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Abstract

Accelerating MRI scans requires optimal sampling of k-space data. This is however
a daunting task due to the discrete and non-convex nature of sampling optimization.
To cope with this challenge, we put forth a novel deep learning framework that
leverages uncertainty autoencoders to enable joint optimization of sampling pattern
and reconstruction of MRI scans. We represent the encoder as a non-uniform
Fast Fourier Transform that allows continuous optimization of k-space samples
on a non-Cartesian plane, while the decoder is a deep reconstruction network.
Our approach is universal in a sense that it can be used with any reconstruction
network. Experiments with knee MRI shows improved reconstruction quality of
our data-driven sampling over the prevailing variable-density sampling.

1 Introduction

Deep learning methods has shown great promise at solving inverse problems. Of particular interest is
MR reconstruction problem, where the goal is to reconstruct high fidelity images from a subset of
spatial Fourier domain (k-space) representations. Even though deep learning methods have shown
improved image quality when solving MR reconstruction problems [1–9], undersampling patterns
that specify the selected subset of Fourier domain representation are typically chosen heuristically.
The reconstruction models are optimized for a pre-determined acquisition (encoding) model without
taking advantage of possible gains that can be obtained from learning undersampling patterns.

Recently, end-to-end deep learning methods have been proposed for learning undersampling patterns
for MRI reconstruction problem. Active acquisition strategies [10–12] attempt to predict the next
k-space samples to be acquired using information from existing samples. The non-active strategies
can be grouped into two categories. [13], [14] focus on the Cartesian sampling case and model
binary sampling masks probabilistically. These methods employ certain relaxations to maintain
differentiability with respect to sampling probabilities. The second type of methods [15, 16] directly
optimize for the k-space coordinates instead of estimating sampling probabilities. Authors of [15]
restrict the optimization to a set of separable variables such as horizontal and vertical directions in
2-D plane to reduce the search space. As a result, their optimized sampling masks are restricted to a
uniform grid pattern and do not cover the more general sampling patterns.

In this work, we present a variational information maximization method that enables joint optimization
of acquisition and reconstruction of MRI scans in a data-driven manner. Our method enables learning
an undersampling pattern tuned spefically to the reconstruction network, and vice versa, to obtain
improved reconstruction performance. We represent the acquisition (encoder) model with the non-
uniform Fast Fourier Transform (nuFFT) operator [17] that is parameterized by the sampling locations
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Figure 1: Network architecture consisting of nuFFT based encoder (a) and unrolled reconstruction
network (b, c). Sampling locations φ are shared between encoder and decoder.

in k-space. This allows interpolation of non-cartesian coordinates and enables continuous optimization
of the sampling pattern. On the reconstruction (decoder) side, we use an unrolled reconstruction
network which mimics the proximal gradient based solutions to compressed sensing problems.

2 Methods

We consider the MR signal model under the additive white complex Gaussian noise as

z = fφ(x) + ε (1)

where x ∈ CN is the image, z ∈ CM is the measured data in k-space domain, fφ(·) is the
forward model that describes the imaging system parameterized by k-space sample coordinates
φ ∈ [−0.5, 0.5]M , and ε ∼ Nc(0, σ2I) is the measurement noise. The imaging model fφ includes
non-uniform Fast Fourier Transform (nuFFT) operation Fnu, and for the multi-coil scenario, contains
signal modulation by coil sensitivity maps S. Given an acceleration factor R = N/M , the goal is to
find the optimal set of samples φ along with a reconstruction function g(z) that maintains the full
k-space data image quality.

2.1 Variational Information Maximization for Acquisition and Reconstruction

Under the setting in 1, the distribution of measurements Z given image X has a complex valued
Gaussian distribution qφ(Z|X) = Nc(fφ(X), σ2I). We adapt the uncertainty autoencoder frame-
work defined in [18] and we make use of the InfoMax principle [19, 20] that maximizes the mutual
information between the measurements and noisy latent representations

max
φ

Iφ(X,Z) = max
φ

H(X)−Hφ(X|Z) (2)

Since H(X) does not depend on k-space coordinates φ, this is equivalent to

max
φ
−Hφ(X|Z) = max

φ
Eqφ(X,Z)[log qφ(X|Z)] (3)

≥ max
φ,θ

Eqφ(X,Z)[log pθ(X|Z)] (4)

where in the last line we introduce a variational approximation to the model posterior qφ(X|Z) to
obtain a lower bound. The variational parameters θ correspond to the weights of the reconstruction
network. Using the bound on 4 we express our objective as

L(φ, θ;D) = max
φ,θ

∑
x∈D

Eqφ(Z|x)[log pθ(x|z)] (5)

where we estimate the expectation with respect to qφ(X) using Monte-Carlo sampling from the
dataset D. Thus, we propose optimizing shared φ and θ for the entire dataset rather than specific
acquisition and reconstruction parameters for each example in the dataset. In addition, for a different
anatomy (hence for a different dataset), the optimization must be repeated. Similarly, we estimate the
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expectation with respect to qφ(Y |x) using Monte-Carlo methods, and estimate the gradients with
respect to φ using reparameterization trick.

Depending on the observation model used for pθ(·), we end up with a different loss function. For
example, we can have `2 or `1 distances between reconstruction and ground truth as loss functions
for Gaussian and Laplacian observation models, respectively. The main difference between [18] and
our formulation is that we enforce the latent space to correspond to the Fourier domain coefficients
by using a nuFFT operator rather than a fully parameterized neural network.

2.2 Multi-Channel Acquisition and Reconstruction Models

Our overall network architecture is illustrated in Figure 1. We represent the acquisition (encoding)
model with the nuFFT operator that is parameterized by the sampling locations φ in k-space. This
enables us to represent k-space sampling locations as continuous variables and directly optimize for
the sampling pattern by backpropagating through φ. In the multi-channel MRI setting, the acquisition
model admits

fφ(x) = Aφx =
[
(Fnu(φ)S1)

H · · · (Fnu(φ)SC)H
]H
x (6)

where C is the number of channels, Si ∈ CN×N is a diagonal matrix containing coil sensitivity
profiles for coil i, and Fnu(φ) : CN → CM/C is the nuFFT operator at sampling locations φ.

Notice that 5 allows any deep neural network for reconstruction as the decoder. In this work, we used
an unrolled reconstruction network similar to [7, 8] that mimic the proximal gradient based solutions
for non-smooth compressed sensing. The unrolled architecture also incorporates MR physics, where
the reconstruction is performed by alternating between data consistency (Fig. 1b) and proximal steps
(Fig. 1c) for a fixed number of iterations. The data-consistency renders the reconstruction a function
of both φ and θ, hence we share the parameters of the nuFFT encoder with the decoder network. The
unrolled nature of the network also allows for multiple gradient paths to φ from the decoder.

3 Experiments

3.1 Data

We used the "Stanford Fully Sampled 3D FSE Knees" dataset available in mridata.org [21] which
contains 3D knee scans from 20 subjects. Each 3D volume consists of 320 slices with a matrix size of
256× 320 and was acquired with 8 channels. The sensitivity maps of each coil were estimated using
ESPIRiT [22]. Each of the slices were treated as separate examples during training and validation.
The datasets were divided according to subjects where 15 subjects (4800 slices) were used for training,
2 subjects (640 slices) were used for validation, and 3 subjects (960 slices) were used for testing.

3.2 Network Implementation and Training Details

All of our models were implemented on TensorFlow and trained on a NVIDIA Titan Xp graphics
card with 12GB of memory. We used the TensorFlow implementation of nuFFT available in [23].
As the sampling locations change during the training, we did not use density compensation while
calculating the adjoint nuFFT. Instead we relied on the proximal block to compensate for the density.
The proximal block consists of 3 Residual Blocks each having 64 channels and we unrolled the
network for 4 iterations. We also used instance normalization at the output of convolutional layers.
We considered the Gaussian observation model for pθ(·) in Equation 5 which corresponds to the `2
reconstruction loss. Due to GPU memory constraints, we used a batch size of 2. We also used the
Adam optimizer with a learning rate of 0.01, β1 = 0.9, β2 = 0.999 for network optimization. To
assess the image quality, we adopt peak signal-to-noise ratio (pSNR) and structural similarity index
(SSIM) between the reconstruction and fully-sampled ground truth. pSNR was evaluated directly on
complex-valued images, while for SSIM complex-valued images are treated as two channels.

3.3 Experiment Details

We considered four acceleration factors in our experiments: R = 5, 10, 15, 20. For each acceleration
factor, we initialized the k-space sampling pattern (φ) by sampling realizations from a 2D Gaussian
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Figure 2: pSNR (a) and SSIM (b) evaluated on test set for different acceleration factors. Point spread
function (c) of sampling trajectories before and after optimization for R = 5.
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pSNR: 25.23dB
SSIM: 0.459

pSNR: 31.81dB
SSIM: 0.790

pSNR: 20.91dB
SSIM: 0.292

Figure 3: Variable density (a) and optimized (b) trajectories along with the reconstruction result on a
slice in the test set (c). Zero-filled reconstruction corresponds to applying AHφ on z directly.

distribution centered at the origin (Variable Density Sampling [24]) and picked a variance σ = 0.001
for the measurement noise ε. We then ran our model and compared the result with the case where we
only optimized the reconstruction network. Figure 2a,b shows pSNR and SSIM metrics, respectively.
We observe that joint optimization using our framework improves reconstruction quality.

Figure 3 shows the initial and optimized sampling patterns along with the reconstruction results on
a sample test slice for R = 5 and R = 10. Sampling optimization accumulates more samples near
k-space center and reduces the gaps between them which enhances reconstruction quality. In addition,
zero-filling reconstruction using the optimized samples have less severe aliasing artifacts, making it
easier for the decoder network to remove these artifacts.

Figure 2c shows the point spread function (PSF) of the sampling pattern before and after optimization
for R = 5. The sidelobes of the PSF are suppressed which reduces the amount of aliasing due to
undersampling.

4 Conclusion and Discussion

This work explores the use of variational information maximization for learning the sampling
pattern in MRI jointly with image reconstruction. Using the nuFFT operator in the encoder enables
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continuous optimization of sampling variables. On a knee MR dataset, we have shown that the
optimized sampling pattern improves reconstruction quality highlighting possible benefits that can be
obtained by learning undersampling patterns.

One observation is that the peripheral samples do not change as much as the samples near origin
during training. Incorporating additional regularizers that emphasize high frequency information can
improve the gradient flow to these samples.

Our framework allows incorporating other MR physics related artifacts beyond the Gaussian mea-
surement noise such as motion and off-resonance effects. These artifacts can be simulated as a part of
the forward model to find the optimal sampling locations in the presence of such effects.
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