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Abstract
Machine unlearning removes certain training data
points and their influence on AI models (e.g.
when a data owner revokes their decision to allow
models to learn from the data). In this position
paper, we propose to lift data-tracing machine
unlearning to knowledge-tracing for foundation
models (FMs). We support this position based on
practical needs and insights from cognitive stud-
ies. Practically, tracing data cannot meet the di-
verse unlearning requests for FMs, which may be
from regulators, enterprise users, product teams,
etc., having no access to FMs’ massive training
data. Instead, it is convenient for these parties to
issue an unlearning request about the knowledge
or capability FMs (should not) possess. Cogni-
tively, knowledge-tracing unlearning aligns with
how the human brain forgets more closely than
tracing individual training data points. Finally, we
provide a case study using a vision-language FM
to deepen the discussions.

1. Introduction
“The brain is always trying to forget the information it has al-
ready learned” (Gravitz, 2019). The human brain possesses
the ability to selectively forget past experiences and knowl-
edge (Davis & Zhong, 2017; Rizio & Dennis, 2013; Ryan
& Frankland, 2022) in response to environmental changes
during the process of memory and learning, which helps
optimize cognitive resources. Forgetting is not a negative
process but a natural and indispensable part (ROEDIGER III
et al., 2010), supporting abstraction and automation to ac-
quire semantic and procedural knowledge (Nørby, 2015).

This work is about machine unlearning (Cao & Yang, 2015;
Bourtoule et al., 2021; Triantafillou et al., 2024) for founda-
tion models (FMs) (Bommasani et al., 2021; Brown et al.,
2020; Radford et al., 2021; OpenAI, 2023). Such models
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Figure 1. Machine unlearning, also known as data forgetting in
some works, aims to remove certain training data points and their
influence on an AI model. It is challenging to apply this data-
tracing paradigm to foundation models for various reasons. We
propose to lift data to knowledge for foundation model unlearning,
allowing one to request the unlearning of specific knowledge or
capabilities of a foundation model.

are trained on large-scale data and have achieved human-
level performance across diverse tasks. To enhance their
adaptability and efficiency in dynamic environments further,
it is highly appealing that FMs can learn continuously and
selectively unlearn—akin to humans. To this end, a piv-
otal question naturally arises: Can FMs achieve selective
forgetting like humans?

The exploration of selective forgetting mechanisms in
FMs (Eldan & Russinovich, 2023; Liu et al., 2024c;
Gandikota et al., 2023; Li et al., 2024c) has primarily been
driven by privacy and safety concerns, following the ma-
chine unlearning (MU) paradigm initially designed for task-
specialized models rather than general-purpose FMs. Under
the regulation of the “right to be forgotten” (Regulation,
2016), users may request to revoke their data and erase
the influence from an AI model. MU, also known as data
forgetting, aims to handle such requests by removing the
privacy-sensitive and undesirable information from models
while simultaneously preserving model utility. However,
current efforts in MU predominantly trace training data
points, failing to handle similar requests at higher seman-
tic levels (e.g., a product team might request to remove all
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Position: Lifting Data for Foundation Model Unlearning

Table 1. Conventional data-tracing machine unlearning vs. Advocated knowledge-tracing foundation model unlearning

Data-tracing machine unlearning Knowledge-tracing foundation model unlearning
Requester Users, data providers Anyone
Request to remove Certain training data points model’s knowledge or capability
Purpose Privacy, safety Privacy, safety, model capacity, human-like, etc.
Models of interest (often) Task-specialized models General-purpose foundation models
Retention set (often) ✔ (default) ✘
Oracle model Retrained over remaining training data ✘

people signals from a model). This gap becomes especially
significant for FMs because many parties interact with FMs,
such as data providers, legal and policy regulators, applica-
tion developers, and end users. Having no access to FMs’
training data, they may instead deliver their unlearning re-
quests using high-level semantic descriptions.

In this paper, we propose to lift data-tracing in founda-
tion model unlearning (FMU) to knowledge-tracing as
an initial step towards closing that gap. Figure 1 shows
an exemplar realization of this position. It is a versatile
interface between an unlearner and those who might issue
unlearning requests, being responsive to various real-world
applications besides its strong analogy to how human brains
forget. Suppose the request is to remove an FM’s visual
recognition capability about Pointer, a dog breed. The
unlearner has sufficient flexibility to develop effective algo-
rithms for this request, e.g., by collecting data labeled as
Pointer, designing regularizers to preserve the model’s per-
formance on other classes, especially Pointer’s parent class
Dog, and so on. Table 1 summarizes the key differences
between existing MU that traces data and the advocated
knowledge-tracing FMU.

Knowledge-tracing FMU is highly beneficial for both FM
stakeholders and the development of more advanced FMs.
From a practical view, it meets the incredibly diverse un-
learning requests, which may come from anyone involved
in the FM ecosystem, better than data-tracing MU. Indeed,
many parties in the FM ecosystem have no direct access
to the original training data at all. Transitioning from data-
tracing unlearning to knowledge-tracing broadens FMU’s
scope, moving beyond the deletion of data points. This is not
to downgrade the significance of existing data-tracing MU,
which remains imperative for privacy considerations (e.g., a
user deauthorizes the use of their data by FMs), but only to
showcase additional impacts of the advocated knowledge-
tracing FMU. Moreover, knowledge-tracing FMU aligns
more closely with the human brain’s forgetting process than
data-level deletion, capturing how humans selectively retain
and discard abstract knowledge and experience. In return,
FMs can likely benefit from this unlearning process by free-
ing up model capacities for the efficient acquisition of new
knowledge in the future.

Following the proposed position, we conduct a case study
about unlearning fine-grained object classes from a vision-
language FM. The case study is to bridge our position with
real-world applications and, meanwhile, allow us to inves-
tigate the position in depth. Over time, humans tend to
forget specific details while retaining abstract concepts. Ac-
cordingly, we choose some fine-grained concepts as the
unlearning targets, not any particular training examples, and
the goal is to effectively unlearn these concepts while main-
taining the FM’s recognition ability over coarse-level classes
and the remaining fine-grained ones. We envision a scenario
that an unlearner source image examples for unlearning
from hierarchical image classification datasets rather than
the FM’s original training set. We do not use any retention
images in the experiments. Extensive experiments demon-
strate that existing data-tracing MU methods are applicable
to the case study, but their performance could be strength-
ened in the future work for more satisfactory unlearning
results. Moreover, we propose a simple and effective hinge
loss to tackle the over-forgetting issues in many existing
MU methods. This approach is sample-efficient, requiring
only 30–50 images for each target class to be unlearned.

The structure of this paper is as follows. First, we provide
a concise review of data-tracing MU, revisit a prevalent
formalization, and introduce its confluence with FMs, to
offer readers the background of our position. We then ar-
ticulate our position driven by various unlearning requests
from the FM community and highlight the importance of
knowledge-tracing unlearning from a cognitive science per-
spective. Next, we present a detailed case study about a
vision-language FM, analyzing it from multiple perspec-
tives. We conclude the paper with discussions about more
related work, alternative views, and potential impacts to
contextualize our position.

2. Existing MU traces training data points
This section reviews MU and focuses on how the research
unrolls across security, machine learning, and broader AI
communities. We show that the existing MU works trace
training data points (e.g., from a user who decided to deau-
thorize the use of their data by machine learners).
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2.1. Data-tracing MU: A concise review

The concept of MU was first introduced in a pioneering
study by Cao & Yang (2015), who proposed to transform
learning algorithms into a summation form rapidly amend-
able to data deletion. In the ensuing years, from 2015 to
2018, the studies about MU (Cao, 2017; Kwak et al., 2017;
Cao et al., 2018) primarily focused on the learning systems’
security and privacy aspects. MU started to gain traction
in the machine learning and broader AI communities (Guo
et al., 2019; Thudi et al., 2022a) after an influential work
that applied an exact MU approach to deep neural networks
for image classification (Bourtoule et al., 2021). Between
2019 and 2023, numerous MU works emerged to enhance
unlearning quality for task-specialized neural networks (Go-
latkar et al., 2020; Chen et al., 2023; Lin et al., 2023; Wang
et al., 2023). Moreover, a competition (Triantafillou et al.,
2024) hosted in conjunction with NeurIPS 2023 heightened
extensive interest in MU.

Notably, the works reviewed above are data-tracing because
they operate on the data level, striving to remove some
training data points (e.g., deauthorized by their owners) and
their influence on a learning system or model.

We can reiterate the formalization of MU in (Triantafillou
et al., 2024) to give readers a concrete understanding of
MU’s data-tracing essence. The initial step is to train a
model θ0 using a learning algorithm A on a given training
dataset Dtrain = {(xi, yi)}Ni=1. Then, the MU setup is to di-
vide the training set into f orgetting set Df and retention set
Dr, whereDf∪Dr = Dtrain andDf∩Dr = ∅. An unlearner
attempts to remove the influence of Df ⊂ Dtrain from the
model θ0. Intuitively, the unlearner can retrain a new model
θr ← A(Dr) from scratch on the retention set, often viewed
as an oracle model as a result of MU. However, retraining
is arguably resource-intensive and impractical, especially
when multiple unlearning requests arrive sequentially. To
overcome this limitation, the key is to design an unlearning
algorithm U that directly modifies the original model θ0 for
each unlearning request, denoted by θu ← U(θ0,Df ,Dr),
such that the unlearned model θu is as close to the oracle θr

as possible. Measuring the difference between the two mod-
els is yet another heated topic under discussion, along with
the evaluation protocols for MU; We refer readers to (Thudi
et al., 2022b; Triantafillou et al., 2024; Liu et al., 2024c;
Thaker et al., 2024) if they are interested in related works.

2.2. Data-tracing MU for FMs

The data-tracing momentum in MU carried over to the
confluence of MU and FMs, or FMU in short. The term
FMs was coined by (Bommasani et al., 2021), referring
to big models trained on broad data adaptable to a wide
range of downstream tasks. Eldan & Russinovich (2023)
unlearned Harry Potter books from a language FM (Tou-

Figure 2. The foundation model unlearning requests may come
from different members of the AI community. Not all members
have access to the training data. They may instead issue unlearning
requests as high-level semantic descriptions.

vron et al., 2023). Some studies explored MU to prevent
text-to-image FMs from generating harmful content and un-
desirable styles (Gandikota et al., 2023; Gong et al., 2025).
Most recently, Cheng & Amiri (2025); Li et al. (2024c);
Poppi et al. (2025) made initial efforts on multimodal FMU.

Despite these early works and some new benchmarks (Maini
et al., 2024; Li et al., 2024d;c), there remains no satisfactory
research playground when it comes to FMU. Thaker et al.
(2024) experimentally showed that one could game existing
FMU benchmarks rather than making real progress. Liu
et al. (2024c) pointed out several challenges of MU for
large language models, such as generality, authentication,
and precision of an unlearning algorithm and its outcome.
We celebrate and welcome these studies and discussions,
which are much needed to formalize a reasonable research
playground for FMU. This work adds to this discussion an
actionable proposal, as elaborated below.

3. Lifting data to knowledge for FMU
This work proposes to lift the focus on training data
points to knowledge and capabilities for foundation
model unlearning (FMU). Take the knowledge hierarchy
in Figure 1, for example. While existing FMU accepts
unlearning requests on the data point level only, we addi-
tionally allow one to request FMU at the knowledge level
(e.g., please unlearn Flat-Coated Retriever from a vision-
language model without hurting the model’s other capabili-
ties). More concretely, an unlearning request for FMs con-
sists of a forget set Df ⊂ {data, knowledge} and nothing
else, i.e., the retention set Dr is left unspecified, or Dr = ∅.
We contend that this request format is a user-friendly inter-
face between unlearners and all relevant parties that might
issue unlearning requests to FMs. Meanwhile, it provides
unlearners sufficient flexibility to develop practical algo-
rithms by translating the knowledge-level requests to data
sets, constraints, and auxiliary models, to name a few.
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3.1. Who might request FMU?

As illustrated in Figure 2, FMs are not exclusive to model de-
velopers; they are also the focal point of many other parties
like data providers, product developers, legal and policy reg-
ulators, and researchers in the community. Existing works
on FMU mainly tried to remove the influence of some train-
ing examples from models, a scenario typically associated
with data providers or model developers who possess direct
access to the training data. Indeed, a common user could be-
come a data provider to FMs at a certain point, and yet they
could also withdraw the authorization about the use of their
data at a later time, hence necessitating targeted unlearning
of specific samples. For model developers, discarding data
that has become irrelevant or obsolete helps preserve the
model’s accuracy and usability. Following legal and regula-
tory requirements, regulators must ensure that FMs are free
from harmful, malicious, and undesirable content. These
legislative entities often have no access to specific training
data, and instead, it is more convenient for them to deliver
the regulations as requests to unlearn at the knowledge level.
Enterprise users may use FMs for specialized tasks that
require unlearning undesired features. Finally, end users
might dislike certain behaviors of an FM for cultural or per-
sonal reasons and request the model to avoid/unlearn those.
Overall, the unlearning requests are extremely diverse from
different parties of the FM ecosystem, expressed at both
data and knowledge levels.

In response to the wide range of needs in the real world,
FMU cannot trace training data points only. Instead, we
advocate for knowledge-tracing FMU. Beyond this practical
argument, we also draw inspiration from cognitive science.

3.2. Knowledge-tracing FMU akin to human forgetting

We reinforce the significance of knowledge-tracing FMU
using insights from cognitive and psychology studies about
forgetting. Although forgetting is often perceived as harm-
ful and frustrating in daily life (Averell & Heathcote, 2011),
it is, in fact, an essential part of the human cognition process
(Nørby, 2015; Gravitz, 2019; Ryan & Frankland, 2022). It
plays a vital role in knowledge acquisition, serving as a
foundation for developing semantic and procedural under-
standing by enabling abstraction and automation (Nørby,
2015). With limited cognitive capacity, humans excel at
selectively forgetting at different levels, from instances to
events to abstract knowledge, allowing them to prioritize
relevant knowledge and enhance future learning (Gravitz,
2019; Bjork & Bjork, 2019; Davis & Zhong, 2017).

Although one might argue that FMs do not necessarily need
to learn from how human brains work to achieve human-
level intelligence, drawing ideas from cognitive findings
has been beneficial for machine learning and unlearning in
general. Examples include unlearning for memory optimiza-

Figure 3. Illustration of fine-grained vision concepts forgetting.
The unlearned model fails to recognize the forgetting concepts but
successfully identifies the corresponding coarse-grained concepts.

tion (Sukhbaatar et al., 2021) and the forget-and-relearn
framework (Zhou et al., 2022). To this end, knowledge-
tracing FMU is more akin to human forgetting than the
data-tracing formalization. If FMs could selectively unlearn
irrelevant information or abstract away unnecessary details
— much like human development — they would become
better at acquiring new knowledge in a lifelong learning
scheme (Wang et al., 2024d) efficiently and adaptively.

4. Case Study
Finally, following this work’s position, we provide a
case study about Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) to bridge the position with
real-world applications and, in return, explore the position
in depth, spanning multiple factors and perspectives.

We envision that Oudi Inc., a car manufacturer and an enter-
prise user of the CLIP model, has retired their O1 sedan for
some reason. Accordingly, Oudi’s product team requests
that the Oudi O1 concept be unlearned from CLIP. An un-
learner is equipped with existing MU methods developed in
the research community but realizes they all operate on the
training data points. The unlearner cannot access CLIP’s
training data; instead, they assemble a set of exemplar Oudi
O1 images as the proxy forgetting set Df (but no retention
set for convenience). Figure 3 illustrates this envision, and
we formalize it as follows.

4.1. FMU for visual recognition: Experiment setup

Denote by x, y an object image and its class label, respec-
tively. We cast the class label to a knowledge ontology and,
for simplicity, we consider a taxonomy of two levels of
object classes. Denote by yc the parent of label y, i.e., the
coarse-grained label of image x. Let C be the set of fine-
grained classes, y ∈ C. The unlearning request is at the fine-
grained level,Df ⊆ C. Notably, the forgetting set is a subset
of the fine-grained classes rather than training data points.
The unlearner then enhances the forgetting set with images
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and hierarchical labels Dhf = {(xi, yi, y
c
i )|yi ∈ Df}, aim-

ing to remove CLIP’s visual recognition capacity for these
requested classes without impairing CLIP’s other usage.

4.1.1. DATASETS FOR UNLEARNING

We compile two fine-grained visual recognition datasets,
CompCars-S and ImgnetDogs, of manmade and natural
objects, respectively. CompCars-S is a subset of Com-
pCars (Yang et al., 2015), a large-scale fine-grained car
dataset with images from different viewpoints. It includes an
extensive range of subcategories and a unique hierarchical
structure. The subset we selected is relatively balanced and,
more importantly, CLIP-friendly in that the CLIP model
achieves high recognition accuracy. ImgnetDogs is a subset
of ImageNet-1K (Deng et al., 2009), consisting of 99 fine-
grained breeds of dogs worldwide. We randomly select 200
training images for each dog breed and use the correspond-
ing validation subset in ImageNet as our test set. We use
WordNet (Fellbaum, 1998) to find the coarse-grained labels
for the dog breeds. Please see Appendix B for more details
of the two datasets.

4.1.2. UNLEARNING METHODS

While the unlearning requests in this case study happen
at the class level, Df ⊆ C, we allow an unlearner to en-
hance them by collecting data for the forgetting classes:
Dhf = {(xi, yi, y

c
i )|yi ∈ Df}. Hence, we are able to ex-

periment with state-of-the-art data-tracing MU methods:
Gradient ascent (GA) (Jang et al., 2022; Thudi et al., 2022a;
Kurmanji et al., 2024) for the loss computed over the (en-
hanced) forgetting set, gradient difference (GD) (Liu et al.,
2022), KL minimization (Yao et al., 2023), random labeling
(Relabeling) (Golatkar et al., 2020), task vectors (Ilharco
et al., 2022), weight saliency unlearning (SalUn) (Fan et al.,
2023), maximizing entropy (ME+GD) (Yuan et al., 2024)
and negative preference optimization (NPO) (Zhang et al.,
2024b). We refer readers to Appendix D for more details of
these methods.

A coarse-grained “retention set”. Some of these methods
depend on a retention set, which our unlearner does not
have due to the inaccessibility of CLIP training data. In-
stead, we obtain an unconventional “retention set”,Dr

Parent =
{(xi, y

c
i )|(xi, yi, y

c
i ) ∈ Dhf}, consisting of the images

in the unlearner-assembled forgetting set, Dhf , and their
coarse-grained class labels, {yci }, leveraging the fact that the
unlearner is supposed to preserve CLIP’s recognition perfor-
mance over these labels, which are parents of the forgetting
classes in the object taxonomy.

A hinge loss for gradient ascent (GA). GA is the core of
the above MU methods except task vectors and relabeling,
and yet GA is prone to over-forgetting (Wang et al., 2024b;
Tian et al., 2024). We address this issue using a controllable

and bounded hinge loss:

max [0,m+ SIM(xi, yi)−maxy ̸=yi,y∈C SIM(xi, y)] (1)

where SIM(x,y) is the CLIP similarity between image x and
label y, and m is the margin, a nonnegative hyper-parameter
controlling the magnitude of forgetting. A larger margin
requires more unlearning efforts. We can compare this hinge
loss with NPO (Zhang et al., 2024b), another approach
designed to avoid GA’s overly forgetting. While NPO also
bounds their loss, it suffers from the initial model’s mistakes
as shown by Fan et al. (2024) empirically. In contrast, our
loss effectively mitigates excessive unlearning by 0-clipping;
if the initial model makes a mistake at a data point (xi, yi),
the loss is 0 when m = 0.

Regularization using the enhanced forgetting set Dhf .
We find two intuitive regularization techniques universally
effective for all MU methods studied in this work. Both help
maximize the use of the images in the enhanced forgetting
set Dhf . Given an input image xi, CLIP can return its simi-
larities to all coarse-grained labels. We normalize them into
a valid distribution. The first regularizer is a KL-divergence
between such distributions induced by the original CLIP
and the one to be unlearned. The second regularizer is de-
fined similarly, except that the distributions are over the
fine-grained classes not covered by the forgetting set.

4.1.3. EVALUATION

Noting that evaluation methodologies for MU remain a
point of heated discussion in the community (Liu et al.,
2024c; Thaker et al., 2024), we design ours following both
task-specialized MU (Triantafillou et al., 2024) and MU for
language FMs (Eldan & Russinovich, 2023). The former
leads to a quality-utility trade-off measure explained below,
and the latter is about preserving CLIP’s general capabilities.

Quality-utility trade-off. Given a dataset described above,
the forgetting quality and utility are metrics calculated
within this dataset. Denote by θ0 and θu the CLIP mod-
els before and after unlearning, respectively. We define
forgetting quality as the model’s degradation in recognition
accuracy for the forgetting classes Df ⊆ C after unlearning:

Q = 1− Ā(Df ), Ā(·) = ACC(·; θu)/ACC(·; θ0)

where Ā(Df ) is the accuracy of the unlearned model θu,
ACC(Df ; θu), over the forgetting classes Df scaled by that
of the original model θ0. The higher the forgetting quality,
the better, as it indicates how much of the targeted knowl-
edge has been removed from CLIP.

The utility cares about the unlearned model’s preservation of
visual recognition performance over the classes other than
the targeted forgetting ones. Importantly, we calculate utility
using the full taxonomy of class labels; for the two datasets
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Table 2. Comparison of fine-grained concept removal results across different baseline methods on ImgnetDogs.

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑ Zero-shot ↑
Origin CLIP (Radford et al., 2021) 86.20 93.40 50.88 65.55 – – – 83.24

GA (Jang et al., 2022) 1.00 0.00 7.80 1.57 100.00 6.30 11.85 78.55
GDiff (Liu et al., 2022) 69.60 0.00 40.54 9.30 100.00 58.21 73.58 80.89

GA+KL (Yao et al., 2023) 77.40 3.00 41.28 35.96 96.79 75.26 84.68 81.66
Relabeling (Golatkar et al., 2020) 44.80 43.80 29.57 45.64 53.10 59.91 56.30 81.32

SaLUN(Fan et al., 2023) 47.80 34.80 30.49 46.52 62.74 62.12 62.43 81.77
ME+GD (Yuan et al., 2024) 95.20 53.20 45.12 46.79 43.04 88.69 57.52 81.70

Task vector (Ilharco et al., 2022) 79.60 36.60 44.58 62.38 60.81 91.71 73.13 82.57
NPO+KL (Zhang et al., 2024b) 88.00 8.00 49.33 53.91 91.43 93.06 92.24 82.20

NHL+KL(Ours) 88.20 2.00 48.23 54.56 97.86 92.68 95.20 82.53

in this work, the scope of interest includes bothDr = C\Df ,
the retention classes at the same level as the forgetting ones,
and their parent classes in the taxonomy, represented as
Dr

Parent and Df
Parent. Specifically, the utility of an unlearned

model is U = (Ā(Dr)+Ā(Dr
Parents)+Ā(Df

Parents))/3, where
Ā is the same scaled accuracy function as used in defining
the forgetting quality.

We then define a Q-U score as the harmonic mean of quality
and utility, inspired by the F-score: Q-U = 2QU/(Q+ U).

Preservation of general capabilities. Radford et al. (2021)
demonstrated CLIP’s remarkable zero-shot image classifica-
tion performance over multiple datasets, which should not
be impaired by the requested unlearning as long as those
class labels have no overlap with the forgetting set Df . To
test this general ability of unlearned CLIP, we follow (Rad-
ford et al., 2021; Khattak et al., 2023) to use several image
datasets to assess the zero-shot classification performance
of the model. We select the coarse-grained object recogni-
tion datasets of CIFAR100 (Krizhevsky et al., 2009) and
Caltech101 (Fei-Fei et al., 2004) and the fine-grained recog-
nition datasets of Flower102 (Nilsback & Zisserman, 2008),
StanfordCars (Krause et al., 2013), OxfordPets (Parkhi et al.,
2012), and Food101 (Bossard et al., 2014). Please see Ap-
pendix C and Appendix E for more training details.

4.2. Results

Main comparison results. The results of different unlearn-
ing baselines on the ImgnetDogs dataset are presented in
Table 2. The experimental results demonstrate that GA-
based methods achieve effective forgetting with high for-
getting quality. However, due to the unbounded optimiza-
tion loss, the performance of retained fine-grained concepts
significantly declines. Without a regularization term, the
fine-grained accuracy on the retain set drops sharply to
1.57% after unlearning. Incorporating the KL-divergence
term on the forget set to regularize the unlearning process
enhances utility preservation, increasing the retain set accu-

racy to 35.96%. Relabeling is a commonly used unlearning
method that assigns random labels to the forget set, which
destroys the original mappings. However, relabeling is not
effective for fine-grained concept unlearning. The forget
quality and model utility are very low among all the com-
paring methods. Recent work (Zhao et al., 2024) also
illustrates the inferiority of relabeling-based methods when
the similarity of forget and retain sets is very high. SalUn
is also a relabeling-based method but only updates the es-
sential parameters based on the gradient information of the
forget set. The Q-U score of SalUn is better than the re-
labeling method (62.43% vs. 56.30%). The ME method
minimizes the KL divergence between the model’s output
distribution and a uniform distribution, which is similar to
the relabeling method. However, this approach disrupts the
intrinsic relationships among fine-grained concepts, leading
to a significant reduction in the accuracy of the concepts that
are retained. The task-vector method achieves forgetting
by negating the task vector of the forget set but struggles
to effectively unlearn fine-grained concepts, resulting in
low forgetting quality while maintaining high model utility.
Unlike the unbounded loss in the GA-based method, the
unlearning optimization loss for NPO is bounded, avoid-
ing catastrophic collapse and achieving better unlearning
performance. Our proposed method (NHL), incorporating
KL divergence, demonstrates a superior balance between
forgetting quality and model utility compared to the other
evaluated baselines. It attains a Q-U score of 95.20%, nearly
3% higher than the NPO method, the current state-of-the-art
among data-tracing unlearning approaches.

We also report the average zero-shot classification accuracy
of the unlearned model. The results indicate that forgetting
specific fine-grained concepts generally does not signifi-
cantly impair the model’s generalizability, except in the
case of the GA method without regularization, which expe-
riences notable degradation. Moreover, models employing
relabeling-based unlearning methods exhibit a more pro-
nounced decline in generalizability compared to those using
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Table 3. Fine-grained concept removal results for unlearned classes across different memorization levels on ImgnetDogs.

Df
test Dr

test Performance MetricsSetting coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 86.20 93.40 50.88 65.55 – – –

Difficult Unlearn Setting 88.20 2.00 48.23 54.56 97.86 92.68 95.20

Origin CLIP (Radford et al., 2021) 75.00 82.80 52.13 66.74 – – –
Medium Unlearn Setting 6.00 0.40 50.29 58.29 99.52 94.61 97.00

Origin CLIP (Radford et al., 2021) 60.73 75.82 53.66 67.42 – – –
Easy Unlearn Setting 64.36 0.73 52.21 63.09 99.04 96.95 97.98

Table 4. Unlearning performance with different numbers of forgot-
ten training samples per fine-grained class.

Samples Num. Quality ↑ Utility ↑ Q-U ↑
10 70.02 95.58 80.83
20 80.09 94.97 86.89
30 93.36 94.20 93.78
50 94.65 93.69 94.17

100 95.72 92.58 94.12
150 96.15 93.19 94.65
200 97.86 92.68 95.20

NPO and our proposed unlearning strategies. Notably, when
a model is trained without a designated retain set, its gen-
eralization ability aligns with its performance on the retain
set—stronger retention of fine-grained concepts corresponds
to better generalization preservation.

Unlearning results for fine-grained forgetting classes
across various levels of memorization. Similarly to hu-
mans, who do not retain memories equally, foundation mod-
els also demonstrate varying degrees of memorization across
different concepts. Recent studies indicate that memoriza-
tion levels significantly influence the difficulty of the un-
learning process (Zhao et al., 2024; Zhao & Triantafillou,
2024). In our case study, we use confidence scores to quan-
tify the model’s memorization of concepts, providing a sim-
pler alternative to traditional memorization metrics (Zhao &
Triantafillou, 2024). We conducted three sets of experiments
using our proposed unlearning methods, where the aver-
age confidence of the concepts to be unlearned decreased
sequentially, representing difficult, medium, and easy un-
learning settings, respectively. The unlearning results in
Table 3 reveals a clear trend: removing high-confidence
concepts leads to a significant decline in model utility com-
pared to lower-confidence concepts. Therefore, it is crucial
to prevent excessive unlearning of low-confidence concepts
and carefully regulate the unlearning of high-confidence
concepts to maintain the model’s utility. Please refer to
Appendix F for more detailed results.

Results with varying numbers of forgetting training sam-

ples. Table 4 illustrates the influence of varying the num-
ber of forgetting training samples on the unlearning perfor-
mance of our proposed method. When the number of forget-
ting training samples is too small—such as only 10 images
per category—achieving effective unlearning is challenging,
resulting in lower forget quality (70%). Unlearning qual-
ity improves as the number of forgotten samples increases;
however, this comes at the cost of reduced model utility. No-
tably, the improvement in unlearning effectiveness becomes
less significant beyond 30 samples, highlighting the sample
efficiency of our proposed unlearning method.

5. Alternative Views
While we argue to prioritize the research on knowledge-
tracing FMU, one might argue that the data-tracing MU
should remain the top priority even for FMs because the re-
sulting methods are generally applicable. Indeed, we antici-
pate that the unlearning methods in the proposed knowledge-
tracing paradigm will still rely on data for unlearning.

One might also have a different view about the insights
we draw from cognitive science. Airplanes fly in a way
different from how birds fly. Hence, it is not necessary
to design FMU frameworks following the human brain’s
forgetting mechanism.

There could also be a wild alternative view that FMs do
not need unlearning because the scaling law and hardware
innovation allow them to continually grow and learn new
information without losing previously acquired capabilities.
Instead of prioritizing research on FMU, the focus should
be on continual learning of FMs, where selective forgetting
could be a subtopic or natural property emerging in an FM’s
continual learning process.

Another research priority one would probably like to pursue
is evaluation at MU. We have witnessed some works on
this topic already (Thaker et al., 2024; Thudi et al., 2022b),
which call for more comprehensive and solid benchmarks
for MU research. In the data-tracing MU, one can obtain
an oracle model by retraining a model over the retention
set. However, such a model is often not supplied with any
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existing MU benchmarks, and it remains unclear how to
leverage the oracle model to evaluate MU methods.

6. More related work
Besides the works reviewed in Section 2, our position and
case study are also broadly related to the following works.

Machine unlearning on vision. The SISA framework
(Bourtoule et al., 2021) has significantly advanced machine
unlearning in the classification task, with subsequent efforts
(Wu et al., 2020; Yan et al., 2022) enhancing retraining ef-
ficiency. Recent research has shifted towards approximate
unlearning methods that modify trained models directly to
improve efficiency. Early approaches employing Hessian
approximations (Guo et al., 2019; Sekhari et al., 2021) faced
high computation costs. To address this issue, more general
methods have been introduced for class-wise unlearning in
deep neural networks (Chen et al., 2023; Lin et al., 2023).
SCRUB (Kurmanji et al., 2024) implements a novel ap-
proach by regarding the original model as a teacher model
to guide the unlearning process, while SalUn (Fan et al.,
2023) focuses on identifying important neurons in the for-
getting set and applies relabeling techniques. Moreover, Liu
et al. (2024b) proposes reducing the gap between exact and
approximate unlearning through model sparsification. The
concept of machine unlearning has also been extended to
diffusion models (Gandikota et al., 2023; Park et al., 2024;
Gong et al., 2025; Zhang et al., 2024c), aiming to prevent
the generation of harmful or unethical content.

MU for large language models (LLMs). How to remove
the influence of undesirable data on the pre-trained LLMs
(Liu et al., 2024c; Shi et al., 2024; Huu-Tien et al., 2024;
Li et al., 2024d) has received significant attention. Vari-
ous unlearning approaches have been proposed, including
gradient ascent (Jang et al., 2022), random relabeling (Yao
et al., 2024; 2023), and techniques such as regenerating de-
sirable answers (Eldan & Russinovich, 2023) or safe tokens
(Ishibashi & Shimodaira, 2023), demonstrating effective
unlearning capabilities. Additionally, approaches combin-
ing gradient ascent with KL divergence (Wang et al., 2023;
Chen & Yang, 2023; Yao et al., 2024) or gradient descent
(Yao et al., 2024; Chen & Yang, 2023) have been widely
adopted. Task-vector-based methods (Zhang et al., 2023;
Liu et al., 2024d; Hu et al., 2024) have also been extensively
explored, achieving strong performance in unlearning tasks.
Inspired by knowledge editing, weight-importance-based
strategies (Wu et al., 2023; Yu et al., 2023) have been intro-
duced to identify and modify critical parameters to maintain
the model’s utility. Beyond model-based approaches, input-
based unlearning methods (Pawelczyk et al., 2023; Huang
et al., 2024c) have emerged as a complementary solution
for black-box LLMs unlearning.

Multi-modality MU. Compared to single modality unlearn-
ing, unlearning for multimodal vision-language models
(Cheng & Amiri, 2025; Li et al., 2024c; Ma et al., 2024;
Yang et al., 2024; Poppi et al., 2025) remains largely un-
derexplored. SIU (Li et al., 2024c) proposed an efficient
method for unlearning visual concepts in the pre-trained
LLaVA (Liu et al., 2024a) using just one image during the
training process. MMDelte (Cheng & Amiri, 2025) pro-
posed a multi-modality unlearning method for fine-tuned
FMs on image-text and graph-text datasets. CLIPErase
(Yang et al., 2024) and Safe-CLIP (Poppi et al., 2025) ex-
plored machine unlearning on the CLIP model. Inspired by
TOFU (Maini et al., 2024), a new unlearning benchmark FI-
UBENCH (Ma et al., 2024), which contains fictitious facial
identity data, has been proposed to evaluate the unlearning
methods on the fine-tuned vision-language model.

Model editing. Model editing, or knowledge editing
(Mitchell et al., 2022; Huang et al., 2024b; Wang et al.,
2024c), shares similarities with unlearning, as both seek to
modify the model while preserving its generalization capa-
bilities. However, the two processes differ fundamentally:
model editing focuses on predefined updates to address
hallucinations in pre-trained models, whereas unlearning
involves removing information without predefined outputs.
While much of the existing research has concentrated on
editing large language models (Mitchell et al., 2021; 2022;
Wang et al., 2024c), recent efforts have introduced bench-
marks for editing VLMs (Huang et al., 2024b; Zhang et al.,
2024a; Huang et al., 2024a; Li et al., 2024b). Among these,
MIKE and MC-MIKE (Li et al., 2024b; Zhang et al., 2024a)
specifically target fine-grained knowledge editing, which
can be seen as a process of fine-grained concept learning.

7. Conclusion
This position paper is on the confluence of MU and FMs,
or FMU in short. We have provided a historical review
of MU and FMU, which exposes that existing works trace
data — removing specific training examples’ influence from
FMs. We argue that this setup is impractical for many FM
users because they have no or limited access to FMs’ mas-
sive training data. Instead, we advocate for a shift toward
knowledge-tracing FMU to meet diverse unlearning requests
from all FM stakeholders. Besides this argument from a
practical view, we also draw insights from cognitive science,
backing that knowledge-tracing FMU aligns with human-
like memory processes. Finally, we have provided a detailed
case study about CLIP, a visual-language FM, to explore
our position further. The learning requests are formalized
about the removal of some specific fine-grained object class
recognition capabilities. We encourage the research com-
munity to pay attention to what to unlearn (knowledge or
data) when they expand investigations into MU and FMU.
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A. Further Details of Related Work
In this section, we provide more details of the unlearning setups of existing unlearning work. We systematically categorize
unlearning tasks, models, and targets of related papers in Table 5.

Table 5. Experiment setup details for existing machine unlearning work.

Related Work Task Unlearned Model/Target

(Golatkar et al., 2020) Image classification All-CNN/Entire Class or a hundred images of the class
(Jang et al., 2022) Unlearn Privacy Information GPT-Neo/Privacy Instances
(Chen et al., 2023) Image classification All-CNN and Resnet/Entire Class
(Lin et al., 2023) Image classification Resnet/Entire Class
(Fan et al., 2023) Image classification and generation Resnet and DDPM/Random samples and Entire class

(Chen & Yang, 2023) Classification and Summarization Fine-tuned T5 and T3 model/Random Instances
(Zhang et al., 2023) Reduce the toxicity GPT-2 Model/All instances

(Gandikota et al., 2023) Text-to-Image generation Stable Diffusion Model/Predefine Concepts
(Wang et al., 2024b) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities
(Maini et al., 2024) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities

(Zhang et al., 2024b) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities
(Wu et al., 2023) Privacy information forgetting Fine-tuned BERT-base model/All instances

(Eldan & Russinovich, 2023) Unlearn the Harry Potter books Pre-trained Llama2-7b model/All instances
(Yao et al., 2023) Unlearn the Harry Potter books Fine-tuned Llama model/All instances
(Yao et al., 2024) Removing copyrighted data Pre-trained Yi-6B /Pre-training samples
(Li et al., 2024c) Unlearn visual concepts Pre-trained LLaVA/Predefined visual concepts
(Li et al., 2024d) Remove hazardous knowledge Pre-trained ZEPHYR-7B and YI-34B/Hazardous VQA

(Poppi et al., 2025) Unlearn unsafe embeddings Pre-trained CLIP/Unsafe Images and Texts

B. More details of the Dataset
CompCars-S. The original dataset comprises 161 coarse and 1687 fine classes; however, the classification accuracy
across these classes is notably low. Some coarse-grained categories may contain only one fine-grained category, and some
fine-grained categories have limited images. Consequently, we implemented a filtering process on the original dataset. The
process is as follows: Initially, at the coarse-grained level, each category must include at least two fine-grained categories, and
each fine-grained category must contain no fewer than 90 images; otherwise, the category would be removed. Subsequently,
we utilized a pre-trained CLIP model (ViT-L/14) to refine the dataset further. Those images and car models are retained if
the accuracy of the fine class is above 20%. Otherwise, the corresponding car model categories and images are removed.
The details of dataset information are presented in Table 6.

ImgnetDogs. The construction of the ImgnetDogs dataset is based on WordNet (Fellbaum, 1998). The StanfordDog dataset,
as introduced in (Khosla et al., 2011), is also a fine-grained dog breed recognition dataset, which forms a subset of ImageNet.
However, some fine-grained dog categories in the StanfordDog datasets are assigned to highly abstract coarse categories
across different semantic levels. We selectively chose fine-grained categories with clear, well-defined, higher-level coarse
semantic information from the original ImageNet dataset.

Table 6. Hierarchy Fine-grained Recognition Dataset Details

Dataset Coarse Num. Fine Num. Training Num. Testing Num.

CompCars-S 48 292 26,630 8,943
ImgnetDogs 14 99 19,800 4,950

C. More Details of the Case Study Setting
Unlearning fine-grained concepts that the model initially fails to recognize or has low accuracy is meaningless. Therefore,
the selected concepts for unlearning should meet a predefined accuracy threshold. In our case study, we focus on unlearning
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fine-grained classes with an accuracy above 90%. For the medium and easy unlearning settings in ImgnetDogs, the overall
accuracy of the unlearned fine-grained classes is 82% and 75%, respectively. The specific fine-grained concepts unlearned
for each dataset are detailed Table 7.

Table 7. Unlearned fine-grained concepts for each dataset.

Dataset Unlearn Fine Classes
CompCars-S Acura MDX, Lexus RX, Jaguar XK, MINI CABRIO, Audi A7, Audi A5 coupe,

Cadillac SRX, Corvette, Mustang
ImgnetDogs Difficult German short-haired pointer, Boston terrier, West Highland white terrier, Labrador

retriever, golden retriever, German shepherd dog, keeshond, Samoyed, Pomeranian,
Border terrier

ImgnetDogs Medium Irish setter, Gordon setter, basset hound, Airedale terrier, Shih-Tzu, miniature pinscher,
Alaskan malamute, flat-coated retriever, Chesapeake Bay retriever, Sealyham terrier

ImgnetDogs Easy English setter, beagle, whippet, Ibizan hound, Dandie Dinmont terrier, standard poodle,
Border collie, Blenheim spaniel, cairn terrier, Doberman, groenendael

D. Baseline Machine Unlearning Methods
Gradient Ascent. Gradient Ascent (Jang et al., 2022; Thudi et al., 2022a; Kurmanji et al., 2024) is a straightforward
yet effective unlearning method applied to various unlearning settings. GA aims at maximizing the predicted loss on the
forgetting set, which can be formulated as follows:

LGA =
∑

(xi,yi)∈Df

[log(yi|xi, θ)]. (2)

Gradient Difference. Gradient Difference (Liu et al., 2022) introduces the regularization term on the retaining dataset,
which helps maintain the model ability on the retaining dataset. By incorporating the GA loss alongside the GD loss, the
GDiff objective can be formulated as:

LGD =
∑

(xi,yc
i )∈Df

[− log(yci |xi, θ)] , (3)

LGDiff = LGA + LGD. (4)

KL Minimization. Different from GD, KL minimization (Yao et al., 2023) minimizes the KL divergence between the
prediction of the unlearned model and the origin model on the retaining dataset. The objective is defined as:

LKL =
∑

(xi,yc
i )∈Df

KL(pθ0(y
c
i |xi)||pθ(yci |xi)). (5)

Random Labeling. By fine-tuning the original model using relabeled labels (Golatkar et al., 2020) on the forgetting
dataset, the relabeling method overwrites the information associated with the original labels. The optimization objective for
relabeling is as follows:

LRelabel =
∑

(xi,.)∈Df

[−log(yrand|xi, θ)], (6)

where yrand is randomly chosen from the label set and yrand ̸= yf .

Negative Preference Optimization. To address the catastrophic collapse problem of GA, NPO (Zhang et al., 2024b) has
introduced the bounded optimization loss defined as

LNPO = − 2

β

∑
(xi,yi)∈Df

[logσ(−βlog pθ(yi|xi)

pθ0(yi|xi)
]. (7)
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Task Vectors. Task vector (Ilharco et al., 2022; Liu et al., 2024d) first computes the forgetting set-specific vector defined as

τf = θtune − θ0, (8)

where θtune stands for the model tuned on the forgetting set Df and θ0 represent the origin trained model. Subsequently, the
task vector is negated and applied to the original model weights to compute the unlearned model as follows

θu = θ0 − ατf . (9)

SalUn. SalUn (Fan et al., 2023) introduces a gradient-based weight saliency map to identify important parameters for
unlearning. The saliency map is defined as:

ms = I[∇θL(θ,Df )θ=θ0 > α], (10)

where I[·] denotes the indicator function and α is a predefined threshold controlling the selection. The method selectively
updates parameters with high gradient magnitudes using a relabeling strategy while freezing the remaining parameters to
preserve the model’s utility.

ME. ME (Yuan et al., 2024) minimizes the output distribution of the unlearned model between the uniform distribution,
which is defined as:

LME =
∑

(xi,yi)∈Df

KL(UK ||pθ(yi|xi)) (11)

where UK is the uniform distribution over the classes.

Table 8. Prompts of Compcars-S and ImagenetDog dataset.

Dataset Prompts
CompCars-S ‘a photo of a {}’, ‘a photo of the {}’, ‘a photo of my {}’,

‘i love my {}!’, ‘a photo of my dirty {}’, ‘a photo of my clean {}’,
‘a photo of my new {}’, ‘a photo of my old {}’

ImgnetDogs ‘a bad photo of a {}’, ‘a photo of many {}’, ‘a sculpture of a {}’,
‘a photo of the hard to see {}’, ‘a low resolution photo of the {}’, ’a rendering of a {}’,
‘graffiti of a {}’, ‘a bad photo of the {}’, ‘a cropped photo of the {}’,
‘a tattoo of a {}’, ‘the embroidered {}’, ‘a photo of a hard to see {}’,
‘a bright photo of a {}’, ‘a photo of a clean {}’, ‘a photo of a dirty {}’,
‘a dark photo of the {}’, ‘a drawing of a {}’, ‘a photo of my {}’,
‘the plastic {}’, ‘a photo of the cool {}’, ‘a close-up photo of a {}’,
‘a black and white photo of the {}’, ‘a painting of the {}’, ‘a painting of a {}’,
‘a pixelated photo of the {}’, ‘a sculpture of the {}’, ‘a bright photo of the {}’,
‘a cropped photo of a {}’, ‘a plastic {}’, ‘a photo of the dirty {}’,
‘a jpeg corrupted photo of a {}’, ‘a blurry photo of the {}’, ‘a photo of the {}’,
‘a good photo of the {}’, ‘a rendering of the {}’, ‘a {} in a video game’,
‘a photo of one {}’, ‘a doodle of a {}’, ‘a close-up photo of the {}’,
‘a photo of a {}’, ‘the origami {}’, ‘the {} in a video game’,
‘a sketch of a {}’, ‘a doodle of the {}’, ‘an origami {}’,
‘a low resolution photo of a {}’, ‘the toy {}’, ‘a rendition of the {}’,
‘a photo of the clean {}’, ‘a photo of a large {}’, ‘a rendition of a {}’,
‘a photo of a nice {}’, ‘a photo of a weird {}’, ‘a blurry photo of a {}’,
‘a cartoon {}’, ‘art of a {}’, ‘a sketch of the {}’,
‘an embroidered {}’, ‘a pixelated photo of a {}’, ‘itap of the {}’,
‘a jpeg corrupted photo of the {}’, ‘a good photo of a {}’, ‘a plushie {}’,
‘a photo of the nice {}’, ‘a photo of the small {}’, ‘a photo of the weird {}’,
‘the cartoon {}’, ‘art of the {}’, ‘a drawing of the {}’,
‘a photo of the large {}’, ‘a black and white photo of a {}’, ‘the plushie {}’,
‘a dark photo of a {}’, ‘itap of a {}’, ‘graffiti of the {}’,
‘a toy {}’, ‘itap of my {}’, ‘a photo of a cool {}’,
‘a photo of a small {}’, ‘a tattoo of the {}’
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E. Training Details
We use a pre-trained ViT-L/14 CLIP model as the base model in all experiments. The prompts for each dataset are provided
in Table 8. The unlearning process is trained for 8 epochs using the Adam optimizer. The batch size is set to 32 for
the ImgnetDogs dataset and 16 for CompCars-S. For GA-based methods, the initial learning rate (lr) is set to 8 × 10−8,
for SaLun, it is 2 × 10−7, and for all other methods, it is 1 × 10−7. We save the checkpoint for evaluation when the
unlearning accuracy on the training set stops decreasing. All experiments are conducted on a single Nvidia RTX A6000
GPU. Additional training details for the baseline methods are provided in Table 9. Since no retain set is used during training,
KL divergence and gradient ascent are applied solely to the forget set to preserve the model’s coarse recognition capabilities.

Table 9. Training details and hyper-parameters of the baselines.

Method Optimization Loss function Lr Hyper Parameters

GA LGA(x
f , yf ) 8e-8 -

GDiff LGA(x
f , yf ) + LGD(xf , yfc ) 8e-8 -

ME+GD LME(x
f , yf ) + LGD(xf , yfc ) 1e-7 -

Task Vector LGD(xf , yf ) + 0.05 ∗ LGA(x
f , yfc ) 1e-7 α = 1.5

KL LGA(x
f , yf )+ αcKL(xf , yfc )+ αfKL(xf , yf ) 8e-8 αc = 5, αf = 20

NPO+KL LNPO(x
f , yf )+ αcKL(xf , yfc )+ αfKL(xf , yf ) 1e-7 β = 0.5, αc = 5, αf = 20

NHL+KL Lu(x
f , yf )+ αcKL(xf , yfc )+ αfKL(xf , yf ) 1e-7 m = 2, αc = 10, αf = 20

Relabel LRelabel(x
f , .) 1e-7 -

SalUn LRelabel(x
f , .) 2e-7 α = 0.1

Table 10. Generalization performance across different baseline methods for the unlearned model.

Dataset Stanford Cars Food101 Flower102 Catech101 Cifar100 Avg ↑
Origin CLIP (Radford et al., 2021) 77.75 92.32 79.18 91.11 75.82 83.24

GA (Jang et al., 2022) 75.43 89.26 74.42 89.73 63.90 78.55
GDiff (Liu et al., 2022) 77.10 90.75 77.36 90.57 68.67 80.89

GA+KL(Yao et al., 2023) 76.59 91.47 78.08 90.78 71.40 81.66
NPO+KL (Zhang et al., 2024b) 77.07 91.90 78.26 90.65 73.12 82.20

Relabeling (Golatkar et al., 2020) 76.88 91.38 76.26 89.25 72.81 81.32
Task Vector (Ilharco et al., 2022) 77.15 92.05 78.53 90.28 74.85 82.57

SalUn (Fan et al., 2023) 77.50 91.56 76.66 89.31 73.83 81.77
ME+GD (Yuan et al., 2024) 77.14 91.56 76.48 89.50 73.80 81.70

NHL+KL(Ours) 77.24 92.00 78.81 90.68 73.94 82.53

F. More results
F.1. More results on the ImgnetDogs dataset.

Details of zero-shot classification results are shown in Table 10. We evaluated several unlearning methods on the OxfordPet
dataset, regarded as an out-of-domain evaluation dataset. According to the results shown in Table 11, nearly all unlearning
methods struggled to achieve high-quality forgetting, except for GA-based methods. While GA-based methods demonstrated
superior unlearning performance, they significantly decreased performance on non-unlearned fine-grained concepts. Since
the CLIP model is a non-generative model, its classification evaluations are based on a closed set, requiring predefined class
names for testing. The limited number of categories in the OxfordPet dataset compared to the training set also impacts the
performance of these unlearning methods. Future work will improve the unlearning method further and expand this case
study to generative models (Li et al., 2024a; Wang et al., 2024a) with fine-grained recognition capabilities.

Additionally, we provide additional results for the medium and easy unlearning settings, as shown in Table 12 and Table 13.
Across different memorization settings, our method consistently performs the best. Additionally, the relabeling-based
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Table 11. Comparison of fine-grained concept removal results across different baseline methods on the OOD dataset.

Df
test Dr

test Performance MetricsSetting coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑
Origin CLIP 92.18 99.10 73.98 91.54 – – –

GDiff 85.77 12.32 54.77 58.59 87.57 77.02 81.96
GA+KL 87.78 14.63 63.31 66.57 85.24 84.50 84.87

NPO+KL 94.09 64.43 69.34 87.94 34.98 96.60 51.37
NHL+KL(Ours) 93.59 72.14 72.15 88.09 27.20 97.92 42.58

Table 12. Comparison of fine-grained concept removal results across different baseline methods on ImgnetDogs (Medium Unlearn).

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 75.00 82.80 52.13 66.74 – – –

GA (Jang et al., 2022) 22.2 0.00 30.70 2.63 100.00 30.81 47.11
GDiff (Liu et al., 2022) 58.4 0.00 41.05 18.05 100.00 61.22 75.95

GA+KL (Yao et al., 2023) 69.00 1.20 49.01 40.38 98.55 82.18 89.62
NPO+KL (Zhang et al., 2024b) 74.6 4.40 50.20 57.30 94.69 93.88 94.28

Relabeling (Golatkar et al., 2020) 50.60 49.40 39.87 51.28 40.34 73.59 52.11
Task vector(Ilharco et al., 2022) 77.60 13.80 54.40 60.09 83.33 96.68 89.51

SalUn(Fan et al., 2023) 55.00 41.40 42.45 54.29 50.00 78.71 61.15
ME+GD (Yuan et al., 2024) 83.60 44.80 43.30 48.67 45.89 85.33 59.68

NHL+KL(Ours) 76.00 0.40 50.29 58.29 99.52 94.60 97.00

methods consistently show the poorest performance. The task-vector method performs well in both medium and easy settings,
indicating that it is unsuitable for high-memorization concept unlearning. Furthermore, the NPO method’s forgetting quality
is not very high in low memorization settings, demonstrating its limitation.

F.2. More results on CompCars-S dataset.

The comparison results of different baseline methods on the CompCars-S dataset are presented in Table 14 and Table 15.
In this dataset, gradient ascent outperforms the KL divergence method. Additionally, relabeling-based methods fail to
achieve effective unlearning, similar to their performance on the ImagenetDogs dataset. Notably, our proposed method
significantly outperforms other unlearning techniques on the CompCars-S dataset. Moreover, the generalizability of most
unlearned models remains largely unaffected, except for the relabeling-based method and the gradient ascent method without
regularization, both of which exhibit substantial degradation.
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Table 13. Comparison of fine-grained concept removal results across different baseline methods on ImgnetDogs (EasyEasy Unlearn).

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 60.73 75.82 53.66 67.42 – – –

GA (Jang et al., 2022) 24.55 0.00 18.39 3.89 100.00 26.82 42.29
GDiff (Liu et al., 2022) 71.09 0.00 45.41 6.73 100.00 64.87 78.69

GA+KL (Yao et al., 2023) 63.82 0.36 49.5 26.23 99.52 77.05 86.85
NPO+KL (Zhang et al., 2024b) 64.55 6.55 54.02 60.66 91.38 96.65 93.94

Relabeling (Golatkar et al., 2020) 37.09 32.18 33.18 44.57 57.55 63.00 60.16
Task vector(Ilharco et al., 2022) 68.36 4.91 48.59 60.86 80.10 97.94 88.12

SalUn(Fan et al., 2023) 39.64 28.19 34.98 45.55 62.82 66.00 64.37
ME+GD (Yuan et al., 2024) 86.18 42.18 53.80 49.18 44.36 90.98 59.64

NHL+KL(Ours) 64.36 0.73 52.21 63.09 99.04 96.95 97.98

Table 14. Comparison of fine-grained concept removal results across different baseline methods on CompCars-S.

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality↑ Utility ↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 92.78 92.10 73.29 71.04 – – –

GA (Jang et al., 2022) 0.00 0.00 3.27 1.28 100.00 2.09 4.09
GDiff (Liu et al., 2022) 88.66 2.75 69.75 18.62 97.02 72.31 82.86

GA+KL(Yao et al., 2023) 45.02 1.38 41.93 8.21 98.51 39.10 55.98
NPO+KL (Zhang et al., 2024b) 89.69 16.15 70.13 39.82 82.46 82.80 82.63

Relabeling (Golatkar et al., 2020) 59.11 25.43 58.70 43.22 72.39 68.21 70.24
Task vector(Ilharco et al., 2022) 82.82 28.52 68.48 60.91 69.03 89.48 77.94

SalUn(Fan et al., 2023) 64.26 23.71 57.69 43.37 74.25 69.67 71.89
ME+GD (Yuan et al., 2024) 99.66 28.18 77.83 37.96 69.40 84.47 76.20

NHL+KL(Ours) 87.97 2.41 68.68 59.04 97.39 90.54 93.84

Table 15. Generalization performance across different baseline methods for the unlearned model.

Dataset Food101 Flower102 Caltech101 OxfodPet Cifar100 Avg ↑
Origin CLIP (Radford et al., 2021) 92.32 79.18 91.11 93.59 75.82 86.40

GA (Jang et al., 2022) 92.19 78.71 90.92 93.57 73.18 85.71
GDiff (Liu et al., 2022) 92.29 79.61 91.01 93.76 74.32 86.20

GA+KL(Yao et al., 2023) 92.32 79.17 91.05 93.62 74.07 86.05
NPO+KL (Zhang et al., 2024b) 92.26 78.91 90.95 93.10 75.61 86.34

Relabeling (Golatkar et al., 2020) 91.77 76.99 90.18 90.11 73.17 84.44
Task Vector (Ilharco et al., 2022) 92.30 78.74 91.02 93.16 75.45 86.13

SalUn(Fan et al., 2023) 91.52 76.35 90.07 88.14 73.51 83.92
ME+GD (Yuan et al., 2024) 91.22 75.05 90.28 86.26 73.21 83.20

NHL+KL (Ours) 92.26 78.91 90.95 93.10 75.61 86.17
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