
Proceedings of Machine Learning Research – Under Review:1–13, 2019 Full Paper – MIDL 2020 submission

Which MOoD Methods work?
A Benchmark of Medical Out of Distribution Detection

Author(s) names withheld email(s) withheld

Address withheld

Editors: Under Review for MIDL 2020

Abstract

There is a rise in the use of deep learning for automated medical diagnosis, most notably
in medical imaging. Such an automated system uses a set of images from a patient to
diagnose whether they have a disease. However, systems trained for one particular domain
of images cannot be expected to perform accurately on images of a different domain. These
images should be filtered out by an Out-of-Distribution Detection (OoDD) method prior
to diagnosis. This paper benchmarks popular OoDD methods in three domains of medical
imaging: chest x-rays, fundus images, and histology slides. Our experiments show that
despite methods yielding good results on some types of out-of-distribution samples, they
fail to recognize images close to the training distribution.
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1. Introduction

A safe system for medical diagnosis should withhold diagnosis on cases outside its validated
expertise. For machine learning (ML) systems, the expertise is defined by the validation
score on the distribution of data used during training, as the performance of the system can
be validated on samples drawn from the same distribution (as per PAC learning (Valiant,
1984)). This restriction can be translated into the task of Out-of-Distribution Detection
(OoDD), the goal of which is to distinguish between samples in and out of a desired distri-
bution (abbreviated to In and Out data). In this case, In data is the training distribution
of the diagnosis system.

Manual design of an OoDD system is difficult because it requires modeling the desired
and undesired distributions of data. The later is widely varying and often unseen until
deployment. For example, an OoDD system for frontal chest X-ray images needs to reject
lateral view images, non-chest X-ray images, and images that had an error during acquisi-
tion. The variability of data outside the desired distribution makes hand-engineering OoDD
systems with hand-designed features extremely difficult and motivates the use of machine
learning based OoDD systems.

In contrast to natural image analysis, medical image analysis must often deal with ori-
entation invariance (e.g. in cell images), high variance in feature scale (in Xray images), and
locale specific features (e.g. CT) (Razzak et al., 2017). A systematic evaluation of OoDD
methods for applications specific to medical image domains remains absent, leaving practi-
tioners blind as to which OoDD methods perform well and under which circumstances. This
paper fills this gap by benchmarking many current notable OoDD methods in three medical
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image tasks as In data distributions: chest X-ray, fundus, and histology imaging. In our
study, we evaluate each OoDD method under three Out data distributions (called usecases)
which are different types of deviations from the In data. Our procedure contributes to the
understanding of challenges faced in OoDD under various situations faced by systems built
around medical images.

OoDD and its relationship to generalization is a challenging problem that can be thought
about from multiple perspectives (Nalisnick et al., 2019; Ahmed & Courville, 2019; Metzen
et al., 2017; Lee et al., 2018; Chalapathy & Chawla, 2019). Many approaches validate their
theory on common ML datasets which can leave us blind to failure modes that exist in
real life settings. Our empirical studies show that current OoDD methods perform poorly
when detecting correctly acquired images that are not represented in the training data (and
therefore would yield inexpected results). We also find that in other usecases we have a
different conclusion than the prior work of Shafaei et al. (2018), which benchmark the OoDD
methods on a suite of natural image datasets.

2. Task Formulation

We identify three distinct out-of-distribution categories, justified below:

• usecase 1 Reject inputs that are unrelated to the evaluation. This includes obviously-
wrong inputs from a different domain (e.g. fMRI image in X-ray, cartoon in natural
image etc) and less obviously-wrong inputs (e.g. wrist X-ray in chest X-ray).

• usecase 2 Reject inputs which are incorrectly prepared (e.g. blurry image of chest
X-ray, poor contrast, Lateral vs Dorsal position).

• usecase 3 Reject inputs that are unseen due to a selection bias in the training dis-
tribution (e.g. image with an unseen disease).

We justify these usecases by enumerating different types of mistakes or biases that can
occur at different stages of the data acquisition. This is visually represented in Figure 1.
As each usecase could be individually relevant to a specific application, we will evaluate
OoDD methods for satisfying each requirement individually.

Usecase 1

Usecase 3

In Data 

Correctly acquired images Incorrectly acquired images

selection
bias

Usecase 2 task
distribution

Figure 1: The three usecases shown in relation to each other. The training data is sampled
iid from the In data distribution.

OD-test Evaluation Framework We follow the “OD-test” framework proposed in
Shafaei et al. (2018), except that we use multiple datasets for calibration (explained below)
to have a better estimate for Out data.
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First, a model of the In data distribution is learned on a split of In data which we
denote as Dtr. Secondly, a OoDD classifier is calibrated using a set denoted as Dval which
requires both In and Out data. Finally, the performance of OoDD is evaluated using a
third split Dtest which again requires both In and Out data. A random three way split for
In data and a random two way split for Out data are used.

While splitting the In data is generally simple for most datasets in practice, splitting
the Out data requires more consideration to avoid using the same set of data appearing in
the Dval split for the Dtest split, which tends to result in an overestimation of performance.
To this end, Shafaei et al. (2018) proposes a more realistic evaluation where disjoint Out
datasets are used in Dval and Dtest.

3. Methods of OOD Detection

We consider three classes of OoDD methods. Data-only methods do not rely on any pre-
trained models and are learned directly on Dval. Classifier-only methods assume access to
a downstream classifier trained for classification on In data (Dtr). Methods with auxiliary
models requires pre-training of a neural network that is trained on In data through other
tasks such as image reconstruction or generative modeling. The threshold values of the
methods below are all calibrated on a subset of Dval.

Data-only methods The most simple and easy to implement baseline is k-Nearest-
Neighbors (KNN) which only needs to observe the training data. This is performed on
images as a baseline for our evaluations. For speed only 1000 samples are used from Dtr to
calculate neighbor distance. A threshold is determined using samples from Dval.

Classifier-only methods Classifier-only methods make use of the downstream classifier
for performing OoDD. Compared to data-only methods they require less storage, however
their applicability is constrained to cases with classification as downstream tasks. Probability
Threshold (Hendrycks & Gimpel, 2017) uses a threshold on the prediction confidence of the
classifier to perform OoDD. Score SVM trains an SVM on the logits of the classifier as
features, generalizing probability threshold. Binary Classifier trains on the features of the
penultimate layer of the classifier. Feature KNN uses the same features as the binary
classifier, but constructs a KNN classifier in place of logistic regression. ODin (Liang et al.,
2017) is a probability threshold method that preprocesses the input by taking a gradient
step of the input image to increase the difference between the In and Out data. Mahalanobis
(Lee et al., 2018) models the features of a classifier of In data as a mixture of Gaussians,
preprocesses the data as ODin, and thresholds the likelihood of the feature.

Methods with Auxiliary Models OoDD methods in this section require an auxiliary
model trained on In data. This results in extra setup time and resources when the down-
stream classifier is readily available. However, this could also be advantageous when the
downstream task is not classification (such as regression) where methods may be difficult to
adapt. Autoencoder Reconstruction thresholds the reconstruction loss of the autoencoder to
achieve OOD detection. Intuitively, the autoencoder is only optimized for reconstructing In
data, and hence reconstruction quality of Out data is expected to be poor due to the bottle-
neck in the autoencoder. In this work we consider three variants of autoencoders: standard
autoencoder (AE) trained with reconstruction loss only, variational autoencoder trained
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Domain Eval In data Usecase 1 Out data Usecase 2 Out data Usecase 3 Out data

Chest X-ray

1 NIH
(In split)

UC-1 Common, MURA PC-Lateral, PC-AP,
PC-PED, PC-AP-Horizontal

NIH-Cardiomegaly, NIH-Nodule,
NIH-Mass, NIH-Pneumothorax

2 PC-Lateral
(In split)

UC-1 Common, MURA PC-AP, PC-PED,
PC-AP-Horizontal, PC-PA

PC-Cardiomegaly, PC-Nodule,
PC-Mass, PC-Pneumothorax

Fundus Imaging 3 DRD UC-1 Common DRIMDB RIGA

Histology 4 PCAM UC-1 Common, Malaria ANHIR, IDC None

Table 1: Datasets used in evaluations. See Appendix B for more details.

with a variational lower bound (VAE) (Kingma & Welling, 2014), and decoder+encoder
trained with an adversarial loss (ALI (Dumoulin et al., 2016), BiGAN (Donahue et al.,
2017)). Furthermore, we include two different reconstruction loss functions in the bench-
mark: mean-squared error (MSE) and binary cross entropy (BCE). Finally, Autoencoder
KNN constructs an KNN classifier on the features output by the encoder.

4. Experiment Setup

Here the four evaluations are explained. See Table 1 for a summary and Appendix A for
more detailed description of the datasets.

In evaluation 1, In data is frontal chest X-ray images. The task is to predict 10 of the 14
radiologcal findings defined by the NIH Chest-X-Ray14 dataset (Wang et al., 2017). The
remaining labels become usecase 3.

In evaluation 2, In data is lateral chest X-ray images. The task is the same as evaluation
1, but the In data is from lateral view images in the PADChest dataset (Bustos et al., 2019).

In evaluation 3, In data is fundus/retinal (back of the eye) images. The task is to predict
if diabetic retinopathy is present in the image defined by the DRD (Diabetic Retinopathy
Detection) 1 dataset. Here usecase 3 is images with glaucoma and not diabetic retinopathy
(Almazroa et al., 2018).

In evaluation 4, In data is H&E stained histology slides of lymph nodes. The task is
to predict if image patches contain metastatic (cancerous) tissue defined by the PCAM
dataset (Veeling et al., 2018). Here usecase 3 is not included.

All prerequisite networks for each OoDD method are trained to convergence on Dtr of
each evaluation with a held-out split for validation. When training for usecase 1, three
Out datasets are randomly selected for Dval while the rest is used for Dtest. For usecases 2
and 3, we enumerate over configurations where each Out dataset is used as Dval with the
rest as Dtest. Dval and Dtest are class-balanced by subsampling equal numbers of In and
Out samples. Hyperparameter sweep is carried out where needed. 10 repeated trials, with
re-sampled Dval and Dtest, are performed for each evaluation.

We measure the accuracy and Area Under Precision-Recall Curve (AUPRC) of all meth-
ods on each Dtest. Since Dtest is class-balanced, accuracy provides an unbiased represen-
tation of type I and type II errors. AUPRC characterizes the separability of In and Out
samples in predicted value (the value that we threshold to obtain classification).

1. https://www.kaggle.com/c/diabetic-retinopathy-detection
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Figure 2: Visualizations and OoDD results on AP view chest-xray (Evaluation 1). Each row of
figures correspond to a usecase. Column A shows examples of Out data for each usecase (hand x-ray,
lateral view chest x-ray, and xray of pneumothorax from top to bottom). Column B shows UMAP
visualizations of AE latent space - colors of points represent their respective datasets. Column C
plots the accuracy and AUPRC of OoDD methods in each usecase, averaged across all randomized
trials. Bars are sorted by accuracy averaged across usecases, and coloured according to method’s
grouping: green for baseline image space methods, blue for methods based upon the task specific
classifier, and red for methods that use an auxilary neural network. Error bars represent 95%
confidence interval.

5. Experimental Results

Figures 2 through 4, and appendix figure C.1 show the performance of OoDD methods
on the four evaluations. Generally, we observe that our choice of datasets for In and
Out data create a range of simple to hard test cases for OoDD methods. While many
methods can solve usecase 1 and usecase 2 adequately in evaluations 1-3, usecase 3 proves
difficult for all methods tested. This is reflected in the UMAP visualization of the AE latent
spaces (column B of figures 2 to 3), in which we observe that the In data points are easily
separable from Out data in usecases 1 and 2, but well-mixed with Out data in usecase 3. It
is surprising that no method achieved significantly better accuracy than random in usecase
3 of evaluations 1 and 2 across all repeated trials. This illustrates the extreme difficulty of
detecting unseen/nouveau diseases, which corroborates the findings of Ren et al. (2019).

Overall Performance Across evaluations, the better performing classifier-only methods
are competitive with the methods that use auxiliary models. When performance is aggre-
gated across all evaluations (Figure 5), the best classifier-only methods (Mahalanobis and
binary classifier) outperform auxiliary models in accuracy. The performance of binary clas-
sifier is surprisingly strong. We suspect that this surprising performance is due to the fact
that we randomly sample 3 Out datasets when constructing Dval as opposed to selecting a
single Out dataset. This added variety in Dval Out data improves generalization by enforc-
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Figure 3: Fundus Imaging (see Figure 2 for description)

Figure 4: Histology Imaging (see Figure 2 for description)

ing more stable decision boundaries. We performed additional experiments with fewer Out
datasets on a subset of methods and tasks. Results in figure 7 shows that the gap between
the top-4 methods quickly closing with more Out datasets in Dval. The performance of 8
nearest neighbor (KNN-8) is also surprisingly competitive with the best OoDD methods.
This may indicate that knowledge of classification on In data does not transfer directly to
the task of OoDD.

Accuracy vs. AUPRC as performance metric There are some tests with accuracy
that’s much lower than AUPRC. This is caused by the classification threshold calibrated
for Dval being ill-suited for classification on Dtest. As AUPRC is computed by scanning
all threshold values, it is not effected by the calibration performed on Dval. If online re-
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Figure 5: Accuracy and AUPRC of OoDD methods aggregated over all evaluations

Figure 6: Overall accuracy of methods plotted over total setup time (left) and per-sample
run time (right)

calibration is available, then methods with low accuracy and high AUPRC can be improved
more significantly over methods with similar accuracy but lower AUPRC.

Computational Cost We consider computational cost of each method in terms of setup
time and run time. The setup time is measured as the wall-clock computation time taken
for hyperparameter search and training. For methods with auxiliary models, the training
time of auxiliary neural networks are also included in the setup-time. Run time is measured
as the per-sample computation time (averaged over fixed batch size) at test time. Figure 6
plots the accuracy of models over their respective setup and run time. All methods can make
predictions reasonably fast, allowing for potential online usage. Mahalanobis and its single
layer variant take significantly more time to setup and run than other classifier methods.
KNN-8 exhibits the best time vs performance trade-off with its low setup time and good
performance. However, as it requires the storage of training images for predictions, it may
be unsuitable for use on memory constrained platforms (e.g. mobile) or when training data
privacy is of concern.
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Figure 7: Performance of top-4 methods on frontal X-ray imaging - usecase 1, when trained
with fewer datasets in Dval

6. Discussion and Conclusion

Overall, the top three classifier-only methods obtain better accuracy than all methods with
auxiliary models except for fundus imaging.

Binary classifier has the best accuracy and AUPRC on average, and is simple to im-
plement. Hence, we recommend binary classifier as the default method for OoDD in the
domain of medical images. While usecase 1 and 2 are easily solved with non-complicated
models, the failure of most models in almost all tasks to significantly solve usecase 3 is
consistent with the finding of Ahmed & Courville (2019). This leaves an open door for
future research.

Our findings are almost opposite that of Shafaei et al. (2018), who evaluate on natural
images which is a different domain, despite using the same code for overlapping meth-
ods. As we performed an extensive hyperparameter on all methods, we conclude that this
discrepancy is due to the specific data and tasks we have defined.

In particular, the three worst methods in accuracy and AUPRC are all classifier-only
methods. These all perform OoDD on the logits of the pretrained classifier. As our down-
stream task is binary classification, these methods do not have sufficient information about
the images to perform OoDD.

Users of diagnostic tools which employ these OoDD methods should still remain vigilant
that images very close to the training distribution yet not in it (and a false negative for
usecase 3) could yield unexpected results. In the absence of OoDD methods which have good
performance on usecase 3 another approach is to develop methods which will systematically
generalize to these examples.

Limitations Since we use the downstream task of classifying healthy vs non-healthy for all
evaluations, this limits our conclusion to this setting. Other vision tasks such as multiclass
classification may provide more useful features and thus see a shift in performance for
classifier-based OoDD methods (Zamir et al., 2018). Furthermore, the In and Out datasets
used span many image domains common to medical imaging, but might not be exactly the
challenges faced. While we do not intend our selection of datasets to be exhaustive, we
justify the choice of the Out data by enumerating different types of mistakes or biases that
can occur at different stages of the data acquisition, which we refer to as the uses-cases.
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Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial Feature Learning. In
International Conference on Learning Representations (ICLR), 2017.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin
Arjovsky, and Aaron Courville. Adversarially Learned Inference. International Confer-
ence on Learning Representations, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In International Conference on Learning Rep-
resentations, 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. In Computer Vision and Pattern Recognition, 2017.

Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology image anal-
ysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics,
2016. doi: 10.4103/2153-3539.186902.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations, 2014.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Framework for
Detecting Out-of-Distribution Samples and Adversarial Attacks, 2018.

9



Medical OoD Benchmark

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing The Reliability of Out-of-distribution
Image Detection in Neural Networks, 2017.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On Detecting
Adversarial Perturbations. In Proceedings of 5th International Conference on Learning
Representations (ICLR), 2017.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do deep generative models know what they don’t know? In International
Conference on Learning Representations, 2019.

Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta,
Brandon Yang, Kaylie Zhu, Dillon Laird, Robyn L Ball, Curtis Langlotz, Katie Shpan-
skaya, Matthew P Lungren, and Andrew Y Ng. MURA: Large Dataset for Abnormality
Detection in Musculoskeletal Radiographs. arxiv, 2018.

Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib. Deep learning for medical image
processing: Overview, challenges and the future. Classification in BioApps, 2017. doi:
10.1007/978-3-319-65981-7 12.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo,
Joshua V. Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution
detection, 2019.
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Appendix A. Dataset details

We use Uniform Noise, Gaussian Noise, CIFAR, MNIST, Fashion MNIST, notMNIST,
STL10, and TinyImagenet in the roster of usecase 1 Out data for all evaluations. For
brevity, this group is denoted as “UC-1 Common”.

Evaluation 1 and 2 To evaluate X-ray task three radiology datasets are used. The first
one, NIH, is from the NIH Clinical Center in Bethesda, Maryland, USA. This dataset
is named the Chest-X-Ray14 dataset (Wang et al., 2017). This dataset contains 108,948
frontal-view X-ray images of 32,717 unique patients with 14 radiological findings. The
second, PC (Short for PadChest), is from Hospital San Juan de Alicante in Alicante, Spain
(Bustos et al., 2019). This dataset consists of 160,000 chest X-rays and reports of over
67,000 patients with frontal and lateral views. The images have been labeled with over 190
different radiological findings, with 27% of the annotations created manually by physicians
and the rest extracted from the report by a recurrent neural network. The third is the
MURA (short for musculoskeletal radiographs) dataset (Rajpurkar et al., 2018) which
contains 40,561 bone X-Ray images from 14,863 studies, where each study is manually
labeled by radiologists as either normal or abnormal. The X-Ray images contain a finger,
wrist, elbow, forearm, hand, humerus, or shoulder.

Evaluation 3 To evaluate the fundus/retinal (back of the eye) image task we use the
DRD (Diabetic Retinopathy Detection) 2 dataset from Kaggle which contains 35k fundus
images with categorical labels from 0 to 4 indicating the presence of diabetic retinopathy.
The DRIMDB (Diabetic Retinopathy Images Database) (Sevik et al., 2014) dataset is
also used as it contains 216 fundus images labelled as good/bad/outlier. This dataset is
specifically designed to assess the quality of fundus images for use in an automated system.
Also, the RIGA dataset (Retinal fundus images for glaucoma analysis) dataset (Almazroa
et al., 2018) provides 460 images which have glaucoma and not diabetic retinopathy.

Evaluation 4 To evaluate the histology task we start with the PCAM dataset (Veel-
ing et al., 2018) (constructed from the CAMELYON dataset (Bejnordi et al., 2017)) which
provides patches of H&E stained histology slides of lymph nodes labeled as metastatic (can-
cerous) or not. The IDC (Invasive Ductal Carcinoma) dataset (Janowczyk & Madabhushi,
2016) provides H&E stained images of breast tissue which contains metastatic regions. The
ANHIR (Automatic Non-rigid Histological Image Registration) dataset (Borovec et al.,
2018) provides slide images from multiple tissues including mouse kidney, human lung, and
colon stained with a subset of 10 different stains applied to slices in the same region.

Appendix B. In/Out Data selection details

Evaluation 1’s In data, the ”NIH In split”, includess all samples in NIH except those labeled
with cardiomegaly, nodule, mass, or pneumothorax. Samples with these labels are used in
the ’NIH Out split’ as Out data for usecase 3. The PC datasset is subdivided by the view
of the chest x-ray. As NIH consists of entirely Posterior-Anterior (PA) views, PC samples
of other views - lateral, anterior-posterior (AP), pediatric (PED), and AP horizontal - are

2. https://www.kaggle.com/c/diabetic-retinopathy-detection
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used as Out data for usecase 2. MURA is used as Out data for usecase 1 in addition to
“UC-1 Common”.

Evaluation 2 uses the lateral view images of PC as In data. Samples of the same 4
conditions as evaluation 1 are excluded from ”PC-lateral In split” and placed in ”PC-
lateral Out split”. Similar configuration of Out data as evaluaiton 1 is used for usecase 1
and 2, except that PC-lateral is substituted by PC-PA.

Evaluation 3 uses DRD as In data. The ”bad” and ”outlier” samples of DRIMDB are
used as Out data for usecase 2. From RIGA, samples that are positive for glaucoma are
used in usecase 3.

Finally, evaluation 4 uses PCAM images as In data. Malaria images are used in usecase 1
with ”UC-1 Common”. To generate Out data from ANHIR, square crops of image resolution
and magnification equal to PCAM are taken from images full slides. IDC data is used as
provided for usecase 2.

In all evaluations , we consider the downstream task of classifying healthy (negative)
samples from unhealthy (positive) samples. For NIH, PC-Lateral and PCAM, these labels
are already present in the original dataset. In DRD, samples are originally scored for the
severity of retinopathy on a scale from 4 (most severe) to 0 (healthy). We consider all
samples with scores greater than 0 to be positive.

For each evaluation, Dtr is formed by randomly selecting 80% of the In data. In usecase
1, Dval is sampled from 10% of In data and 3 datasets randomly selected from available
Out datasets of that evaluation. Dtest is sampled from the remaining 10% In data, and
Out datasets not selected for Dval. Both Dval and Dtest are sampled for class balance
(equal number of In and Out data). 10 random trials with re-sampled Dval and Dtest are
performed for each evaluation. For usecases 2 and 3, Dval is formed by the same 10% In
data. In cases where more than one Out dataest is available (e.g. evaluation 1, usecase 2),
one of the Out datasets of that evaluation and the remaining are used in Dtest. In this case,
we enumerate over all choices of Out datasets for Dval in each repeated trial. When only
one Out dataset is available, it is split randomly between Dval and Dtest.

Appendix C. Training details

C.1. Network training

For classifier models, we use a DenseNet-121 architecture (Huang et al., 2017) with Imagenet
pretrained weights. The last layer is re-initialized and the full network is finetuned on Dtr.
As the NIH and PC-Lateral datasets only contain grayscale images, the pretrained weights
of features in the first layer are averaged across channels prior to finetuning.

For all of the autoencoders, we use a 12-layer CNN architecture with a bottleneck
dimension of 512 for all evaluations. Due to computational constraints, all images are
downsampled to 64× 64 when fed to an autoencoder. These AEs are trained from scratch
on their respective Dtr with MSE loss and BCE loss. We also trained VAEs with the same
architectures, except that the bottleneck dimension is doubled to 1024 to allow the code to
be split into means and variances.

In addition, we explore the potential benefits of training encoder+decoder using ALI in
evaluation 1. We use the same network architecture as proposed in (Dumoulin et al., 2016),
with weights pretrained on Imagenet and finetuned on NIH In classes. Due to the added
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Figure C.1: Lateral X-ray imaging

complexity of training GANs and the lack of significant improvements in OoDD performance
over regular AEs (see §5), we did not train ALI models for the other three evaluations.

In order to gauge training progress and overfitting, we hold out 5% of Dtr as validation
set. We select the training checkpoint with the lowest error on Dtr for use in OoDD methods.

C.2. OoDD methods training

When training for usecase 1, three Out datasets are randomly selected for Dval, while the
reset is used for Dtest. These are mixed with the held-out 10% of In data (as explained
in Appendix B), and then the mixture trimmed such that the number of In distribution
samples matches that of Out samples. Most methods require held-out data to gauge overfit-
ting or calibration. Addtionally, some methods (ODIN and Mahalanobis) require additional
hyper-parameter selection. Hence, we further subdivide Dval in to a 80% ‘training’ split
and a 20% ‘validation’ split; methods are trained/optimized on the ‘training’ split with
early-stopping/calibration on the ‘validation’ split.
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