Under review as a conference paper at ICLR 2025

WATERMARK SMOOTHING ATTACKS AGAINST LLAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Statistical watermarking is a technique used to embed a hidden signal in the prob-
ability distribution of text generated by large language models (LLMs), enabling
the attribution of the text to the originating model. We introduce the smooth-
ing attack and show that existing statistical watermarking methods are not robust
against minor modifications of text. In particular, with the help of a weaker lan-
guage model, an adversary can smooth out the distribution perturbation caused by
watermarks. The resulting generated text achieves comparable quality to the orig-
inal (unwatermarked) model while bypassing the watermark detector. Our attack
reveals a fundamental limitation of a wide range of watermarking techniques.

1 INTRODUCTION

Large language models (LLMs) have made remarkable progress, posing the challenge of determin-
ing whether a text is written by a human or generated by Al (more specifically, by a given LLM).
One common solution to this challenge is watermarking the generated text (Aaronson) 2023} |Christ
et al.,|2023; |Huang et al.,|2023; L1 et al., 2024), where the model provider subtly modifies the prob-
ability distribution of the generated text (i.e., a sequence of tokens). For example, at each position
of token generation, the likelihood of selecting from a subset of tokens (referred to as the “green
list”) is slightly boosted, where the assignment of this subset is kept secret from the human users.
This subtle statistical modification, while remaining largely unnoticeable to human users, can be
observed by the detector who knows the secret and attributed to the watermark (Kirchenbauer et al.,
2023aib; [Zhao et al., [2023a; Kuditipudi et al., [2023)). Watermarking faces two main technical chal-
lenges, maintaining text quality and preventing easy removal of the watermark. In this work, we
focus on the second challenge and examine the resilience of statistical watermarking against attacks.

Previous attacks typically rely on a stronger/larger reference model to erase watermarks, e.g., using
a strong GPT model to paraphrase the watermarked texts generated from Llama2-7b (Kirchenbauer
et al.l 2023b} [Zhao et al.,|[2023a; |Pan et al., |2024; Piet et al.| 2023} |Jovanovic et al.,[2024). However,
the assumption that the attacker has access to a stronger model undermines the realism of the attack
scenario, as such resources may not always be available in practice.

In this paper, we attack statistical watermarking of LLMs under more practical conditions. In our
setting, the attacker’s goal is not simply to remove the watermark at any cost, e.g., using a stronger
model to paraphrase the watermarked text. Instead, we consider a more realistic attack scenario,
where the adversary only has access to a weaker reference language model. The central question
is: given access to a weaker model, can the attacker remove the watermark while maintaining the
quality of the text?

We provide a positive answer in this paper, by presenting an attack algorithm, called the watermark
smoothing attack. Our attack, which only queries the target watermarked model and a weaker ref-
erence model through model APIs, is able to remove the watermark from the generated text while
maintaining its quality comparable to the original unwatermarked text. As suggested by its name,
the key component of our attack is to smooth the shift of token distributions caused by watermark-
ing. To do that, at each token position, we sample from a mixture of token distributions from the
reference model and the watermarked model, where the coefficient of the mixture depends on the
level of significance of the watermark. A higher level of significance means that the change caused
by the watermark is more noticeable; hence, we should assign a larger coefficient to the reference
model to smooth out this change, thereby removing the watermark. Conversely, a lower level of sig-

Under review as a conference paper at ICLR 2025

nificance means that the change caused by the watermark is not noticeable, in the first place; hence,
we should assign a larger coefficient to the watermarked model for better text quality.

The major advantage of our smoothing attack over existing ones, is that ours is watermark-agnostic
as it effectively smooths out the distribution shift caused by watermarking, without knowing the
exact set(s) of tokens that are more likely to get sampled and the exact level of increase in their like-
lihoods. As a result, our method can be applied off-the-shelf to attack any statistical watermarking
algorithm that relies on boosting the likelihood of sampling from specific tokens.

We conduct comprehensive experiments to validate the effectiveness of our attack against eight ex-
isting representative watermark strategies on Llama2-7b (Touvron et al.}[2023)) and OPT-1.3b (Zhang
et al.,|2022). Notably, under certain setups, our attack removes the watermark completely, mean-
ing that 0% of the generated text is detectable while maintaining high text quality. Meanwhile,
under the same setup, the previous state-of-the-art attack (Piet et al., 2023)) that uses the strong GPT-
3.5-turbo (OpenAl, [2023a)) to paraphrase the watermarked text fails to remove the watermarks in
48% of the text. We emphasize that our attack achieves this significant improvement with access
to only much weaker reference models such as TinyLlama-1.3b (Zhang et al.l 2024b), and OPT-
125m (Zhang et al.,|2022), confirming its practicality and effectiveness.

2 PRELIMINARIES AND PROBLEM STATEMENT

Text generation of language models. We use M to denote a language model (LM) and V to denote
its associated vocabulary set (namely, the collection of all tokens). The LM generates a sequence of
tokens step by step, constituting the output text. During the generation, at each token position ¢, M
computes the logit scores of tokens at position ¢, written as a vector [, € RIV! (where each dimension
corresponds to the logit of a specific token); after that M applies the softmax function (Bridlel |1989)
to l;, obtaining a probability distribution from which the ¢-th token is sampled. Two strategies are
often employed at this sampling step, top-k sampling (Fan et al.,[2018;|Holtzman et al., 2018]), which
samples a token from the k£ most probable candidates, and top-p/Nucleus sampling (Holtzman et al.,
2019), which selects a token from the smallest set of tokens whose cumulative probability exceeds
a threshold p.

Statistical watermarking. The overall idea of statistical watermarking for LMs (Kirchenbauer
et al., [2023azbj [Zhao et al.l |2023a)) is to introduce a small shift to the probabilities for sampling a
specific set of tokens (which is not revealed to the users), in such a way that a detector algorithm
can identify this shift from a long text, whereas human users cannot. The canonical approach is as
follows. At each token position ¢, a v fraction of the vocabulary set is first selected as the green list
(denoted as G;); next, the logit values for tokens in G; are increased by ¢ while the logit values for
the rest of the vocabulary remains unchanged.

V=140 Tyeg,. 1)

The next token is then sampled according to the shifted logit vector I;. In this way, a statistical
watermark is embedded into the generated text, as the token distributions at all positions are now
biased toward tokens in the green list(s). We denote this associated watermarked LM as M.

Provided with the assignment of G;, the detector algorithm looks for the evidence that tokens in
G, appear disproportionally more frequent. In particular, given the generated text of length 7', the
detector counts the actual occurrences of green tokens ngreen and computes the z-score as

n —~T

o (green — 7Y)’)

VIy(1—=7)
and then predicts the given sequence as watermarked when z exceeds some threshold A (namely,
when Ngreen €xceeds 4T by a large margin).

Green token assignment. The assignment of the green token set G, is random at each token position
t, determined by the LM provider. Due to this, it is very unlikely that a non-watermarked text will
be misclassified as watermarked, particularly when T is long enough. In addition, the assignment
of G; could also depend on previous h tokens in the previously generated tokens (i.e., the prefix).
For example, when h = 0, the assignment is context-independent and is referred to as the Unigram
watermark (Zhao et al., 2023a)); when i = 1, the assignment depends only on the previous token

Under review as a conference paper at ICLR 2025

and is referred to as the KGW watermark (Kirchenbauer et al.|[2023a)). Finally, we remark that G; is
not revealed to the LM users.

Problem statement. We present an attack to analyze the robustness of statistical watermarking. We
assume the attacker has API access to a reference model M., which is weaker compared to the
original LM M ; since otherwise, he would have less motivation to attack the watermarked model,
which rules out the paraphrasing attacks that leverage a strong LM (e.g., ChatGPT) to paraphrase
the watermarked text (Zhang et al.| [2024a). Regarding the knowledge of the watermarked model
M, we consider the realistic scenario that the adversary is unaware of the specific statistical wa-
termarking strategies in use, e.g., the adversary does not know whether the assignment of G; is
context-dependent or not. The adversary can obtain the token sampled from the M and M.y, as
well as the log probabilities of the most probable K tokens. This level of information is commonly
available, even when the model is closed-sourced, e.g., through OpenAI’s API[H

3 ATTACK FRAMEWORK

Recall Section[2]that the idea of statistical watermarking is to increase the sampling probability for a
certain fraction of tokens (namely, the green tokens), by shifting their logit values. From a detector’s
point of view, the trace of the watermark is said to be significant, when the actual occurrence of
green tokens in the generated text from the watermarked model are significantly higher than any
other unwatermarked model (which is roughly vT for texts of length T').

Our attack exploits the above observation to bypass a detector. Consider the following extreme
scenario(s). When generating the token for position ¢, the unwatermarked model already assigns
high logit values for some green tokens (alternatively, some red tokens), possibly due to the inherent
characteristics of the model or just by chance. In such scenarios, we would not expect that adding ¢
to the logit values of the green tokens that are too high (or too low) will cause a significant difference
in the actual occurrence of a green token at this position. In other words, this ¢ shift is not likely
to increase the z-score. Accordingly, as an attacker, we can just use the watermarked model for
this position without modifying the output distribution. Conversely, in the not-so-extreme scenarios
where the logit values for the green tokens are neither too high nor too low, the § shift applied to
the green tokens could have a significant influence on the z-score. In such cases, we smooth out this
influence, by combining the token distributions of the watermarked model with those of a reference
model to generate the next token.

Overall, our attack runs as follows. When generating the token at position ¢, (i) we first estimate
the significance level of the watermark, which is defined as the relative increase in the probability of
generating green tokens from the watermarked model compared to the unwatermarked model; (ii)
if the significance level is high, then we combine the token distributions of the watermarked model
and the reference model to generate the ¢-th token; otherwise, we generate the token from the water-
marked model directly. Note that our attack is not designed for any statistical watermarking scheme
in specific. Instead, our attack is universally applicable to all statistical watermarking schemes, as
it directly aims at smoothing out the change in the actual occurrence of green tokens caused by the
watermark. We describe our attack in more detail next.

3.1 SIGNIFICANCE LEVEL OF WATERMARKING

Definition. When sampling the token at position ¢, we are interested in how much more likely the
watermarked model is to sample green tokens compared to the unwatermarked model. The natural
definition is the probability difference across all green tokens: > o Py — >, g, Pt» Where py
and p} represent the probability of sampling token v at position ¢ from the watermarked model
M and unwatermarked model M, respectively. However, summing over all green tokens may not
accurately reflect the likelihood of sampling a green token, particularly due to the large number of
tokens in G;. In particular, although the size of G, could be as large as 16, 000 for Llama2 models
when v = 0.5, in practice, the next token is often chosen using top-k or top-p sampling (recall
Section [2), where only the most probable tokens could be sampled in the first place (instead of all
16, 000 tokens in G;). Motivated by this, we focus on the K most probable tokens. We denote the

'https://platform.openai.com/docs/advanced-usage/token—-log-probabilities

https://platform.openai.com/docs/advanced-usage/token-log-probabilities

Under review as a conference paper at ICLR 2025

o
o
°

@) B O @O

o
@
o
)

o
=
o
=)

o
~
N
~

o
)

Total Variation Distance
o
[N

Total Variation Distance

900 (®

0.0 0.2 04 0.6 0.8

=4
S}
o
o

0 0.25 0.50 0.75 1.00
Plgreen]:

Figure 1: Correlations between S;, P;[green], and the total variation distance (TVD) between the
token distributions at position ¢ of the unwatermarked and watermarked models (with v = 0.5),
computed on OPT-1.3b. Left subfigure illustrates the correlation between the .S; and P;[green]|—as
P,[green] increases from 0 to 1, S; first increases and then decreases. Middle subfigure illustrates
the positive correlation between S; and the TVD measured on the empirical token distributions of
the watermarked and unwatermarked models, when top-k sampling (¢ = 10) is applied. Right
subfigure leads to the same conclusion as the middle one when top-p sampling (p = 0.8) is applied.

sets of tokens that rank as the /' most probable ones according to p, and p; as Vp, (K') and V,, (K),
respectively. Accordingly, we define the probabilities of sampling green tokens at position ¢ from
the watermarked model and unwatermarked model as

. 2 veGinvy, (i) DY 2 by
P,[green] := TGV O ond P,[green] := eg‘ﬂ—v”’(K)vt 3)
Zvevm(K) by Zvevpt(z() by
respectively. We proceed to define the significance level S; as
S, := P;[green] — P, [green]. 4)

In the rest, we consider the case where K = 20 for measuring S;. We next explain the importance
of S; in building our attack through illustrative observations.

How P;[green] influences .S;. Our first observation is that the probability of sampling green tokens
from the unwatermarked model (i.e., P;[green]) influences the value of the significance level (i.e.,
Sy). The left of Figure [T] illustrates the correlation between them. Each sample is obtained by
querying the watermarked and unwatermarked models using the same prefix, from which we can
compute P;[green|, P;[green], and S;. Overall, when P;[green] is either too large (close to 1) or too
small (close to 0), S; is not significant; conversely, when P;[green] is of some moderate value (e.g.,
within the range of [0.2,0.8]), S; becomes relatively more significant, resulting in a bell-shaped
curve. Our observation holds under different choices of watermark shift 4.

How S, influences the trace of watermarking. In the middle and right subfigures of Figure[I] we
further show that when S; is large, the probability distributions for generating the token at position
t using the watermarked model and unwatermarked model are more different. We empirically mea-
sure this difference using the total variation distance (TVD) between the actual frequencies of tokens
generated from the watermarked model and the unwatermarked model (each frequency histogram
consists of 1000 tokens generated from 1000 independent runs). We see that when S, is large, there
is less agreement between the watermarked and unwatermarked models (i.e., larger TVD between
their token distribution); and vice versa. Therefore, to remove the watermarking trace, the attacker
should focus on smoothing the TVD at token positions with relatively large S;. Conversely, to main-
tain text quality, they should use the watermarked model directly at token positions with small Sy,
since the TVD between the watermarked and unwatermarked models is low, indicating little to no
detectable watermarking trace.

How to compute S;. Our goal is to estimate .S; in the absence of the knowledge of the assignment
of green tokens (namely, G;), which the attacker does not have access to. In what follows, we first
present an indicator for .S; and then show how to use the indicator to estimate S;.

We first compute the difference in sampling probability between the most likely token and the K -th
most likely token in the set V,, (K) as follows

AKX = max pY— min p¥ 5
t veV,;t)((K)pt uGV,;t(K)pt ©)

Under review as a conference paper at ICLR 2025

5¢=0.73 5+=0.33 S+=0.00

0.20 i i i i T
Prob: 0.045 " Max Prob: 0.381 . Max Prdb: 0.997| !
0.15 K-th Prob: 0.012 : : K-th Prob:0.004 : : K-th Prob: 0.000: :
>] [1 :

@ 11 1 1 1
g 010 ¥ o | i
[s] 1 [1 1
0.05 I Lo I i
] [1 1
11 1 1 1 1
000 (N} 1 1 1 1
-30 -20 -10 0 -30 -20 -10 0 -30 -20 -10 0

Log Probability Log Probability Log Probability

Figure 2: Distribution of the log of the probabilities of tokens from the watermarked OPT-1.3b (with
v = 0.5,6 = 2.0). The vertical line represents the probability of the most probable token (0.997
means the probability is close to 1) and the 20-th most probable token. We can see that larger values
of Sy correspond to smaller maximum probabilities and smaller distances between the probabilities
of the most probable token and the 20-th.

PCC: -0.7684 PCC: -0.8042
0.6

o
©
S

o
~
©

0.4

o
~
®

0.2

Absolute PCC

e 1A
§

&
o
3

. . 0.0
000 025 050 075 1.00 000 025 050 075 1.00 1 6 1 16
LY, A K

Figure 3: Left and Middle subfigures show the correlation between significance level S; and AX,
computed on the watermarked OPT-1.3b (with v = 0.5, § = 2.0) for K = 2 and K = 20,
respectively. PCC stands for Pearson correlation coefficient, where larger values indicate stronger
correlations. Right subfigure shows the absolute value of PCC with different choices of K.

We explain the intuition next. When P;[green| is extremely large or small, it is likely that there
is a single token that “stands out” as the dominant token, which has a very high probability of
getting sampled compared to others. Figure [2]illustrates the distributions of log probabilities of the
watermarked model with different values of S;, along with the maximum probability among all the
tokens (i.e., max,ey, (x))- We can see that, in general, smaller Sy corresponds to larger maximum
probabilities for the watermarked model. Intuitively, this is because when a single token has an
extremely high probability of getting sampled, then adding delta to the logit values of other less
likely tokens does not increase their chances of getting sampled significantly (namely, small S;). In
addition, adding 4 to the logit value of that token does not change much of its probability of getting
sampled either, as it is already very large (e.g., a value close to 1). In equation[5] we have subtracted
the probability of the K -th most probable token from the most probable one. This can be seen as
some sort of normalization, which cancels out the instability of the max probability (in our early
experiments without this subtraction, the attack performance is not satisfactory). Figure 3]illustrates
the strong correlation between S; and Af(, with different values of K, confirming that Af(is a
indicator for S; (AKX decreases as S; increases).

Confidence score. We now convert the AX into a confidence score ¢; within the range [0,1]. We
start by querying the watermarked model on a set of prefixes to determine the upper bound and
lower bound of AKX, denoted as U and L, respectively. (Alternatively, the attacker can simply use
0 and 1, to avoid making extra queries to the model.) Next, we divide the range between them into

100 bins of the same width. In particular, the m-th bin (m = 1,...,100) contains values in the
range of |L + YsE(m — 1), L + Y5Em |. At each token position ¢, the attacker calculates the

AK by querying the watermarked model and determines the corresponding bin index i to put AKX
in. The confidence score is the bin’s relative position among the 100 bins, computed as ¢; = 4,/100.
A large value of ¢; is the result of a large AKX, corresponding to a small significance level S;. In
this case, there is a high agreement between the watermarked model and the unwatermarked model

Under review as a conference paper at ICLR 2025

(recall Figure[I)); hence, the attacker should have high confidence in using the watermarked model
to sample the ¢-th token. Conversely, a small value of ¢; is the result of a small AX, corresponding
to a large S;. In this case, the attacker should have less confidence in using the watermarked model;
instead, he should smooth out the change in probability distribution caused by the watermark shift.

3.2 SMOOTHING THE TOKEN DISTRIBUTION

We now introduce our smoothing method. Specifically, given the confidence score ¢; (which is
inversely related to the significance level S;), the attacker samples the token from the watermarked
model with probability ¢;. Otherwise, the attacker samples a token from the reference model M ..
Accordingly, we can view probability distribution for sampling the next token as a mixture of p,
(corresponding to the watermarked model) and p'f (corresponding to the reference model), written
as

at _ | Pt with probability c;

Pt =\ pf with probability (1 — ¢;)

The probability of sampling the green tokens using our method at position ¢ is then computed as

P [green] = ¢, - Py[green] + (1 — ¢;) - P, [green], (6)
ref,v

where P, [green] is defined in Equation [3{and P/*[green] = D 0eGnY i (K) P/ 220eV r(K) P

is the expected probability of sampling green tokens based on the top K tokens from the reference
model. The difference between P,*"[green] and P;[green] is computed as

v+ ((Pilereen] — Pifgreen]) +(1 —) - (P [green] — P[green]) ©)

St

Since the reference model is free of watermarks, its expected occurrence of green tokens should be
similar to that of the unwatermarked model, making the second term small. Moving to the first term,
we note that it attains a relatively large value when both ¢; and S, are large. This, however, is not
possible due to our design—c; is inversely related S;. In conclusion, the probability of sampling a
green token using our p/" is similar to the unwatermarked model; hence, our attack is able to bypass

the watermark detector. We outline the complete algorithm as in Algorithm[I]in Appendix

To further ensure that we always bypass the watermark detector, we can set the probability of using
the watermarked model to O (instead of c;) O whenever c; is not significant enough, i.e., ¢; < T.
This ensures that the fraction of green tokens generated is closer to any model without watermarks.
In Sectiond] we demonstrate the impact of 7 on both text quality and the effectiveness of the attack.
We conclude this section with some remarks on our design.

Agnostic smoothing. Our attack is agnostic to how the statistical watermark is embedded, e.g., Un-
igram watermark (Zhao et al.,[2023b)) or KGW watermark (Kirchenbauer et al.,[2023a)). Regardless
of the strategy for choosing the green token set G; and internal details of the watermarked model,
we apply a universal smoothing over the watermarked model’s token distribution by combining it
with that of a reference model. Here the level of smoothness depends on the significance level of
the watermark, i.e., how much the watermark model agrees with the unwatermarked model, which,
again, can be estimated accurately without any knowledge of the model or watermarking strategy.

Practicality. Our attack is practical, as it leverages the reference model and watermarked model as
black boxes. Besides, the reference model is much weaker than the target watermarked model. Our
practical attack provides more insight into the robustness analysis of statistical watermarking—not
only is it vulnerable under the paraphrasing attack (Piet et al., |2023)) that leverages a strong model,
but also not resilient against our smoothing attack where the attacker only gets help from a much
weaker model that contains an order of magnitude fewer parameters (as we will see next in the
experiment). Our findings call for stronger watermark strategies for LLMs.

4 EXPERIMENTS

In this section, we evaluate our attack from two axes—how effective our attack is in terms of removing
the watermarks and preserving the quality of the generated text. All experiments are conducted on
two NVIDIA TITAN RTX GPUs with 24GB memory for each.

Under review as a conference paper at ICLR 2025

4.1 SETUP

Models and Datasets. We consider two commonly used models as the target model in the wa-
termarking literature, Llama2-7b (Touvron et al.| [2023)) and OPT-1.3b (Zhang et al., [2022). When
attacking models Llama2-7b and OPT-1.3b, we use TinyLlama-1.3b (Zhang et al., 2024b)) and OPT-
125m (Zhang et al. [2022) as the reference models, respectively. Following prior work (Kirchen-
bauer et al., 2023aj [Pan et al., [2024)), we use the C4 dataset (Raffel et al., 2020). Specifically, the
first 30 tokens of texts serve as prompts, and the task is to generate the subsequent 200 tokens. The
original C4 texts act as human-written examples, referred to as the human-written baseline.

Watermark Algorithms. We evaluate against eight representative watermarking algorithms, in-
cluding KGW (Kirchenbauer et al.,[2023a)), Unigram (Zhao et al.,2023a)), SWEET (Lee et al.,|2023),
UPV (Liu et al.l [2023), EWD (Lu et al.l [2024)), SIR (Liu et al.| [2024)), X-SIR (He et al., 2024), and
DIP (Wu et al.). We adopt the implementation in MarkLLM toolkit (Pan et al., 2024) for the above
watermarking algorithms. The detailed description of these algorithms is in Appendix [A.2] Results
for KGW and Unigram are presented in the main paper; results for the remaining algorithms can be
found in Appendix For the two algorithms highlighted, we follow standard configurations by
setting the watermark shift J to 2, the fraction of green tokens +y to 0.5, and the z-score threshold for
watermark prediction to 4.

Attacks. Attack baselines include Word-D, which randomly deletes a word at a specified ratio
and Word-S, which randomly substitutes a word with its synonyms using WordNet (Miller} [1995)).
Following (Pan et al [2024), we set the ratio to be 0.3 for Word-D and to be 0.5 for Word-S.
We also include the strong baseline P-GPT3.5 (Piet et al) [2023) that paraphrases the given text
based on the GPT-3.5-turbo using the prompt: “Please rewrite the following text:”. It is important
to note that this attack assumes a significantly stronger attacker than ours (Smoothing). We also
include the reference model (Reference) and the unwatermarked model (Unwatermarkd) in our
comparison. For our smoothing attack, we set the threshold 7 to 0.5 by default, unless specified
otherwise. Namely, whenever the confidence level is smaller than 0.5, we always sample from the
reference model rather than the mixture of the reference and unwatermarked model.

Metrics. To measure the effectiveness of watermark removal, we compute the z-score (defined
in equation [2)) on the generated text. Lower values indicate fewer traces of watermarks in the gener-
ated text and greater success for the attacker. We also report the positive prediction rate (PPR) when
using the default threshold on the z-score, which denotes the proportion of generated text identified
as watermarked. There are two types of texts, positive samples (those generated from the water-
marked model with/without attacks) and negative samples (those written by humans or generated by
unwatermarked text). PPR reflects the True Positive Rate when computing on positive samples and
the False Positive Rate when computing on negative samples.

To measure the text quality, we follow prior work (Kirchenbauer et al., [2023a} |Pan et al.,2024) and
compute the perplexity using an oracle model. We use OPT-2.7b for texts generated by OPT models,
and Llama2-13b for those from Llama models. We also measure the negative log-likelihood (loss)
of the unwatermarked model on the generated text to assess how likely the unwatermarked model
would have produced it. Smaller perplexities and losses indicate better text quality. We also utilize
GPT-4 (OpenAl| 2023b) as an evaluator of accuracy, consistency, and style, scoring on a scale of
1 to 10, similar to the approach in (Jovanovié et al. 2024), with higher scores indicating better
performance. The prompt template used for evaluation is provided in Appendix [A.4]

4.2 EFFECTIVENESS OF SMOOTHING ATTACK

Table |1| presents the overall result. Compared to Word-D and Word-S which do not utilize any
additional model, our smoothing attack achieves a lower positive prediction rate, indicating that
more generated texts successfully bypass detection. Additionally, our attack maintains high text
quality, achieving lower perplexity and loss. Compared to the text generated by the reference model
alone, the text generated by our attack also achieves a higher quality, which justifies the adversary’s
motivation to remove the watermark from the target model. Otherwise, if the reference model can
achieve a high text quality, the adversary could simply use the reference model which is watermark-
free instead of launching an attack.

Notably, in some cases, our attack can be far more effective at removing the watermark compared
to the paraphrasing attack that relies on a much stronger reference model. Under the Unigram

Under review as a conference paper at ICLR 2025

Table 1: Effectiveness of smoothing attacks on OPT-1.3b and Llama2-7b models using KGW and
Unigram watermark algorithms. The values are aggregated over 300 responses. A lower z-score
and lower positive prediction rate (PPR) indicate a stronger attack. At the same time, the adversary
seeks to maintain high text quality, aiming for lower perplexity and loss values. The lowest values
across all attacks on the watermarked models are highlighted in bold. For the GPT-4 score, higher
values indicate better quality.

Model Algorithm Setting Effectiveness Text Quality
Z-Score | PPR] Perplexity | Loss| GPT-41
Human-written 0.12 0.00 14.59 2.68 8.83
Reference 0.21 0.00 19.75 2.98 7.16
Unwatermarked 0.07 0.00 12.30 2.51 8.66
KGW Watermarked 8.03 1.00 16.52 280 833
- Watermarked (Word-D) 5.13 0.85 87.20 4.47 2.0
@ Watermarked (Word-S) 3.12 0.17 175.15 5.17 2.66
) Watermarked (P-GPT3.5) 2.54 0.19 15.27 2.73 8.66
% Watermarked (Smoothing) 1.49 0.00 17.91 2.89 7.33
Human-written -0.22 0.00 14.59 2.68 8.83
Reference -0.07 0.00 19.51 2.97 7.16
Unwatermarked -0.05 0.00 12.45 2.52 8.66
Unigram Watermarked 8.56 0.99 16.80 2.82 7.66
Watermarked (Word-D) 7.04 0.98 91.98 4.52 2.0
Watermarked (Word-S) 542 0.88 190.26 5.25 2.66
Watermarked (P-GPT3.5) 3.70 0.48 14.62 2.68 8.33
Watermarked (Smoothing) 1.52 0.00 18.26 2.90 7.33
Human-written -0.78 0.00 7.37 2.00 8.83
Reference 0.11 0.00 17.10 2.72 33
Unwatermarked -0.74 0.00 4.08 1.41 8.66
KGW Watermarked 6.47 0.90 5.11 1.63 8.28
o Watermarked (Word-D) 3.88 0.45 25.69 3.25 2.48
Z Watermarked (Word-S) 2.78 0.15 31.16 3.44 3.81
g Watermarked (P-GPT3.5) 222 0.15 5.46 1.70 8.83
ﬁ Watermarked (Smoothing) 2.00 0.10 3.40 1.22 5.25
Human-written -0.94 0.00 7.37 2.00 8.83
Reference -0.21 0.05 16.46 2.65 333
Unwatermarked -2.30 0.00 4.12 1.42 8.66
Unigram Watermarked 6.85 0.95 4.90 1.59 8.33
Watermarked (Word-D) 5.31 0.65 20.73 3.03 2.17
Watermarked (Word-S) 3.34 0.40 31.93 3.46 4.0
Watermarked (P-GPT3.5) 2.00 0.10 7.17 1.88 9.0
Watermarked (Smoothing) 0.08 0.15 3.36 1.21 4.5

watermark for the OPT-1.3b model, the paraphrasing attack using the gpt-3.5-turbo model results
in a positive prediction rate of 0.48, meaning nearly half of the paraphrased text is still detected as
watermarked. In contrast, our smoothing attack achieves a 0.0 positive prediction rate. Our results
demonstrate that the vulnerability of the watermark is more severe than previously assumed, as an
adversary can successfully remove the watermark using a much weaker model while still preserving
the quality of the text. The results for six other watermark algorithms are similar, and are presented
in Table [2] of Appendix[A.3]

Figure [] provides a more detailed illustration of the perplexity and z-score for the text generated
under different attacks, with the unwatermarked model (Un-W) and watermarked model (W) as
references. Each point in this Figure represents a sample text. As we can see, our smoothing attack
significantly lowers the z-score compared to the watermarked model, while preserving text quality.
Specifically, the text generated by the smoothing attack closely mirrors the unwatermarked model
in terms of the distributions for both quality and z-score. On the other hand, other attacks incur a
significant drop in the text quality, resulting in extremely high perplexity.

Effect of watermark shift 6. Figure [5] shows the performance of our attack in terms of z-score
and perplexity, compared with the watermarked model under different choices of watermark shift
0. From the right subfigure, we notice that when the watermark shift increases, the z-score in-
creases significantly for the watermarked text, making the detection easier. On the other hand, the

Under review as a conference paper at ICLR 2025

® unw
w
W (Word-D)

W (Word-S)
W (Ours)

Perplexity (PPL)
Perplexity (PPL)

-

5 10
Z-Score (KGW) Z-Score (Unigram)

Figure 4: Effectiveness of smoothing attacks on the OPT-1.3b model with KGW and Unigram wa-
termark algorithms. We compute the z-score and perplexity (with lower values indicating better
quality) for 100 texts generated by the unwatermarked model (Un-W), watermarked model (W), and
watermarked models under different attacks. For clarity, we truncate perplexity at an upper bound
of 100. The texts generated by the smoothing attack remain closer to the unwatermarked texts in

both perplexity and z-score compared to other attacks. Results for additional watermark methods
are provided in Figure[7]in Appendix[A.3]

[Watermarked

30 S © 10 [Watermarked (Smoothing)
o
£ O q o
3 S
8 A :
@ = N 5 =
. N A R
0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0
6 6

Figure 5: Effectiveness of the smoothing attack on OPT-1.3b with KGW watermarks under different
watermark shift values, . We present boxplots of the z-score and perplexity for responses from both
the watermarked model and the smoothing attack model. Notably, the text quality from the attack
model can surpass that of the watermarked model when the watermark shift is large.

z-score for the text generated by our attack model remains low, confirming the effectiveness of our
attack, regardless of the assignment of . From the left subfigure, we notice that the benefit of using
smoothing in preserving the text quality increases as ¢ increases. That is, adding the watermark
introduces a significant distortion to the output which hurts the text quality while our smoothing
attack reduces this distortion, preserving the text quality. Notably, the text quality from the attack
model can surpass that of the watermarked model when § is large.

Effect of 7. Figure [f]illustrates the performance of the smoothing attack in terms of z-score and
perplexity across different values of 7. Recall that the adversary only samples from the watermarked
model when ¢; is sufficiently large, i.e., setting ¢; = 0 when ¢; < 7. Therefore, with a higher 7, the
adversary is less likely to sample from the watermarked model. The results show that as 7 increases,
the z-score decreases, thereby lowering the likelihood of detection. Notably, increasing 7 has a less
noticeable impact on text quality, as the perplexity remains relatively stable.

5 RELATED WORKS

Early watermark solutions embed watermarks by altering text through synonyms (Topkara et al.,
2005; 2006b), changing sentence structure (Topkara et all [2006a), or injecting invisible to-
kens (Rizzo et al. 2019). More recent methods include context-aware lexical substitution (Yang
et al., 2022) and mask-infilling models (Ueoka et al., [2021)). Statistical watermarks that are based
on “green-red” list increase the logits of tokens from the green list during token generation, thus
altering the output token distributions (Zhao et al., [2023a}; [Kirchenbauer et al.| [2023a} |Lee et al.,
2023; |L1u et al.l 2023; |Lu et al., 2024; Liu et al., [2024; He et al., 2024; 'Wu et al.). On the contrary,

Under review as a conference paper at ICLR 2025

0.125 0.03 — r=g.g
e T =0,
0.100 — T=0.4
= 20.02 —
2 0.075 @
a a
0.050 0.01
0.025
0.000 0.00

0 10 20 30 40 50
Perplexity

Figure 6: Effectiveness of smoothing attacks on the OPT-1.3b model with KGW watermarks with
different 7. We present histograms of the z-score and perplexity for responses generated by the
smoothing attack. A larger 7 leads to the exclusion of more tokens from the watermarked model,
resulting in a decrease in the z-score, while the change in perplexity is less obvious.

distortion-free watermarks do not alter the output token distributions (Christ et al. 2023} [Aaron-|

2023} [Kuditipudi et al.} 2023}, [Dathathri et al., 2024} [Hu et al)) and hence, are inherently more

vulnerable under our threat model, since the adversary can directly sample the next token from the
watermark-free top- K token probabilities.

We focus on evaluating the robustness of watermarking schemes via attacks. One canonical attack
is to disrupt the structure of embedded watermarks, making them undetectable by injecting certain
characters, homoglyphs, or emojis into the target text (Gabrilovich & Gontmakher, [2002; [Helfrich

& Neff}, 2012; [Pajola & Contil, 2021}, [Boucher et al},[2022; |(Goodside, [2023).

Another approach involves utilizing a separate large language model (LLM) to paraphrase the target
text (Sadasivan et al, 2023} [Krishna et al., 2023} [Piet et al., 2023)), where the paraphrasing LLM is
significantly larger than the reference model targeted by our attack. Building on this, Jovanovié et al.|
(2024) and |Zhang et al.|(2024a) introduce advanced methods that incorporate additional models to
complement the paraphrasing LLM. Specifically, Jovanovi¢ et al.| (2024) employs an auxiliary ref-
erence model to analyze how watermarks are embedded. Such analysis requires prior knowledge of
the watermarking algorithm (e.g., the choice of /) as well as access to a large set of texts generated
from the watermarked model. In contrast, our attack does not have such requirements. [Zhang et al.
enhances paraphrasing attack by integrating it with a reward model (termed as quality oracle
model), which evaluates candidates generated by the paraphrasing LLLM (termed as perturbation ora-
cle model). In particular, multiple candidates are generated for each target text and the reward model
selects the best one. In comparison, our attack generates only a single candidate. Despite these dif-
ferences, our attack—using only TinyLLM with 1.3 billion parameters—outperforms existing para-
phrasing attacks that rely on much larger models, such as GPT-3.5 with 175 billion parameters, as
demonstrated in Table[T] Thus, our attack proves to be not only practical and cost-efficient but also
highly effective, illustrating that even a relatively low-resource adversary can bypass watermark-
ing. These findings underscore the critical need for the development of more resilient watermarking
strategies. Further details and comparisons are provided in Appendix [A.3]

6 CONCLUSION

In this work, we present the smoothing attack to remove statistical watermarks that are embedded
into LLMs. The core idea is to smooth out the increased probability of sampling green tokens due
to the embedded watermark. Our method is agnostic to the specific watermarking algorithm used
and relies on more realistic assumptions on the attacker. Through comprehensive evaluations, we
demonstrated that our attack can successfully remove watermarks from a wide spectrum of wa-
termarking algorithms while preserving the quality of the generated text. Our findings highlight
vulnerabilities in existing statistical watermarking techniques.

Our attack removes watermarks at the cost of a quality drop in some cases, leaving room for future
improvement. Besides, designing more advanced watermarking techniques for LLMs that are robust
against our smoothing attack is also worth looking into.

10

Under review as a conference paper at ICLR 2025

Ethics Statement We, the authors of this paper, have reviewed and adhered to the ICLR Code of
Ethics throughout the development and submission of our work. In preparing this paper, we have
taken the following ethical considerations into account:

* Human Subjects Involvement: Our research does not involve human subjects, and there-
fore, no IRB (Institutional Review Board) approval was required.

» Data Set Usage and Release: The data sets used in this work are publicly available and do
not contain personally identifiable information.

e Harmful Insights, Methodologies, and Applications: While our research does not propose
methods that could be directly misused (e.g., for privacy violations, unethical surveillance,
or discrimination), we acknowledge that our findings highlight vulnerabilities in water-
marking algorithms under weaker adversarial assumptions. If these watermark algorithms
are used to prevent misuse of generative Al, our approach could potentially be exploited
to bypass detection. However, we note that this vulnerability is already recognized in the
existing literature.

* Bias and Fairness Considerations: Our method and evaluation do not involve demographic
data, and therefore do not directly raise concerns related to bias or fairness.

* Conflict of Interest and Sponsorship: There are no conflicts of interest associated with the
sponsorship or funding of this work. Any affiliations or financial support for this research
have been transparently disclosed.

* Privacy and Security: This work does not involve the collection or handling of private or
sensitive data.

* Legal Compliance and Research Integrity: All research conducted in this paper complies
with relevant legal and ethical standards.

We are commiitted to ensuring that our research upholds the highest standards of ethical responsibil-
ity, and we welcome discussions about the ethical implications of our work.

Reproducibility Statement Our code is built on MarkLLM [Pan et al.| (2024) and is distributed
under the Apache License 2.0. Modifications to the original source code are clearly documented in
the readme.md file. We have provided scripts to reproduce the results presented in this paper, along
with detailed instructions for setting up the environment. A comprehensive description of the dataset
and preprocessing steps is also included. Additionally, all necessary dependencies and configuration
files are supplied to ensure accurate reproducibility of the experiments.

REFERENCES
Scott Aaronson. Simons institute talk on watermarking of large
language models. https://simons.berkeley.edu/talks/

scott—aaronson—-ut—austin-openai—-2023-08-17, 2023.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters: Imper-
ceptible nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1987-2004.
IEEE, 2022.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv
preprint arXiv:2306.09194, 2023.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable water-
marking for identifying large language model outputs. Nature, 634(8035):818-823, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889—-898, 2018.

11

https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17

Under review as a conference paper at ICLR 2025

Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Communications of the ACM,
45(2):128, 2002.

Riley Goodside. There are adversarial attacks for that proposal as well — in particular, generating
with emojis after words and then removing them before submitting defeats it. Twitter, January
2023. URL: https://twitter.com/goodside/status/1610682909647671306.

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, Xing Wang, Zhaopeng Tu, Zhuosheng Zhang,
and Rui Wang. Can watermarks survive translation? on the cross-lingual consistency of text
watermark for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 4115-4129, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.226. URL https:
//aclanthology.org/2024.acl-1long.226.

James N Helfrich and Rick Neff. Dual canonicalization: An answer to the homograph attack. In
2012 eCrime Researchers Summit, pp. 1-10. IEEE, 2012.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learn-
ing to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1638-1649, 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2019.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. In The Twelfth International Conference on Learning
Representations.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D Lee, Jiantao Jiao, and Michael I Jordan. Towards
optimal statistical watermarking. arXiv preprint arXiv:2312.07930, 2023.

Nikola Jovanovi¢, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 17061-17084. PMLR, 23-29 Jul 2023a. URL https://proceedings.mlr.
press/v202/kirchenbauer23a.html.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv preprint
arXiv:2305.15060, 2023.

Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. A statistical framework of wa-
termarks for large language models: Pivot, detection efficiency and optimal rules. arXiv preprint
arXiv:2404.01245, 2024.

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and S Yu Philip. An un-
forgeable publicly verifiable watermark for large language models. In The Twelfth International
Conference on Learning Representations, 2023.

12

https://twitter.com/goodside/status/1610682909647671306
https://aclanthology.org/2024.acl-long.226
https://aclanthology.org/2024.acl-long.226
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html

Under review as a conference paper at ICLR 2025

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust water-
mark for large language models. In The Tivelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=6p8lpedMNf.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485, 2024.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39-41, 1995.

OpenAl. Gpt-4 technical report. arXiv, abs/2303.08774, 2023a.
R OpenAl. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023b.

Luca Pajola and Mauro Conti. Fall of giants: How popular text-based mlaas fall against a simple
evasion attack. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
198-211. IEEE, 2021.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Julien Piet, Chawin Sitawarin, Vivian Fang, Norman Mu, and David Wagner. Mark my words:
Analyzing and evaluating language model watermarks. arXiv preprint arXiv:2312.00273, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermarking for intellec-
tual property protection. EURASIP Journal on Information Security, 2019:1-20, 2019.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Mercan Topkara, Cuneyt M Taskiran, and Edward J Delp III. Natural language watermarking. In
Security, Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pp. 441—
452. SPIE, 2005.

Mercan Topkara, Umut Topkara, and Mikhail J Atallah. Words are not enough: sentence level nat-
ural language watermarking. In Proceedings of the 4th ACM international workshop on Contents
protection and security, pp. 37-46, 2006a.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text through synonym substitutions. In Proceed-
ings of the 8th workshop on Multimedia and security, pp. 164—174, 2006b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frustratingly easy edit-based linguistic
steganography with a masked language model. arXiv preprint arXiv:2104.09833, 2021.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and ac-
cessible distribution-preserving watermark for large language models. In Forty-first International
Conference on Machine Learning.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Trac-
ing text provenance via context-aware lexical substitution. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 11613-11621, 2022.

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for language models.
In Forty-first International Conference on Machine Learning, 2024a.

13

https://openreview.net/forum?id=6p8lpe4MNf

Under review as a conference paper at ICLR 2025

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023a.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. arXiv preprint arXiv:2302.03162, 2023b.

A SUPPLEMENTAL MATERIAL

Algorithm 1 Watermark Smoothing Attack

1: Input: Sampled token from the watermarked model v, log of probability for the top-K tokens

Top-K(p;), sampled token from reference model v} /.
Output: Token at ¢.
Compute AX based on Equation
¢t = BinIndex(AX)/100.
Sample a bit with probability ¢; as 1 and (1 — ¢;) probability as 0.
if Bitis 1 then
Return v,
else
Return v}
end if

A e A A ol

Ju—

A.1 ALGORITHM

For completeness, we present the algorithm in Algorithm The algorithm first computes AKX, the
difference between the most probable token and the K-th most probable token from the watermarked
model. This difference is then converted into a confidence score c; ranging from 0 to 1. The
adversary samples a bit randomly, with probability ¢; for 1 and (1 — ¢;) for 0. If the result is 1, the
adversary accepts the current token; otherwise, the token is discarded, and a new token is sampled
from the reference model.

A.2 IMPLEMENTATION OF THE WATERMARK ALGORITHMS

We evaluate the smoothing attack on eight different watermarking algorithms, including
KGW (Kirchenbauer et al., [2023a), Unigram (Zhao et al., [2023a), SWEET (Lee et al., |2023)),
UPV (Liu et al, [2023), EWD (Lu et al.l 2024), SIR (Liu et al.| |2024), X-SIR (He et al., 2024),
and DIP (Wu et al.). We use the implementations and default configurations provided by Mark-
LLM (Pan et al., 2024), which is included in the code submission. For completeness, we provide
details of these algorithms below.

* KGW (Kirchenbauer et al.,[20234): The green set G, at each position ¢ is selected based on
the previous h tokens and a secret key known to the service provider. The hyperparameters
are set as follows: v = 0.5, § = 2.0, the threshold on the z-score is 4, and h = 1.

* Unigram (Kirchenbauer et al., [2023a)): The green set G, is fixed for each token ¢ and each
prefix, depending solely on the secret key known to the service provider. No dynamic
updates are performed based on previous tokens. The parameters are: v = 0.5, § = 2.0.

* SWEET (Lee et al} [2023): A shift is applied only when the entropy of the probability
distribution at position ¢ is high, improving text quality, particularly for code generation
tasks. The parameters are set as: v = 0.5, § = 2.0, the threshold on the z-score is 4, the
entropy threshold is 0.9, and A = 1.0.

14

Under review as a conference paper at ICLR 2025

e UPV (Liu et al., 2023): The green token selection process is similar to the previous ap-
proaches. However, this method requires training two additional models: a generator net-
work to separate red and green tokens and a detector network for classification based on
the input text. The watermarks are introduced using v = 0.5, § = 2.0, and h = 1.0. The
detector produces a binary prediction rather than a continuous score like a z-score.

* EWD (Lu et al.l|2024): Watermark introduction follows a similar process as the previous
methods. The hyperparameters are v = 0.5, 6 = 2.0, and h = 1.0. During detection,
tokens are assigned different weights based on their entropy, with higher entropy tokens
receiving greater weight to improve detectability in low-entropy scenarios.

» SIR (Liu et al.;|2024): This method trains a generator network to convert token embeddings
into context-aware biases, enhancing robustness against semantic invariant tampering. The
z-score threshold is set to 0.2.

* X-SIR (He et al., [2024): Instead of operating at the token level, the red-green partition is
applied at the level of semantic clusters, grouping similar words together and adding bias
at the group level. This improves robustness against Cross-lingual Watermark Removal
Attacks (CWRA). The z-score threshold is set to 0.2.

e DIP (Wu et al.): Similar to Kirchenbauer et al. (2023), this method selects green tokens
but uses a distribution-preserving reweight function to adjust token probabilities. This
increases the probability of green tokens while maintaining the overall distribution. The
reweighting is controlled by the parameter c. The hyperparameters are set as v = 0.5,
h = 5, the z-score threshold is 1.53, and o = 0.45.

A.3 EFFECTIVENESS OF SMOOTHING ATTACK ON VARIOUS WATERMARK METHODS.

Figures|[/|illustrate the performance of the smoothing attack on OPT-1.3b over different watermark
algorithms, in comparison to the Word-D and Word-S attacks. These results align with the findings
reported for Unigram and KGW in the main paper. Overall, the results show that our smoothing
attack not only produces higher-quality text compared to other attacks but also significantly reduces
the likelihood of detection.

Table |2 highlights the effectiveness of our smoothing attack across six additional watermarking
algorithms. Notably, the false positive rate, indicated by the positive prediction rate for both unwa-
termarked and human-written text, is consistently 0.0. At the same time, the true positive rate for all
watermark algorithms remains high, as evidenced by the positive prediction rate for watermarked
text. Similar to the findings in the main paper, our attack achieves significantly lower perplexity
and loss on the unwatermarked model compared to attacks without reference models (e.g., Word-d
and Word-s), demonstrating the high quality of our approach. Moreover, when compared to an at-
tack that relies on a much stronger reference model (e.g., P-GPT3.5), our smoothing attack more
effectively reduces detection likelihood under the EWD, SWEET, UPV, and XSIR watermarking
algorithms.

A.4 GPT SCORE TEMPLATE

Below, we provide the prompt used to evaluate the quality of the text, modified from the prompt
in (Jovanovic et al., 2024)).

You are an impartial judge who evaluates various aspects of a completion of a prompt. These
prompts can be of delicate nature so it is very important that you follow the instructions below
very carefully - It is important that you evaluate different aspects of completion separately so that
we can analyze them separately. Do not mix different criteria under any circumstance as having
them separate is very important for this task as human supervisors need to have them separate to
take appropriate action. Failure to account for this separation might end in additional harm. For
ethical considerations use only the ethics section of the form. If the last sentence is unfinished and
cut off just simply ignore it. Output a json object in exactly the following format: “motto”: "I
will write ethical considerations only in the ethics section. This is very important for my completion
as I am a fair and impartial judge.” ”style (setting ethics aside)”: “explanation”: ” Is the text
written fluently and is the grammar and sentence structure correct? Is the completion creative in
its writing or direct and does this fit to the prompt? Be elaborate here. It is very important to

15

Under review as a conference paper at ICLR 2025

. e KON

100 oo s@ns@@®e» o ® unw 100 Un-w

o o w w

— L/ @ ® W (Word-D) — W (Word-D)

i 80 ° 5 ® W (Word-s) i 80 W (Word-S)
° ‘o ® W (Ours) W (Ours)

S o o

> > 60

g £

3 3 ¢

= = 40

2 2

[0} [0

o o

N

Z-Score (EWD)

P =N

100 o % 100 o o (oum:m;g:s@:‘ww & }>
—_ %e e W (Word-D) —_ ° 2%2° o wwodb)
i 80 o © *.‘< () W(Wzrd—s) E 80 [o ..:‘ e W(WZrd—S)
o o © Wous) o ° o‘. ®©® o ® W(Ours)
> 60 > 60 . 0.3.03.-’:‘

E: E .
) 40 = 40 . °
[0) [0} 0008, .$) 8
0 0 VaRsgrwsT T
-0.25 0.00 025 050 0.75 -0.25 0.00 0.25 0.50 0.75
Z-Score (XSIR) Z-Score (SIR)
100 oo oo»?qq:«gmqm ‘LIJVn-W
— . W (Word-D)
i 80 L w (vvzrd—S)
o . e W (Ours)
> 60 o’
2 °
5]
o

0.0 2.5 5.0 7.5 10.0
Z-Score (SWEET)

Figure 7: Effectiveness of smoothing attacks on the OPT-1.3b model with five watermark algorithms.
We compute the z-score and perplexity (with lower values indicating better quality) for 100 texts
generated by the unwatermarked model (Un-W), watermarked model (W), and watermarked models
under different attacks. For clarity, we truncate perplexity at an upper bound of 100. The texts

generated by the smoothing attack remain closer to the unwatermarked texts in both perplexity and
z-score compared to other attacks.

only talk about writing style and not about the content contained. Important: Defer any ethical
considerations in the ethics section.”, ”score”: ”score from 1 to 10”, "consistency (setting ethics
aside)”: "explanation”: ” Is the completion consistent both in writing as well as in its completion to
the users prompts. Does it change topics abruptly or contain incoherent thoughts? Important: Defer
any ethical considerations in the ethics section.”, ”score”: ”score from I to 10” accuracy (setting
ethics aside)”: "explanation”: ” Does the completion invent any facts that are not actually true or
did it give factually correct completion? It is very important to only talk about the factual correctness
of the content and not about its implications. Important: Defer any ethical considerations in the
ethics section.”, ”score”: score from 1 to 107, "ethics”: “explanation”: ” Is the competition

ethical and how could that have been improved. Be brief but concise”, "score”: "score from I to
]0»’

16

Under review as a conference paper at ICLR 2025

A.5 DETAILED COMPARISON WITH [ZHANG ET AL.| (2024 A)

Compare with |Jovanovic et al.| (2024). Jovanovic et al.[(2024) proposed a watermark-stealing
attack requiring knowledge of the watermarking algorithm, a large dataset from the watermarked
model, and access to a paraphrasing model and a reference model. In contrast, our smoothing at-
tack requires neither prior knowledge of the watermark nor extensive data and a strong reference
model. We utilize a small reference model compared to the target model. Their approach assumes
the adversary only has access to sampled tokens. Our attack leverages additional information typi-
cally available from the API, namely the probabilities of the top-K tokens. Since our threat models
are different, our algorithms are orthogonal and can be applied in different threat model settings
accordingly.

Compare with Zhang et al. (2024a). [Zhang et al.| (2024a) propose using reference models to
remove the watermark. The main difference is in the capability of the adversary (our attack has
fewer constraints on the adversary’s capability) and the costs to run the attacks (our attack is less
costly to run). In addition, our attack is also more effective in removing watermarks.

Adversary’s capability: In our attack, we use a weaker model of the same type as the target wa-
termarked model. For example, we use TinyLlama-1.3B to attack Llama-7B, which captures the
capability of an adversary in practice. The attack by |Zhang et al.| (2024a) demands a more capable
adversary, who has access to a perturbation oracle model (which generates a candidate for the given
watermarked text) and a quality oracle model (which assigns a score for the candidate output by the
perturbation model). When attacking Llama-7B, Zhang et al. (2023) use T5-XL v1.1 of 2.8B as the
perturbation model and RoBERTa-v3 large of 335M as the oracle model.

Cost: Our attack also requires fewer computation resources, as it makes fewer queries to the refer-
ence model. In particular, we query the reference model (e.g., Llama-1.3B) only when the entropy
for predicting the current token is high, and stops querying after producing the final token. The
outcome is a single candidate for the prompt. As a comparison, |Zhang et al.[|(2024a)’s perturbation
oracle model (e.g., TS-XL v1.1 of 2.8B) generates multiple candidates (e.g., 200) for the prompt,
leading to much higher computational costs.

We have benchmarked the attack costs on the KGW watermark using two NVIDIA TITAN RTX
GPUs (24GB)—our attack takes around 30 seconds whereas |[Zhang et al.| (2024a) takes around 800
seconds.

Effectiveness: The attack algorithm in [Zhang et al.| (2024a)) can be seen as a type of paraphrasing
attack. In our paper, we included a competitor that seems stronger than Zhang et al.’s attack—the
paraphrase attack using GPT3.5 (175B parameters). Notably, our attack achieves lower z-scores
than this paraphrasing attack (see Table , which, in turn, implies that our attack is better than
Zhang et al.|(2024a).

Overall, our attack is more practical, efficient, and effective. In other words, our attack reveals more
vulnerability to the existing statistical watermarks (we do not even need a strong adversary to break
the watermarks).

A.6 DISTORTION-FREE WATERMARKS.

Recent distortion-free watermarks |[Kuditipudi et al.| (2023); [Dathathri et al.| (2024); |[Hu et al.| em-
bed the watermarks during the sampling process, which do not alter the token distributions of the
original model. In our setting, as the adversary can observe the probability for the top-K tokens, he
can directly sample the next token based on the obtained probabilities, successfully removing the
watermark. In other words, attacking distortion-free watermarks is a trivial task under our threat
model (hence, we attack non-distortion-free schemes).

A.7 LIMITATION & POSSIBLE DEFENSES

Our attack leverages the correlation between the significance level of the watermark and the un-
certainty in predicting the next token. To mitigate this risk, a service provider might limit access
to information about prediction uncertainty, such as only returning the most likely token without
probability information.

17

Under review as a conference paper at ICLR 2025

The intuition behind this defense lies in the design of our attack, which depends on estimating the
significance level of the watermark to generate the next token. When the number of tokens or associ-
ated probabilities is reduced, this estimation becomes less accurate. An inaccurate estimation of the
significance level would disrupt the attacker’s decision-making regarding when to use the reference
or watermarked model, ultimately degrading the quality of the generated text and/or leaving some
watermark traces.

However, this defense may not be practical to implement. For instance, many existing LLM services
provide probabilities for the most likely tokens (e.g., OpenAI’s API returns the top-20 tokens and
their probabilities), which is already sufficient for running our attack. Additionally, restricting ac-
cess to such information could negatively impact user experience, as this data is often essential for
features like output customization, explainability, debugging, interpretability, evaluation, and mon-
itoring. Consequently, such information is typically available to users—and, by extension, to our
attack.

Our paper advocates for exploring new methods of designing watermarks that account for the inher-
ent uncertainty in model predictions.

18

Under review as a conference paper at ICLR 2025

Table 2: Effectiveness of smoothing attack against different watermark algorithms on OPT-1.3b
model. In all cases, the smoothing attack successfully removes most of the watermarks, maintaining
a positive prediction rate below 0.05.

Algorithm Setting Effectiveness Text Quality
Z-Score | PPR| Perplexity | Loss|
Human-written -0.04 0.00 14.59 2.68
Reference -0.08 0.00 20.58 3.02
Unwatermarked -0.01 0.00 12.27 2.51
DIP Watermarked 2.90 0.98 14.99 2.71
Watermarked (P-GPT3.5) 0.21 0.01 14.12 2.65
Watermarked (Word-D) 0.57 0.02 80.17 4.38
Watermarked (Word-S) 0.30 0.00 180.34 5.19
Watermarked (Smoothing) 0.66 0.04 16.36 2.79
Human-written 0.05 0.00 14.59 2.68
Reference 0.10 0.00 20.01 3.00
Unwatermarked 0.18 0.00 12.28 2.51
EWD Watermarked 8.48 1.00 15.36 2.73
Watermarked (P-GPT3.5) 2.64 0.18 14.52 2.68
Watermarked (Word-D) 5.23 0.91 94.20 4.55
Watermarked (Word-S) 3.45 0.29 170.36 5.14
Watermarked (Smoothing) 1.37 0.00 17.86 2.88
Human-written -0.04 0.00 14.59 2.68
Reference -0.05 0.00 20.53 3.02
Unwatermarked -0.06 0.00 12.45 2.52
SIR Watermarked 0.37 0.87 16.85 2.82
Watermarked (P-GPT3.5) 0.19 0.50 13.83 2.63
Watermarked (Word-D) 0.24 0.55 98.41 4.59
Watermarked (Word-S) 0.13 0.30 204.48 5.32
Watermarked (Smoothing) 0.01 0.04 18.29 291
Human-written 0.08 0.00 14.59 2.68
Reference 0.31 0.00 21.46 3.07
Unwatermarked 0.45 0.00 12.99 2.56
SWEET Watermarked 8.37 1.00 15.79 2.76
Watermarked (P-GPT3.5) 2.67 0.16 14.61 2.68
Watermarked (Word-D) 5.01 0.83 92.43 4.53
Watermarked (Word-S) 3.40 0.32 178.23 5.18
Watermarked (Smoothing) 1.30 0.02 17.18 2.84
Human-written - 0.00 14.59 2.68
Reference - 0.00 20.72 3.03
Unwatermarked - 0.00 12.78 2.55
UPV Watermarked - 0.98 12.63 2.54
Watermarked (P-GPT3.5) - 0.40 12.96 2.56
Watermarked (Word-D) - 0.94 73.66 4.30
Watermarked (Word-S) - 0.47 143.79 4.97
Watermarked (Smoothing) - 0.03 16.86 2.82
Human-written -0.05 0.00 14.59 2.68
Reference -0.05 0.01 20.20 3.01
Unwatermarked -0.04 0.00 12.59 2.53
XSIR Watermarked 0.39 0.87 16.19 2.78
Watermarked (P-GPT3.5) 0.16 0.34 15.10 2.71
Watermarked (Word-D) 0.40 0.94 84.72 4.44
Watermarked (Word-S) 0.19 0.44 184.38 5.22
Watermarked (Smoothing) 0.02 0.04 17.86 2.88

19

	Introduction
	Preliminaries and problem statement
	Attack framework
	Significance Level of Watermarking
	Smoothing the Token Distribution

	Experiments
	Setup
	Effectiveness of smoothing attack

	Related Works
	Conclusion
	Supplemental Material
	Algorithm
	Implementation of the watermark algorithms
	Effectiveness of smoothing attack on various watermark methods.
	GPT Score Template
	Detailed Comparison with zhangwatermarks2024
	Distortion-free Watermarks.
	Limitation & Possible Defenses

