
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WATERMARK SMOOTHING ATTACKS AGAINST LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Statistical watermarking is a technique used to embed a hidden signal in the prob-
ability distribution of text generated by large language models (LLMs), enabling
the attribution of the text to the originating model. We introduce the smooth-
ing attack and show that existing statistical watermarking methods are not robust
against minor modifications of text. In particular, with the help of a weaker lan-
guage model, an adversary can smooth out the distribution perturbation caused by
watermarks. The resulting generated text achieves comparable quality to the orig-
inal (unwatermarked) model while bypassing the watermark detector. Our attack
reveals a fundamental limitation of a wide range of watermarking techniques.

1 INTRODUCTION

Large language models (LLMs) have made remarkable progress, posing the challenge of determin-
ing whether a text is written by a human or generated by AI (more specifically, by a given LLM).
One common solution to this challenge is watermarking the generated text (Aaronson, 2023; Christ
et al., 2023; Huang et al., 2023; Li et al., 2024), where the model provider subtly modifies the prob-
ability distribution of the generated text (i.e., a sequence of tokens). For example, at each position
of token generation, the likelihood of selecting from a subset of tokens (referred to as the “green
list”) is slightly boosted, where the assignment of this subset is kept secret from the human users.
This subtle statistical modification, while remaining largely unnoticeable to human users, can be
observed by the detector who knows the secret and attributed to the watermark (Kirchenbauer et al.,
2023a;b; Zhao et al., 2023a; Kuditipudi et al., 2023). Watermarking faces two main technical chal-
lenges, maintaining text quality and preventing easy removal of the watermark. In this work, we
focus on the second challenge and examine the resilience of statistical watermarking against attacks.

Previous attacks typically rely on a stronger/larger reference model to erase watermarks, e.g., using
a strong GPT model to paraphrase the watermarked texts generated from Llama2-7b (Kirchenbauer
et al., 2023b; Zhao et al., 2023a; Pan et al., 2024; Piet et al., 2023; Jovanović et al., 2024). However,
the assumption that the attacker has access to a stronger model undermines the realism of the attack
scenario, as such resources may not always be available in practice.

In this paper, we attack statistical watermarking of LLMs under more practical conditions. In our
setting, the attacker’s goal is not simply to remove the watermark at any cost, e.g., using a stronger
model to paraphrase the watermarked text. Instead, we consider a more realistic attack scenario,
where the adversary only has access to a weaker reference language model. The central question
is: given access to a weaker model, can the attacker remove the watermark while maintaining the
quality of the text?

We provide a positive answer in this paper, by presenting an attack algorithm, called the watermark
smoothing attack. Our attack, which only queries the target watermarked model and a weaker ref-
erence model through model APIs, is able to remove the watermark from the generated text while
maintaining its quality comparable to the original unwatermarked text. As suggested by its name,
the key component of our attack is to smooth the shift of token distributions caused by watermark-
ing. To do that, at each token position, we sample from a mixture of token distributions from the
reference model and the watermarked model, where the coefficient of the mixture depends on the
level of significance of the watermark. A higher level of significance means that the change caused
by the watermark is more noticeable; hence, we should assign a larger coefficient to the reference
model to smooth out this change, thereby removing the watermark. Conversely, a lower level of sig-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

nificance means that the change caused by the watermark is not noticeable, in the first place; hence,
we should assign a larger coefficient to the watermarked model for better text quality.

The major advantage of our smoothing attack over existing ones, is that ours is watermark-agnostic
as it effectively smooths out the distribution shift caused by watermarking, without knowing the
exact set(s) of tokens that are more likely to get sampled and the exact level of increase in their like-
lihoods. As a result, our method can be applied off-the-shelf to attack any statistical watermarking
algorithm that relies on boosting the likelihood of sampling from specific tokens.

We conduct comprehensive experiments to validate the effectiveness of our attack against eight ex-
isting representative watermark strategies on Llama2-7b (Touvron et al., 2023) and OPT-1.3b (Zhang
et al., 2022). Notably, under certain setups, our attack removes the watermark completely, mean-
ing that 0% of the generated text is detectable while maintaining high text quality. Meanwhile,
under the same setup, the previous state-of-the-art attack (Piet et al., 2023) that uses the strong GPT-
3.5-turbo (OpenAI, 2023a) to paraphrase the watermarked text fails to remove the watermarks in
48% of the text. We emphasize that our attack achieves this significant improvement with access
to only much weaker reference models such as TinyLlama-1.3b (Zhang et al., 2024b), and OPT-
125m (Zhang et al., 2022), confirming its practicality and effectiveness.

2 PRELIMINARIES AND PROBLEM STATEMENT

Text generation of language models. We use M to denote a language model (LM) and V to denote
its associated vocabulary set (namely, the collection of all tokens). The LM generates a sequence of
tokens step by step, constituting the output text. During the generation, at each token position t, M
computes the logit scores of tokens at position t, written as a vector lt ∈ R|V| (where each dimension
corresponds to the logit of a specific token); after that M applies the softmax function (Bridle, 1989)
to lt, obtaining a probability distribution from which the t-th token is sampled. Two strategies are
often employed at this sampling step, top-k sampling (Fan et al., 2018; Holtzman et al., 2018), which
samples a token from the k most probable candidates, and top-p/Nucleus sampling (Holtzman et al.,
2019), which selects a token from the smallest set of tokens whose cumulative probability exceeds
a threshold p.

Statistical watermarking. The overall idea of statistical watermarking for LMs (Kirchenbauer
et al., 2023a;b; Zhao et al., 2023a) is to introduce a small shift to the probabilities for sampling a
specific set of tokens (which is not revealed to the users), in such a way that a detector algorithm
can identify this shift from a long text, whereas human users cannot. The canonical approach is as
follows. At each token position t, a γ fraction of the vocabulary set is first selected as the green list
(denoted as Gt); next, the logit values for tokens in Gt are increased by δ while the logit values for
the rest of the vocabulary remains unchanged.

l̃vt = lvt + δ · 1v∈Gt . (1)

The next token is then sampled according to the shifted logit vector l̃t. In this way, a statistical
watermark is embedded into the generated text, as the token distributions at all positions are now
biased toward tokens in the green list(s). We denote this associated watermarked LM as M̃ .

Provided with the assignment of Gt, the detector algorithm looks for the evidence that tokens in
Gt appear disproportionally more frequent. In particular, given the generated text of length T , the
detector counts the actual occurrences of green tokens ngreen and computes the z-score as

z =
(ngreen − γT)√

Tγ(1− γ)
, (2)

and then predicts the given sequence as watermarked when z exceeds some threshold λ (namely,
when ngreen exceeds γT by a large margin).

Green token assignment. The assignment of the green token set Gt is random at each token position
t, determined by the LM provider. Due to this, it is very unlikely that a non-watermarked text will
be misclassified as watermarked, particularly when T is long enough. In addition, the assignment
of Gt could also depend on previous h tokens in the previously generated tokens (i.e., the prefix).
For example, when h = 0, the assignment is context-independent and is referred to as the Unigram
watermark (Zhao et al., 2023a); when h = 1, the assignment depends only on the previous token

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and is referred to as the KGW watermark (Kirchenbauer et al., 2023a). Finally, we remark that Gt is
not revealed to the LM users.

Problem statement. We present an attack to analyze the robustness of statistical watermarking. We
assume the attacker has API access to a reference model Mref, which is weaker compared to the
original LM M ; since otherwise, he would have less motivation to attack the watermarked model,
which rules out the paraphrasing attacks that leverage a strong LM (e.g., ChatGPT) to paraphrase
the watermarked text (Zhang et al., 2024a). Regarding the knowledge of the watermarked model
M̃ , we consider the realistic scenario that the adversary is unaware of the specific statistical wa-
termarking strategies in use, e.g., the adversary does not know whether the assignment of Gt is
context-dependent or not. The adversary can obtain the token sampled from the M̃ and Mref, as
well as the log probabilities of the most probable K tokens. This level of information is commonly
available, even when the model is closed-sourced, e.g., through OpenAI’s API 1.

3 ATTACK FRAMEWORK

Recall Section 2 that the idea of statistical watermarking is to increase the sampling probability for a
certain fraction of tokens (namely, the green tokens), by shifting their logit values. From a detector’s
point of view, the trace of the watermark is said to be significant, when the actual occurrence of
green tokens in the generated text from the watermarked model are significantly higher than any
other unwatermarked model (which is roughly γT for texts of length T).

Our attack exploits the above observation to bypass a detector. Consider the following extreme
scenario(s). When generating the token for position t, the unwatermarked model already assigns
high logit values for some green tokens (alternatively, some red tokens), possibly due to the inherent
characteristics of the model or just by chance. In such scenarios, we would not expect that adding δ
to the logit values of the green tokens that are too high (or too low) will cause a significant difference
in the actual occurrence of a green token at this position. In other words, this δ shift is not likely
to increase the z-score. Accordingly, as an attacker, we can just use the watermarked model for
this position without modifying the output distribution. Conversely, in the not-so-extreme scenarios
where the logit values for the green tokens are neither too high nor too low, the δ shift applied to
the green tokens could have a significant influence on the z-score. In such cases, we smooth out this
influence, by combining the token distributions of the watermarked model with those of a reference
model to generate the next token.

Overall, our attack runs as follows. When generating the token at position t, (i) we first estimate
the significance level of the watermark, which is defined as the relative increase in the probability of
generating green tokens from the watermarked model compared to the unwatermarked model; (ii)
if the significance level is high, then we combine the token distributions of the watermarked model
and the reference model to generate the t-th token; otherwise, we generate the token from the water-
marked model directly. Note that our attack is not designed for any statistical watermarking scheme
in specific. Instead, our attack is universally applicable to all statistical watermarking schemes, as
it directly aims at smoothing out the change in the actual occurrence of green tokens caused by the
watermark. We describe our attack in more detail next.

3.1 SIGNIFICANCE LEVEL OF WATERMARKING

Definition. When sampling the token at position t, we are interested in how much more likely the
watermarked model is to sample green tokens compared to the unwatermarked model. The natural
definition is the probability difference across all green tokens:

∑
v∈Gt

p̃vt −
∑

v∈Gt
pvt , where p̃vt

and pvt represent the probability of sampling token v at position t from the watermarked model
M̃ and unwatermarked model M , respectively. However, summing over all green tokens may not
accurately reflect the likelihood of sampling a green token, particularly due to the large number of
tokens in Gt. In particular, although the size of Gt could be as large as 16, 000 for Llama2 models
when γ = 0.5, in practice, the next token is often chosen using top-k or top-p sampling (recall
Section 2), where only the most probable tokens could be sampled in the first place (instead of all
16, 000 tokens in Gt). Motivated by this, we focus on the K most probable tokens. We denote the

1https://platform.openai.com/docs/advanced-usage/token-log-probabilities

3

https://platform.openai.com/docs/advanced-usage/token-log-probabilities

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
P[green]t

0.0

0.2

0.4

0.6

0.8

S t

δ=0.5
δ=1.0
δ=2.0
δ=4.0

0.0 0.2 0.4 0.6 0.8
St

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e δ=0.5

δ=1.0
δ=2.0
δ=4.0

0.0 0.2 0.4 0.6 0.8
St

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Figure 1: Correlations between St, Pt[green], and the total variation distance (TVD) between the
token distributions at position t of the unwatermarked and watermarked models (with γ = 0.5),
computed on OPT-1.3b. Left subfigure illustrates the correlation between the St and Pt[green]–as
Pt[green] increases from 0 to 1, St first increases and then decreases. Middle subfigure illustrates
the positive correlation between St and the TVD measured on the empirical token distributions of
the watermarked and unwatermarked models, when top-k sampling (k = 10) is applied. Right
subfigure leads to the same conclusion as the middle one when top-p sampling (p = 0.8) is applied.

sets of tokens that rank as the K most probable ones according to p̃t and pt as Vp̃t
(K) and Vpt

(K),
respectively. Accordingly, we define the probabilities of sampling green tokens at position t from
the watermarked model and unwatermarked model as

P̃t[green] :=

∑
v∈Gt∩Vp̃t (K) p̃

v
t∑

v∈Vp̃t (K) p̃
v
t

and Pt[green] :=

∑
v∈Gt∩Vpt (K) p

v
t∑

v∈Vpt (K) p
v
t

, (3)

respectively. We proceed to define the significance level St as

St := P̃t[green]− Pt[green]. (4)

In the rest, we consider the case where K = 20 for measuring St. We next explain the importance
of St in building our attack through illustrative observations.

How Pt[green] influences St. Our first observation is that the probability of sampling green tokens
from the unwatermarked model (i.e., Pt[green]) influences the value of the significance level (i.e.,
St). The left of Figure 1 illustrates the correlation between them. Each sample is obtained by
querying the watermarked and unwatermarked models using the same prefix, from which we can
compute Pt[green], P̃t[green], and St. Overall, when Pt[green] is either too large (close to 1) or too
small (close to 0), St is not significant; conversely, when Pt[green] is of some moderate value (e.g.,
within the range of [0.2, 0.8]), St becomes relatively more significant, resulting in a bell-shaped
curve. Our observation holds under different choices of watermark shift δ.

How St influences the trace of watermarking. In the middle and right subfigures of Figure 1, we
further show that when St is large, the probability distributions for generating the token at position
t using the watermarked model and unwatermarked model are more different. We empirically mea-
sure this difference using the total variation distance (TVD) between the actual frequencies of tokens
generated from the watermarked model and the unwatermarked model (each frequency histogram
consists of 1000 tokens generated from 1000 independent runs). We see that when St is large, there
is less agreement between the watermarked and unwatermarked models (i.e., larger TVD between
their token distribution); and vice versa. Therefore, to remove the watermarking trace, the attacker
should focus on smoothing the TVD at token positions with relatively large St. Conversely, to main-
tain text quality, they should use the watermarked model directly at token positions with small St,
since the TVD between the watermarked and unwatermarked models is low, indicating little to no
detectable watermarking trace.

How to compute St. Our goal is to estimate St in the absence of the knowledge of the assignment
of green tokens (namely, Gt), which the attacker does not have access to. In what follows, we first
present an indicator for St and then show how to use the indicator to estimate St.

We first compute the difference in sampling probability between the most likely token and the K-th
most likely token in the set Vpt

(K) as follows

∆K
t = max

v∈Vp̃t (K)
p̃vt − min

u∈Vp̃t (K)
p̃ut (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

−30 −20 −10 0
Log Probability

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Prob: 0.045
K-th Prob: 0.012

St = 0.73

−30 −20 −10 0
Log Probability

Max Prob: 0.381
K-th Prob: 0.004

St = 0.33

−30 −20 −10 0
Log Probability

Max Prob: 0.997
K-th Prob: 0.000

St = 0.00

Figure 2: Distribution of the log of the probabilities of tokens from the watermarked OPT-1.3b (with
γ = 0.5, δ = 2.0). The vertical line represents the probability of the most probable token (0.997
means the probability is close to 1) and the 20-th most probable token. We can see that larger values
of St correspond to smaller maximum probabilities and smaller distances between the probabilities
of the most probable token and the 20-th.

0.00 0.25 0.50 0.75 1.00
Δ2
t

0.0

0.2

0.4

0.6

S t

PCC: -0.7684

0.00 0.25 0.50 0.75 1.00
Δ20
t

0.0

0.2

0.4

0.6
PCC: -0.8042

1 6 11 16
K

0.77

0.78

0.79

0.80

Ab
so

lu
te

 P
C

C
Figure 3: Left and Middle subfigures show the correlation between significance level St and ∆K

t ,
computed on the watermarked OPT-1.3b (with γ = 0.5, δ = 2.0) for K = 2 and K = 20,
respectively. PCC stands for Pearson correlation coefficient, where larger values indicate stronger
correlations. Right subfigure shows the absolute value of PCC with different choices of K.

We explain the intuition next. When Pt[green] is extremely large or small, it is likely that there
is a single token that “stands out” as the dominant token, which has a very high probability of
getting sampled compared to others. Figure 2 illustrates the distributions of log probabilities of the
watermarked model with different values of St, along with the maximum probability among all the
tokens (i.e., maxv∈Vp̃t (K)). We can see that, in general, smaller St corresponds to larger maximum
probabilities for the watermarked model. Intuitively, this is because when a single token has an
extremely high probability of getting sampled, then adding delta to the logit values of other less
likely tokens does not increase their chances of getting sampled significantly (namely, small St). In
addition, adding δ to the logit value of that token does not change much of its probability of getting
sampled either, as it is already very large (e.g., a value close to 1). In equation 5, we have subtracted
the probability of the K-th most probable token from the most probable one. This can be seen as
some sort of normalization, which cancels out the instability of the max probability (in our early
experiments without this subtraction, the attack performance is not satisfactory). Figure 3 illustrates
the strong correlation between St and ∆K

t , with different values of K, confirming that ∆K
t is a

indicator for St (∆K
t decreases as St increases).

Confidence score. We now convert the ∆K
t into a confidence score ct within the range [0, 1]. We

start by querying the watermarked model on a set of prefixes to determine the upper bound and
lower bound of ∆K

t , denoted as U and L, respectively. (Alternatively, the attacker can simply use
0 and 1, to avoid making extra queries to the model.) Next, we divide the range between them into
100 bins of the same width. In particular, the m-th bin (m = 1, . . . , 100) contains values in the

range of

[
L + U−L

100 (m − 1), L + U−L
100 m

)
. At each token position t, the attacker calculates the

∆K
t by querying the watermarked model and determines the corresponding bin index i to put ∆K

t
in. The confidence score is the bin’s relative position among the 100 bins, computed as ct = i/100.
A large value of ct is the result of a large ∆K

t , corresponding to a small significance level St. In
this case, there is a high agreement between the watermarked model and the unwatermarked model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(recall Figure 1); hence, the attacker should have high confidence in using the watermarked model
to sample the t-th token. Conversely, a small value of ct is the result of a small ∆K

t , corresponding
to a large St. In this case, the attacker should have less confidence in using the watermarked model;
instead, he should smooth out the change in probability distribution caused by the watermark shift.

3.2 SMOOTHING THE TOKEN DISTRIBUTION

We now introduce our smoothing method. Specifically, given the confidence score ct (which is
inversely related to the significance level St), the attacker samples the token from the watermarked
model with probability ct. Otherwise, the attacker samples a token from the reference model Mref.
Accordingly, we can view probability distribution for sampling the next token as a mixture of p̃t
(corresponding to the watermarked model) and pref

t (corresponding to the reference model), written
as

p att
t =

{
p̃t with probability ct
pref
t with probability (1− ct)

The probability of sampling the green tokens using our method at position t is then computed as

P att
t [green] = ct · P̃t[green] + (1− ct) · P ref

t [green], (6)

where P̃t[green] is defined in Equation 3 and P ref
t [green] =

∑
v∈Gt∩V

pref
t
(K) p

ref,v
t /

∑
v∈V

pref
t
(K) p

ref,v
t

is the expected probability of sampling green tokens based on the top K tokens from the reference
model. The difference between P att

t [green] and Pt[green] is computed as

ct ·
(
P̃t[green]− Pt[green]

)
︸ ︷︷ ︸

St

+(1− ct) ·
(
P ref
t [green]− Pt[green]

)
. (7)

Since the reference model is free of watermarks, its expected occurrence of green tokens should be
similar to that of the unwatermarked model, making the second term small. Moving to the first term,
we note that it attains a relatively large value when both ct and St are large. This, however, is not
possible due to our design–ct is inversely related St. In conclusion, the probability of sampling a
green token using our p att

t is similar to the unwatermarked model; hence, our attack is able to bypass
the watermark detector. We outline the complete algorithm as in Algorithm 1 in Appendix A.1.

To further ensure that we always bypass the watermark detector, we can set the probability of using
the watermarked model to 0 (instead of ct) 0 whenever ct is not significant enough, i.e., ct ≤ τ .
This ensures that the fraction of green tokens generated is closer to any model without watermarks.
In Section 4, we demonstrate the impact of τ on both text quality and the effectiveness of the attack.
We conclude this section with some remarks on our design.

Agnostic smoothing. Our attack is agnostic to how the statistical watermark is embedded, e.g., Un-
igram watermark (Zhao et al., 2023b) or KGW watermark (Kirchenbauer et al., 2023a). Regardless
of the strategy for choosing the green token set Gt and internal details of the watermarked model,
we apply a universal smoothing over the watermarked model’s token distribution by combining it
with that of a reference model. Here the level of smoothness depends on the significance level of
the watermark, i.e., how much the watermark model agrees with the unwatermarked model, which,
again, can be estimated accurately without any knowledge of the model or watermarking strategy.

Practicality. Our attack is practical, as it leverages the reference model and watermarked model as
black boxes. Besides, the reference model is much weaker than the target watermarked model. Our
practical attack provides more insight into the robustness analysis of statistical watermarking–not
only is it vulnerable under the paraphrasing attack (Piet et al., 2023) that leverages a strong model,
but also not resilient against our smoothing attack where the attacker only gets help from a much
weaker model that contains an order of magnitude fewer parameters (as we will see next in the
experiment). Our findings call for stronger watermark strategies for LLMs.

4 EXPERIMENTS

In this section, we evaluate our attack from two axes–how effective our attack is in terms of removing
the watermarks and preserving the quality of the generated text. All experiments are conducted on
two NVIDIA TITAN RTX GPUs with 24GB memory for each.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 SETUP

Models and Datasets. We consider two commonly used models as the target model in the wa-
termarking literature, Llama2-7b (Touvron et al., 2023) and OPT-1.3b (Zhang et al., 2022). When
attacking models Llama2-7b and OPT-1.3b, we use TinyLlama-1.3b (Zhang et al., 2024b) and OPT-
125m (Zhang et al., 2022) as the reference models, respectively. Following prior work (Kirchen-
bauer et al., 2023a; Pan et al., 2024), we use the C4 dataset (Raffel et al., 2020). Specifically, the
first 30 tokens of texts serve as prompts, and the task is to generate the subsequent 200 tokens. The
original C4 texts act as human-written examples, referred to as the human-written baseline.

Watermark Algorithms. We evaluate against eight representative watermarking algorithms, in-
cluding KGW (Kirchenbauer et al., 2023a), Unigram (Zhao et al., 2023a), SWEET (Lee et al., 2023),
UPV (Liu et al., 2023), EWD (Lu et al., 2024), SIR (Liu et al., 2024), X-SIR (He et al., 2024), and
DIP (Wu et al.). We adopt the implementation in MarkLLM toolkit (Pan et al., 2024) for the above
watermarking algorithms. The detailed description of these algorithms is in Appendix A.2. Results
for KGW and Unigram are presented in the main paper; results for the remaining algorithms can be
found in Appendix A.3. For the two algorithms highlighted, we follow standard configurations by
setting the watermark shift δ to 2, the fraction of green tokens γ to 0.5, and the z-score threshold for
watermark prediction to 4.

Attacks. Attack baselines include Word-D, which randomly deletes a word at a specified ratio
and Word-S, which randomly substitutes a word with its synonyms using WordNet (Miller, 1995).
Following (Pan et al., 2024), we set the ratio to be 0.3 for Word-D and to be 0.5 for Word-S.
We also include the strong baseline P-GPT3.5 (Piet et al., 2023) that paraphrases the given text
based on the GPT-3.5-turbo using the prompt: “Please rewrite the following text:”. It is important
to note that this attack assumes a significantly stronger attacker than ours (Smoothing). We also
include the reference model (Reference) and the unwatermarked model (Unwatermarkd) in our
comparison. For our smoothing attack, we set the threshold τ to 0.5 by default, unless specified
otherwise. Namely, whenever the confidence level is smaller than 0.5, we always sample from the
reference model rather than the mixture of the reference and unwatermarked model.

Metrics. To measure the effectiveness of watermark removal, we compute the z-score (defined
in equation 2) on the generated text. Lower values indicate fewer traces of watermarks in the gener-
ated text and greater success for the attacker. We also report the positive prediction rate (PPR) when
using the default threshold on the z-score, which denotes the proportion of generated text identified
as watermarked. There are two types of texts, positive samples (those generated from the water-
marked model with/without attacks) and negative samples (those written by humans or generated by
unwatermarked text). PPR reflects the True Positive Rate when computing on positive samples and
the False Positive Rate when computing on negative samples.

To measure the text quality, we follow prior work (Kirchenbauer et al., 2023a; Pan et al., 2024) and
compute the perplexity using an oracle model. We use OPT-2.7b for texts generated by OPT models,
and Llama2-13b for those from Llama models. We also measure the negative log-likelihood (loss)
of the unwatermarked model on the generated text to assess how likely the unwatermarked model
would have produced it. Smaller perplexities and losses indicate better text quality. We also utilize
GPT-4 (OpenAI, 2023b) as an evaluator of accuracy, consistency, and style, scoring on a scale of
1 to 10, similar to the approach in (Jovanović et al., 2024), with higher scores indicating better
performance. The prompt template used for evaluation is provided in Appendix A.4.

4.2 EFFECTIVENESS OF SMOOTHING ATTACK

Table 1 presents the overall result. Compared to Word-D and Word-S which do not utilize any
additional model, our smoothing attack achieves a lower positive prediction rate, indicating that
more generated texts successfully bypass detection. Additionally, our attack maintains high text
quality, achieving lower perplexity and loss. Compared to the text generated by the reference model
alone, the text generated by our attack also achieves a higher quality, which justifies the adversary’s
motivation to remove the watermark from the target model. Otherwise, if the reference model can
achieve a high text quality, the adversary could simply use the reference model which is watermark-
free instead of launching an attack.

Notably, in some cases, our attack can be far more effective at removing the watermark compared
to the paraphrasing attack that relies on a much stronger reference model. Under the Unigram

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Effectiveness of smoothing attacks on OPT-1.3b and Llama2-7b models using KGW and
Unigram watermark algorithms. The values are aggregated over 300 responses. A lower z-score
and lower positive prediction rate (PPR) indicate a stronger attack. At the same time, the adversary
seeks to maintain high text quality, aiming for lower perplexity and loss values. The lowest values
across all attacks on the watermarked models are highlighted in bold. For the GPT-4 score, higher
values indicate better quality.

Model Algorithm Setting Effectiveness Text Quality

Z-Score ↓ PPR ↓ Perplexity ↓ Loss ↓ GPT-4 ↑

O
PT

-1
.3

b

KGW

Human-written 0.12 0.00 14.59 2.68 8.83
Reference 0.21 0.00 19.75 2.98 7.16
Unwatermarked 0.07 0.00 12.30 2.51 8.66

Watermarked 8.03 1.00 16.52 2.80 8.33
Watermarked (Word-D) 5.13 0.85 87.20 4.47 2.0
Watermarked (Word-S) 3.12 0.17 175.15 5.17 2.66
Watermarked (P-GPT3.5) 2.54 0.19 15.27 2.73 8.66
Watermarked (Smoothing) 1.49 0.00 17.91 2.89 7.33

Unigram

Human-written -0.22 0.00 14.59 2.68 8.83
Reference -0.07 0.00 19.51 2.97 7.16
Unwatermarked -0.05 0.00 12.45 2.52 8.66

Watermarked 8.56 0.99 16.80 2.82 7.66
Watermarked (Word-D) 7.04 0.98 91.98 4.52 2.0
Watermarked (Word-S) 5.42 0.88 190.26 5.25 2.66
Watermarked (P-GPT3.5) 3.70 0.48 14.62 2.68 8.33
Watermarked (Smoothing) 1.52 0.00 18.26 2.90 7.33

L
la

m
a2

-7
b

KGW

Human-written -0.78 0.00 7.37 2.00 8.83
Reference 0.11 0.00 17.10 2.72 3.3
Unwatermarked -0.74 0.00 4.08 1.41 8.66

Watermarked 6.47 0.90 5.11 1.63 8.28
Watermarked (Word-D) 3.88 0.45 25.69 3.25 2.48
Watermarked (Word-S) 2.78 0.15 31.16 3.44 3.81
Watermarked (P-GPT3.5) 2.22 0.15 5.46 1.70 8.83
Watermarked (Smoothing) 2.00 0.10 3.40 1.22 5.25

Unigram

Human-written -0.94 0.00 7.37 2.00 8.83
Reference -0.21 0.05 16.46 2.65 3.33
Unwatermarked -2.30 0.00 4.12 1.42 8.66

Watermarked 6.85 0.95 4.90 1.59 8.33
Watermarked (Word-D) 5.31 0.65 20.73 3.03 2.17
Watermarked (Word-S) 3.34 0.40 31.93 3.46 4.0
Watermarked (P-GPT3.5) 2.00 0.10 7.17 1.88 9.0
Watermarked (Smoothing) 0.08 0.15 3.36 1.21 4.5

watermark for the OPT-1.3b model, the paraphrasing attack using the gpt-3.5-turbo model results
in a positive prediction rate of 0.48, meaning nearly half of the paraphrased text is still detected as
watermarked. In contrast, our smoothing attack achieves a 0.0 positive prediction rate. Our results
demonstrate that the vulnerability of the watermark is more severe than previously assumed, as an
adversary can successfully remove the watermark using a much weaker model while still preserving
the quality of the text. The results for six other watermark algorithms are similar, and are presented
in Table 2 of Appendix A.3.

Figure 4 provides a more detailed illustration of the perplexity and z-score for the text generated
under different attacks, with the unwatermarked model (Un-W) and watermarked model (W) as
references. Each point in this Figure represents a sample text. As we can see, our smoothing attack
significantly lowers the z-score compared to the watermarked model, while preserving text quality.
Specifically, the text generated by the smoothing attack closely mirrors the unwatermarked model
in terms of the distributions for both quality and z-score. On the other hand, other attacks incur a
significant drop in the text quality, resulting in extremely high perplexity.

Effect of watermark shift δ. Figure 5 shows the performance of our attack in terms of z-score
and perplexity, compared with the watermarked model under different choices of watermark shift
δ. From the right subfigure, we notice that when the watermark shift increases, the z-score in-
creases significantly for the watermarked text, making the detection easier. On the other hand, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10
Z-Score (KGW)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

0 5 10
Z-Score (Unigram)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Figure 4: Effectiveness of smoothing attacks on the OPT-1.3b model with KGW and Unigram wa-
termark algorithms. We compute the z-score and perplexity (with lower values indicating better
quality) for 100 texts generated by the unwatermarked model (Un-W), watermarked model (W), and
watermarked models under different attacks. For clarity, we truncate perplexity at an upper bound
of 100. The texts generated by the smoothing attack remain closer to the unwatermarked texts in
both perplexity and z-score compared to other attacks. Results for additional watermark methods
are provided in Figure 7 in Appendix A.3.

0.5 1.0 2.0 4.0
δ

10

20

30

Pe
rp

le
xi

ty

0.5 1.0 2.0 4.0
δ

0

5

10
Z-

Sc
or

e
Watermarked
Watermarked (Smoothing)

Figure 5: Effectiveness of the smoothing attack on OPT-1.3b with KGW watermarks under different
watermark shift values, δ. We present boxplots of the z-score and perplexity for responses from both
the watermarked model and the smoothing attack model. Notably, the text quality from the attack
model can surpass that of the watermarked model when the watermark shift is large.

z-score for the text generated by our attack model remains low, confirming the effectiveness of our
attack, regardless of the assignment of δ. From the left subfigure, we notice that the benefit of using
smoothing in preserving the text quality increases as δ increases. That is, adding the watermark
introduces a significant distortion to the output which hurts the text quality while our smoothing
attack reduces this distortion, preserving the text quality. Notably, the text quality from the attack
model can surpass that of the watermarked model when δ is large.

Effect of τ . Figure 6 illustrates the performance of the smoothing attack in terms of z-score and
perplexity across different values of τ . Recall that the adversary only samples from the watermarked
model when ct is sufficiently large, i.e., setting ct = 0 when ct ≤ τ . Therefore, with a higher τ , the
adversary is less likely to sample from the watermarked model. The results show that as τ increases,
the z-score decreases, thereby lowering the likelihood of detection. Notably, increasing τ has a less
noticeable impact on text quality, as the perplexity remains relatively stable.

5 RELATED WORKS

Early watermark solutions embed watermarks by altering text through synonyms (Topkara et al.,
2005; 2006b), changing sentence structure (Topkara et al., 2006a), or injecting invisible to-
kens (Rizzo et al., 2019). More recent methods include context-aware lexical substitution (Yang
et al., 2022) and mask-infilling models (Ueoka et al., 2021). Statistical watermarks that are based
on “green-red” list increase the logits of tokens from the green list during token generation, thus
altering the output token distributions (Zhao et al., 2023a; Kirchenbauer et al., 2023a; Lee et al.,
2023; Liu et al., 2023; Lu et al., 2024; Liu et al., 2024; He et al., 2024; Wu et al.). On the contrary,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4
Z-Score

0.000

0.025

0.050

0.075

0.100

0.125

D
en
si
ty

0 10 20 30 40 50
Perplexity

0.00

0.01

0.02

0.03

D
en
si
ty

τ=0.6
τ=0.5
τ=0.4
τ=0.3

Figure 6: Effectiveness of smoothing attacks on the OPT-1.3b model with KGW watermarks with
different τ . We present histograms of the z-score and perplexity for responses generated by the
smoothing attack. A larger τ leads to the exclusion of more tokens from the watermarked model,
resulting in a decrease in the z-score, while the change in perplexity is less obvious.

distortion-free watermarks do not alter the output token distributions (Christ et al., 2023; Aaron-
son, 2023; Kuditipudi et al., 2023; Dathathri et al., 2024; Hu et al.) and hence, are inherently more
vulnerable under our threat model, since the adversary can directly sample the next token from the
watermark-free top-K token probabilities.

We focus on evaluating the robustness of watermarking schemes via attacks. One canonical attack
is to disrupt the structure of embedded watermarks, making them undetectable by injecting certain
characters, homoglyphs, or emojis into the target text (Gabrilovich & Gontmakher, 2002; Helfrich
& Neff, 2012; Pajola & Conti, 2021; Boucher et al., 2022; Goodside, 2023).

Another approach involves utilizing a separate large language model (LLM) to paraphrase the target
text (Sadasivan et al., 2023; Krishna et al., 2023; Piet et al., 2023), where the paraphrasing LLM is
significantly larger than the reference model targeted by our attack. Building on this, Jovanović et al.
(2024) and Zhang et al. (2024a) introduce advanced methods that incorporate additional models to
complement the paraphrasing LLM. Specifically, Jovanović et al. (2024) employs an auxiliary ref-
erence model to analyze how watermarks are embedded. Such analysis requires prior knowledge of
the watermarking algorithm (e.g., the choice of h) as well as access to a large set of texts generated
from the watermarked model. In contrast, our attack does not have such requirements. Zhang et al.
(2024a) enhances paraphrasing attack by integrating it with a reward model (termed as quality oracle
model), which evaluates candidates generated by the paraphrasing LLM (termed as perturbation ora-
cle model). In particular, multiple candidates are generated for each target text and the reward model
selects the best one. In comparison, our attack generates only a single candidate. Despite these dif-
ferences, our attack—using only TinyLLM with 1.3 billion parameters—outperforms existing para-
phrasing attacks that rely on much larger models, such as GPT-3.5 with 175 billion parameters, as
demonstrated in Table 1. Thus, our attack proves to be not only practical and cost-efficient but also
highly effective, illustrating that even a relatively low-resource adversary can bypass watermark-
ing. These findings underscore the critical need for the development of more resilient watermarking
strategies. Further details and comparisons are provided in Appendix A.5.

6 CONCLUSION

In this work, we present the smoothing attack to remove statistical watermarks that are embedded
into LLMs. The core idea is to smooth out the increased probability of sampling green tokens due
to the embedded watermark. Our method is agnostic to the specific watermarking algorithm used
and relies on more realistic assumptions on the attacker. Through comprehensive evaluations, we
demonstrated that our attack can successfully remove watermarks from a wide spectrum of wa-
termarking algorithms while preserving the quality of the generated text. Our findings highlight
vulnerabilities in existing statistical watermarking techniques.

Our attack removes watermarks at the cost of a quality drop in some cases, leaving room for future
improvement. Besides, designing more advanced watermarking techniques for LLMs that are robust
against our smoothing attack is also worth looking into.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement We, the authors of this paper, have reviewed and adhered to the ICLR Code of
Ethics throughout the development and submission of our work. In preparing this paper, we have
taken the following ethical considerations into account:

• Human Subjects Involvement: Our research does not involve human subjects, and there-
fore, no IRB (Institutional Review Board) approval was required.

• Data Set Usage and Release: The data sets used in this work are publicly available and do
not contain personally identifiable information.

• Harmful Insights, Methodologies, and Applications: While our research does not propose
methods that could be directly misused (e.g., for privacy violations, unethical surveillance,
or discrimination), we acknowledge that our findings highlight vulnerabilities in water-
marking algorithms under weaker adversarial assumptions. If these watermark algorithms
are used to prevent misuse of generative AI, our approach could potentially be exploited
to bypass detection. However, we note that this vulnerability is already recognized in the
existing literature.

• Bias and Fairness Considerations: Our method and evaluation do not involve demographic
data, and therefore do not directly raise concerns related to bias or fairness.

• Conflict of Interest and Sponsorship: There are no conflicts of interest associated with the
sponsorship or funding of this work. Any affiliations or financial support for this research
have been transparently disclosed.

• Privacy and Security: This work does not involve the collection or handling of private or
sensitive data.

• Legal Compliance and Research Integrity: All research conducted in this paper complies
with relevant legal and ethical standards.

We are committed to ensuring that our research upholds the highest standards of ethical responsibil-
ity, and we welcome discussions about the ethical implications of our work.

Reproducibility Statement Our code is built on MarkLLM Pan et al. (2024) and is distributed
under the Apache License 2.0. Modifications to the original source code are clearly documented in
the readme.md file. We have provided scripts to reproduce the results presented in this paper, along
with detailed instructions for setting up the environment. A comprehensive description of the dataset
and preprocessing steps is also included. Additionally, all necessary dependencies and configuration
files are supplied to ensure accurate reproducibility of the experiments.

REFERENCES

Scott Aaronson. Simons institute talk on watermarking of large
language models. https://simons.berkeley.edu/talks/
scott-aaronson-ut-austin-openai-2023-08-17, 2023.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters: Imper-
ceptible nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1987–2004.
IEEE, 2022.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv
preprint arXiv:2306.09194, 2023.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable water-
marking for identifying large language model outputs. Nature, 634(8035):818–823, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

11

https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Communications of the ACM,
45(2):128, 2002.

Riley Goodside. There are adversarial attacks for that proposal as well — in particular, generating
with emojis after words and then removing them before submitting defeats it. Twitter, January
2023. URL: https://twitter.com/goodside/status/1610682909647671306.

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, Xing Wang, Zhaopeng Tu, Zhuosheng Zhang,
and Rui Wang. Can watermarks survive translation? on the cross-lingual consistency of text
watermark for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 4115–4129, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.226. URL https:
//aclanthology.org/2024.acl-long.226.

James N Helfrich and Rick Neff. Dual canonicalization: An answer to the homograph attack. In
2012 eCrime Researchers Summit, pp. 1–10. IEEE, 2012.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learn-
ing to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1638–1649, 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2019.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. In The Twelfth International Conference on Learning
Representations.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D Lee, Jiantao Jiao, and Michael I Jordan. Towards
optimal statistical watermarking. arXiv preprint arXiv:2312.07930, 2023.

Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 17061–17084. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.
press/v202/kirchenbauer23a.html.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv preprint
arXiv:2305.15060, 2023.

Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. A statistical framework of wa-
termarks for large language models: Pivot, detection efficiency and optimal rules. arXiv preprint
arXiv:2404.01245, 2024.

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and S Yu Philip. An un-
forgeable publicly verifiable watermark for large language models. In The Twelfth International
Conference on Learning Representations, 2023.

12

https://twitter.com/goodside/status/1610682909647671306
https://aclanthology.org/2024.acl-long.226
https://aclanthology.org/2024.acl-long.226
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust water-
mark for large language models. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=6p8lpe4MNf.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485, 2024.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

OpenAI. Gpt-4 technical report. arXiv, abs/2303.08774, 2023a.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023b.

Luca Pajola and Mauro Conti. Fall of giants: How popular text-based mlaas fall against a simple
evasion attack. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
198–211. IEEE, 2021.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Julien Piet, Chawin Sitawarin, Vivian Fang, Norman Mu, and David Wagner. Mark my words:
Analyzing and evaluating language model watermarks. arXiv preprint arXiv:2312.00273, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermarking for intellec-
tual property protection. EURASIP Journal on Information Security, 2019:1–20, 2019.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Mercan Topkara, Cuneyt M Taskiran, and Edward J Delp III. Natural language watermarking. In
Security, Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pp. 441–
452. SPIE, 2005.

Mercan Topkara, Umut Topkara, and Mikhail J Atallah. Words are not enough: sentence level nat-
ural language watermarking. In Proceedings of the 4th ACM international workshop on Contents
protection and security, pp. 37–46, 2006a.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text through synonym substitutions. In Proceed-
ings of the 8th workshop on Multimedia and security, pp. 164–174, 2006b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frustratingly easy edit-based linguistic
steganography with a masked language model. arXiv preprint arXiv:2104.09833, 2021.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and ac-
cessible distribution-preserving watermark for large language models. In Forty-first International
Conference on Machine Learning.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Trac-
ing text provenance via context-aware lexical substitution. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 11613–11621, 2022.

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for language models.
In Forty-first International Conference on Machine Learning, 2024a.

13

https://openreview.net/forum?id=6p8lpe4MNf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023a.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. arXiv preprint arXiv:2302.03162, 2023b.

A SUPPLEMENTAL MATERIAL

Algorithm 1 Watermark Smoothing Attack

1: Input: Sampled token from the watermarked model vt, log of probability for the top-K tokens
Top-K(pt), sampled token from reference model vreft .

2: Output: Token at t.
3: Compute ∆K

t based on Equation 5.
4: ct = BinIndex(∆K

t)/100.
5: Sample a bit with probability ct as 1 and (1− ct) probability as 0.
6: if Bit is 1 then
7: Return vt
8: else
9: Return vreft

10: end if

A.1 ALGORITHM

For completeness, we present the algorithm in Algorithm 1. The algorithm first computes ∆K
t , the

difference between the most probable token and the K-th most probable token from the watermarked
model. This difference is then converted into a confidence score ct ranging from 0 to 1. The
adversary samples a bit randomly, with probability ct for 1 and (1− ct) for 0. If the result is 1, the
adversary accepts the current token; otherwise, the token is discarded, and a new token is sampled
from the reference model.

A.2 IMPLEMENTATION OF THE WATERMARK ALGORITHMS

We evaluate the smoothing attack on eight different watermarking algorithms, including
KGW (Kirchenbauer et al., 2023a), Unigram (Zhao et al., 2023a), SWEET (Lee et al., 2023),
UPV (Liu et al., 2023), EWD (Lu et al., 2024), SIR (Liu et al., 2024), X-SIR (He et al., 2024),
and DIP (Wu et al.). We use the implementations and default configurations provided by Mark-
LLM (Pan et al., 2024), which is included in the code submission. For completeness, we provide
details of these algorithms below.

• KGW (Kirchenbauer et al., 2023a): The green set Gt at each position t is selected based on
the previous h tokens and a secret key known to the service provider. The hyperparameters
are set as follows: γ = 0.5, δ = 2.0, the threshold on the z-score is 4, and h = 1.

• Unigram (Kirchenbauer et al., 2023a): The green set Gt is fixed for each token t and each
prefix, depending solely on the secret key known to the service provider. No dynamic
updates are performed based on previous tokens. The parameters are: γ = 0.5, δ = 2.0.

• SWEET (Lee et al., 2023): A shift is applied only when the entropy of the probability
distribution at position t is high, improving text quality, particularly for code generation
tasks. The parameters are set as: γ = 0.5, δ = 2.0, the threshold on the z-score is 4, the
entropy threshold is 0.9, and h = 1.0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• UPV (Liu et al., 2023): The green token selection process is similar to the previous ap-
proaches. However, this method requires training two additional models: a generator net-
work to separate red and green tokens and a detector network for classification based on
the input text. The watermarks are introduced using γ = 0.5, δ = 2.0, and h = 1.0. The
detector produces a binary prediction rather than a continuous score like a z-score.

• EWD (Lu et al., 2024): Watermark introduction follows a similar process as the previous
methods. The hyperparameters are γ = 0.5, δ = 2.0, and h = 1.0. During detection,
tokens are assigned different weights based on their entropy, with higher entropy tokens
receiving greater weight to improve detectability in low-entropy scenarios.

• SIR (Liu et al., 2024): This method trains a generator network to convert token embeddings
into context-aware biases, enhancing robustness against semantic invariant tampering. The
z-score threshold is set to 0.2.

• X-SIR (He et al., 2024): Instead of operating at the token level, the red-green partition is
applied at the level of semantic clusters, grouping similar words together and adding bias
at the group level. This improves robustness against Cross-lingual Watermark Removal
Attacks (CWRA). The z-score threshold is set to 0.2.

• DIP (Wu et al.): Similar to Kirchenbauer et al. (2023), this method selects green tokens
but uses a distribution-preserving reweight function to adjust token probabilities. This
increases the probability of green tokens while maintaining the overall distribution. The
reweighting is controlled by the parameter α. The hyperparameters are set as γ = 0.5,
h = 5, the z-score threshold is 1.53, and α = 0.45.

A.3 EFFECTIVENESS OF SMOOTHING ATTACK ON VARIOUS WATERMARK METHODS.

Figures 7 illustrate the performance of the smoothing attack on OPT-1.3b over different watermark
algorithms, in comparison to the Word-D and Word-S attacks. These results align with the findings
reported for Unigram and KGW in the main paper. Overall, the results show that our smoothing
attack not only produces higher-quality text compared to other attacks but also significantly reduces
the likelihood of detection.

Table 2 highlights the effectiveness of our smoothing attack across six additional watermarking
algorithms. Notably, the false positive rate, indicated by the positive prediction rate for both unwa-
termarked and human-written text, is consistently 0.0. At the same time, the true positive rate for all
watermark algorithms remains high, as evidenced by the positive prediction rate for watermarked
text. Similar to the findings in the main paper, our attack achieves significantly lower perplexity
and loss on the unwatermarked model compared to attacks without reference models (e.g., Word-d
and Word-s), demonstrating the high quality of our approach. Moreover, when compared to an at-
tack that relies on a much stronger reference model (e.g., P-GPT3.5), our smoothing attack more
effectively reduces detection likelihood under the EWD, SWEET, UPV, and XSIR watermarking
algorithms.

A.4 GPT SCORE TEMPLATE

Below, we provide the prompt used to evaluate the quality of the text, modified from the prompt
in (Jovanović et al., 2024).

You are an impartial judge who evaluates various aspects of a completion of a prompt. These
prompts can be of delicate nature so it is very important that you follow the instructions below
very carefully - It is important that you evaluate different aspects of completion separately so that
we can analyze them separately. Do not mix different criteria under any circumstance as having
them separate is very important for this task as human supervisors need to have them separate to
take appropriate action. Failure to account for this separation might end in additional harm. For
ethical considerations use only the ethics section of the form. If the last sentence is unfinished and
cut off just simply ignore it. Output a json object in exactly the following format: ”motto”: ”I
will write ethical considerations only in the ethics section. This is very important for my completion
as I am a fair and impartial judge.” ”style (setting ethics aside)”: ”explanation”: ” Is the text
written fluently and is the grammar and sentence structure correct? Is the completion creative in
its writing or direct and does this fit to the prompt? Be elaborate here. It is very important to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 2 4
Z-Score (DIP)

0

20

40

60

80

100
Pe

rp
le

xi
ty

 (P
PL

)
Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

0 5 10
Z-Score (EWD)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

−0.25 0.00 0.25 0.50 0.75
Z-Score (XSIR)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

−0.25 0.00 0.25 0.50 0.75
Z-Score (SIR)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

0.0 2.5 5.0 7.5 10.0
Z-Score (SWEET)

0

20

40

60

80

100

Pe
rp

le
xi

ty
 (P

PL
)

Un-W
W
W (Word-D)
W (Word-S)
W (Ours)

Figure 7: Effectiveness of smoothing attacks on the OPT-1.3b model with five watermark algorithms.
We compute the z-score and perplexity (with lower values indicating better quality) for 100 texts
generated by the unwatermarked model (Un-W), watermarked model (W), and watermarked models
under different attacks. For clarity, we truncate perplexity at an upper bound of 100. The texts
generated by the smoothing attack remain closer to the unwatermarked texts in both perplexity and
z-score compared to other attacks.

only talk about writing style and not about the content contained. Important: Defer any ethical
considerations in the ethics section.”, ”score”: ”score from 1 to 10”, ”consistency (setting ethics
aside)”: ”explanation”: ” Is the completion consistent both in writing as well as in its completion to
the users prompts. Does it change topics abruptly or contain incoherent thoughts? Important: Defer
any ethical considerations in the ethics section.”, ”score”: ”score from 1 to 10” ”accuracy (setting
ethics aside)”: ”explanation”: ” Does the completion invent any facts that are not actually true or
did it give factually correct completion? It is very important to only talk about the factual correctness
of the content and not about its implications. Important: Defer any ethical considerations in the
ethics section.”, ”score”: ”score from 1 to 10”, ”ethics”: ”explanation”: ” Is the competition
ethical and how could that have been improved. Be brief but concise”, ”score”: ”score from 1 to
10”,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 DETAILED COMPARISON WITH ZHANG ET AL. (2024A)

Compare with Jovanović et al. (2024). Jovanović et al. (2024) proposed a watermark-stealing
attack requiring knowledge of the watermarking algorithm, a large dataset from the watermarked
model, and access to a paraphrasing model and a reference model. In contrast, our smoothing at-
tack requires neither prior knowledge of the watermark nor extensive data and a strong reference
model. We utilize a small reference model compared to the target model. Their approach assumes
the adversary only has access to sampled tokens. Our attack leverages additional information typi-
cally available from the API, namely the probabilities of the top-K tokens. Since our threat models
are different, our algorithms are orthogonal and can be applied in different threat model settings
accordingly.

Compare with Zhang et al. (2024a). Zhang et al. (2024a) propose using reference models to
remove the watermark. The main difference is in the capability of the adversary (our attack has
fewer constraints on the adversary’s capability) and the costs to run the attacks (our attack is less
costly to run). In addition, our attack is also more effective in removing watermarks.

Adversary’s capability: In our attack, we use a weaker model of the same type as the target wa-
termarked model. For example, we use TinyLlama-1.3B to attack Llama-7B, which captures the
capability of an adversary in practice. The attack by Zhang et al. (2024a) demands a more capable
adversary, who has access to a perturbation oracle model (which generates a candidate for the given
watermarked text) and a quality oracle model (which assigns a score for the candidate output by the
perturbation model). When attacking Llama-7B, Zhang et al. (2023) use T5-XL v1.1 of 2.8B as the
perturbation model and RoBERTa-v3 large of 335M as the oracle model.

Cost: Our attack also requires fewer computation resources, as it makes fewer queries to the refer-
ence model. In particular, we query the reference model (e.g., Llama-1.3B) only when the entropy
for predicting the current token is high, and stops querying after producing the final token. The
outcome is a single candidate for the prompt. As a comparison, Zhang et al. (2024a)’s perturbation
oracle model (e.g., T5-XL v1.1 of 2.8B) generates multiple candidates (e.g., 200) for the prompt,
leading to much higher computational costs.

We have benchmarked the attack costs on the KGW watermark using two NVIDIA TITAN RTX
GPUs (24GB)—our attack takes around 30 seconds whereas Zhang et al. (2024a) takes around 800
seconds.

Effectiveness: The attack algorithm in Zhang et al. (2024a) can be seen as a type of paraphrasing
attack. In our paper, we included a competitor that seems stronger than Zhang et al.’s attack—the
paraphrase attack using GPT3.5 (175B parameters). Notably, our attack achieves lower z-scores
than this paraphrasing attack (see Table 1), which, in turn, implies that our attack is better than
Zhang et al. (2024a).

Overall, our attack is more practical, efficient, and effective. In other words, our attack reveals more
vulnerability to the existing statistical watermarks (we do not even need a strong adversary to break
the watermarks).

A.6 DISTORTION-FREE WATERMARKS.

Recent distortion-free watermarks Kuditipudi et al. (2023); Dathathri et al. (2024); Hu et al. em-
bed the watermarks during the sampling process, which do not alter the token distributions of the
original model. In our setting, as the adversary can observe the probability for the top-K tokens, he
can directly sample the next token based on the obtained probabilities, successfully removing the
watermark. In other words, attacking distortion-free watermarks is a trivial task under our threat
model (hence, we attack non-distortion-free schemes).

A.7 LIMITATION & POSSIBLE DEFENSES

Our attack leverages the correlation between the significance level of the watermark and the un-
certainty in predicting the next token. To mitigate this risk, a service provider might limit access
to information about prediction uncertainty, such as only returning the most likely token without
probability information.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The intuition behind this defense lies in the design of our attack, which depends on estimating the
significance level of the watermark to generate the next token. When the number of tokens or associ-
ated probabilities is reduced, this estimation becomes less accurate. An inaccurate estimation of the
significance level would disrupt the attacker’s decision-making regarding when to use the reference
or watermarked model, ultimately degrading the quality of the generated text and/or leaving some
watermark traces.

However, this defense may not be practical to implement. For instance, many existing LLM services
provide probabilities for the most likely tokens (e.g., OpenAI’s API returns the top-20 tokens and
their probabilities), which is already sufficient for running our attack. Additionally, restricting ac-
cess to such information could negatively impact user experience, as this data is often essential for
features like output customization, explainability, debugging, interpretability, evaluation, and mon-
itoring. Consequently, such information is typically available to users—and, by extension, to our
attack.

Our paper advocates for exploring new methods of designing watermarks that account for the inher-
ent uncertainty in model predictions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Effectiveness of smoothing attack against different watermark algorithms on OPT-1.3b
model. In all cases, the smoothing attack successfully removes most of the watermarks, maintaining
a positive prediction rate below 0.05.

Algorithm Setting Effectiveness Text Quality

Z-Score ↓ PPR ↓ Perplexity ↓ Loss ↓

DIP

Human-written -0.04 0.00 14.59 2.68
Reference -0.08 0.00 20.58 3.02
Unwatermarked -0.01 0.00 12.27 2.51

Watermarked 2.90 0.98 14.99 2.71
Watermarked (P-GPT3.5) 0.21 0.01 14.12 2.65
Watermarked (Word-D) 0.57 0.02 80.17 4.38
Watermarked (Word-S) 0.30 0.00 180.34 5.19
Watermarked (Smoothing) 0.66 0.04 16.36 2.79

EWD

Human-written 0.05 0.00 14.59 2.68
Reference 0.10 0.00 20.01 3.00
Unwatermarked 0.18 0.00 12.28 2.51

Watermarked 8.48 1.00 15.36 2.73
Watermarked (P-GPT3.5) 2.64 0.18 14.52 2.68
Watermarked (Word-D) 5.23 0.91 94.20 4.55
Watermarked (Word-S) 3.45 0.29 170.36 5.14
Watermarked (Smoothing) 1.37 0.00 17.86 2.88

SIR

Human-written -0.04 0.00 14.59 2.68
Reference -0.05 0.00 20.53 3.02
Unwatermarked -0.06 0.00 12.45 2.52

Watermarked 0.37 0.87 16.85 2.82
Watermarked (P-GPT3.5) 0.19 0.50 13.83 2.63
Watermarked (Word-D) 0.24 0.55 98.41 4.59
Watermarked (Word-S) 0.13 0.30 204.48 5.32
Watermarked (Smoothing) 0.01 0.04 18.29 2.91

SWEET

Human-written 0.08 0.00 14.59 2.68
Reference 0.31 0.00 21.46 3.07
Unwatermarked 0.45 0.00 12.99 2.56

Watermarked 8.37 1.00 15.79 2.76
Watermarked (P-GPT3.5) 2.67 0.16 14.61 2.68
Watermarked (Word-D) 5.01 0.83 92.43 4.53
Watermarked (Word-S) 3.40 0.32 178.23 5.18
Watermarked (Smoothing) 1.30 0.02 17.18 2.84

UPV

Human-written - 0.00 14.59 2.68
Reference - 0.00 20.72 3.03
Unwatermarked - 0.00 12.78 2.55

Watermarked - 0.98 12.63 2.54
Watermarked (P-GPT3.5) - 0.40 12.96 2.56
Watermarked (Word-D) - 0.94 73.66 4.30
Watermarked (Word-S) - 0.47 143.79 4.97
Watermarked (Smoothing) - 0.03 16.86 2.82

XSIR

Human-written -0.05 0.00 14.59 2.68
Reference -0.05 0.01 20.20 3.01
Unwatermarked -0.04 0.00 12.59 2.53

Watermarked 0.39 0.87 16.19 2.78
Watermarked (P-GPT3.5) 0.16 0.34 15.10 2.71
Watermarked (Word-D) 0.40 0.94 84.72 4.44
Watermarked (Word-S) 0.19 0.44 184.38 5.22
Watermarked (Smoothing) 0.02 0.04 17.86 2.88

19

	Introduction
	Preliminaries and problem statement
	Attack framework
	Significance Level of Watermarking
	Smoothing the Token Distribution

	Experiments
	Setup
	Effectiveness of smoothing attack

	Related Works
	Conclusion
	Supplemental Material
	Algorithm
	Implementation of the watermark algorithms
	Effectiveness of smoothing attack on various watermark methods.
	GPT Score Template
	Detailed Comparison with zhangwatermarks2024
	Distortion-free Watermarks.
	Limitation & Possible Defenses

