How LLMs Learn:
Tracing Internal Representations with Sparse Autoencoders

Anonymous ACL submission

Abstract

Large Language Models (LLMs) demonstrate
remarkable multilingual capabilities and broad
knowledge. However, the internal mecha-
nisms underlying the development of these ca-
pabilities remain poorly understood. To in-
vestigate this, we analyze how the informa-
tion encoded in LLMs’ internal representations
evolves during the training process. Specifi-
cally, we train sparse autoencoders at multiple
checkpoints of the model and systematically
compare the interpretative results across these
stages. Our findings suggest that LLMs initially
acquire language-specific knowledge indepen-
dently, followed by cross-linguistic correspon-
dences. Moreover, we observe that after mas-
tering token-level knowledge, the model transi-
tions to learning higher-level, abstract concepts,
indicating the development of more conceptual
understanding.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across a wide range of natural
language processing tasks, from multilingual trans-
lation to advanced semantic understanding (Bubeck
et al., 2023). As these models become increasingly
complex and widespread, the need to understand
their internal mechanisms has grown significantly.
This has fueled a surge of research aimed at in-
terpreting their mechanisms and decision-making
processes, leading to intriguing insights into their
behavior (Casper et al., 2023; Bereska and Gavves,
2024).

However, fundamental questions regarding how
LLMs acquire and develop these capabilities re-
main poorly understood. For instance, do LLMs
learn language-specific concepts independently, or
do they simultaneously acquire cross-lingual con-
cepts that generalize across languages? Similarly,
is there a prioritization in learning low-level, token-
specific features versus high-level, abstract con-
cepts?
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Figure 1: Illustration of our approach to comparing
internal representations across different training stages
of LLMs. We train SAEs on the internal representation
from multiple checkpoints.

In this work, we address this gap by analyzing
how the information encoded in the internal repre-
sentations of LLMs evolves over time. Specifically,
we employ sparse autoencoders (SAEs) (Bricken
et al., 2023; Huben et al., 2024) to analyze the
hidden representations from multiple checkpoints
of a large language model. By examining the dis-
tribution of SAE features at each checkpoint, we
identify the types of information the model encodes
at different training stages of its development (see
Figure 1).

Our experiments yield two key findings: (1)
LLMs first learn knowledge within individual lan-
guages before acquiring cross-lingual mappings
(§4.3), and (2) they initially capture fine-grained,
token-level knowledge before progressing to more
abstract, conceptual representations (§4.4) These
findings offer new insights into the internal mecha-
nisms that underlie the emergence of LLMs’ gener-
alization abilities.

2 Sparse Autoencoders

A sparse autoencoder (SAE) is an autoencoder
that enforces a sparsity constraint on its hidden



layer. In this study, we adopt a variant called
TopK-SAE (Makhzani and Frey, 2014), where the
TopK activation function is applied at the hidden
layer. Compared to a ReLU-based SAE (Bricken
et al., 2023; Huben et al., 2024), TopK-SAE has
been shown to be easier to train while maintain-
ing sparsity and achieving higher reconstruction
performance (Gao et al., 2025).

Let € R? be the input vector and n be the
dimension of the hidden layer. The encoder and
decoder are defined as follows:

z = prI{(V[/venc(:C - bpre))7 (1)
T = Wyecz + bprey (2)

where Wene € R™*% and Wye. € R¥*™ are learned
linear layers, and by, € R? is a learnable bias pa-
rameter. Wy, is initialized as the transpose of
Wene, and by is initialized to the geometric me-
dian of the input data.

The training objective is the following mean
squared error (MSE) loss:

L=|z— 2|3 3)

Two hyperparameters control TopK-SAE. In this
study, we control TopK-SAE by two hyperparam-
eters: n, the dimension of the hidden layer, and
K, the number of hidden dimensions to keep ac-
tive. Interpreting Wge. as n distinct vectors in R,
TopK-SAE can be seen as selecting K vectors from
n and using their weighted sum to reconstruct the
input. In this study, we denote each dimension of
the encoder output z € R" as a feature. When a
feature is selected in the top-K operation and used
in reconstruction, we say the feature is activated.

3 Preliminary Experiments

We begin by conducting preliminary experiments
on a pre-trained LLM to tune SAE hyperparam-
eters and validate the interpretability of resulting
features.

3.1 Experimental Setup

We use the 12th layer output (d = 2048) of the
24-layer model 11m-jp-3-1 .8B! (Aizawa et al.,
2024) as the input to the TopK-SAE. The model is
trained on the LLM-jp Corpus v32, which contains
a total of 1.7T tokens: 950B for English, 592B

"https://huggingface.co/11m-jp/1lm-3jp-3-1.8b
2https://gitlab.llm—jp.nii.ac.jp/datasets/
11m-jp-corpus-v3
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Figure 2: Reconstruction loss for varing hidden dimen-
sions n and the sparsity K. Larger n and K improve
reconstruction accuracy.

for Japanese, 114B for code, 0.8B for Korean, and
0.3B for Chinese. We selected the 11m-jp-3-1.8B
model because its intermediate checkpoints are
(or will be) publicly accessible, it has over 1 bil-
lion parameters to exhibit emergent behaviors, and
its training on both English and Japanese enables
cross-lingual analysis.

We train TopK-SAE with the Japanese and En-
glish Wikipedia subsets in the LLM-jp Corpus v3.
For each document, we extract the first 65 tokens
as the input to the LLM, discard the [BOS] token
representation, and apply L2 normalization to the
remaining 64 token embeddings, which serve as
inputs to the SAE. The dataset consists of 165M to-
kens (50% Japanese, 50% English), split into 80%
for training, 10% for validation, and 10% for test-
ing. We fix the batch size at 32,768, use a warm-up
phase of 1,000 steps, and perform a grid search to
optimize the learning rate. Training a single SAE
took about 1 hour using two A100 40GB GPUs.

3.2 Effect of Hyperparameters

Figure 2 shows how the impact of varying the hid-
den dimensions n and the number of active dimen-
sions K. Increasing either n or K reduces the
reconstruction error. However, these hyperparame-
ters significantly influence interpretability: if n or
K is too large, a single concept may be fragmented
into multiple features; if it is too small, multiple dis-
tinct concepts may be merged into a single feature.
Identifying the optimal balance between reconstruc-
tion performance and interpretability remains an
active area of research (Menon et al., 2024; Leask
et al., 2025).

3.3 Patterns in Feature Activation

Figure 3(c) shows examples of feature activations
(n = 32768 and K = 32). The background
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Figure 3: Examples of feature activations across different training checkpoints. (a) Checkpoint 100, (b) Checkpoint
10,000, (c) Final checkpoint (988,240). Early in training, features activate on seemingly random fragments. As
training progresses, features begin to capture language-specific or token-level meanings. By the final checkpoint,
they encode higher-level cross-lingual semantics and abstract conceptual knowledge. Additional examples are
provided in Figure 6 and in the supplementary data (see Appendix A).

color density indicates the magnitude of activa-
tion. For instance, Fcxpt—9882407£00009 strongly
activates in segments defining certain terms, while
Fopt—088240#00016 activates in text about the
smell, color, or state of a substance. These exam-
ples, along with others in Figure 6(c), demonstrate
that the features of TopK-SAE successfully capture
semantically coherent and interpretable meanings.

4 Experiments

In this section, we conduct main experiments,
where we train SAEs on the internal representa-
tions of a large language model (LLM) at multiple
training checkpoints. By analyzing the resulting
features, we investigate how the encoded informa-
tion evolves over the course of training.

4.1 Experimental Setup

We use six checkpoints of 11m-jp-3-1.8B at train-
ing steps 10, 100, 1,000, 10,000, 100,000, and the
final checkpoint at step 988,240. For each check-
point, we train a TopK-SAE with a hidden dimen-
sion of n = 32768 and a sparsity level of K = 32,
following the same training conditions described
in §3.1.

4.2 Evaluating Feature Activation Patterns

For each feature, we collect up to 50 texts that acti-
vate it the most. We then categorize these activation

patterns in terms of Language Trend and Semantic
Granularity.

Language Trend The language trend of a fea-
ture is classified into three categories: English,
Japanese, and Mixed. English features are acti-
vated in texts that are at least 90% English, while
Japanese features are activated in texts that are at
least 90% Japanese. Mixed features are activated
in texts containing a mix of Japanese and English.
For each checkpoint, we automatically categorize
the language trend of all 32768 features.

Semantic Granularity The semantic granularity
of a feature is categorized into four levels: Token-
Level, Concept-Level (Synonymy), Concept-Level
(Semantic Sim.), and Uninterpretable. Token-Level
features consistently activate on identical tokens
(e.g., only “cat”). Concept-Level (Synonymy) fea-
tures activate on tokens or sentences expressing the
same meaning (e.g., “cat” and "2 Z" ). Concept-
Level (Semantic Sim.) features activate on tokens
or sentences sharing related meanings (e.g., “cat”
and “dog”). Uninterpretable features show no clear
semantic pattern among the activated texts. For
each checkpoint, we manually categorize the se-
mantic granularity of the first 100 features.

4.3 Language Trends Over Checkpoints

Figure 4 shows the proportion of features exhibit-
ing each language trend across checkpoints. Early
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Figure 4: Proportion of language trends over different
checkpoints.

in training, most features are classified as Mixed,
and these features typically activate on random
tokens without clear semantic coherence (see Fig-
ures 3(a) and 6(a)).

By the mid-training checkpoints, we observe a
higher fraction of English and Japanese features.
Within-language semantic coherence emerges here
(Figures 3(b) and 6(b)). Toward the later check-
points, the proportion of Mixed features rises again,
but unlike the early-stage randomness, these fea-
tures now capture cross-lingual correspondences
(Figures 3(c) and 6(c)).

This suggests that LLMs learn in two stages.
First, from early to mid-training, they acquire se-
mantics within each language. Second, from mid
to late training, they begin capturing cross-lingual
correspondences.

4.4 Semantic Granularity Over Checkpoints

Figure 5 shows the distribution of semantic granu-
larity categories for 100 sampled features at each
checkpoint. We observe a rise in Token-Level fea-
tures from early to mid-training, and then an in-
crease in Concept-Level (either synonymy or se-
mantically related) features from mid to late train-
ing. Meanwhile, Uninterpretable features decrease
steadily as training proceeds.

This pattern suggests that LLMs initially learn
fine-grained token-level knowledge and then tran-
sition to capturing abstract, concept-level semantic
relationships.

5 Related Work

Recent studies show neural networks can repre-
sent more features than their dimensions (Elhage
et al., 2022). To disentangle these representations,
SAEs have emerged as a key tool for decomposing
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Figure 5: Proportion of semantic granularity patterns
over different checkpoints.

them into interpretable components (Huben et al.,
2024; Olshausen and Field, 1997). While early
work primarily focused on single-trained SAEs, re-
cent studies have shifted toward comparing SAE
features across layers (Balcells et al., 2024; Bal-
agansky et al., 2025), model architectures (Lan
et al., 2024; Lindsey et al., 2024), or fine-tuning
stages (Lindsey et al., 2024; Wang et al., 2025).
Concurrent work tracks feature formation during
training (Xu et al., 2024), but lacks quantitative
evaluation. Our contribution is training indepen-
dent SAEs at each checkpoint and conducting both
qualitative and quantitative analyses.

During training, LLMs exhibit rapid perfor-
mance improvements on specific tasks, known as
emergent capability (Wei et al., 2022), where abil-
ities appear when the model size or data volume
exceeds a certain threshold, or grokking (Power
et al., 2022), where models suddenly generalize
better after overfitting. Recent research has begun
to explore the mechanisms of these phenomena
using simplified models (Nanda et al., 2023). How-
ever, understanding the relationship between these
abrupt performance changes and the internal states
of models remains an open challenge.

6 Conclusion

In this study, we performed a cross-checkpoint anal-
ysis of the internal representations of a large lan-
guage model via a sparse autoencoder. Our results
indicate that LLMs first acquire token-level seman-
tics in a language-specific manner and later learn
cross-lingual correspondences (§4.3). Further, they
progress from token-level to concept-level repre-
sentations, forming more abstract knowledge struc-
tures over training (§4.4).



7 Limitations

Our study has several limitations. First, sparse
autoencoders (SAEs) are not fully interpretable be-
cause reconstruction is imperfect and features are
not perfectly monosemantic. This limitation can
lead to information loss or polysemantic features,
which complicates the analysis of internal repre-
sentations. Second, our findings are based on a
specific model and dataset, so they may not gen-
eralize to other architectures or training regimes.
Finally, the manual categorization of semantic gran-
ularity introduces subjectivity, which could affect
the consistency of the results. Future work should
address these limitations to improve interpretability
and robustness.
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A Additional Examples of Feature
Activations

We provide a supplementary zip file containing 100
SAE feature examples for each training checkpoint
of 11m-jp-3-1.8B, enabling a detailed examina-
tion of activation patterns. We include examples
for features not depicted in Figures 3 and 6, allow-
ing readers to confirm that similar patterns hold for
features beyond those presented in this paper. Each
example contains token-activation value pairs, lan-
guage distribution, and semantic granularity. For
more details, please refer to the README . md in the
zip file.



Feature idx Example sentences where the feature is activated Language (§ 4.3) Granularity (§ 4.4)

+ Cleartitle is the phrase used
Fept=100 #00000 + sphere (variations are known as spherical Mixed Uninterpretable
- BRI SO ARF /=S THSB,
* powers, which the comic calls

Fept=100 #00005 * Railroad]s class N2sa comprised rebuilds Mixed Uninterpretable
s ZOFELSHATLY) EIF.
A XY ZDOBHERR
Fekpt=10000 #00000 | - BERHTMDEHR2 A FILT SV FRS L Japanese Token-Level: “Zzif”
- OEREIFHTHD.

* guy-wired agrial masts for
Fekpt=10000 #00005 | - Agrial reconnaissance spotted a English Token-Level: “erial”
+ flapping-winged agfial robot, and

(a) 7

* In latemornings and during
Fekpt=10000 #00008 | - a Saturday morning animated series English Token-Level: “ morning”
* licensed to/Morningside, Maryland
* live flagship daytime show. It

(b) 7 | Fekpt=10000 #00010 | - both daytime and primetime television. English Token-Level: “time”
=, and only 1 watt nighttime

- $H5. FEREICIEBROE®
Ferpt=10000 #00011 | - ¥ —d > (AR, 1B5E) TH5. Japanese Token-Level: “5&8”
- e OBEREE. B

CEXELTHEFEN, DBEERAA—T 47D
Fekpt=10000 #00048 | + EFNPE VL L ETALAHROD Japanese
FBELGRETE D RENS T

* Rockstar Lincoln|Limited (formerly Spidersoft Limited
Fept=10000 #00087 | - Hobart Sky Ranch/Airport is a public-use English
= Arras Football Association is a French association

Concept-Level (Semantic Sim.):
“biographical background”

Concept-Level (Synonymy):
“Proper nouns”

* about a mile (1.6 km) east of the
Fekpt=088240 #00006 | * 36.6 square|miles (94.8 km), of English Token-Level: “ mile(s)”
* Located 4 miles north from Wasilla
- lBRE @RS cTRE.
Fexpt=os240 #00007 | - oA ERAISASD. 1 Japanese Token-Level: “44 Z.”
c—DICEALNE LB B,
EEE (LADMLWL-ES) (&
Ferpt=oss240#00017 | - DMTTOFEEDELTH S, Japanese Token-Level: “;&”
- (RE LR EGEER (8 o 1= #1

+ for cyclists (e.g. cyclist-only paths
(c) 5 Fekpt-088240 #00021 | - itself, foriexample on signage. English
* languages spoken,lm as Belgium

Concept-Level (Synonymy):
“examples and instances”

= 'Darkened Skye is a
Fekpt=oss240#00026 | + baryonicidark matter is hypothetical dark matter Mixed
F&YIESD - 78O~

= The game was developed by Beam Software
Fekpt-088240#00039 | - It was part of Mutual Film|Corporation’s Mixed
- (2 B EMRBRERERRT & Y sl S h iz
* is located nine kilometers south-west of
Fexpt=088240 #00041 | - airport located|13 km northwest of English
= airport located|seventeen miles (

Concept-Level (Synonymy):
“dark”

Concept-Level (Semantic Sim.):
“production company”

Concept-Level (Semantic Sim.):
“distance value”

Figure 6: Examples of feature activations across different training checkpoints. (a) Checkpoint 100, (b) Checkpoint
10,000, (c) Final checkpoint (988,240).
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