, for m ∈ {d+ 1, . . . , d+ k/2} and d < j < m, we have

Gh[m]=1(m, j, ρ) =
−2(1− 2qm)

(m− 1)2
+

−2(k − 1)(1− 2qm)

m− 1
(1− ρ)

−
m−1∑

α=d+1

−2(1− 2qm,α,j)

m− 1
(1− ρ) +O(d−2−ϵ/4).

(136)

Similarly, for m > d+ k/2 and d < j < m, we have

Gh[m]>1(m, j, ρ) =
−2(1− 2qm,c1[m],c2[m])

(m− 1)2
+

∑
d<α<m,α̸=j′

−2(1− 2qm,α,j)

(m− 1)2
(1− ρ)

− −2k(1− 2qm,α,j)

(m− 1)2
(1− ρ) +O(d−2−ϵ/4).

(137)

Observe that Equation (106)-(109) can all be factored out by 1− ρ, so we may have

Equation (134) = (1− ρ) · S(m, j) (138)

for an expression S(m, j). Using our results of Equation (106)-(109) earlier, we have

S(m, j) = − 2(k − 1)

(m− 1)2
+

∑
d<α<m,α̸=j

2(1− 2qα)

(m− 1)2
+

m−1∑
α=d+1

8k(1− 2qα)

(m− 1)3
−

m−1∑
α,β=d+1

4(1− 2qα,β,j)

(m− 1)3
−

∑
α,β∈P

4(1− 2qm)

(m− 1)3
. (139)

Finally, for each case of m, we conclude the differences between correct and incorrect gradients:
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• h[m] = 1. Then the differences are{
−2ρ(1− 2qm)

(m− 1)2

}
&

{
Gh[m]=1(m, j, ρ) + (1− ρ)S(m, j), d < j < m

}
. (140)

• h[m] > 1. Then the differences are{
−
2ρ(1− 2qm,c1[m],c2[m])

(m− 1)2

}
&

{
Gh[m]>1(m, j, ρ)− (1− ρ)S(m, j), d < j < m

}
. (141)

B.4. Conditions are sufficient

For any choice of m, if the condition in either Equation (7) or (8) (depending on the height of m) holds, then the condition
is equivalent with the fact: There exists a value µ > −2− ϵ/4 such that for any j < m, the differences between correct and
incorrect gradients satisfy the following

∆m,c1[m],j ,∆m,c2[m],j < −O(dµ). (142)

This means the gap between the correct and incorrect gradients is large. If we pick any µ′ ∈ (−µ, 2 + ϵ/4) and choose a
learning rate η = Θ(dµ

′
), then after one gradient update, the difference between weights for children of m and weights for

non-children is: ∣∣∣∆(1)
m,c1[m],j

∣∣∣ , ∣∣∣∆(1)
m,c2[m],j

∣∣∣ ≥ O(d−µ+µ′
) +O(d−2−ϵ/4+µ′

) = O(d−µ+µ′
). (143)

The last equality holds because, by the range of µ′, we must have −µ + µ′ > 0 and −2 − ϵ/4 + µ′ < 0; so the second
quantity is dominated by the first one.

The conditions imply that the incorrect weights are smaller than correct weights, so applying the softmax attention score
function, for j ̸= c1[m], c2[m] we have

σj(w
(1)
m ) ≤ exp

(
−
∣∣∣∆(1)

m,c1[m],j

∣∣∣) ≤ exp
(
−Θ

(
d−µ+µ′

))
. (144)

Softmax scores must sum to 1, we must have

σc1[m](w
(1)
m ) + σc2[m](w

(1)
m ) ≥ 1− exp

(
−Θ

(
d−µ+µ′

))
. (145)

Moreover, we observe that in this case, the correct attention scores σc1[m](w
(1)
m ) and σc2[m](w

(1)
m ) are close enough:

σc1[m](w
(1)
m )

σc2[m](w
(1)
m )

= exp
(
w

(1)
c1[m],m − w

(1)
c2[m],m

)
≤ exp

(
O
(
d−2−ϵ/4+µ′

))
≤ 1 +O

(
d−2−ϵ/4+µ′

)
, (146)

where the last inequality holds because et ≤ 1 +O(t) for small t > 0. By symmetry, we have the same upper bound for
σc1[m](w

(1)
m )/σc2[m](w

(1)
m ). As a result, we have

1

2
−O

(
d−2−ϵ/4+µ′

)
≤ σc1[m](w

(1)
m ), σc2[m](w

(1)
m ) ≤ 1

2
+O

(
d−2−ϵ/4+µ′

)
. (147)

The equation above implies that for each step d < m ≤ d+ k− 1, the attention layer at step m almost computes the average
of two children nodes, and all information from other non-children nodes are dominated and essentially vanish as d becomes
large.

We now show that using the attention scores, every prediction step, including the final output, has a vanishing loss. Let x be
a d-dimensional binary input vector. For every d < m ≤ d+ k − 1, let ẑ(1)m be the empirical output of the attention layer,
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then ϕ(ẑ
(1)
m ) is the empirical prediction, and the prediction loss for step m is

ϵm =

∣∣∣∣ϕ(ẑ(1)m

)
− ϕ

(
xc1[m] + xc2[m]

2

)∣∣∣∣ (148)

≤ 2×
∣∣∣∣ẑ(1)m −

xc1[m] + xc2[m]

2

∣∣∣∣ (149)

≤ 2×
∣∣∣∣ẑ(1)m −

x̂c1[m] + x̂c2[m]

2

∣∣∣∣+ 2×
∣∣∣∣xc1[m] + xc2[m]

2
−

x̂c1[m] + x̂c2[m]

2

∣∣∣∣ (150)

= 2d exp
(
−Θ

(
d−µ+µ′

))
+ 2×

∣∣∣∣σc1[m](w
(1)
m )− 1

2

∣∣∣∣+ 2×
∣∣∣∣σc2[m](w

(1)
m )− 1

2

∣∣∣∣+ 2ϵm−1 (151)

= O(d−2−ϵ/4+µ′
) +O(ϵm−1). (152)

If m = d + 1, then ϵm−1 = ϵd = 0 because the d-th value is still an input. Therefore, this upper bound holds for every
d < m ≤ d+k−1 and take m = d+k−1 so that xm = y, we conclude that |ŷ−y| = |x̂d+k−1−xd+k−1| = O(d−2−ϵ/4+µ′

).

B.5. Conditions are necessary

Now suppose there is at least one m such that the condition in Equation (7) or (8) (depending on the height of m) does
not hold. This implies that, for this m, there exists at least one non-child node j such that j < m and the gap between
this incorrect gradient ∂L/∂wm,j and the correct gradients ∂L/∂wm,c1[m], ∂L/∂wm,c2[m] is too small to be distinguished.
Precisely, there exists a number δ ≤ −2− ϵ/4 such that∣∣∣∆(1)

m,c1[m],j

∣∣∣ , ∣∣∣∆(1)
m,c2[m],j

∣∣∣ ≤ O(dδ) +O(d−2−ϵ/4) = O(d−2−ϵ/4) =
∣∣∣∆(1)

m,c1[m],c2[m]

∣∣∣ . (153)

Using the same analysis in the proof of sufficiency, the small gaps implies that the attention scores
σc1[m](w

(1)
m ), σc2[m](w

(1)
m ), σj(w

(1)
m ) are close. Consider the optimal scenario under this case, that the condition in

Equation (7) or (8) (depending on the height of m) holds for any other j′ ̸= j, then we have σc1[m](w
(1)
m ) + σc2[m](w

(1)
m ) +

σj(w
(1)
m ) = 1− e−Θ(dν) for some ν > 0 and for any a, b ∈ {c1[m], c2[m], j}, we have

σa(w
(1)
m )

σb(w
(1)
m )

≤ exp
(
O
(
d−2−ϵ/4

))
≤ 1 +O

(
d−2−ϵ/4

)
. (154)

Equivalently,

1

3
−O

(
d−2−ϵ/4

)
≤ σc1[m](w

(1)
m ), σc2[m](w

(1)
m ), σj(w

(1)
m ) ≤ 1

3
+O

(
d−2−ϵ/4

)
(155)

For a sufficiently large d, i.e. as d → ∞, we may regard the predictor at step m is exactly the function x̂m =
ϕ
(
1
3xc1[m] +

1
3xc2[m] +

1
3xj

)
, where the ground truth must still be xm = ϕ

(
1
2xc1[m] +

1
2xc2[m]

)
. If the d-dimensional

inputs are uniformly generated, then with probability exactly 0.5, the sample satisfies the property that xc1[m] = −xc2[m],
so the true prediction for step m is xm = ϕ(0) = −1. On the other hand, the empirical prediction is x̂m = ϕ(xj/3) and
therefore fixed as ϕ(1/3) = ϕ(−1/3) = −1/3. Therefore, the the error for prediction at stepm m is lower bounded as the
following:

Ex∼Uniform({±1}d) |x̂m − xm| ≥ 1

2
×
∣∣∣∣−1 +

1

3

∣∣∣∣ = 1

3
= Ω(1). (156)

We conclude this proof by showing that, if one step m for some d < m ≤ d+ k − 1 has a non-negligible loss, then the loss
for the final prediction also has a non-negligible loss, i.e. |y − ŷ| = |xd+k−1 − x̂d+k−1| = Ω(1).

We first show that such an error of node m causes a non-negligible damage on its parent node p[m], i.e. |xp[m] − x̂p[m]| =
Ω(1). Denote m′ as the unique sibling of m, i.e. p[m] = p[m′]. Then clearly xp[m] = xmxm′ . Hence, the following
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inequality satisfies; we abuse the notation by using E as the uniform generation.

Ex∼Uniform({±1}d)|xp[m] − x̂p[m]| = E|xmxm′ − x̂mx̂m′ | (157)
d→∞
= E|xmxm′ − xmx̂m′ | (158)

= E [|xm| · |xm′ − x̂m′ |] (159)
= E|xm′ − x̂m′ | = Ω(1). (160)

The inequality holds for every m regardless of its location, and inductively, this non-negligible error propagates to higher
ancestors of m, and ultimately to the root of the tree.

Recall that this is the “best” scenario when the condition in Equation (7) or (8) fails for m, i.e. only one non-child node
j has a prohibitively high attention score. If more non-children nodes fail, say f of them in the set F ⊆ [m − 1], then
ẑm =

∑
f∈F xf/(f − 1). By Hoeffding’s inequality, we have

P
(
ϕ

(∑
f∈F xf

f − 1

)
< 0

)
= P

(∑
f∈F xf

f − 1
<

1

2

)
≥ 1− e−Ω(f). (161)

Nevertheless, the true prediction is still uniform, so

E|xm − x̂m| ≥ 1

2

(
1− e−Ω(f)

)
=

1

2
− o(1) = Ω(1). (162)

Using the same argument for the root prediction for the case above, the final prediction also suffers an error of Ω(1), as
desired.

C. Experiment details
The feedforward layer function for the transformer is the same function in Section 3.2, i.e.

ϕ(x) =

{
d3x2 + d−3 − 1, x ∈ (−d−3, d−3);

2|x| − 1, otherwise.

The testing data are uniformly generated. Although for general tasks, it is natural to expect that the test error should be large
if the training and testing distributions are different. However, in this k-parity test, if the training is successful, the predictor
is expected to identify the positions of relevant bits, regardless the training distribution where it was learned. Therefore,
testing the predictor for all values of ρ ∈ {0, 0.25, 0.5, 0.75, 1} is the only fair measure of the predictor’s performance.

The experiments were ran for five times with d = 128 and k = 64. The mean and variance values for each case is illustrated
in Figure 6, which has the same format as Figure 4. For each grid, the mean and variance are computed by the following
standard formulas:

Mean(µ) =
∑n

i=1 xi

n
& Variance(σ2) =

∑n
i=1(xi − µ)2

n
.
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Figure 6. Mean and variance of the test losses after repetitions
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