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Abstract

Federated learning (FL) facilitates edge devices to cooperatively train a global shared model
while maintaining the training data locally and privately. However, a prevalent yet imprac-
tical assumption in FL requires the participating edge devices to train on an identical global
model architecture. Recent research endeavors to address this problem in FL using public
datasets. Nevertheless, acquiring data distributions that closely match to those of participat-
ing users poses a significant challenge. In this study, we propose an FL method called Feder-
ated Intermediate Layers Learning (FedIN), which supports heterogeneous models without
relying on any public datasets. Instead, FedIN leverages the inherent knowledge embedded
in client model features to facilitate knowledge exchange. To harness the knowledge from
client features, we propose Intermediate Layers (IN) training to align intermediate layers
based on features obtained from other clients. IN training only needs minimal memory and
communication overhead by employing a single batch of client features. Additionally, we
formulate and resolve a convex optimization problem to mitigate the challenge of gradient
divergence stemming from model heterogeneity. The experimental results demonstrate the
superior performance of FedIN in heterogeneous model settings compared to state-of-the-art
algorithms. Furthermore, the experiments discuss the details of how to protect user privacy
leaked from IN features, and our ablation study illustrates the effectiveness of IN training.

1 Introduction

The substantial surge in Internet-of-Things (IoT) device utilization has led to the generation of vast quantities
of user data (Song et al., 2022). Effectively managing this IoT big data without compromising user privacy
has emerged as a significant concern. Federated Learning (FL) (McMahan et al., 2017) is proposed as a
distributed machine learning paradigm that facilitates collaborative training on IoT data while keeping user
data locally. Within FL, each client transmits model weights from their local models to the server following
a few local training epochs. Subsequently, the server aggregates these weights to update the global model,
and sends this model back to clients.

While Federated Learning (FL) has demonstrated success in various applications, such as recognizing human
activities (Chen et al., 2019b; Ouyang et al., 2021) and learning sentiment (Smith et al., 2017; Qin et al.,
2021), numerous practical challenges persist within the FL domain (Kairouz et al., 2021). One of the most
crucial and practical challenges is system heterogeneity, characterized by varying resources among client
devices participating in FL training (Li et al., 2020a; Chan et al., 2024). Many existing FL schemes (Li
et al., 2021a; Karimireddy et al., 2020) assume that the client devices with distinct resources possess the
same architecture as the global shared model for global aggregation. Nevertheless, clients with limited
computation resources may struggle to complete local training in time, dragging the training speed of the
entire communication round. The clients hindering the training process are called stragglers. To combat this
issue, some research has proposed asynchronous FL (Xie et al., 2020; Chen et al., 2020; Chai et al., 2021),
adjusting local training epochs dynamically and clustering clients according to their available resources
in order to mitigate the problem of stragglers. Nevertheless, given that all clients keep the same model
architecture, less capable clients may lack the sufficient memory to deploy the shared global model. In this
case, the global model must be adjusted to a smaller size, leading to the resource waste of more capable
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Figure 1: All clients have the same model architectures in system homogeneous FL as shown in Figure 1a.
In system heterogeneity, the clients participate in the federated learning with different available resources,
inducing different model architectures in Figure 1b.

clients and diminishing the performance of FL training. Given the impracticality of ensuring equal resource
levels across all clients, the reality often involves heterogeneous devices with varied capabilities collaborating.
Thus, supporting heterogeneous models could fully utilize the resources of heterogeneous devices, offering a
more effective solution to the challenges posed by system heterogeneity.

A straightforward way to facilitate system heterogeneity is to deploy different model architectures based on
the available resources of the clients, as shown in Figure 1b. However, the server can not aggregate the
weights directly like Figure 1a under the heterogeneous model architectures. It is essential to investigate
alternative ways to incorporate weights and knowledge among the clients. Recent works addressing this
challenge through knowledge distillation (Hinton et al., 2015) using a public dataset, such as RHFL (Fang
& Ye, 2022) and FedMD (Li & Wang, 2019). While these methods allow for diverse model architectures on
clients, it is challenging to collect a suitable public dataset with a similar distribution to the local datasets.

Therefore, to support system heterogeneity without relying on a public dataset, we propose a method
called Federated Intermediate Layers Learning (FedIN), training the intermediate layers according to a
single batch of features obtained from other clients. In FedIN, a local model architecture consists of three
components: an extractor, intermediate layers, and a classifier, as depicted in Figure 2. Client features
are derived from the outputs of the extractor and the inputs to the classifier. Notably, clients only need
to transmit one batch of features to the server, in addition to weight updates. The intermediate layers
are updated through a combination of local training and IN training process, where IN training leverages a
single batch of features to extract latent knowledge from other clients. However, directly deploying these two
training processes can induce a critical problem called gradient divergence (Wang et al., 2020; Zhao et al.,
2018), as the latent information from the local dataset and the features collected from other clients varies,
particularly in a model heterogeneous environment. To alleviate the effect of this problem, we formulate and
address a convex optimization problem to obtain the optimal updated gradients. Moreover, we use a simple
yet efficient method, adding Gaussian noise to the client features to protect user privacy. The experiment
results reveal that FedIN outperforms the baselines in terms of both accuracy and overhead.

Our contributions are summarized as follows.

• We proposed a novel FL method called FedIN, utilizing local training and IN training for intermedi-
ate layers, which is a flexible and reliable FL method addressing the system heterogeneity problem.

• To alleviate the effects of the gradient divergence, we formulate a convex optimization problem to
derive the optimal updated gradient. The ablation study shows its effectiveness in handling the
gradient divergence problem.
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• To protect user privacy within FedIN, we utilize Gaussian noise in the IN training process. The
experiments demonstrate the effectiveness of this approach in ensuring user privacy.

• Our experiments reveal that FedIN achieves the best performances in the IID and non-IID data com-
pared with the state-of-the-art algorithms. Moreover, we conduct a thorough analysis to investigate
the factors contributing to the improvements attained by FedIN.

2 Related Work

2.1 Federated Learning

Federated Learning (FL) was proposed in 2017 to organize cooperative model training among edge devices
and servers (McMahan et al., 2017). In FL, numerous clients train models jointly while retaining training data
locally to maintain privacy protection. Various methods have been proposed and achieved good performance
in different scenarios. In (Xie et al., 2020), FedAsyn utilizes coordinators and schedulers to create an
asynchronous training process, handling the stragglers in the FL training process. FedProx (Li et al., 2020b)
regularizes and re-parametrizes FedAvg, guaranteeing convergence when learning over non-IID data. To share
local knowledge among clients with different model architectures, FCCL (Huang et al., 2022) generates a
cross-correlation matrix based on the unlabeled public dataset.

2.2 Heterogeneous Models

Our work focuses on supporting heterogeneous models in FL. This subsection classifies recent research
contributing to model heterogeneity into three categories.

Public and Auxiliary Data. If a server has a public dataset, clients can exploit the general knowledge
from this dataset, constructing a simple and efficient bridge to exchange knowledge among clients. FedAUX
(Sattler et al., 2021) utilizes unsupervised pre-training and unlabeled auxiliary data to initialize heteroge-
neous models. FedGen (Zhu et al., 2021) simulates the prior knowledge from all the clients according to a
generator. To dig out the latent knowledge from the public dataset, several studies (Li & Wang, 2019; Li
et al., 2021b; He et al., 2020) propose addressing the system heterogeneity problem, inspired by knowledge
distillation (Hinton et al., 2015). In FedMD (Li & Wang, 2019), a large public dataset is deployed in a
server, while the clients distill and transmit logits from this dataset to learn the knowledge from both logits
and local private datasets. In FedH2L (Li et al., 2021b), clients extract the logits from a public dataset
consisting of small portions of local datasets from other clients. In RHFL (Fang & Ye, 2022), a server cal-
culates the weights of clients by the symmetric cross-entropy loss function, and clients distilled knowledge
from the unlabeled dataset. FCCL (Huang et al., 2022) computed a cross-correlation matrix also based on
the unlabeled public dataset. MocoSFL (Li et al., 2023) proposes a mechanism, replay memory on features
to assist the MoCo functions (Chen et al., 2021), a contrastive framework, in model heterogeneous FL.

Data-free Knowledge Distillation. The basic ideas of data-free KD are to optimize noise inputs to
minimize the distance to prior knowledge (Nayak et al., 2019), and Chen et al. (Chen et al., 2019a) train
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) to generate training data for the entire
KD process, utilizing the knowledge distilled from the teacher model. To free the limitation from a public
dataset, some research works consider data-free KD in FL. In FedML (Shen et al., 2020), latent knowledge
from homogeneous models is applied to train heterogeneous models. In FedHe (Chan & Ngai, 2021), logits
belonging to the same class are directly averaged in a server. In FedGKT (He et al., 2020), a neural network
is split into a client and a server, while the server completes the entire training process based on the features
and logits collected from all clients. FedMK (Liu et al., 2023) utilizes dataset distillation to transmit latent
knowledge between clients in FL.

Splitting Models. To adapt to the available resources of different clients, several studies split the large
models into small sub-models. HeteroFL (Diao et al., 2021) divides a large model into local models with
different sizes. However, the architectures of local and global models are still restricted by the same model
architecture. SlimFL (Baek et al., 2022) integrates slimmable neural network (SNN) architectures (Yu &
Huang, 2019) into FL, adapting the widths of local neural networks based on resource limitations. In

3



Under review as submission to TMLR

Intermediate
layers

Extractor

Classifier

Intermediate
layers

Extractor

Classifier

Intermediate
layers

Extractor

Classifier

2 2

Client features

Sampled features Server features

1

1

1

3

3

3

Figure 2: Details of model architectures and the training process for FedIN. The process for FedIN
is described as follows. 1⃝ First, clients receive client features and global weights w̄ from the server. 2⃝ After
updating client weights by global weights, the clients are training their models from the local private dataset
and completing the IN training for the client features inputs and outputs (sin, sout) from the server. 3⃝
Upon completing the local training, clients transmit the model weights and new client features, denoted as
(wk, sin, sout), to the server. The aggregation methods for system heterogeneity are discussed in section 4.4.

(Horvath et al., 2021), FjORD leverages Ordered Dropout and a self-distillation method to determine the
model widths. ScaleFL (Ilhan et al., 2023) splits a server model along two dimensions, and local models
are trained using the cross-entropy and KL-divergence loss functions. InCo (Chan et al., 2024) proposes
three splitting methods with convex optimization problems to solve the gradient divergence problem in
heterogeneous FL.

3 Problem Formulation

The goal of FL is to collaborate with the clients to train a shared global model while keeping their local
data private. We briefly summarize the optimization problem below. We assume that K clients participate
in FL. Each client has a private dataset Dk = {(xi,k, yi,k)|i = 1, 2, ..., |Dk|}, where k ∈ {1, ..., K} is the
index of a client, and |Dk| denotes the size of a dataset Dk. Private dataset Dk is only accessible to client
k, guaranteeing data privacy. In traditional FL, the clients share identical model architecture. We denote
a training model by f(x; w), where w are the training weights and x are the inputs. The loss function lk of
client k is shown as follows,

min
w

lk(w) = 1
|Dk|

|Dk|∑
i=1

l(f(xi; w), yi), (1)

where l(·, ·) is a loss function for each data sample (xi,k, yi,k). Nevertheless, it may not be possible to deploy
an identical model architecture for all the clients due to system heterogeneity. One potential solution is to
allow clients to select different model architectures according to their capabilities in heterogeneous FL. The
problem of heterogeneous FL is described as follows. We denote wk as the model weights of client k. If the
total size of all datasets is N =

∑K
k=1 |Dk|, the global optimization function is described as follows,

min
w1,w2,...,wK

L(w1, ..., wK) =
K∑

k=1

|Dk|
N

lk(wk), (2)

where the optimized model weights {w1, w2, ..., wK} have different sizes. Thus, the direct aggregation of
entire model weights becomes unfeasible when dealing with heterogeneity among models. Therefore, we
adopt layer-wise heterogeneous aggregation (Liu et al., 2022; Chan et al., 2024) as an alternative approach
to aggregate the layer weights of heterogeneous models instead of the entire model weights in our experiments.
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4 FedIN: Federated Intermediate Layers Learning

In this section, we describe the details of FedIN, focusing on addressing system heterogeneity by deploying
clients with diverse model architectures that align with their available resources. Figure 2 illustrates the
workflow of FedIN. The client model consists of three key components: an extractor, intermediate layers,
and a classifier. The outputs of the extractor, referred to as feature inputs (sin), serve as inputs to the
intermediate layers. Similarly, the outputs of the intermediate layers, referred to as feature outputs (sout),
act as inputs to the classifier. The client features are the pair of feature inputs and outputs, denoted as
(sin, sout). To be specific, FedIN encompasses two training processes: local training, which leverages the
private dataset, and IN training, which relies on the feature inputs and outputs (sin, sout). Moreover, to
address the challenge of gradient divergence arising from conflicts from model heterogeneity, we propose a
convex optimization problem formulation to obtain the optimal updated gradients.

4.1 Local Training and IN Training

The clients receive a single batch of feature inputs and feature outputs, denoted as S = {(sc
i,in, sc

i,out)|i =
1, 2, ..., |S|}, from the server. These samples are utilized for training the intermediate layers during the IN
training process. The superscript c means that these feature inputs and outputs are from the central server.
The clients begin their local training after receiving a batch of client features from the server. For an instance
(xi,k, yi,k) ∈ Dk, client k conducts local training on its private dataset. The loss function of the local training
is shown as follows,

llocal,k = lCE(f(xi,k; wt
k), yi,k) + µ

2 ||wt
k − wt−1

k ||2, (3)

where wt
k are the weights of client k at time t, and lCE is the cross-entropy loss function for the local training.

To ensure client consistency, we add a proximal regularization term (Li et al., 2020b) in Eq. 3.

The second training process is IN training, which is training the intermediate layers from the features
dataset S. It is worth mentioning that the sample number of S is one batch size. We denote the weights
of the extractor and the classifier by we,k and wc,k for client k ∈ {1, ..., K}. Moreover, the weights of the
intermediate layers are denoted by win,k. The relations among the data sample (xi,k, yi,k) ∈ Dk, client
weights, and (sk

i,in, sk
i,out) are shown as follows,

sk
i,in = f(xi,k; we,k), (4)

sk
i,out = f(sk

i,in; win,k), (5)
f(xi,k; wk) = f(sk

i,out; wc,k). (6)

Eq. 4 shows that the feature input sk
i,in is the output of the extractor we,k of an instance (xi,k, yi,k) from

client k. Eq. 5 describes that the feature output sk
i,out is the output of the intermediate layers win,k with

the feature input sk
i,in. Eq. 6 proves the equivalence between the output of the classifier wc,k and the

output of the whole client model wk. This process is indicated by the blue arrows in Figure 2. Eq. 5 shows
the main function of the IN training, as shown in Figure 2. After the client receives the feature dataset
S = {(sc

i,in, sc
i,out)|i = 1, 2, ..., |S|}, it begins the IN training for the intermediate layers. The feature inputs

sc
i,in from the server are the inputs of the intermediate layers, while the sc

i,out are the targets of the IN
training. The loss function of IN training is defined as follows,

lIN,k = lMSE(f(sc
i,in; win,k), sc

i,out), (7)

where lMSE is a mean-square error loss function. The weights win,k are updated by the loss functions of
the local training llocal,k and the IN training lIN,k. We use MSE as the loss function due to its effectiveness
in this learning method. Moreover, and sin and sout do not represent probability distributions, making it
difficult to incorporate other losses such as KL-divergence and cross-entropy losses.
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4.2 Gradient Alleviation

However, local training is based on the local data, while IN training is based on the features from
other clients’ data. Different local datasets lead to varied distributions, resulting in dissimilar op-
timized directions. Moreover, in our scenario, deploying distinct model architectures in clients em-
phasizes differences in feature spaces, as shown in Figure 3. These combined factors result in di-
vergent gradients between local training and IN training, impeding the pace of convergence and dis-
turbing the model to achieve the optimum point (Wang et al., 2020; Zhao et al., 2018). There-
fore, mitigating this gradient divergence is imperative for the effectiveness of our method. To address
this problem, inspired by (Chan et al., 2024), we formulate a convex optimization problem as follows.
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Figure 3: T-SNE visualization depicts IN feature out-
puts sout derived from five distinct model architec-
tures, with each color representing a unique model ar-
chitecture.

We define the gradients from the local training as a
matrix Glocal and the gradients from the IN train-
ing as a matrix GIN . To guarantee the optimized
direction of the models, we design a constraint for
the gradient as follows,

⟨GIN , Glocal⟩ ≥ 0, (8)

where ⟨·, ·⟩ is the dot product, which ensures the
optimized direction for Glocal and GIN to be the
same. In the optimization problem, we denote the
new optimized gradients by a matrix Z and model
the following convex optimization primal problem,

min
Z

||GIN − Z||2F , s.t. ⟨Z, Glocal⟩ ≥ 0, (9)

where we maintain the optimized direction between
Z and Glocal to be the same and minimize the dis-
tance between Z and Gin. We consider that the
information from the feature inputs and outputs is more fruitful than the local private dataset which is eas-
ier to have over-fitting in the training process. We solve this convex optimization problem by the Lagrange
dual problem (Bot et al., 2009). The Lagrangian is shown as,

L(Z, λ) = tr(GT
IN GIN ) − tr(ZT GIN )

−tr(GT
IN Z) + tr(ZT Z) − λtr(GT

localZ),
(10)

where tr(A) means the trace of the matrix A, and the λ is a Lagrange multiplier associated with ⟨Z, Glocal⟩ ≥
0. To derive the dual problem, we first get the optimum of Z for the Lagrangian Eq. 10, and then obtain
the Lagrange dual function g(λ) = infZ L(Z, λ). Thus, the Lagrange dual problem is described as follows,

max
λ

g(λ) = −λ2

4 tr(GT
localGlocal) − λtr(GT

localGIN ), s.t. λ ≥ 0, (11)

where the optimum of the Lagrangian Eq. 10 is Z = GIN + λ
2 Glocal. If the λ is large enough, it is obvious

that ⟨Z, Glocal⟩ > 0, which means this convex optimization problem holds strong duality because it satisfies
the Slater’s constraint qualification(Boyd et al., 2004), i.e., the optimum of the primal problem Eq. 9 is also
Z = GIN + λ

2 Glocal. Furthermore, the dual problem Eq. 11 can be solved to obtain the analytic solution for
λ and Z, which is shown as follows,

Z =
{

GIN , if b ≥ 0
GIN − b

a Glocal, if b < 0
(12)

where a = tr(GT
localGlocal) and b = tr(GT

localGIN ). However, one crucial point is that the clients will handle
this optimization process. If we calculate each gradient matrix following Eq. 12, this process would occupy

6



Under review as submission to TMLR

lots of computing resources because of the matrix multiplication. Therefore, to mitigate the computational
pressure on the clients, we simplified the updated gradient matrix as,

Z = GIN + λ

2 Glocal, (13)

where λ = 1 is set for the optimum point of the primal problem in our experiment settings. Since GIN is
only associated with the weights wIN,k and not related to we,k and wc,k, the client models are optimized by
Eq. 13 in FedIN directly.

4.3 Privacy Consideration

In our methods, clients are required to transmit feature inputs and outputs to the server, raising privacy con-
cerns regarding the potential leakage of private data through transmitted features. We investigate two recent
related attack methods, the Gradient Inversion Attack and the Model Inversion Attack. The Gradient Inver-
sion Attack relies on the strong assumption that the server knows the private statistic of BatchNorm (Huang
et al., 2021), which is not appropriate to FedIN as such information is unnecessary to transmit to the server.

  With 
protection

  Without 
protection

True

Figure 4: The comparison between privacy with
protection and without protection.

Additionally, the Model Inversion Attack poses a greater
risk of stealing private information in our scenario, but
one strong assumption for this attack is that the server
needs to have prior knowledge of the client input images
(Li et al., 2022), which is impractical in our scenario as
the server does not receive any images from the clients.
However, as the server accesses the model parameters and
the IN feature inputs and outputs, we explore an alterna-
tive method known as dataset distillation (Wang et al.,
2018; Lei & Tao, 2023) to potentially reconstruct the pri-
vate images from the clients. We randomly initialize and
train a batch of noise x̂ with the same size as the input
images x, aiming to optimize x̂ following the following re-
construction objective: lrec = l(f(x̂; we), sin), where we

represents the freezing weights of the extractor on the server and sin denotes the feature inputs.

To enhance user privacy within FedIN, the clients can easily add Gaussian noise followed the standard
deviation σ of IN feature inputs and outputs in training. Specifically, we define σin as the standard deviation
of IN feature inputs and σout for feature outputs. The Gaussian noises are represented as zin ∼ N (0, σin)
and zout ∼ N (0, σout). For simplicity in notations, we use σ to denote z, as we solely adjust σ within this
privacy protection mechanism. Throughout the training phase, We apply 0.8σ to the IN feature inputs and
outputs, i.e., the inputs of Eq. 5 are ŝk

i,in = sk
i,in +0.8σin, and for Eq. 6, they become ŝk

i,out = sk
i,out +0.8σout.

The results of the privacy protection are shown in Figure 4, indicating the efficiency of this mechanism in
protecting user privacy in FedIN. More details on the privacy experiments are further provided in Section 5.5.

4.4 Weight Aggregation

FedIN can handle many scenarios in different model architectures. If client models have different numbers of
layers, FedIN adopts layer-wise heterogeneous aggregation (Liu et al., 2022; Chan et al., 2024), enabling the
server to aggregate weights from the same layer rather than the same model. Similarly, when client models
have different architectures, FedIN aggregates model weights only from models with identical architectures,
the same as the homogeneous aggregation method used in FedAvg (McMahan et al., 2017) and FedDF
(Lin et al., 2020). The effectiveness of FedIN with these two distinctive aggregation methods is further
demonstrated in our experiment section.
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Table 1: Model accuracy for IID and non-IID data of FashionMNIST, SVHN, and CIFAR-10, with target
accuracy established at 85, 80, and 60, respectively. "Round" denotes the round at which the method first
achieves the target accuracy in Non-IID. "Speed" refers to the convergent speed compared to the speed of
FedAvg. We bold the best results, and underline the second best results in this table.

Methods
FashionMNIST (ACC=85) SVHN (ACC=80) CIFAR-10 (ACC=60)

IID Non-IID Round↓ Speed↑ IID Non-IID Round↓ Speed↑ IID Non-IID Round↓ Speed↑

FedAvg(2017) 90.3 89.4 47 ×1.0 89.2 84.5 82 ×1.0 76.8 66.2 109 ×1.0

FedProx(2020b) 89.7 87.6 40 ×1.2 90.6 87.3 45 ×1.8 77.6 72.0 72 ×1.5

Scaffold(2020) 88.3 87.1 25 ×1.9 91.1 86.0 72 ×1.1 79.0 68.1 120 ×0.9

FedNova(2020) 87.5 87.3 36 ×1.3 87.3 86.7 106 ×0.8 62.9 60.3 229 ×0.5

MOON(2021a) 89.5 89.0 34 ×1.4 89.5 86.1 55 ×1.5 74.1 67.4 129 ×0.8

HeteroFL(2021) 89.3 89.5 140 ×0.3 93.8 89.3 107 ×0.8 72.1 61.0 273 ×0.4

InclusiveFL(2022) 88.4 89.1 31 ×1.5 90.9 88.7 67 ×1.2 75.0 66.1 160 ×0.7

FedRolex(2022) 90.9 88.6 100 ×0.4 91.3 86.9 81 ×1.0 79.8 68.0 165 ×0.6

ScaleFL(2023) 91.1 90.2 95 ×0.5 93.7 90.1 100 ×0.8 76.4 72.8 108 ×1.0

InCoAvg(2024) 90.6 89.4 22 ×2.1 90 87.2 55 ×1.5 78.7 67.1 127 ×0.8

FedIN 91.2 90.3 20 ×2.4 91.8 89.3 29 ×2.8 80.5 75.9 54 ×2.0

FedIN (+Noise) 91.3 90.7 18 ×2.6 92.9 90.9 26 ×3.1 83.2 77.3 52 ×2.1

5 Experiments

In this section, we conduct experiments to evaluate the performances of FedIN on the CIFAR-10 (Krizhevsky
et al., 2009), Fashion-MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011) datasets. Our code will
be released on Github.

5.1 Experiment Settings

Federated Settings. We establish two distributions for these datasets, independent and identically dis-
tributed (IID), and non-IID. The non-IID data is generated using a Dirichlet distribution with a parameter
α = 0.5. We have 100 clients in the FL training process. The model architectures are ResNet10, ResNet14,
ResNet18, ResNet22, and ResNet26 from PyTorch source codes, and they are evenly distributed among 100
clients. The number of communication rounds is set to 500. The batch size is 16 during the training process.
For all datasets, the clients complete five epochs of local training during each communication round.

Baselines. We have two classic algorithms, FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020b),
and eight state-of-the-art methods, Scaffold (Karimireddy et al., 2020), FedNova (Wang et al., 2020), MOON
(Li et al., 2021a), HeteroFL (Diao et al., 2021), InclusiveFL (Liu et al., 2022), FedRolex (Alam et al., 2022),
ScaleFL (Ilhan et al., 2023), and InCo (Chan et al., 2024), as our baselines. FedIN and these baselines,
FedAvg, FedProx, Scaffold, FedNova, and MOON, utilize the layer-wise aggregation technique proposed
in (Chan et al., 2024; Liu et al., 2022) under our heterogeneous model environment. FedIN (+Noise) is
a privacy-protected version of FedIN. More discussions on user privacy are provided in Section 5.5. We
first focus on FedIN without adding noises in the experiments. Since HeteroFL, FedRolex, and ScaleFL
require model splitting based on their own methodology, they cannot utilize this aggregation technique. To
maintain a similar number of parameters as the other baselines, we deploy ResNet152 in these baselines
instead of using the largest model, ResNet26, as in other methods. The model split mode in these baselines
is "dynamic_a1-b1-c1-d1-e1" from the source code because of five heterogeneous models in all other methods.
The hyper-parameter µ

2 for FedProx and FedIN is 0.05. We use Adam optimizer with default parameter
settings in PyTorch for all methods. All experiments are conducted with one Nvidia RTX3090 GPU.

5.2 Accuracy Analyses.

Accuracy of IID and non-IID Data. We conduct experiments on the IID and non-IID data in Fashion-
MNIST, SVHN, and CIFAR-10 datasets. The experiment results are shown in Table 1. From Table 1,
FedIN (+Noise) achieves the highest accuracy among all methods in FashionMNIST, CIFAR-10, and gets
the second highest accuracy in SVHN with IID. More discussions for FedIN (+Noise) are shown in Sec-
tion 5.5. FedIN also gets the second-best results among different datasets. These results demonstrate the
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Table 2: Model accuracy with different settings in CIFAR-10.

(a) Model accuracy with homogeneous models.

CIFAR-10
Methods

FedProx Scaffold FedNova MOON FedIN

IID 83.5 84.3 82.0 84.2 84.7

Non-IID 77.5 76.8 75.4 78.2 79.2

(b) Model accuracy with ablation studies.

CIFAR-10
Methods

FedAvg w/o IN w/o Prox w/o Opt FedIN

IID 76.8 77.6 78.8 79.4 80.5

Non-IID 66.2 72.0 66.4 74.9 75.9

Table 3: Model accuracy with heterogeneity models with FedAvg aggregations.

Fashion-MNIST
Methods

FedAvg FedProx Scaffold FedNova MOON InclusiveFL FedIN

IID 86.1 83.4 87.7 84.2 87.0 88.1 88.9

Non-IID 85.4 82.1 86.3 83.9 86.5 86.4 88.0

effectiveness of FedIN. Furthermore, FedIN requires only 20, 29, and 54 communication rounds to reach
the target accuracy in three datasets, demonstrating the fastest convergent speed among all the baselines.
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Figure 5: The smoothed test accuracy on non-IID data
of CIFAR-10. The red dot line denotes the target ac-
curacy in Table 1.

Additionally, Figure 5 shows the smoothed test ac-
curacy on non-IID data of CIFAR-10. FedIN (red
line) achieves the highest accuracy and exhibits the
fastest convergent speed throughout the training
process. It is the first method to achieve the tar-
get accuracy (red dot line). Moreover, FedIN in-
curs only a small additional overhead of one batch
of feature inputs and outputs compared to FedAvg,
as shown in Table 4.

Accuracy of Homogeneous Models. While
FedIN primarily addresses the system heterogeneity
challenge in FL, we also conduct experiments in a
homogeneous model environment using CIFAR-10.
All client models are ResNet18 in this experiment,
and the remaining federated settings are the same
as those in the system heterogeneity experiments.
As presented in Table 2a, FedIN still outperforms
state-of-the-art baselines, specifically for the base-
lines that are designed to enhance FL performance in homogeneous model environments.

Accuracy with FedAvg Aggregation. To ensure a fair comparison, both the baselines and FedIN employ
layer-wise aggregation. However, it is worth noting that FedIN can be deployed in scenarios with extreme
heterogeneity, where layer-wise aggregation is not feasible. In such cases, model weights with the same archi-
tectures are the only ones that can be aggregated. To demonstrate the effectiveness of FedIN in such extreme
environments, we conducted experiments on the Fashion-MNIST dataset, utilizing FedAvg aggregation. The
remaining federated settings are the same in this experiment. As indicated in Table 3, FedIN still achieves
the highest accuracy, 88.9% on IID data and 88.0% on non-IID data. These results further emphasize the
effectiveness of FedIN in extreme system heterogeneity environments.

5.3 The Reason for the Improvements

CKA Similarity for Different Stages. Inspired by (Luo et al., 2021) and (Raghu et al., 2021), we use
CKA similarity (Kornblith et al., 2019) to examine the layer similarity among different clients across different
methods, in order to shed light on the reasons behind the improvements observed with FedIN. To simplify the
figure annotations, we concentrate on three specific methods: FedAvg as an essential baseline, InclusiveFL
as a representative method for system heterogeneity, and our proposed method, FedIN. Figure 6 illustrates
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Table 4: Training overheads for different methods. "Params" indicates the communication overheads. "Mem-
ory" refers to the memory occupied by methods in the training process.

Metrics
Methods

FedAvg Scaffold MOON HeteroFL FedRolex FedIN

Params(M) ↓ 12.28 24.56 12.28 16.29 16.29 12.35

Memory(MB) ↓ 235.0 470.0 705.0 445.6 445.6 235.3
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Figure 6: Illustrations for CKA similarity of IID data in Figure 6a and non-IID data in Figure 6b with
CIFAR-10. The effects from different batch sizes and different sample numbers are shown in Figure 6c and
Figure 6d under non-IID CIFAR-10.
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(b) Stage 2 of Inclu-
siveFL.
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(c) Stage 2 of FedIN.
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(d) Stage 3 of Fe-
dAvg.
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(e) Stage 3 of Inclu-
siveFL.
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(f) Stage 3 of FedIN.

Figure 7: Heatmaps of CKA similarity from stage 2 and 3 among different clients in CIFAR-10.

Table 5: Model accuracy with different client numbers on CIFAR-10.

Methods
IID Non-IID

Nc = 10 Nc = 20 Nc = 50 Nc = 100 Nc = 200 Nc = 10 Nc = 20 Nc = 50 Nc = 100 Nc = 200

FedAvg 79.3 79.2 78.7 76.8 74.0 68.3 67.9 66.9 66.2 62.5

InclusiveFL 77.5 76.7 79.1 75.0 73.4 66.8 68.4 67.1 66.1 61.2

FedIN 82.8 83.1 81.0 80.5 74.3 76.7 76.3 74.1 75.9 72.2

the CKA similarity of different stages under IID and non-IID. Notably, in Figure 6a, FedIN exhibits the
highest similarity even in the deepest stage (stage 3), while FedAvg and InclusiveFL struggle to maintain high
similarity levels in stage 3, as evidenced by the gray area in the figure. In Figure 6b, FedIN still maintains
a higher similarity than FedAvg and InclusiveFL, especially in the deep stage (stage 3). To gain further
insights into the dissimilarities between FedIN and the other methods, we present heatmaps of similarity
from stage 2 and stage 3 among clients in Figure 7, indicating that the average similarity of FedIN surpasses
that of FedAvg and InclusiveFL.

T-SNE Visualization. We conduct t-SNE visualizations (Van der Maaten & Hinton, 2008) on features
extracted from stage 3 in Figure 8, focusing on data belonging to the same class. The objective is to observe
the clustering behavior of these data points. In Figure 8a and Figure 8b, it is evident that the features from
client 0 and client 1 and features from client 2 are separated. However, the features from these three clients
form a singular cluster in FedIN, as depicted in Figure 8c, validating that the features from data with the
same class from different model architectures are consistent.
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(a) FedAvg.
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Figure 8: T-SNE visualization of features learned by different methods from stage 3 on CIFAR-10. We select
data from the same class and utilize three models with different architectures (Client0: ResNet10, Client1:
ResNet14, Client2: ResNet26).

5.4 Ablation Study

We conduct an ablation study to evaluate the contributions of the key components in FedIN. Our ablation
study includes the following methods: (i) FedAvg, (ii) FedIN w/o IN (FedIN without IN loss), (iii) FedIN w/o
Prox (FedIN without Prox regularized term), (iv) FedIN w/o Opt (FedIN without the gradient alleviation
(optimization)). Table 2b and Figure 9 illustrates the results of the ablation studies.

Effects of the Gradient Alleviation and the Loss Function. In this experiment, we high-
light that our solution is advantageous and effective in solving the gradient divergence problem. Fig-
ure 9 illustrates the results of considering the gradient divergence problem and ignoring this problem.
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Figure 9: Smoothed test accuracy for non-IID data of
CIFAR-10 in the ablation study.

The accuracy achieved by FedIN surpasses that
of FedIN without gradient alleviation (FedIN w/o
Opt), and the convergent speed of FedIN is also
accelerated, as observed in Figure 9. Moreover, in
FedIN, the loss function (Eq. 13) incorporates two
additional terms: one is IN loss, and the other one
is Prox regularized term. The convergent speed of
FedIN w/o Prox is similar to FedIN w/o IN before
200 rounds as shown in Figure 9. From Figure 9,
after 200 rounds, FedIN w/o Prox becomes unsta-
ble and its performance deteriorates during the sub-
sequent training process. At last, FedIN w/o Prox
only achieves the performance like FedAvg, as shown
in Table 2b, hinting that the improvement from IN
loss is eliminated at the end of the training process.
Therefore, the inclusion of a regularized term be-
comes essential to maintain the effectiveness of IN loss throughout the training process.

Effects of Client Numbers, Batch Sizes, and Sample Numbers. To investigate the effects of varying
client numbers, we conduct experiments on CIFAR-10, as presented in Table 5. Nc denotes the number
of clients. Notably, FedIN outperforms the other methods across different numbers of clients. We also
conduct analysis on different batch sizes and sample numbers on CIFAR-10 to verify the effects of these
hyperparameters. As shown in Figure 6c, batch sizes 16, 32, and 64 are the best selections, but the batch
sizes of 8 and 128 still outperform HeteroFL and InclusiveFL. Considering the communication overhead, a
batch size of 16 is the optimal choice. From Figure 6d, it is clear that increasing the sample numbers has
little impact on accuracy improvement.
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Table 6: Model accuracy with adding noise in FedIN to protect privacy.

Dataset
Noise Level (+FedIN)

w/o Noise +0.1σ +0.2σ +0.5σ +0.8σ +1.0σ +2.0σ +3.0σ +5.0σ

SVHN 89.3 90.1 90.2 90.0 90.9 89.2 83.7 79.8 65.3

Fashion-MNIST 90.3 89.8 90.4 90.6 90.7 90.4 88.7 84.9 69.4

CIFAR-10 75.9 75.2 76.4 77.2 77.3 76.2 73.5 70.0 30.6
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Figure 10: The results from the reconstruction experiments.Figure 10a demonstrates the reconstruction loss
when IN inputs are with protection and without protection. Figure 10b illustrates the reconstructed images
from protected IN inputs and original IN inputs.

5.5 Privacy Analysis

We assume that the server reconstructs user images from IN inputs, originating from the outputs of the first
layer, as images are more easily reconstructed from features extracted from shallow layers. The experimental
results presented in Table 6 and Figure 10 provide a comprehensive analysis of the impact of how privacy-
preserving mechanisms, adding Gaussian noise, ensure user privacy.

Accuracy with Different Noise Levels. Table 6 illustrates the impact of adding noise at varying levels
in FedIN on the model accuracy. Moderate noise levels, especially at +0.8σ (the setting of FedIN (+Noise)),
obtain superior performance compared to FedIN without adding noise. However, as noise levels exceeding
+1.0σ, there is a noticeable decline in accuracy across all datasets, indicating a degradation in model perfor-
mances due to excessive noises. These results suggest that appropriate noise levels can protect user privacy
while also aiding in model generalization.

Reconstruction Loss and Images. In Figure 10, we add 0.8σ to IN inputs for privacy protection. The
reconstruction loss for models trained with privacy protection (0.8σ added) stabilizes at a higher value (0.6)
compared to those trained without protection at last. Figure 10b displays the reconstructed images at the
server using these two methods. Images reconstructed from IN inputs with protection exhibit a more noise-
like quality compared to those from unprotected IN inputs. These results indicate that the server encounters
challenges in reconstructing user images when IN inputs are protected.

6 Conclusions

We propose a method called FedIN, which conducts local training based on the private dataset and IN
training from the client features, requiring only one batch of features. Moreover, we formulate a convex
optimization problem to tackle the gradient divergence problem. To protect user privacy, we further propose
a simple yet effective method, adding Gaussian noise during the IN training process. We conduct extensive
experiments on three public datasets with ten baselines to demonstrate the superior performances of FedIN.
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