
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYSTIL: DYNAMIC STRATEGY INDUCTION WITH
LARGE LANGUAGE MODELS FOR REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning from expert demonstrations has long remained a challeng-
ing research problem, and existing methods resorting to behavioral cloning plus
further RL training often suffer from poor generalization, low sample efficiency,
and poor model interpretability. Inspired by the strong reasoning abilities of large
language models (LLMs), we propose a novel strategy-based neuro-symbolic rein-
forcement learning framework integrated with LLMs called DYNAMIC STRATEGY
INDUCTION WITH LLMS FOR REINFORCEMENT LEARNING (DYSTIL) to over-
come these limitations. DYSTIL dynamically queries a strategy-generating LLM to
induce textual strategies based on advantage estimations and expert demonstrations,
and gradually internalizes induced strategies into the RL agent through policy
optimization to improve its performance through boosting policy generalization
and enhancing sample efficiency. It also provides a direct textual channel to observe
and interpret the evolution of the policy’s underlying strategies during training. We
test DYSTIL over challenging RL environments from Minigrid and BabyAI, and
empirically demonstrate that DYSTIL significantly outperforms state-of-the-art
baseline methods by 17.75% success rate on average while also enjoying higher
sample efficiency during the learning process.

1 INTRODUCTION

Many important, yet challenging, reinforcement learning tasks (Chevalier-Boisvert et al., 2023; 2019;
Mnih et al., 2013) are highly hierarchical and structural, have sparse and delayed rewards, and require
complex reasoning procedures based on understanding of higher-level abstractions. In practice,
classical reinforcement learning algorithms often fail to learn these difficult RL tasks well from
scratch, because of the difficulty in collecting meaningful reward signals during exploration and the
lack of support for higher-level abstraction and reasoning. Therefore, it is often necessary to collect a
set of expert demonstration trajectories to aid reinforcement learning over these tasks (Ramírez et al.,
2022). Most of the best existing methods for reinforcement learning from expert demonstrations
typically first employ behavioral cloning (Pomerleau, 1988) to train the RL agent’s policy generator
to imitate the behavior and action decisions of the expert through supervised learning. They then
feed the agent into a more advanced RL algorithm (such as Proximal Policy Optimization (Schulman
et al., 2017)) to further improve its performance.

This approach of behavioral cloning plus further RL training suffers from several severe limitations:
(1) expert demonstrations are often expensive or hard to collect, so typically the amount of expert
demonstration trajectories is quite limited; (2) these limited expert demonstrations usually can only
cover a small region of the state space, and thus behavioral cloning over them often tends to cause
overfitting and results in poor generalization of the learned policy; (3) this approach can not enable
the RL agent to acquire higher-level abstractions and understanding of the RL tasks, thus limiting the
efficiency with which it utilizes training samples as well as the level of performance it can achieve;
(4) this approach treats the policy network of the RL agent as a black box and thus suffers from low
model transparency and interpretability.

To overcome the aforementioned limitations, in this paper we present DYSTIL, a novel strategy-
based neuro-symbolic reinforcement learning framework integrated with LLMs called DYNAMIC

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

STRATEGY INDUCTION WITH LLMS FOR REINFORCEMENT LEARNING FROM EXPERT DEMON-
STRATIONS (DYSTIL). In our daily lives, we can often observe this interesting phenomenon: when
a teacher tries to teach a skill to a student, the most effective and efficient teaching method often
involves more than merely asking the student to memorize all the details of specific actions. It is
usually also complemented by clear explanation of the general strategies, principles, and ways of
thinking for correctly approaching new scenarios when applying this skill. Inspired by this key
observation and the strong abilities of knowledge induction (Zhu et al., 2024; Han et al., 2024) and
reasoning (Wei et al., 2022; Pan et al., 2023) exhibited by state-of-the-art large language models
(LLMs), we propose to leverage LLMs to help RL algorithms to induce generalizable strategies
and learn higher-level abstractions about RL tasks from expert demonstrations, and we formulate
our proposed new learning framework into DYSTIL. DYSTIL dynamically queries a large-scale
LLM to induce textual strategies based on advantage estimations and expert demonstrations, and
gradually internalizes induced strategies into the RL agent through policy optimization to improve its
performance.

Core Reasoning
LLM

Language
Modeling Head

Value Network

Parametrization

Neural

List of Strategies

Memorization

Symbolic

interact

update update

DISTILL
RL Agent

Policy Network

Value Network

Parametrization

Neural

Traditional
RL Agent

interact

update

+

Environment Environment

Figure 1: The neuro-symbolic nature of our DYS-
TIL RL agent.

To empirically assess the effectiveness of DYS-
TIL, we run comprehensive experiments and
ablation studies over four challenging RL en-
vironments from Minigrid (Chevalier-Boisvert
et al., 2023) and BabyAI (Chevalier-Boisvert
et al., 2019). Our experiment results show that
DYSTIL achieves significantly superior learning
performance and has higher sample efficiency
over existing baseline methods across different
RL environments. On average DYSTIL outper-
forms the strongest baseline method by 17.75%
success rate across the four RL environments.

To summarize, DYSTIL has the following key
advantages and contributions: (1) it adopts a
novel neuro-symbolic architecture for the RL
agent to enable good synergy between higher-
level strategy acquisition (the symbolic compo-
nent) and parametrized policy optimization (the
neural component); (2) it achieves effective knowledge distillation in the form of strategy induction
from large-scale closed-source LLMs onto lightweight open-source LLMs to largely improve the gen-
eralizability of the agent’s policy; (3) it achieves significantly better learning performance and sample
efficiency over baseline methods during evaluation; (4) it largely enhances the model transparency
and interpretability of the RL agent by providing a direct textual channel to observe and interpret
the evolution of the policy’s underlying strategies during RL training. Our work opens up new
possibilities in leveraging LLMs to generate textual strategies to enhance the performance, efficiency
and interpretability of reinforcement learning algorithms through a neuro-symbolic approach.

2 DYSTIL: DYNAMIC STRATEGY INDUCTION WITH LLMS FOR
REINFORCEMENT LEARNING

2.1 PRELIMINARIES:

Problem Formulation This paper targets at the following reinforcement learning from expert
demonstration problem, which can be formulated under the framework of partially-observable
Markov decision processes (POMDPs) (Kaelbling et al., 1998): We have an agent L in a re-
inforcement learning environment E, which is a POMDP with observation space O and action
space A. Additionally, the agent L is provided with a set D of N expert demonstration trajec-
tories, where D = {d1, d2, ..., dN}. Each expert demonstration trajectory di in D is a list of
observation-action pairs in sequential order demonstrated by the expert in the environment E, where
di = [(odi

1 , adi
1), (odi

2 , adi
2), ..., (odi

Tdi
, adi

Tdi
)]. The goal of the agent L is to learn an optimal policy

πL that maximizes its expected total discounted reward E[
∑∞

t=0 γ
trt | πL], where γ is the discount

factor and rt is the reward that the agent receives at time step t.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. Advance when clear and safe:
 - The agent should move forward when there
is no immediate obstacle (e.g., no ball directly in
front or very close on either side) and when the
green goal is within a reasonable distance (1-3
steps away). This minimizes time steps without
unnecessary rotations.

…

List of Strategies

[Description of the RL Environment]
Imagine now you are a reinforcement learning agent in a 2D gridworld RL
platform called MiniGrid, and you are learning to complete tasks in a specific
RL environment called 'Dynamic Obstacles' on this Minigrid platform. This
'Dynamic Obstacles' environment is …

[Expert Demonstration Trajectories]
You are now provided with 5 successful trajectories of expert demonstrations
of the oracle courses of actions to complete tasks in this 'Dynamic Obstacles'
environment, which are listed in detail below:

…

[Strategy Query Prompt]
As a learning agent, what generalizable strategies can you induce about the
best policy to complete this type of 'Dynamic Obstacles' tasks in this MiniGrid
RL environment from the above 5 expert demonstrations of oracle trajectories
of observations and actions? Please list your induced generalizable strategies
in a detailed list, and please also be very specific on your induced strategies by
using the format of 'the agent should do X when it is facing scenario Y'. You
don't need to provide examples or conditions.

Prompt for Strategy Induction

10. Move forward when the goal is directly
ahead, even if other obstacles are nearby:
 - If the green goal is directly ahead and no
obstacles block the forward path, the agent
should prioritize moving forward towards the
goal, regardless of surrounding obstacles, as the
task can be completed in fewer steps.

GPT-4o

Strategy-Generating LLM

Figure 2: An example strategy induction process from expert demonstrations in GPT-4o (OpenAI,
2024) for the Dynamic Obstacles RL environment from the Minigrid library (Chevalier-Boisvert
et al., 2023). See Appendix F for the complete list of strategies induced in this example.

Language Grounding In DYSTIL we take a language-grounded approach to reinforcement
learning. Previous work (Carta et al., 2023) has demonstrated that running reinforcement learning
using an LLM policy generator over textual descriptions of agent observations instead of the original
raw observations can largely boost learning performance and sample efficiency. A crucial prerequisite
for language-grounded RL is having access to a good observation-to-text converter that can convert
the agent’s raw observation information (such as images or state tensors) about the environment into
rich and accurate textual descriptions in natural language. In general, such an observation-to-text
converter can be either rule-based (such as BabyAI-text proposed in (Carta et al., 2023)) or trained
with neural network architectures. Without loss of generality, in this work we assume that our RL
agent has access to an accurate and well-functioning observation-to-text converter Co→t, which is
a safe assumption given the recent rapid advances in pre-trained multimodal foundation models
(Li et al., 2024). Please see Figure 7 in Appendix C for a concrete example of observation-to-text
transformation using BabyAI-text.

2.2 STRATEGY INDUCTION WITH LLMS FROM EXPERT DEMONSTRATIONS

Recent research works have demonstrated the ability of LLMs to automatically extract generalizable
rules, knowledge and insight from examples (Zhu et al., 2024; Zhao et al., 2024). Inspired by these
works, here we focus on using LLMs to automatically induce useful and generalizable strategies for
completing tasks in reinforcement learning environments from trajectories of expert demonstrations.

We adapt and extend the prompting method in (Zhao et al., 2024) to design our prompt for automatic
RL strategy induction. Our prompt has three components: (1) Description of the RL Environment;
(2) Expert Demonstration Trajectories: this component includes a full textual description for each
of the expert demonstration trajectories in D including its goal and a concatenation of the textual
descriptions of all {observation, action} pairs in sequential order; and (3) Strategy Query Prompt:
this paragragh describes our expectations for the kind of strategies that the LLM should induce from
expert demonstrations and generate for us. Figure 2 demonstrates a concrete example of this strategy
induction process from expert demonstrations in GPT-4o for an RL environment called Dynamic
Obstacles from the Minigrid library (Chevalier-Boisvert et al., 2023). As we can see in Figure 2, the
list of strategies induced by GPT-4o is indeed very relevant to successfully completing tasks in this
Dynamic Obstacles RL environment, and also coincides with human intuition.

In the DYSTIL framework, we call the LLM used for inducing strategies the strategy-generating
LLM, which is typically a SOTA large-scale LLM (e.g. GPT-4o (OpenAI, 2024)) that has strong
reasoning abilities.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 A NEW NEURO-SYMBOLIC MODEL ARCHITECTURE FOR DYSTIL RL AGENTS

In coordination with the DYSTIL learning framework, we design a novel strategy-based neuro-
symbolic model architecture for our DYSTIL RL agent. Our new model architecture for DYSTIL RL
agents is upgraded from the agent model architecture introduced in Carta et al. (2023) and augmented
with strategies. This strategy augmentation transforms the original neural-only RL agent model
in Carta et al. (2023) into a neuro-symbolic RL agent model. More specifically, our new model
architecture has the following four components as illustrated in Figure 3.

Goal Observation DescriptionStrategy 1 Strategy N…

Core Reasoning LLM

Environment Description Action Prompt

Hidden-State
Embedding Vector

LM Head Value NetworkSoftmax

Actor Module Critic Module

Logit Vector
for Actions

<latexit sha1_base64="TaKx9gcNbjlsx/08l786taX+UoI=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6VQQUoiRV0W3bhwUdE+oAlhMpm0QyeTMDMRSsgXuPFX3LhQxK1rd/6NSRtEWw9cOJxzL/fe40aMSmUYX1ppaXllda28XtnY3Nre0Xf3ujKMBSYdHLJQ9F0kCaOcdBRVjPQjQVDgMtJzx5e537snQtKQ36lJROwADTn1KUYqkxy91nWsAKkRRiy5TushtALqweEx/FFv06OKo1eNhjEFXCRmQaqgQNvRPy0vxHFAuMIMSTkwjUjZCRKKYkbSihVLEiE8RkMyyChHAZF2Mn0nhbVM8aAfiqy4glP190SCAikngZt15kfKeS8X//MGsfLP7YTyKFaE49kiP2ZQhTDPBnpUEKzYJCMIC5rdCvEICYRVlmAegjn/8iLpnjTM00bzplltXRRxlMEBOAR1YIIz0AJXoA06AIMH8ARewKv2qD1rb9r7rLWkFTP74A+0j2+Pn5sp</latexit>

VL(o | g, S)

<latexit sha1_base64="uJcophJWI5YBVcKvsUo7TmLQyk8=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0WsICWRoi6Lbly4qGgf0IQwmUzaoZNMmJkIJeQT3Pgrblwo4talO//GpA2irQcuHM65l3vvcSNGpTKML620sLi0vFJeraytb2xu6ds7HcljgUkbc8ZFz0WSMBqStqKKkV4kCApcRrru6DL3u/dESMrDOzWOiB2gQUh9ipHKJEc/tCLqWAFSQ4xYcp3WOLQC6sHBMfxRb9OjiqNXjboxAZwnZkGqoEDL0T8tj+M4IKHCDEnZN41I2QkSimJG0ooVSxIhPEID0s9oiAIi7WTyUAoPMsWDPhdZhQpO1N8TCQqkHAdu1pkfKWe9XPzP68fKP7cTGkaxIiGeLvJjBhWHeTrQo4JgxcYZQVjQ7FaIh0ggrLIM8xDM2ZfnSeekbp7WGzeNavOiiKMM9sA+qAETnIEmuAIt0AYYPIAn8AJetUftWXvT3qetJa2Y2QV/oH18A0zVnBw=</latexit>

⇡L(o | g, S)

Figure 3: The strategy-based neuro-symbolic model architecture of our
DYSTIL RL agents.

Input Concatenator For
each time step of decision
making in an RL environ-
ment, the input to our DYS-
TIL RL agent model is con-
structed by concatenating
the following texts together:
(1) a concise and essential
description of the environ-
ment, such as the set of ac-
tions that an agent can take
in the environment; (2) goal
of the RL agent; (3) the list
of induced strategies cur-
rently stored in the RL agent’s memory; (4) a detailed textual description of the RL agent’s observation
of the ‘state’ of the environment at the current time step, which includes the agent’s observation at the
current time step and a history of H (observation, action) pairs from the previous H time steps in the
agent’s current trajectory; (5) an action prompting prefix (i.e. ‘Action H:’). See Figure 6 in Appendix
A for an example textual input into our new agent model following this template for H = 2.

Core Reasoning LLM The core information processing and reasoning module of our model is a
lightweight open-source LLM for autoregressive language modeling that is open to efficient parameter
tuning, such as Meta Llama 3.1 8B (Meta, 2024). We call this module the core reasoning LLM (in
order to distinguish from the strategy-generating LLM introduced in Section 2.2). We directly feed
the aforementioned dynamically-constructed textual input into this core reasoning LLM, and on its
output side we take the last-layer hidden-state vector of the last token, which we denote as w.

Actor Module For the actor module of our agent model, we feed that hidden-state vector w into
the innate pre-trained language modeling head of the core reasoning LLM. From its output, we fetch
the logit values for the first tokens of all action names and group them together into a shorter logit
vector, and then apply the softmax function on it to obtain a probability distribution over all possible
actions as our RL agent L’s policy πL(o | g,S).
Critic Module For the critic module of our agent model, we directly feed that hidden-state vector
w directly into a value network that project w into a real number as the value of the value function
VL(o | g,S).

2.4 DYNAMIC STRATEGY INDUCTION WITH LLMS BASED ON PROXIMAL POLICY
OPTIMIZATION

The induction method introduced in Section 2.2 is often able to generate a useful list of strategies
that can help RL agents make better decisions in RL tasks, but it also has one prominent limitation:
it is a one-time query and the induced list of strategies will remain static over time. As a result, if
the initial one-time induced list of strategies from the strategy-generating LLM is not accurate or
not comprehensive enough, there will be no opportunity for self-correction afterwards. Therefore, it
would be much more desirable to upgrade this static approach into an iterative and dynamic algorithm
that can allow the RL agent to continuously improve its induced list of strategies and its policy model
based on interactions with the environment.

For this purpose, in DYSTIL we propose to dynamically combine LLM strategy induction with
on-policy reinforcement learning. Below we describe our detailed procedures in sequential order:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Strategy-Generating
LLM

Initial List of
Strategies

query

induce

Behavioral Cloning
with Induced Strategies

execute policy

RL Environment

collect Experience
Buffer

compute

Advantage Estimations

rank and filter

(
(

(

)
)

)

,
,

,

…

pairs

estimates

with lowest

Strategy-Generating
LLM

Updated
List of

Strategies

query

induce

Newly Initialized
<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>LDYSTIL RL Agent

DYSTIL
RL Agent

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>L

<latexit sha1_base64="lOsnbkyHV+F6zfxrddBEsmeLJQc=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiGxcuKtgHtEPJpJk2NJMZk0yhDP0ONy4UcevHuPNvzLSz0NYDgcM593JPjh8Lro3jfKPC2vrG5lZxu7Szu7d/UD48aukoUZQ1aSQi1fGJZoJL1jTcCNaJFSOhL1jbH99mfnvClOaRfDTTmHkhGUoecEqMlbxeSMyIEpHez/puv1xxqs4ceJW4OalAjka//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lIvexl4n9eNzHBtZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0rqoupfV2kOtUr/J6yjCCZzCObhwBXW4gwY0gcITPMMrvKEJekHv6GMxWkD5zjH8Afr8AbGHkg8=</latexit>L1

<latexit sha1_base64="M7DPnq7dLCkgEFHkyxFMmirnYHU=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9klRD0SvXjwgIkgCWxIt3Shoe2ubZeEbPgdXjxojFd/jDf/jV3Yg4KTNJnMvJc3nSDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK2jRBHaIhGPVCfAmnImacsww2knVhSLgNPHYHyT+Y8TqjSL5IOZxtQXeChZyAg2VvJ7ApsRwTy9m/Vr/XLFrbpzoFXi5aQCOZr98ldvEJFEUGkIx1p3PTc2foqVYYTTWamXaBpjMsZD2rVUYkG1n85Dz9CZVQYojJR90qC5+nsjxULrqQjsZBZSL3uZ+J/XTUx45adMxomhkiwOhQlHJkJZA2jAFCWGTy3BRDGbFZERVpgY21PJluAtf3mVtGtV76Jav69XGtd5HUU4gVM4Bw8uoQG30IQWEHiCZ3iFN2fivDjvzsditODkO8fwB87nD7MLkhA=</latexit>L2

RL Environment

test

test

evaluate

evaluate

<latexit sha1_base64="pc4eL7SZ4ZQrMVazxWzzLrSpsuo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF4/xkQckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2L1iOOE+xEdKBEKRtFKD/c9r1euuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2L6vndeaV2ncdRhCM4hlPw4BJqcAt1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx/Uq42D</latexit>

R1

<latexit sha1_base64="1yPd1NT7Ge7xumWUfKo6km3V0jA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw32v0iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrzyJ1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3Ua7eVUu16yyOPJzAKZyDB5dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4A1i+NhA==</latexit>

R2

compare and select

du
pl

ic
at

e

du
pl

ic
at

e

replace

update memory

save into
memory

PPO Parameter
Optimization

advantage
Expert

Demonstration
Trajectories

…

<latexit sha1_base64="Zc8XDo3xoN33rPVYOKIXVsC9yhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWw2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZgOlIgEo2ilh7Dv9csVt+rOQVaJl5MK5Gj0y1+9MGFZzBUySY3pem6K/oRqFEzyaamXGZ5SNqID3rVU0ZgbfzI/dUrOrBKSKNG2FJK5+ntiQmNjxnFgO2OKQ7PszcT/vG6G0bU/ESrNkCu2WBRlkmBCZn+TUGjOUI4toUwLeythQ6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AHwF42V</latexit>

d1
<latexit sha1_base64="QMv2/gWzBNfvB+bY3jnzWqEPEzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lspu3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkg84o8ZK92G/1i9X3Ko7B1klXk4qkKPZL3/1wpilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzq4RkECtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qBld+xmWSGpRssWiQCmJiMvubhFwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1fpdvdK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/xm42W</latexit>

d2

<latexit sha1_base64="JF3eSfKJu+H8fKWG4DFqDtB11bk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWzmbRLN5uwuxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpk4yxbDBEpGodkA1Ci6xYbgR2E4V0jgQ2AqGN1O/9YRK80Q+mlGKfkz7kkecUWOlh7B31ytX3Ko7A1kmXk4qkKPeK391w4RlMUrDBNW647mp8cdUGc4ETkrdTGNK2ZD2sWOppDFqfzw7dUJOrBKSKFG2pCEz9ffEmMZaj+LAdsbUDPSiNxX/8zqZia78MZdpZlCy+aIoE8QkZPo3CblCZsTIEsoUt7cSNqCKMmPTKdkQvMWXl0nzrOpdVM/vzyu16zyOIhzBMZyCB5dQg1uoQwMY9OEZXuHNEc6L8+58zFsLTj5zCH/gfP4AHBqNsg==</latexit>

dN

<latexit sha1_base64="4Kp8kSrgbsYZLeANiEkOgneAsTs=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmVoh6LXgQvFewHbJclm2bb0GyyJLNCKf0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpQKbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DIq05Q1qRJKdyJimOCSNYGDYJ1UM5JEgrWj4e3Ubz8xbbiSjzBKWZCQvuQxpwSs5N9XVAjnmIRwFpbKbtWdAS8TLydllKMRlr66PUWzhEmgghjje24KwZho4FSwSbGbGZYSOiR95lsqScJMMJ6dPMGnVunhWGlbEvBM/T0xJokxoySynQmBgVn0puJ/np9BfB2MuUwzYJLOF8WZwKDw9H/c45pRECNLCNXc3orpgGhCwaZUtCF4iy8vk9ZF1bus1h5q5fpNHkcBHaMTVEEeukJ1dIcaqIkoUugZvaI3B5wX5935mLeuOPnMEfoD5/MH0CuQTw==</latexit>

K(ot, at)

Figure 4: An overview of our proposed new modeling pipeline - Dynamic Strategy Induction of LLMs
(DYSTIL) for reinforcement learning. The steps depicted in green arrows corresponds to Initialization
of the RL Agent Model, Initial Strategy Induction from Expert Demonstrations and Behavioral Cloning
with Induced Strategies; the steps depicted in blue arrows corresponds to Experience Collection and
Advantage Estimation and Induction of New Candidate List of Strategies; and the steps depicted in
magenta arrows corresponds to Strategy-Integrated Proximal Policy Optimization

Initialization of the RL Agent Model To begin with, we first construct and initialize a new
DYSTIL RL agent model (as introduced in Section 2.3) as our RL agent L. In particular, we create a
new empty memoryML in L to save its most recently updated list of strategies in real time. The
parameters of the core reasoning LLM and the language modeling head of L are initialized from
the pre-trained checkpoint of the corresponding LLM, and the parameters of the value network are
randomly initialized from scratch.

Initial Strategy Induction from Expert Demonstrations Now in this step, we use the method
described in Section 2.2 to query a strategy-generating LLM Q (e.g. GPT-4o (OpenAI, 2024)) to
induce an initial list of strategies S0 from all the expert demonstration trajectories in D, and store S0
in the agent L’s memoryML. We denote the prompt template used in this step as Pinitial.

Behavioral Cloning with Induced Strategies Next, we run behavioral cloning (Pomerleau, 1988)
through supervised learning to train our RL agent model L to imitate the action policy in the set
of expert demonstration trajectories D. More specifically, we run optimization procedures (such as
Adam (Kingma & Ba, 2015)) to gradually minimize the mean cross-entropy loss between the action
distributions πL(o | g,S0) generated by our agent model L and the action choices made by the expert
across all the observations contained inD, subject to a small entropy regularization (Williams & Peng,
1991; Mnih et al., 2016; Ahmed et al., 2019). Note that during behavioral cloning training we only
update the parameters of the core reasoning LLM and its corresponding language modeling head, and
keep the value network frozen. Intuitively, this behavioral cloning training process is very important
in that it helps the agent model L to gradually internalize the list of induced text strategies through
parameter tuning. This helps the agent model better understand how to reason with the strategies to
make good action decisions under realistic scenarios in the RL environment.

Experience Collection and Advantage Estimation After the RL agent model L has been properly
trained through behavioral cloning with its initial list of strategies S0 over expert demonstrations D,
we follow the practice of the proximal policy optimization (PPO) algorithm (Schulman et al., 2017)
to run agent L to execute its current policy πL(o | g,S) in the RL environment E for T time steps to
collect an experience buffer B containing T (observation, action, reward) triples. Then, we follow
the standard PPO procedures in (Schulman et al., 2017) to compute the estimated values Â of the
advantage function A for all the T (observation, action) pairs in the current experience buffer B.

Induction of New Candidate List of Strategies One important limitation of existing methods
for rule induction with LLMs for sequential decision making tasks is the lack of a credit assignment
mechanism that can clearly inform the LLMs which specific action decisions are mainly responsible
for the eventual success or failure of different trajectories (Zhao et al., 2024), thus significantly
limiting their reasoning ability to analyze how to best adjust its induced rules to correct unfavorable

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

action decisions. In reinforcement learning, estimation of the advantage function (Sutton et al., 1999;
Schulman et al., 2016) is a commonly used technique for solving the credit assignment problem.
So in DYSTIL, we use the advantage estimates calculated in the previous step to filter out the most
suspiciously problematic (observation, action) pairs that could contribute the most to low episode
returns, and to help the strategy-generating LLM to efficiently discern which strategy items need
revision and update.

More specifically, in this step, we first rank all the T (observation, action) pairs {(ot, at)}Tt=1 in the
current experience buffer B according to their current advantage estimates Â(ot, at), and then filter
out K pairs with the lowest advantage estimates. We denote the set of these K (o, a) pairs asHK .
Next, we use another prompt template Pdynamic to include textual descriptions of both D andHK and
the agent L′s current list of strategies S to query the strategy-generating LLM Q again to induce
and generate a revised and updated list of strategies S ′. The prompt template Pdynamic that we use
for this step is shown in Appendix E. Here in Pdynamic we adapt and extend the operation options in
(Zhao et al., 2024) to allow the LLM Q to correct, add and delete existing strategy items in the list of
strategies.

Algorithm 1: Dynamic Strategy Induction with
LLMs for Reinforcement Learning (DYSTIL)
Input: E,D,Q,Pinitial,Pdynamic
Initialize: L,ML
Hyperparameters: T,K,Nepoch
Use Pinitial(D) to query Q→ S0,ML ← S0
Run Behavioral Cloning on L over D
for i = 1, 2, ..., Nepoch do

Run L in E for T time steps to collect→
B = {(ot, at, rt)}Tt=1

Compute advantages A(ot, at) for t = 1 to T
using L and B

Sort {(ot, at)}Tt=1 according to A(ot, at)
Select the K (ot, at) pairs from {(ot, at)}Tt=1
with lowest A(ot, at) values to form a setHK

Use Pdynamic(HK ,ML,D) to query Q→ S ′
L1 ← L, L2 ← L,ML2

← S ′
Run PPO-Optimization over L1 w.r.t B
Run PPO-Optimization over L2 w.r.t B
Test L1 in E → R1; Test L2 in E → R2

if R2 > R1 then
L ← L2

else
L ← L1

Return: L

Strategy-Integrated Proximal Policy
Optimization Since in reinforcement
learning the value and advantage estima-
tions computed by the value network are
not always entirely accurate, and the out-
puts generated by the strategy-generating
LLM also have inherent randomness and
noise, we should not always uncondition-
ally trust that the newly induced list of
strategies S ′ obtained from the previous
step is indeed better than the current list
of strategies S. Therefore, here we adopt
a propose-and-test approach - we treat S ′
only as a proposed candidate for a bet-
ter strategy list, and run policy optimiza-
tions followed by empirical tests to decide
whether we should replace S by S ′ de-
pending on their real performance. Our
detailed procedures are: (1) we make two
copies of the current version of our RL
agent model L, which we denote by L1

and L2; (2) we store S in L1’s memory
ML1

, and replace L2’s memory ML2

with S ′; (3) we follow the practice of the
proximal policy optimization (PPO) algo-
rithm (Schulman et al., 2017) to update
model parameters of both L1 and L2 to-
wards optimizing the same standard PPO clipped surrogate objective function (Schulman et al., 2017)
computed from the current experience buffer B; (4) run empirical tests of both L1 and L2 in the RL
environment E to compute their respective mean average returns R1 and R2; (5) if R1 >= R2, then
we update our agent model L to be L1 (and thus keep the same strategy list S); if R2 > R1, then we
update our agent model L to be L2 (and thus also update the agent’s strategy list to be the new list
S ′). Now we go back to the previous step Induction of New Candidate List of Strategies again.

As we can see, in DYSTIL these last two steps Induction of New Candidate List of Strategies and
Strategy-Integrated Proximal Policy Optimization will be executed in cycle to iteratively train the RL
agent model to improve its performance. Our DYSTIL learning framework is illustrated in Figure 4
and also summarized in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

We evaluate the performance of DYSTIL in four challenging RL environments: the Dynamic
Obstacles environment from the Minigrid library (Chevalier-Boisvert et al., 2023), and the Unlock
Pickup environment, the Key Corridor environment and the the Put Next environment from the
BabyAI library (Chevalier-Boisvert et al., 2019). Both Minigrid (Chevalier-Boisvert et al., 2023) and
BabyAI (Chevalier-Boisvert et al., 2019) are popularly used libraries of grid-world reinforcement
learning environments that are designed to have good support for language grounding. All the RL
environments in Minigrid and BabyAI are partially observable in that an agent can only see a field
of view of 7× 7 grid cells in front of it (subject to object occlusion) at every time step. These four
RL environments we use all have sparse and delayed rewards, and require complex reasoning over
higher-level abstractions.

3.1 RL ENVIRONMENTS FOR EVALUATION

Dynamic Obstacles Dynamic Obstacles is a challenging dynamic RL environment from the
Minigrid library (Chevalier-Boisvert et al., 2023). In this environment, the agent’s goal is to navigate
through a room with moving obstacles to get to a green goal square without hitting any of them along
the way (Chevalier-Boisvert et al., 2023). If the agent succeeds, it will be given a single reward of
value r = 1− 0.9× (total_steps/max_steps) at the final step; if it failed within maximum allowed
number of steps, it will receive a reward of 0; if it hits an obstacle along the way, it will receive a −1
penalty reward and the episode also terminates (Chevalier-Boisvert et al., 2023). This environment is
one of the most challenging ones in Minigrid because it is a dynamic and stochastic RL environment,
and thus requires the agent to have strong abilities to reason about the high-level mechanisms and
principles of this environment in order to make good action decisions in a safely manner. In our
experiment we use the MiniGrid-Dynamic-Obstacles-6x6-v0 configuration.

Unlock Pickup Unlock Pickup is a challenging static RL environment from the BabyAI library
(Chevalier-Boisvert et al., 2019). In each run of this environment, a target box is locked behind a
door, and your goal as an agent is to obtain the key to unlock that door and then pick up the box
using as few time steps as possible. And similar to the Dynamic Obstacles environment, the agent
will receive either a single reward of value r = 1− 0.9× (total_steps/max_steps) upon successful
completion of the assigned task, or 0 reward if it failed within maximum allowed number of steps.
Unlock Pickup is mainly difficult for its high requirement on the agent’s abilities of maze exploration
and navigation, avoidance of obstructions, optimal path finding, and long-horizon task planning. In
our experiment we use the BabyAI-UnlockPickupDist-v0 configuration and set max_steps = 60.

Key Corridor Key Corridor is another challenging static RL environment from the BabyAI library
(Chevalier-Boisvert et al., 2019). In each run of this environment, the agent needs to explore a
complex maze constituted of multiple rooms to find a key and then use that key to open a locked door
in order to pick up a designated object locked behind that door, using as few time steps as possible.
And again, the agent will receive either a single reward of value r = 1−0.9×(total_steps/max_steps)
upon successful completion of the assigned task, or 0 reward if it failed within maximum allowed
number of steps. In our experiment we use the BabyAI-KeyCorridorS3R2-v0 configuration and set
max_steps = 60.

Put Next Put Next is another challenging static RL environment from the BabyAI library (Chevalier-
Boisvert et al., 2019). In each run of this environment, the agent will be assigned a randomly generated
task in the form of moving a designated object to a position next to another designated object using as
few time steps as possible. And similar to the Dynamic Obstacles environment, the agent will receive
either a single reward of value r = 1− 0.9× (total_steps/max_steps) upon successful completion
of the assigned task, or 0 reward if it failed within maximum allowed number of steps. Put Next is
mainly difficult for its high requirement on the agent’s abilities of maze exploration and navigation,
avoidance of obstructions, optimal path finding, and long-horizon task planning. In our experiment
we use the BabyAI-PutNextS5N2-v0 configuration and set max_steps = 60.

3.2 OBSERVATION-TO-TEXT TRANSFORMATION

As discussed in Section 2.1, a prerequisite for performing language-grounded reinforcement learning
is to have a good observation-to-text converter. In our experiments, we employ the text description

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dynamic Obs Unlock Pickup Key Corridor Put Next Average

Methods Stra MR SR % MR SR % MR SR % MR SR % MR SR %

ReAct ✗ −0.014 51 0 0 0.078 17 0.143 24 0.052 23
GLAMBC ✗ −0.747 13 0.017 4 0.210 40 0.109 18 −0.103 18.75
GLAMBC+PPO ✗ −0.688 16 0.024 6 0.204 37 0.106 17 −0.088 19

DYSTILBC ✓ 0.096 47 0.032 9 0.259 46 0.162 22 0.137 31
DYSTILBC+PPO ✓ 0.248 65 0.041 10 0.280 56 0.217 32 0.197 40.75

Table 1: Our experiment results of DYSTIL and the two baseline methods ReAct Yao et al. (2023) and
GLAM (Carta et al., 2023) on the Dynamic Obstacles environment from Minigrid (Chevalier-Boisvert
et al., 2023), and the Unlock Pickup environment, the Key Corridor environment, and the Put Next
Environment from BabyAI (Chevalier-Boisvert et al., 2019). The Strategy (abbreviated as Stra)
column indicates whether the learning method utilizes textual strategies in its pipeline. The methods’
performance scores are reported in the standard RL evaluation metrics of both mean return (MR) and
success rate (SR) in percentage. For DYSTIL and GLAM we report their performance scores for two
different settings: the Behavioral-Cloning-only setting (BC) and the Behavioral-Cloning-plus-PPO
setting (BC+PPO). Rows showing the results of our DYSTIL methods are highlighted in light pink.
The highest score in each metric is highlighted in bold.

generator of BabyAI-text proposed in (Carta et al., 2023) to transform an agent’s raw observation in
the Minigrid and BabyAI environments into a list of sentence descriptions. See Figure 7 in Appendix
C for examples.

3.3 BASELINE METHODS

In our experiments we compare DYSTIL with two state-of-the-art baseline methods for language-
grounded sequential decision making: ReAct (Yao et al., 2023) and GLAM Carta et al. (2023).
GLAM can essentially be viewed as the non-strategy ablated version of DYSTIL. Here we follow
GLAM Carta et al. (2023) to set H = 2 for all the models. For fair comparison, for GLAM we also
employ the same input design and the actor module design as in DYSTIL introduced in this paper,
and we take the finetuning approach for ReAct.

3.4 EXPERIMENT SETUP

Model Configurations In our experiments, for DYSTIL we use Llama 3.1 8B Instruct (Meta,
2024), one of the best performing lightweight open-source LLMs, as the core reasoning LLM, and use
GPT-4o (OpenAI, 2024), one of the SOTA closed-source large-scale LLMs, as the strategy-generating
LLM. And for fair comparison, we also use Llama 3.1 8B Instruct as the decision-making LLM
module for GLAM and ReAct, and we also use GPT-4o to generate thought annotations for ReAct.

Expert Demonstrations We collect a set of 5 expert demonstration trajectories for each of the
four RL environments.

Training Pipelines For DYSTIL and GLAM, our training process consists of two stages: Behav-
ioral Cloning (BC) and Proximal Policy Optimization (PPO). During the Behavioral Cloning stage,
we use supervised learning to train the RL agent to imitate the action policy demonstrated in the
set of expert trajectories for 10 epochs, and then feed the output model checkpoint into the PPO
training stage and run the standard PPO algorithm for GLAM and run the DYSTIL version of PPO (as
described in Section 2.4) for DYSTIL, both for 10000 training frames. Our training hyperparameters
are detailed in Table 3 of Appendix D.

3.5 EXPERIMENT RESULTS AND ANALYSIS

Main Results Our main experiment results are summarized in Table 1. As we can see from the
results, DYSTILBC+PPO receives the highest mean return and achieves the highest success rate for all
four environments. On average DYSTILBC+PPO outperforms the strongest baseline method ReAct by
a significant margin of 0.145 in mean return and 17.75% in success rate in these four challenging
RL environments. And notably, for the behavioral-cloning-only scores, on average DYSTILBC also

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Legend:

M
ax

 V
al

id
at

io
n

M
ea

n
R

et
ur

n
Se

en

Number of Frames for Training Number of Frames for Training Number of Frames for Training Number of Frames for Training

Minigrid Dynamic Obstacles BabyAI Unlock Pickup BabyAI Key Corridor BabyAI Put Next

Figure 5: Comparison of sample efficiency between DYSTIL and GLAM on the four RL environments.
The y-axis plots the maximum score of mean return evaluated on the validation set of environment
configurations that the agent has seen so far during the learning process, and x-axis plots the number
of frames of training data that has been fed into the learning pipeline so far.

outperforms GLAMBC by a large margin of 0.240 in mean return and 12.25% in success rate. These
results demonstrate that the integration of dynamically induced textual strategies through DYSTIL
can have a significant boost in the performance of both behavioral cloning and reinforcement learning
paradigms.

Sample Efficiency In Figure 5 we compare the sample efficiency between DYSTIL and the
non-strategy baseline method GLAM. As we can see, for all four RL environments DYSTIL quickly
achieves significantly higher mean return scores when consuming the same amount of training frames
than GLAM across both the Behavioral Cloning stage and the PPO stage of the learning process.
This empirically demonstrates that DYSTIL also enjoys higher sample efficiency than GLAM.

Model Interpretability In our experiments, DYSTIL also demonstrates superior model trans-
parency and interpretability during the reinforcement learning process. More specifically, DYSTIL
provides us with a direct textual channel to observe and interpret the evolution of the implicit strategies
underlying the agent’s policy during reinforcement learning, which can not be achieved by previous
RL methods. For example, in Appendix F, we illustrate a direct comparison between the initial list of
strategies and the best list of strategies (corresponding to the highest-performing model checkpoint)
acquired by the RL agent during DYSTIL training in the Dynamic Obstacles environment to show
the evolution of the agent’s strategies. From this comparison we can clearly see that during DYSTIL
the RL agent has been dynamically improving its list of strategies by revising inaccurate items and
adding new helpful strategies into the list based on its empirical interactions with the environment.

3.6 ABLATION STUDY

In our ablation study, we remove the dynamic strategy update component from our proposed DYS-
TIL procedures, and run experiments in the four RL environments to see how that will affect the
performance of RL training. After the removal of the dynamic strategy update component, the RL
agent will keep using the initial list of strategies that it obtains from the Strategy-Generating LLM
(before behavioral cloning) for the whole PPO training process without updating it, and we call this
ablated method DYSTILBC+PPO-Static. The results of our ablation study are listed in Table 2. As
we can see from Table 2, on average the success rate drops by 6.25% after removing the dynamic
strategy update component from DYSTIL, which shows that the dynamic strategy update component
is indeed critical in achieving the best reinforcement learning performance with DYSTIL.

Dynamic Obs Unlock Pickup Key Corridor Put Next Average

Methods MR SR % MR SR % MR SR % MR SR % MR SR %

DYSTILBC+PPO 0.248 65 0.041 10 0.280 56 0.217 32 0.197 40.75
DYSTILBC+PPO-Static 0.056 49 0.037 8 0.258 48 0.191 27 0.13490 33

Table 2: Ablation Study

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4 RELATED WORK

LLMs for Reinforcement Learning and Language-Grounded RL Traditionally, most policy
models of deep RL algorithms have been directly operating over low-level raw features of environment
observations (Mnih et al., 2013). This design choice has inevitably restricted these RL methods’
abilities to learn higher-level abstractions and concepts about the RL tasks. Recently more research
efforts has been made on grounding reinforcement learning into natural language (Chevalier-Boisvert
et al., 2019; 2023; Carta et al., 2023; Poudel et al., 2023) and use pre-trained LLMs as the policy
generator of RL agents (Carta et al., 2023). DYSTIL differs from these existing methods by enabling
LLM-based RL agents to efficiently learn higher-level strategies and abstractions of the RL tasks
through strategy induction from large-scale LLMs.

LLMs for Sequential Decision Making Recently there has been a series of works that explore
different approaches for applying LLMs to sequential decision making tasks (Yao et al., 2023; Shinn
et al., 2023; Zhao et al., 2024; Yao et al., 2024). All these existing methods have two major limitations:
(1) they all require querying the API of a large-scale closed-source LLM for the agent’s decision
making at every single time step, which make them highly infeasible for many important real-world
tasks and applications that require fast inference speed to make timely decisions or require offline
and lightweight deployment to integrate with operating hardware (such as robots); (2) they all rely
on prompting to make inference of action decisions with frozen closed-source LLMs at every single
time step, and thus do not support parametrized policy learning. In contrast, for DYSTIL the decision
making inference at all time steps is run on a lightweight open-source LLM that supports full model
parameter tuning. As a result, DYSTIL has the advantage of fast real-time inference during decision
making, easy deployment over different application scenarios, and compatibility with on-policy
reinforcement learning algorithms, while still being able to learn high-level strategies through strategy
distillation from large-scale closed-source LLMs.

5 CONCLUSION AND BROADER IMPACT

In this paper we presented DYSTIL, a novel strategy-based neuro-symbolic reinforcement learning
framework integrated with large language models. We carried out empirical experiments over
challenging RL environments to evaluate DYSTIL on the task of reinforcement learning from expert
demonstrations, and the results show that DYSTIL significantly outperforms state-of-the-art baseline
methods while exhibiting higher sample efficiency and superior model interpretability.

Broader Impact Our work opens up new possibilities in leveraging powerful large language models
to generate textual strategies to help reinforcement learning algorithms improve their learning
performance, expedite their learning processes, and making their policy evolution more transparent.
In addition, our work also demonstrates the advantages of neuro-symbolic RL methods over traditional
neural-only RL methods. Last but not the least, in future works on LLM evaluation, it could also be
of research interest to include new evaluation metrics and benchmarks to quantitatively measure how
much performance gain can the textual strategies induced by different LLMs bring to reinforcement
learning algorithms. This could serve as an interesting new aspect to gauge the knowledge reasoning
and induction abilities of LLMs under cross-modal scenarios.

REFERENCES

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International conference on machine learning, pp.
151–160. PMLR, 2019.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

10

https://openreview.net/forum?id=rJeXCo0cYX

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Simon Jerome Han, Keith J. Ransom, Andrew Perfors, and Charles Kemp. Inductive reasoning in hu-
mans and large language models. Cognitive Systems Research, 83:101155, 2024. ISSN 1389-0417.
doi: https://doi.org/10.1016/j.cogsys.2023.101155. URL https://www.sciencedirect.
com/science/article/pii/S1389041723000839.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.
sciencedirect.com/science/article/pii/S000437029800023X.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
Multimodal foundation models: From specialists to general-purpose assistants. Foundations and
Trends® in Computer Graphics and Vision, 16(1-2):1–214, 2024.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/blog/
meta-llama-3-1/, 2024. URL https://ai.meta.com/blog/meta-llama-3-1/.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/mniha16.html.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. URL
https://openai.com/index/hello-gpt-4o/.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3806–3824, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/2023.
findings-emnlp.248.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D. Touretzky (ed.), Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann, 1988. URL https://proceedings.neurips.cc/paper_files/paper/
1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

Rudra PK Poudel, Harit Pandya, Chao Zhang, and Roberto Cipolla. Langwm: Language grounded
world model. arXiv preprint arXiv:2311.17593, 2023.

Jorge Ramírez, Wen Yu, and Adolfo Perrusquía. Model-free reinforcement learning from expert
demonstrations: a survey. Artif. Intell. Rev., 55(4):3213–3241, apr 2022. ISSN 0269-2821. doi: 10.
1007/s10462-021-10085-1. URL https://doi.org/10.1007/s10462-021-10085-1.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

https://www.sciencedirect.com/science/article/pii/S1389041723000839
https://www.sciencedirect.com/science/article/pii/S1389041723000839
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://doi.org/10.1007/s10462-021-10085-1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8634–8652. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3:241–268, 1991.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh R
N, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil L Mui, Huan Wang, Caiming
Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy gradient
optimization. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KOZu91CzbK.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. Proceedings of the AAAI Conference on Artificial Intelligence, 38
(17):19632–19642, Mar. 2024. doi: 10.1609/aaai.v38i17.29936. URL https://ojs.aaai.
org/index.php/AAAI/article/view/29936.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and Hanjun
Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=KOZu91CzbK
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ojs.aaai.org/index.php/AAAI/article/view/29936

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXAMPLE MODEL INPUT

Possible action of the agent: left turn, right turn, move forward.

Rules to follow:

1. Advance when clear and safe:
 - The agent should move forward when there is no immediate obstacle (e.g., no
ball directly in front or very close on either side) and when the green goal is within
a reasonable distance (1-3 steps away). This minimizes time steps without
unnecessary rotations.

10. Move forward when the goal is directly ahead, even if other obstacles are
nearby:
 - If the green goal is directly ahead and no obstacles block the forward path, the
agent should prioritize moving forward towards the goal, regardless of surrounding
obstacles, as the task can be completed in fewer steps.

Goal of the Agent: get to the green goal square
Observation 1: you see a wall 1 step left, you see a blue ball 1 step forward, you see
a blue ball 2 steps right, you see a green goal 3 steps right and 2 steps forward, you
see a blue ball 3 steps right.
Action 1: right turn.
Observation 2: you see a wall 4 steps forward, you see a wall 3 steps left, you see a
wall 2 steps right, you see a green goal 2 steps left and 3 steps forward, you see a
blue ball 2 steps left and 1 step forward, you see a blue ball 1 step left and 3 steps
forward, you see a blue ball 1 step left and 2 steps forward.
Action 2: move forward.
Observation 3: you see a wall 3 steps left, you see a wall 2 steps right, you see a
green goal 2 steps left and 2 steps forward, you see a blue ball 2 steps forward, you
see a blue ball 1 step forward.
Action 3:

Model Input

…

Figure 6: An example textual input into our proposed Strategy-Integrated LLM Actor-Critic Model
for H = 2. This example input is constructed when the RL agent is traversing the Dynamic Obstacles
RL environment from the Minigrid library (Chevalier-Boisvert et al., 2023).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B DESIGN DETAILS OF THE ARCHITECTURE OF THE RL AGENT’S ACTOR
MODULE IN DYSTIL

In coordination with the rise of research interests in language-grounded RL, recent works have also
been exploring the direction of using language models as the core policy generators of the agents in
reinforcement learning. For example, (Carta et al., 2023) proposes an architecture for a policy LLM
that directly takes a textual prompt comprised of an environment introduction, a task description, a
historical trajectory of observation descriptions and action names, and an action prompting phrase as
input, and then feed this prompt into an encoder-decoder language model to output the conditional
probability of each token in each action name given the prompt and the generated action tokens
through its language modeling head plus softmax. It then multiplies such condition probabilities for
all the tokens in each action name together, and then normalize to obtain a probability distribution
over the set of all possible actions to serve as its policy (Carta et al., 2023). This architecture suffers
a lot from the issue of slow inference, because for generating each single action decision we need
to run this policy LLM for NA ×MA times (Carta et al., 2023), where NA is the total number of
possible actions and MA is the average number of tokens in all the action names. In this work, in
order to improve inference speed and training efficiency, we design an upgraded architecture for
the output side of the LLM policy generator (i.e. the actor module of our DYSTIL agent). First, if
necessary, we make some small tweaks on the names of the actions such that no two actions would
share the same first token in their names (e.g. we could change the two action names ‘turn left’ and
‘turn right’ into ‘left turn’ and ‘right turn’ to avoid first token conflict). Next, when generating an
action decision we only need to run the policy LLM once and then we can directly take the logits
corresponding to the first token of each action name outputed by the language modeling head, group
them into a vector, and then run softmax to obtain a proability distribtion over the set of all possible
actions as our policy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EXAMPLES OF OBSERVATION-TO-TEXT TRANSFORMATION

Goal: get to the green goal square

Textual Description of Agent Observation: You see a wall
one step left, You see a wall 4 steps forward, You see a
blue ball 1 step right and 3 steps forward, You see a blue
ball 2 steps right and 1 step forward, You see a blue ball
3 steps right and 2 steps forward, You see green goal 3
steps right and 3 steps forward.

MiniGrid Dynamic Obstacles

BabyAI Put Next

obs2text

Textual Description of Agent Observation: You see a wall
3 steps left, You see a wall 6 step forward, You see a wall
2 step right, You see a red box 2 steps left and 2 steps
forward, You see a green box two steps left and 5 steps
forward, You see a blue ball 2 steps forward.

Goal: put the red box next to the grey box

obs2text

Figure 7: Examples of Observation-to-Text Transformation in Minigrid and BabyAI environments
using the text description generator of BabyAI-text proposed in (Carta et al., 2023).

D TRAINING HYPERPARAMETER SETTINGS

Table 3: Training Hyperparameter Settings

Hyperparameter Value
Behavioral Cloning Hyperparameters

Batch size 16
Learning rate 1× 10−4

PPO Hyperparameters

Batch size 32
Learning rate 1× 10−5

Number of processes 4
Number of frames per processes between updates 128
GAE λ 0.95
Entropy coefficient 0.01
Value coefficient 0.5

DYSTIL Hyperparameters

Hidden size of the critic network 1024
Number of (o, a) pairs for new strategy induction 10

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E PROMPT TEMPLATE PDYNAMIC

Imagine now you are a reinforcement learning agent in a 2D gridworld RL platform called MiniGrid,
and you are learning to complete tasks in a specific RL environment called ’Dynamic Obstacles’
on this Minigrid platform. This ’Dynamic Obstacles’ environment is an empty room with moving
obstacles. In each run of this ’Dynamic Obstacles’ task in this RL environment, your goal as an
agent is to reach the green goal square using as few time steps as possible without colliding with
any obstacle. If the agent collides with an obstacle, a large penalty is subtracted and the episode is
terminated. Your possible actions as an agent at each time step are: ’left turn’, ’right turn’, and ’move
forward’.

You are provided with 5 successful trajectories of expert demonstrations of the oracle courses of
actions to complete tasks in this ’Dynamic Obstacles’ environment for your reference, which are
listed in detail below:

. . .

Currently, as the reinforcement learning agent, you are following the following list of strategies when
making action decisions in this ’Dynamic Obstacles’ environment:

. . .

And in your current iteration of experience collection during a PPO training process, the following
10 state-action pairs (they may come from different episodes) received the lowest advantage values,
which indicates that these action decisions might not be optimal:

. . .

Now upon analyzing the above 10 state-action pairs with low advantage values, and based on your
analysis and understanding of the 5 expert demonstrations of oracle trajectories provided to you
earlier, please modify and update the list of strategies that you are currently following if you are
confident that it is appropriate to do so. You can correct existing strategy items if you think they
are inaccurate, you can add new strategy items if you think they are currently missing, and you
can delete existing strategy items if you think they are wrong. Please remember that the above
advantage values are estimated by the value network of the RL agent model during PPO training,
and thus may not be entirely accurate and should be analyzed with caution. Therefore, you should
consider the evidence suggested by the above observation-action pairs with low advantage values, the
patterns and insights exhibited by the expert demonstration trajectories, and your own understanding,
reasoning and judgement about this ’Dynamic Obstacles’ task all together to make wise decisions
when modifying and updating the list of strategies. Please only return the updated list of strategies
without any other text before or after the list.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F EXAMPLE OF STRATEGY EVOLVEMENT

The initial list of strategies learned by the DYSTIL RL agent in the Minigrid Dynamic Obstacles
environment:

1. Advance when clear and safe:

- The agent should move forward when there is no immediate obstacle (e.g., no ball directly in front
or very close on either side) and when the green goal is within a reasonable distance (1-3 steps away).
This minimizes time steps without unnecessary rotations.

2. Turn towards the goal when necessary:

- The agent should make a left or right turn to align with the direction of the green goal when moving
forward directly is blocked by obstacles or walls. Turning should be based on the goal’s relative
position to the agent.

3. Avoid obstacles by turning instead of moving forward:

- The agent should prioritize turning when it detects obstacles (e.g., blue balls) directly in front.
Moving forward into an obstacle should always be avoided as it ends the episode with a penalty.

4. Maintain goal orientation after turning:

- After turning, the agent should quickly readjust and move towards the green goal if the path is clear,
ensuring minimal time is spent making unnecessary turns.

5. Turn early when a wall is close:

- The agent should turn left or right early if a wall is detected within 1-2 steps ahead. Moving forward
into a wall wastes a time step, and adjusting earlier is more efficient.

6. Favor forward movement when obstacles are distant:

- When obstacles are visible but farther than 1-2 steps away, the agent should continue moving forward
as long as the path is clear. Turning preemptively when obstacles are distant can delay the agent
unnecessarily.

7. Turn towards the side of the goal if obstacles are scattered ahead:

- If multiple obstacles (blue balls) are scattered ahead and there’s no clear direct path to the green
goal, the agent should turn towards the side where the green goal is closer and avoid the cluster of
obstacles.

8. Optimize by following the closest safe route to the goal:

- When the green goal is identified within 2-3 steps but obstacles obstruct direct movement, the agent
should prioritize a minimal deviation (either left or right turn) to navigate around the obstacles and
then move towards the goal.

9. Minimize unnecessary rotations:

- The agent should avoid making consecutive left-right turns in short succession unless absolutely
necessary for obstacle avoidance. The strategy should be to realign with the goal and proceed forward
as much as possible.

10. Move forward when the goal is directly ahead, even if other obstacles are nearby:

- If the green goal is directly ahead and no obstacles block the forward path, the agent should prioritize
moving forward towards the goal, regardless of surrounding obstacles, as the task can be completed
in fewer steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The best list of strategies learned by the DYSTIL RL agent in the Minigrid Dynamic Obstacles
environment.

1. Advance when clear and safe:

- The agent should move forward when there is no immediate obstacle (e.g., no ball directly in front
or very close on either side) and when the green goal is within a reasonable distance (1-3 steps away).
This minimizes time steps without unnecessary rotations.

2. Turn towards the goal when necessary:

- The agent should make a left or right turn to align with the direction of the green goal when moving
forward directly is blocked by obstacles or walls. Turning should be based on the goal’s relative
position to the agent.

3. Avoid obstacles by turning instead of moving forward:

- The agent should prioritize turning when it detects obstacles (e.g., blue balls) directly in front.
Moving forward into an obstacle should always be avoided as it ends the episode with a penalty.

4. Maintain goal orientation after turning:

- After turning, the agent should quickly readjust and move towards the green goal if the path is clear,
ensuring minimal time is spent making unnecessary turns.

5. Turn early when a wall is close:

- The agent should turn left or right early if a wall is detected within 1-2 steps ahead. Moving forward
into a wall wastes a time step, and adjusting earlier is more efficient.

6. Favor forward movement while alert to nearby obstacles:

- When obstacles are visible but not immediately in front (more than 1 step away), the agent should
favor moving forward with heightened alertness, evaluating if the path remains clear or if a turn is
needed to avoid upcoming obstacles.

7. Plan moves with goal proximity in mind:

- When the green goal is identified within 2-3 steps but obstacles obstruct direct movement, the agent
should consider minimal deviations (left or right turns) to navigate around obstacles, ensuring quick
progression towards the goal.

8. Minimize unnecessary rotations:

- The agent should avoid making consecutive left-right turns in short succession unless absolutely
necessary for obstacle avoidance. The strategy should be to realign with the goal and proceed forward
as much as possible.

9. Move forward when the goal is directly ahead, even if other obstacles are nearby:

- If the green goal is directly ahead and no immediate obstacles block the forward path, the agent
should prioritize moving forward towards the goal, as this can be achieved in fewer steps.

10. Blend observations with historical context:

- The agent should sometimes reconsider its immediate action decision based on recent observa-
tions and actions to prevent repeated unoptimized movements (e.g., moving forward into known
problematic areas).

11. Execute small direction adjustments when multiple obstacles:

- If there are multiple scattered obstacles (blue balls) ahead, the agent should make small directional
adjustments (left or right turns) to better navigate through or around them while maintaining a path
towards the goal.

12. Avoid repetitive turning patterns in short sequence:

- The agent should avoid alternating between left and right turns in quick succession, as this indicates
a lack of efficient navigation and situational awareness, leading to suboptimal trajectories.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

13. Focus on incremental progress towards the goal:

- The agent should break down the path to the goal into a series of small, manageable movements,
constantly recalibrating based on the updated observation to ensure consistent progress without
unnecessary detours.

14. Efficiently navigate around immediate obstacles:

- When an obstacle is detected immediately ahead (1 step), the agent should prioritize making a
small directional adjustment to avoid a direct collision, while promptly reorienting towards the goal
thereafter.

19

	Introduction
	DYSTIL: Dynamic Strategy Induction with LLMs for Reinforcement Learning
	Preliminaries:
	Strategy Induction with LLMs from Expert Demonstrations
	A New Neuro-Symbolic Model Architecture for DYSTIL RL Agents
	Dynamic Strategy Induction with LLMs based on Proximal Policy Optimization

	Experiments
	RL Environments for Evaluation
	Observation-to-Text Transformation
	Baseline Methods
	Experiment Setup
	Experiment Results and Analysis
	Ablation Study

	Related Work
	Conclusion and Broader Impact
	Example Model Input
	Design Details of the Architecture of the RL Agent's Actor Module in DYSTIL
	Examples of Observation-to-Text Transformation
	Training Hyperparameter Settings
	Prompt Template Pdynamic
	Example of Strategy Evolvement

