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Abstract
Large Language Models (LLMs) demonstrate001
remarkable multilingual capabilities and broad002
knowledge. However, the internal mecha-003
nisms underlying the development of these ca-004
pabilities remain poorly understood. To in-005
vestigate this, we analyze how the informa-006
tion encoded in LLMs’ internal representations007
evolves during the training process. Specifi-008
cally, we train sparse autoencoders at multiple009
checkpoints of the model and systematically010
compare the interpretative results across these011
stages. Our findings suggest that LLMs initially012
acquire language-specific knowledge indepen-013
dently, followed by cross-linguistic correspon-014
dences. Moreover, we observe that after mas-015
tering token-level knowledge, the model transi-016
tions to learning higher-level, abstract concepts,017
indicating the development of more conceptual018
understanding.019

1 Introduction020

Large Language Models (LLMs) have achieved re-021

markable success across a wide range of natural022

language processing tasks, from multilingual trans-023

lation to advanced semantic understanding (Bubeck024

et al., 2023). As these models become increasingly025

complex and widespread, the need to understand026

their internal mechanisms has grown significantly.027

This has fueled a surge of research aimed at in-028

terpreting their mechanisms and decision-making029

processes, leading to intriguing insights into their030

behavior (Casper et al., 2023; Bereska and Gavves,031

2024).032

However, fundamental questions regarding how033

LLMs acquire and develop these capabilities re-034

main poorly understood. For instance, do LLMs035

learn language-specific concepts independently, or036

do they simultaneously acquire cross-lingual con-037

cepts that generalize across languages? Similarly,038

is there a prioritization in learning low-level, token-039

specific features versus high-level, abstract con-040

cepts?041

Figure 1: Illustration of our approach to comparing
internal representations across different training stages
of LLMs. We train SAEs on the internal representation
from multiple checkpoints.

In this work, we address this gap by analyzing 042

how the information encoded in the internal repre- 043

sentations of LLMs evolves over time. Specifically, 044

we employ sparse autoencoders (SAEs) (Bricken 045

et al., 2023; Huben et al., 2024) to analyze the 046

hidden representations from multiple checkpoints 047

of a large language model. By examining the dis- 048

tribution of SAE features at each checkpoint, we 049

identify the types of information the model encodes 050

at different training stages of its development (see 051

Figure 1). 052

Our experiments yield two key findings: (1) 053

LLMs first learn knowledge within individual lan- 054

guages before acquiring cross-lingual mappings 055

(§4.3), and (2) they initially capture fine-grained, 056

token-level knowledge before progressing to more 057

abstract, conceptual representations (§4.4) These 058

findings offer new insights into the internal mecha- 059

nisms that underlie the emergence of LLMs’ gener- 060

alization abilities. 061

2 Sparse Autoencoders 062

A sparse autoencoder (SAE) is an autoencoder 063

that enforces a sparsity constraint on its hidden 064
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layer. In this study, we adopt a variant called065

TopK-SAE (Makhzani and Frey, 2014), where the066

TopK activation function is applied at the hidden067

layer. Compared to a ReLU-based SAE (Bricken068

et al., 2023; Huben et al., 2024), TopK-SAE has069

been shown to be easier to train while maintain-070

ing sparsity and achieving higher reconstruction071

performance (Gao et al., 2025).072

Let x ∈ Rd be the input vector and n be the073

dimension of the hidden layer. The encoder and074

decoder are defined as follows:075

z = TopK
(
Wenc(x− bpre)

)
, (1)076

x̂ = Wdecz + bpre, (2)077

where Wenc ∈ Rn×d and Wdec ∈ Rd×n are learned078

linear layers, and bpre ∈ Rd is a learnable bias pa-079

rameter. Wdec is initialized as the transpose of080

Wenc, and bpre is initialized to the geometric me-081

dian of the input data.082

The training objective is the following mean083

squared error (MSE) loss:084

L = ∥x− x̂∥22. (3)085

Two hyperparameters control TopK-SAE. In this086

study, we control TopK-SAE by two hyperparam-087

eters: n, the dimension of the hidden layer, and088

K, the number of hidden dimensions to keep ac-089

tive. Interpreting Wdec as n distinct vectors in Rd,090

TopK-SAE can be seen as selecting K vectors from091

n and using their weighted sum to reconstruct the092

input. In this study, we denote each dimension of093

the encoder output z ∈ Rn as a feature. When a094

feature is selected in the top-K operation and used095

in reconstruction, we say the feature is activated.096

3 Preliminary Experiments097

We begin by conducting preliminary experiments098

on a pre-trained LLM to tune SAE hyperparam-099

eters and validate the interpretability of resulting100

features.101

3.1 Experimental Setup102

We use the 12th layer output (d = 2048) of the103

24-layer model llm-jp-3-1.8B1 (Aizawa et al.,104

2024) as the input to the TopK-SAE. The model is105

trained on the LLM-jp Corpus v32, which contains106

a total of 1.7T tokens: 950B for English, 592B107

1https://huggingface.co/llm-jp/llm-jp-3-1.8b
2https://gitlab.llm-jp.nii.ac.jp/datasets/

llm-jp-corpus-v3

Figure 2: Reconstruction loss for varing hidden dimen-
sions n and the sparsity K. Larger n and K improve
reconstruction accuracy.

for Japanese, 114B for code, 0.8B for Korean, and 108

0.3B for Chinese. We selected the llm-jp-3-1.8B 109

model because its intermediate checkpoints are 110

(or will be) publicly accessible, it has over 1 bil- 111

lion parameters to exhibit emergent behaviors, and 112

its training on both English and Japanese enables 113

cross-lingual analysis. 114

We train TopK-SAE with the Japanese and En- 115

glish Wikipedia subsets in the LLM-jp Corpus v3. 116

For each document, we extract the first 65 tokens 117

as the input to the LLM, discard the [BOS] token 118

representation, and apply L2 normalization to the 119

remaining 64 token embeddings, which serve as 120

inputs to the SAE. The dataset consists of 165M to- 121

kens (50% Japanese, 50% English), split into 80% 122

for training, 10% for validation, and 10% for test- 123

ing. We fix the batch size at 32,768, use a warm-up 124

phase of 1,000 steps, and perform a grid search to 125

optimize the learning rate. Training a single SAE 126

took about 1 hour using two A100 40GB GPUs. 127

3.2 Effect of Hyperparameters 128

Figure 2 shows how the impact of varying the hid- 129

den dimensions n and the number of active dimen- 130

sions K. Increasing either n or K reduces the 131

reconstruction error. However, these hyperparame- 132

ters significantly influence interpretability: if n or 133

K is too large, a single concept may be fragmented 134

into multiple features; if it is too small, multiple dis- 135

tinct concepts may be merged into a single feature. 136

Identifying the optimal balance between reconstruc- 137

tion performance and interpretability remains an 138

active area of research (Menon et al., 2024; Leask 139

et al., 2025). 140

3.3 Patterns in Feature Activation 141

Figure 3(c) shows examples of feature activations 142

(n = 32768 and K = 32). The background 143
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Figure 3: Examples of feature activations across different training checkpoints. (a) Checkpoint 100, (b) Checkpoint
10,000, (c) Final checkpoint (988,240). Early in training, features activate on seemingly random fragments. As
training progresses, features begin to capture language-specific or token-level meanings. By the final checkpoint,
they encode higher-level cross-lingual semantics and abstract conceptual knowledge. Additional examples are
provided in Figure 6 and in the supplementary data (see Appendix A).

color density indicates the magnitude of activa-144

tion. For instance, Fckpt=988240#00009 strongly145

activates in segments defining certain terms, while146

Fckpt=988240#00016 activates in text about the147

smell, color, or state of a substance. These exam-148

ples, along with others in Figure 6(c), demonstrate149

that the features of TopK-SAE successfully capture150

semantically coherent and interpretable meanings.151

4 Experiments152

In this section, we conduct main experiments,153

where we train SAEs on the internal representa-154

tions of a large language model (LLM) at multiple155

training checkpoints. By analyzing the resulting156

features, we investigate how the encoded informa-157

tion evolves over the course of training.158

4.1 Experimental Setup159

We use six checkpoints of llm-jp-3-1.8B at train-160

ing steps 10, 100, 1,000, 10,000, 100,000, and the161

final checkpoint at step 988,240. For each check-162

point, we train a TopK-SAE with a hidden dimen-163

sion of n = 32768 and a sparsity level of K = 32,164

following the same training conditions described165

in §3.1.166

4.2 Evaluating Feature Activation Patterns167

For each feature, we collect up to 50 texts that acti-168

vate it the most. We then categorize these activation169

patterns in terms of Language Trend and Semantic 170

Granularity. 171

Language Trend The language trend of a fea- 172

ture is classified into three categories: English, 173

Japanese, and Mixed. English features are acti- 174

vated in texts that are at least 90% English, while 175

Japanese features are activated in texts that are at 176

least 90% Japanese. Mixed features are activated 177

in texts containing a mix of Japanese and English. 178

For each checkpoint, we automatically categorize 179

the language trend of all 32768 features. 180

Semantic Granularity The semantic granularity 181

of a feature is categorized into four levels: Token- 182

Level, Concept-Level (Synonymy), Concept-Level 183

(Semantic Sim.), and Uninterpretable. Token-Level 184

features consistently activate on identical tokens 185

(e.g., only “cat”). Concept-Level (Synonymy) fea- 186

tures activate on tokens or sentences expressing the 187

same meaning (e.g., “cat” and "ねこ" ). Concept- 188

Level (Semantic Sim.) features activate on tokens 189

or sentences sharing related meanings (e.g., “cat” 190

and “dog”). Uninterpretable features show no clear 191

semantic pattern among the activated texts. For 192

each checkpoint, we manually categorize the se- 193

mantic granularity of the first 100 features. 194

4.3 Language Trends Over Checkpoints 195

Figure 4 shows the proportion of features exhibit- 196

ing each language trend across checkpoints. Early 197
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Figure 4: Proportion of language trends over different
checkpoints.

in training, most features are classified as Mixed,198

and these features typically activate on random199

tokens without clear semantic coherence (see Fig-200

ures 3(a) and 6(a)).201

By the mid-training checkpoints, we observe a202

higher fraction of English and Japanese features.203

Within-language semantic coherence emerges here204

(Figures 3(b) and 6(b)). Toward the later check-205

points, the proportion of Mixed features rises again,206

but unlike the early-stage randomness, these fea-207

tures now capture cross-lingual correspondences208

(Figures 3(c) and 6(c)).209

This suggests that LLMs learn in two stages.210

First, from early to mid-training, they acquire se-211

mantics within each language. Second, from mid212

to late training, they begin capturing cross-lingual213

correspondences.214

4.4 Semantic Granularity Over Checkpoints215

Figure 5 shows the distribution of semantic granu-216

larity categories for 100 sampled features at each217

checkpoint. We observe a rise in Token-Level fea-218

tures from early to mid-training, and then an in-219

crease in Concept-Level (either synonymy or se-220

mantically related) features from mid to late train-221

ing. Meanwhile, Uninterpretable features decrease222

steadily as training proceeds.223

This pattern suggests that LLMs initially learn224

fine-grained token-level knowledge and then tran-225

sition to capturing abstract, concept-level semantic226

relationships.227

5 Related Work228

Recent studies show neural networks can repre-229

sent more features than their dimensions (Elhage230

et al., 2022). To disentangle these representations,231

SAEs have emerged as a key tool for decomposing232

Figure 5: Proportion of semantic granularity patterns
over different checkpoints.

them into interpretable components (Huben et al., 233

2024; Olshausen and Field, 1997). While early 234

work primarily focused on single-trained SAEs, re- 235

cent studies have shifted toward comparing SAE 236

features across layers (Balcells et al., 2024; Bal- 237

agansky et al., 2025), model architectures (Lan 238

et al., 2024; Lindsey et al., 2024), or fine-tuning 239

stages (Lindsey et al., 2024; Wang et al., 2025). 240

Concurrent work tracks feature formation during 241

training (Xu et al., 2024), but lacks quantitative 242

evaluation. Our contribution is training indepen- 243

dent SAEs at each checkpoint and conducting both 244

qualitative and quantitative analyses. 245

During training, LLMs exhibit rapid perfor- 246

mance improvements on specific tasks, known as 247

emergent capability (Wei et al., 2022), where abil- 248

ities appear when the model size or data volume 249

exceeds a certain threshold, or grokking (Power 250

et al., 2022), where models suddenly generalize 251

better after overfitting. Recent research has begun 252

to explore the mechanisms of these phenomena 253

using simplified models (Nanda et al., 2023). How- 254

ever, understanding the relationship between these 255

abrupt performance changes and the internal states 256

of models remains an open challenge. 257

6 Conclusion 258

In this study, we performed a cross-checkpoint anal- 259

ysis of the internal representations of a large lan- 260

guage model via a sparse autoencoder. Our results 261

indicate that LLMs first acquire token-level seman- 262

tics in a language-specific manner and later learn 263

cross-lingual correspondences (§4.3). Further, they 264

progress from token-level to concept-level repre- 265

sentations, forming more abstract knowledge struc- 266

tures over training (§4.4). 267
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7 Limitations268

Our study has several limitations. First, sparse269

autoencoders (SAEs) are not fully interpretable be-270

cause reconstruction is imperfect and features are271

not perfectly monosemantic. This limitation can272

lead to information loss or polysemantic features,273

which complicates the analysis of internal repre-274

sentations. Second, our findings are based on a275

specific model and dataset, so they may not gen-276

eralize to other architectures or training regimes.277

Finally, the manual categorization of semantic gran-278

ularity introduces subjectivity, which could affect279

the consistency of the results. Future work should280

address these limitations to improve interpretability281

and robustness.282
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A Additional Examples of Feature441

Activations442

We provide a supplementary zip file containing 100443

SAE feature examples for each training checkpoint444

of llm-jp-3-1.8B, enabling a detailed examina-445

tion of activation patterns. We include examples446

for features not depicted in Figures 3 and 6, allow-447

ing readers to confirm that similar patterns hold for448

features beyond those presented in this paper. Each449

example contains token-activation value pairs, lan-450

guage distribution, and semantic granularity. For451

more details, please refer to the README.md in the452

zip file.453
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Figure 6: Examples of feature activations across different training checkpoints. (a) Checkpoint 100, (b) Checkpoint
10,000, (c) Final checkpoint (988,240).
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