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Abstract—Currently, the use of rich spectral and spatial

information of hyperspectral images to classify ground objects is a
research hotspot. However, the classification ability of existing
models is significantly affected by its high data dimensionality and
massive information redundancy. Therefore, we focus on the
elimination of redundant information and the mining of
promising features and propose a novel bole convolution neural
network with a tandem three-directions attention mechanism
(BTA-Net) for the classification of hyperspectral image. A new bole
convolution is proposed for the first time in this algorithm, whose
core idea is to enhance effective features and eliminate redundant
features through feature punishment and reward strategies.
Considering that traditional attention mechanisms often assign
weights in a one-direction manner, leading to a loss of the
relationship between the spectra, a novel three-directions
(horizontal, vertical, and spatial directions) attention mechanism
is proposed, and an addition strategy and a maximization strategy
are used to jointly assign weights to improve the context
sensitivity of spatial spectral features. In addition, we also
designed a tandem three-directions attention mechanism module
and combined it with a multi-scale bole convolution output to
improve classification accuracy and stability even when training
samples are small and unbalanced. We conducted scene
classification experiments on four commonly used hyperspectral
datasets to demonstrate the superiority of the proposed model.
The proposed algorithm achieves competitive performance on
small samples and unbalanced data, according to the results of
comparison and ablation experiments. The source code for
BTA-Net can be found at https://github.com/vivitsai/BTA-Net.
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I. INTRODUCTION

ITH the advancements made in hyperspectral remote
sensing technology, its use has recently seen a sharp
increase in such fields as agricultural monitoring [1-3],

resource detection [4-6], medical diagnosis [7-8] and
environmental protection [9]. Hyperspectral images (HSIs) are
rich in a host of spectral and spatial information extracted from
a large number of ground objects, which can be used to identify
and classify ground objects.

The main challenges faced in hyperspectral images (HSIs)
classification tasks [10] include the high dimensionality of the
images, large volumes of data, feature redundancy, and
spectrum correlation. The use of spectral information for HSIs
classification emerged as a popular approach in early research
on the subject [13,14]; furthermore, dimensionality reduction
[15,16] and feature selection have been frequently used to
reduce the high dimensionality of spectral data. Many
researchers have tried to improve the model's classification
performance by adding local spatial links [17,18], with varying
degrees of success. However, most of these algorithms rely on
data preprocessing and manual feature extraction, which not
only rely heavily on prior knowledge but also have limited
generalization capability, making it difficult to extract
representative discriminative features.

However, the attention mechanism can assign attention
weights to features to better extract more discriminative
features, so Xue et al. [19] proposed an attention-based
second-order pooling (A-SOP) operator for Discriminative and
representative features are modeled. Cui et al. [20] proposed a
more concise and efficient spatial attention module to address
the issue of a large number of redundant computations in
existing spatial attention modules. Yu et al. [21] developed a
feedback attention module to improve the model's classification
ability by enhancing the attention map with semantic
information from high-level dense models. They also improved
the spatial attention module by considering multi-scale spatial
features. By integrating the attention mechanism into ResNet,
Haut et al. [22] proposed a visual attention – driven HSIs
classification model that could better fit the spectral
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information contained in hyperspectral data. Hang et al. [23]
designed a spatial and spectral attention sub-network to assist
the CNN classifier focus on more distinguishable channels or
positions, achieving higher performance compared with CNNs.
In addition, Sun et al. [24] considered redundant features to
weaken the distinguishing ability of spectral spatial
characteristics and decrease the classification performance. The
authors were able to capture more discriminative spectral
spatial characteristics in the focus area of the HSIs data by
introducing an attention mechanism to suppress the influence
of interfering pixels. The results of the classification show that
the attention module aids in improving classification accuracy.
The above attention model is characterized by assigning
weights only in a one-direction manner, and not paying enough
attention to effective features with rich semantic information,
so this drives us to try to assign attention weights from multiple
directions.

Although the above algorithms have achieved excellent
results for HSIs classification, owing to the high dimensionality,
large amount of data, and redundant features of HSIs, these
algorithms have a lot of model parameters and are
computationally complex, so they take a lot of time and
resources. Although some researchers have successfully used
PCA to reduce the dimensionality of HSIs [16],[24], PCA
cannot effectively eliminate redundant features of HSIs. In
addition, Feng et al. [25] developed a thermonuclear Euclidean
distance affinity matrix to map high-dimensional data to a
low-dimensional space, and proposed a graph-based
discriminative method with spectral similarity to reduce the
dimensionality of HSIs. They also generated reliable
low-dimensional features by incorporating low-rank
representation and projection learning into the model. Deng et
al. [26] proposed tensor algebra, a multilinear algebra-based
supervised dimensionality reduction method. Even though the
methods described above have been proven to be effective,
eliminating redundant data from HSIs is still difficult.

Therefore, inspired by the above work, this study considers
the characteristics of CNNs and proposes a new bole CNN
(BC). Bole in Chinese culture refers to people who are good at
identifying the quality of horses; in this study, it is used to refer
to neural networks that are good at identifying features. Its core
idea is to eliminate redundant features and enhance promising
features through a feature punishment and reward strategy.
Specifically, for feature maps, this study first uses the sigmoid
function to map its weight to the interval (0,1) (for example: 0.1
or 0.5), and then a threshold is set (for example, 0.2) to punish
and eliminate features below the threshold and enhance and
reward features above it. It is worth explaining in advance that
BC only requires a small number of neurons, which results in a
better classification performance. This study also considers the
limitation that traditional attention mechanisms often assign
weights in a single direction, which leads to loss of relationship
between the spectra, and proposes a novel three-direction
(horizontal, vertical, and spatial directions) attention
mechanism module, based on the weight addition and a
maximization strategy, to jointly assign weights to improve the
context sensitivity of spatial spectral features. In addition, in
this study we also design a tandem three-direction attention
mechanism module and fuse it with the output of multi-scale
BC, which significantly improves classification ability and

stability even with small and unbalanced training samples.
The main contributions are as follows:
1) A brand-new Bole Convolutional (BC) neural network is

proposed, whose core idea is to eliminate redundant
features and enhance promising features through a feature
punishment and reward strategy. Specifically, we
penalize features below the threshold and eliminate them,
and reward features above the threshold and enhance
them. In addition, the BC requires only a small number of
neurons to achieve better classification ability and can
significantly reduce the model parameters and
computational complexity.

2) Considering the traditional attention mechanism only
assigns weights in a single-direction manner, which leads
to the loss of the relationship between the spectra, this
paper proposes a novel three-direction (horizontal,
vertical, and spatial directions) attention mechanism
(TDA). Horizontal and vertical attentions are used to
obtain the cross weights of the features, whereas spatial
direction attention captures the spatial feature weights of
the feature map.

3) This paper also proposes an addition strategy and a
maximum weight strategy for the weights of the attention
mechanism. The addition strategy is based on our
previous work [27]. First, the horizontal and vertical
weight coefficients are multiplied, and then the spatial
attention weight coefficients are added. The
maximization strategy is employed to take the largest of
three-direction attention weights. Combining the two
strategies can improve the model's context sensitivity to
spatial spectral features.

4) We evaluate the BTA-NET algorithm on four popular
HSI datasets, and the results of comparison and ablation
experiments show that the algorithm superior several
well-known methods in terms of model performance,
number of parameters used, and computational
complexity.

The rest of the paper is summarized as follows: The relevant
work is discussed in Section II. In Section III, the proposed
BTA-Net algorithm is explained in detail. In Section IV, we
discuss comparison and ablation experiments. Finally, the
conclusions are drawn in Section V.

II. RELATED WORK

A. 1D and 2D Convolutions
The convolutional layer, as a feature extractor, learns the

feature representation of the input image. Each neuron,
arranged into a feature map in the convolutional layer, has a
receptive field in the feature map, which is connected through a
set of trainable weights to the neuron neighborhood in the
previous layer. The input data and feature map weights are
convoluted to create a new feature map, and activated by a
nonlinear activation function. The kernel of a 2D-CNN is a
matrix, whereas the kernel of a 1D-CNN is a 1-dimensional
vector (as shown in Fig. 1). The equations for calculating the
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two convolutions are as follows:
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where k
ih and kl

ijh are the output at position (k, l) in the j th

feature map in the i th layer, f represents the activation
function, ( wh ) represents the size of the convolution kernel,
( p , q ) are the indexes of kernel, and m represent the index of
the feature maps, and b and W are the biases and weights of
the kernel, respectively.

B. Attention Mechanism
The attention mechanism can be used during the

processing of HSIs data by the neural network model to focus
on the more important set of information among the numerous
input data, reduce attention to other information, and improve
the accuracy and efficiency of the processing task. First,
consider an attention variable ]1[ ,Nz to represent the index
position of the concerned information, that is, iz  to
represent the selection of the input i th information, and then
calculate the probability ia of the selection of the input i th
information given q and X . X represents the input data, and
q represents the query vector. The equation

for calculating probability ia is as follows:
)( i|X,qzpai  (3)

The probability vector formed by ia is called the attention
distribution. )( ,qxs i is the attention scoring function, and its
equation of calculation is as follows:

)tanh()( UqWxv,qxs i
T

i  (4)

where U , W and v are learnable weight parameters.
The softmax function is then used to convert the attention

score to a numerical value. On the one hand, it can be
normalised to produce a probability distribution with a sum of
all weight coefficients of 1. On the other hand, the softmax
function can be used to emphasise the importance of key
elements.
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Finally, we perform a weighted summation according to the
weight coefficient:
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In recent studies [22],[23],[27], the attention mechanism
algorithm has achieved fruitful results in
HSIs classification tasks. We believe that the
continuous improvement of the attention mechanism algorithm
will help enhance the classification ability of the HSIs
classifier.

C. Dimensionality and Parametric Reduction
High dimensionality, which is a prominent feature of HSIs,

always affects the performance of classification models.
Scholars have attempted to decrease the dimensionality of HSIs
and the number of parameters in classification models. To
overcome the problem of high data volume, Reshma et al. [28]
adopted inter-band block correlation coefficient technology and
performed QR decomposition and singular value
decomposition to decrease the size of HSIs without affecting
key information. Wang et al. [29] proposed a dimensionality
reduction model that couples a thin intrinsic modal function
dictionary with a weighted low-rank representation. Compared
with the traditional PCA method, it can retain more structural
information. Xu et al. [30] applied the linear discriminant
analysis method of superpixels to capture spatial similarity and
proposed a spatial spectrum dimensionality reduction method
based on superpixels to solve the limitation of other methods,
that is, ignoring spectral similarity. Although these methods
have achieved excellent performance, few scholars have
studied the elimination of redundant HSIs features from the
convolution process.

D. Related methods
Li et al. [37] proposed a positional embedding and

importance aggregation BW module to obtain more
discriminative features, which obtains remote dependencies in
one spatial direction while preserving accurate positional
information in the other. To bridge the gap between clear and
hazy intrinsic similarity matrices, Pang et al. [38] proposed a
novel interference suppression approach that extracts
interference information at the feature level. Liu et al. [39]
provide a unified approach for cross-domain classification that
minimizes the structural risk of labeling source data, allows
statistical adaptation using the Maximum Mean Difference
(MMD) criterion, and employs the Nyström approach flexibly
to explore domain geometry. Connections are utilized to create
adaptable models that perform exceptionally well on
classification tests. Hang et al. [40] proposed spectral and
spatial attention networks for spectral and spatial classification
to build a novel attention-assisted CNN model capable of
extracting discriminative features. The RSSAN suggested by
Zhu et al. [41] is capable of stressing relevant bands for
classification while suppressing unnecessary bands, and the
proposed spatial attention module achieves outstanding
classification performance. Roy et al. [42] suggested an
attention-based adaptive spectrum space kernel improved
residual network that extracted spectral space features
simultaneously using improved 3-D ResBlocks, greatly
increasing the classification model's feature mining capacity.

(a) (b)

Fig. 1. 1D and 2D convolution model. (a) 1D convolution model. (b) 2D
convolution model.
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The attention mechanism is used in all of the
above-mentioned HSI classification models based on feature
mining and attention mechanism to build a classification model
with excellent performance from a single spatial direction or
multiple spatial directions, demonstrating that the
multi-directional attention is also effective in the HSI
classification task.

III. METHODOLOGY

The proposed BTA-Net model is presented in Fig. 2. To
begin, we use PCA to reduce the HSIs' spectral redundancy.
The output features of the multi-scale convolution kernel are
then fed into the BC to further eliminate redundant
information and improve efficient features. The tandem
three-direction attention mechanism is then used to capture
more representative deep features and obtain relationships
between features. Finally, the BC is combined with the
output of the three-direction attention mechanism, and the
softmax function is applied to achieve HSIs scene
classification.

Fig. 3. The data projection for PCA principal component analysis.

A. Principal Components Analysis
Hundreds of continuous spectral bands with a high degree

of correlation exist in the original HSIs. This causes the
"Hughes" phenomenon as well as a large amount of

redundant information in the original data. It is necessary to
decrease the dimensionality of the original HSIs data prior
to image modeling and analysis. In this paper, the PCA is
used to decrease the dimensionality, which not only retains a
large amount of feature information in the original HSIs but
also reduces the redundancy of the original data. PCA's main
goal is to convert m-dimensional features into
n-dimensional features, where mn  ; these n features are
linearly independent orthogonal features, where the first
principal component vector is the direction of the maximum
data variance; the projection of the data is shown in Fig. 3.
The equation to calculate covariance, Cov, according to the
theory of maximizing variance is as follows:
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where ix is a single sample, T
n,...,u,uuu )( 21 is the

projection vector, and n is the number of features. We need
to find the eigenvector u corresponding to the eigenvalue
with the largest covariance, that is, the first principal
component, and so on.

B. Bole Convolution
A difficulty in HSIs classification is that the space

features of HSIs have high dimensionality, few samples,
high feature redundancy, and long duration of operation. It
contains a lot of information about the ground objects'
spatial position, structure, and spectral properties, which has
a big impact on the classification model's ability to identify
and classify them. A slew of redundant features not only
degrades the classifier's performance, but also makes feature
mining and feature selection more difficult in the neural
network model, raising the computational cost. As discussed
in the previous section, this study uses PCA to decrease the
dimensionality of HSIs data; however, PCA is not suited to

Fig. 2. Schematic of the proposed BTA-Net algorithm for hyperspectral image scene classification. The symbol  denotes the element-wise

multiplication operation, the symbol  represents the element-wise addition operation, and the symbol represents the feature concatenatation
operation. Finally, represents the softmax function. Bole convolution performs preliminary brush selection of features, which can provide better
feature input for the three-directions attention mechanism.
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deal with redundant information. In addition, feature
selection also affects the performance of the classifier.
Therefore, to alleviate these issues, we propose a brand-new
Bole Convolution. Next, we introduce the structure of the
BC and explain feature punishment and reward strategies. In
addition, the multi-scale BC convolution is introduced.

1)Overview of the Bole Convolution: Fig. 4 shows the
schematic of the Bole convolution used in this study. For the
feature map after convolution, we first use the sigmoid
function to map each feature point of the convoluted feature
map to )10( , . The equation for this calculation is as follows:

)exp(1
1)1( k

ij

k
ij -m

mS


 (8)

where ijm represents the feature point of the i -th row and

j -th column of the feature map m , and k is the index of
the feature maps. Second, considering that the feature points
after the hyperspectral image convolution contain semantic
information even if they are negative, this paper does not
intend to use the relu function to eliminate the negative
values of the feature map. We believe that the semantic
features of the negative part of the feature map are not linear.
Therefore, the second branch of this paper uses the elu
function to process the convolutional feature map, and the
equation of calculation is as follows:

Fig. 4. Schematic of the proposed Bole convolution.The symbol  represents the element-wise multiplication operation.
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where α is an adjustable parameter, which controls when
the negative part of elu saturates. Next, we fuse the
features of the output feature maps using the above two
branches, that is, the Hadamard product of feature maps

1m and 2m . The above-mentioned fusion of the output
feature maps can be expressed as follows:

  k
ij

k
ijmm*mm 2121  (10)

where 1m and 2m represent the output feature maps of
the first and second branches, and k represents the feature
map's index. Finally, maximum pooling is used to obtain the
filtered and enhanced features.

Fig.5.Schematic of the proposed feature punishment and reward strategies.
2)Feature Punishment and Reward Strategies: Punishment
and reward is a well-known, efficient, and practical method

used in education and management. This paper introduces
punishment and reward mechanisms for the processing of
features (as shown in Fig.5). The core idea is to set a
threshold T , 10  T , to penalize features below T and
reward the features above T . Specifically, for features
lower than T , reset to 0 to eliminate the feature, and for
features higher than T , reward r times. The equation for
this calculation is as follows:
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where ]10[ ,T  . r represent the reward coefficient,

)1(  ,r . k is the index of the feature map, and ijm
represents the feature point in the i -th row and j -th column
of the feature map. In the experiment, it is tedious to
automatically find the optimal T and n. Considering that the
actual situation of HSIs classification task research does not
require adaptive critical value, this paper does not conduct
research on adaptive critical values T and r . In Section 4,
we obtained the optimal parameters of the above critical
values through ablation experiments, and proved the
effectiveness of the punishment and reward mechanism for
the HSIs classification task.
3) Multi-scale Bole Convolution: Three multi-scale
convolution kernels are used in this study, which have two
advantages: First, multi-scale convolution kernels have the
advantage of being able to extract HSIs features of various
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scales using convolution kernels of various sizes, allowing
the filter to extract and learn more features about HSIs.
Second, they can learn the filter parameters (weight and
offset) overtime to find the best value that is closest to the
label. This study employs a multi-scale convolution kernel
to create multiple filters in a single convolution layer,
allowing for more diverse weight and bias learning, as well
as extraction and learning of the semantic characteristics of
HSIs data.

Fig. 6. Schematic of the proposed multi-scale Bole convolution (BC).
As reported by Res2Net [31], it is important to represent

features in multiple scales. Fig.6 uses three sizes of 1111 ,
77 and 33 convolution kernels to extract features, and

the three extracted feature maps are defined as km 1111 , km 77

and km 33 respectively. The calculation equation for the
output of the multi-scale Bole convolution is as follows:

 kmboleB 11111111   (12)

 ],[ 77111177
kk mmaddboleB   (13)

 ],,[ 3377111133
kkk mmmaddboleB   (14)

where ()bole represents the feature penalty and reward
function of Bole convolution, add() represents the
element-wise addition operation, and k is the index of the
feature map. Finally, the multi-scale Bole convolution's output
features are fused, and the calculation formula is as follows:

][ 33771111  ,B,BBeconcatenatFBC (15)

where ()econcatenat represents feature concatenation and
fusion operation.

Fig. 7. Schematic of the proposed three-directions attention mechanism
(TDA).

C. Three-Directions Attention Mechanism
The attention mechanism has yielded positive results in

HSI classification work as a bionic technology based on
human visual features. We previously developed a
cross-attention mechanism that can create weighted features
in both the horizontal and vertical orientations [27], which
we successfully applied to hyperspectral image
classification tasks, increasing the model's capacity to
classify hyperspectral images. Local key areas are
frequently localized in a limited area in hyperspectral
images with shallow features. When the learning model
comes across some mixed pixels or pixels on the
classification boundary, it can only classify correctly when
the correct pixel features are detected. These features are
frequently found in a small area near the input pixel. Due to
the presence of some irrelevant regions in the feature vectors,
if the CNN model performs feature extraction on all feature
vectors, it may produce sub-optimal results. Furthermore,
the spectral properties of distinct ground objects in the HSIs
are comparable. Within the cluster, the spectral information
is largely similar, and the difference between the clusters is
minimal. It's also vital to get the spatial aspects of the HSIs
data right. To increase classification accuracy, even more,
this research offers a novel three-directions attention
mechanism (TDA) based on the prior work's horizontal and
vertical cross-attention mechanisms, in which we also
design spatial direction attention. TDA is depicted
schematically in Fig.7.

1)Three-Directions Attention: The proposed three-directions
attention mechanism obtains attention weights in the horizontal,
vertical and spatial directions. Set the feature map extracted
from the previous Conv layer as WHh

i,j Rm  , where H and

W represent the feature map's height and width, and k
i,jm into

the horizontal attention module to get the attention weight. The
following is the procedure for calculating:

 
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Att
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where hW and hb are the dense layer's weight parameters, and

hAtt is the horizontal direction's attention coefficient.
For the vertical attention mechanism, we transpose the

feature map's matrix to obtain the feature map in the vertical
direction. The following is the calculation formula:

Tv
i,j

v
j,i mm )( (17)

where v
j,im denotes a feature map that has been flipped

vertically. Input it into the vertical attention module in the same
way to get the vertical attention weight. The weight coefficient
is calculated in the following way:
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For the spatial direction attention mechanism, we focus on
the weight distribution between feature maps to further obtain
spatial features. Assuming that the feature of the input spatial
direction attention module is kWHks

i,j Rm )( ,
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i,j mmmm  and k is the feature map

index, the following formula is used to calculate the weight
coefficient of spatial direction attention:
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where sAtt represents the attention coefficient in the spatial
direction.

2)Weight Addition and Maximization Strategy:
We proposed two strategies to deal with the weight

coefficients of the three directions of attention obtained in the
previous step, namely the weight maximization and addition
strategy. For the weight maximization strategy, In the previous
work, we multiplied the weight coefficients of horizontal and
vertical attention and proved its good performance through
experiments. Therefore, we proposed a weight addition strategy
in the current work, specifically, adding the spatial direction's
attention weight coefficient to the previous basis to better
obtain the spatial characteristics. The equation to calculate the
output coefficient of the weight addition strategy is as follows:

 svhadd AttAttAttAtt  (20)

where addAtt represents the output coefficient of the weight
addition strategy. For the maximum weight strategy, we take
the largest one of the three attention weight coefficients, and the
calculation equation is as follows:

 svh ,AttAttAttAtt )(maxmax  (21)
where addAtt represents the output coefficient of the weight
Maximization strategy. Then let addAtt concatenate the input

feature map k
i,jm to obtain the output feature map of the weight

addition strategy, and let maxAtt multiply the input feature map
k
i,jm and through Conv1D to obtain the output feature map of

the weight maximization strategy, and finally we concatenated
them. Therefore, the output of the overall three-directions
attention mechanism is as follows:

)(1 k
i,jaddadd mAttDConvF  (22)

 ki,j,mAtteconcatenatF maxmax  (23)

 ][ max,FFeconcatenatMPF addTDA  (24)

where TDAF represents the output of the overall
three-directions attention. ()econcatenat represents feature
concatenation and fusion operation, and MP is the max
pooling.
3)Tandem Three-Directions Attention:

We found that the performance of two tandem
three-directions attention modules was better in the
experiment than that of one or more modules. To prove this,
Section 4 will present the ablation experiment.

D. Feature fusion
In the previous steps, we have obtained the output

features BCF and TDAF of the Bole convolution and the
three-directions attention mechanism. Next, this paper will

use the BC, the TDA, and the Tandem TDA. The output
features are fused. In particular, the BC uses the maximum
pooling preprocessing, and the three-directions attention
mechanism in series uses the average pooling preprocessing,
after which the final fused features pass two FC layers and a
softmax function to achieve the final HSIs classification.
The final fusion is calculated using the following equation:

  )(FF),AP),AP(FMP(FeconcatenatF TDATDATDABC (25)
where AP represents the average pooling,and MP is the max
pooling.

IV. EXPERIMENTS
In this paper, four sets of real-world HSI data were used to

assess the BTA-Net algorithm's rationality and effectiveness.
Tables I, II, III and IV show the colors and number of training
samples corresponding to the ground objects, and Fig. 8 shows
the false color images and ground truth of these datasets. First,
we conducted comparative experiments with nine well-known
algorithms to demonstrate the superiority of the BTA-Net
algorithm. Second, we investigate how the algorithm is affected
by parameters. We demonstrate the superiority of BC and
three-directions attention mechanisms through ablation studies
and comparative experiments. The experiments were
performed on the same device, with the GPU being a GTX1080,
and the software being Keras 2.2.5, TensorFlow 1.14, and
Pycharm 2020.2.2. In this paper, Adam is used to optimize the
training process, and the learning rate is set to 0.01, 1 and 2
are set to 0.9 and 0.999, respectively, and the number of
iterations is set to 500.

A. Evaluation methods
Average accuracy (AA), overall accuracy (OA), and the

Kappa coefficient are the evaluation indicators used in this
paper. The number of pixels correctly predicted by the model
divided by the total number of pixels on the test set equals OA;
AA is the average ratio of the number of pixels correctly
predicted for each type to the total number of pixels in each
type; and the coefficient is the difference between the model's
classification result and the completely random classification
result. The calculated result is between -1 and 1, typically
between 0 and 1. The higher the Kappa value, the higher the
accuracy of the classification. The equation of calculation is
as follows:

all

correct

N
NOA  (26)
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where correctN represents the correctly classified test sample,

allN represents all the test samples, m
correctN represents the

correctly classified test sample of the m -th type, m
allN

represents all the test samples of the m -th type, and C
represents the total category of the HSIs data.
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(a) (b) (c)

(d)
Fig. 8. False color image and GT of the four HSIs datasets. (a)Indian Pines.
(b)Pavia University. (c)Salinas. (d)Houston.

TABLE I

TABLE II
NUMBER OF TRAINING SAMPLES FOR THE PAVIA UNIVERSITY DATASET

ID Class Samples 0.1% 1% 5%
Asphalt 6631 7 66 331

Meadows 18649 17 186 932
Gravel 2099 2 20 104
Trees 3064 3 30 153

Painted metal sheets 1345 1 13 67
Bare Soil 5029 5 50 251
Bitumen 1330 1 13 66

Self-Blocking Bricks 3682 4 36 184
Shadows 947 1 9 47

TABLE III

TABLE IV
NUMBER OF TRAINING SAMPLES FOR THE HOUSTON DATASET

ID Class Samples 0.1% 0.5% 1%
Healthy grass 1251 13 63 125
Stressed grass 1254 13 63 125
Synthetic grass 697 7 35 70

Trees 1244 12 62 124
Soil 1242 12 62 124

Water 325 3 16 33
Residential 1268 13 63 127
Commercial 1244 12 62 124

Road 1252 13 63 125
Highway 1227 12 61 123
Railway 1235 12 62 124

Parking Lot1 1233 12 62 123
C13 Parking Lot2 469 5 23 47
C14 Tennis court 428 4 21 43
C15 Running track 660 7 33 66

B. Datasets
The Indian Pines (IP) dataset was created using the AVIRIS

imaging spectrometer in northwestern Indiana, United States. It
has a spatial resolution of 20m per pixel, 220 spectral bands,
and a wavelength range of 0.4 to 2.45 μ m. The IP dataset has
an input size of 145 145 200 pixels, with a total of 21,025
pixels, 10,776 of which are background pixels. We chose to
leave out the background pixels in this study, so only 10,249
pixels were used in the experiments, which included 16
different types of ground objects. In addition, after using PCA,
the dimension is 100.

The Pavia University (PU) dataset is an image taken by the
University of Pavia's ROSIS imaging spectrometer. It has a
spatial dimension of 610 340 pixels. A total of 103 spectral
dimension bands were used. The PU dataset's final input size is
610  340  103 pixels, for a total of 2,207,400 pixels. We
excluded the background pixels, as we did with the IP dataset,
and thus only 42,776 pixels were used for testing, consisting of
nine different types of ground objects. Furthermore, after using
PCA, the dimension is 50.

The Salinas (SA) dataset was also acquired by the AVIRIS
imaging spectrometer, and its images show the landforms of the
Salinas Valley. The spatial resolution of the SA dataset is very
high. The SA dataset had an input size of 512217204 pixels.
Only 54,129 pixels were used after background pixels were
removed, resulting in 16 different types of ground objects.
Figure 8 shows the grayscale image and ground truth for the
above datasets (c). Furthermore, the dimension after PCA is 29.

The fourth data set was gathered over the University of
Houston campus in 2013 and entered into the GRSS Data
Fusion Contest. The image size in pixels is 349 1905, with a
high spatial resolution of 2.5 m, and the wavelength bands
range from 0.38 to 1.05 m. The University of Houston image
and the associated ground-truth map are shown in false color in
Fig.8(d). The ground-truth map has a total of 15 classes.
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TABLE V
CLASSIFICATION PERFORMANCE OF THE DIFFERENT METHODS ON THE IP DATASET USING DIFFERENT TRAINING SAMPLES.

Methods
5% 10% 15%

OA AA Kappa OA AA Kappa OA AA Kappa
3D-CNN 0.5961 0.4037 0.5415 0.7377 0.6235 0.6983 0.7969 0.6897 0.7673
AlexNet 0.6932 0.7051 0.6474 0.7423 0.6571 0.7049 0.8167 0.7955 0.7907
ResNet 0.7274 0.6681 0.6864 0.7804 0.7911 0.7501 0.8300 0.8067 0.8059

3D-DenseNet 0.6770 0.6183 0.6295 0.7684 0.8097 0.7351 0.8142 0.8147 0.7884
DenseNet 0.7316 0.7046 0.7046 0.7892 0.7551 0.7579 0.8428 0.8149 0.8203

SSUN 0.7379 0.7359 0.7006 0.7782 0.7343 0.7459 0.8563 0.8663 0.8439
SAGP 0.7349 0.7658 0.7161 0.7836 0.8089 0.7672 0.8159 0.8650 0.8289

MCNN-CP 0.7769 0.7778 0.7455 0.8356 0.8158 0.8126 0.8596 0.8495 0.8404
CAG 0.7701 0.7827 0.7372 0.8518 0.8496 0.8300 0.8888 0.8913 0.8717

BTA-Net 0.8162 0.8322 0.7894 0.8713 0.8783 0.8517 0.9184 0.9143 0.9068
TABLE VI

CLASSIFICATION PERFORMANCE OF THE DIFFERENT METHODS ON THE PU DATASET USING DIFFERENT TRAINING SAMPLES.

Methods
0.1% 1% 5%

OA AA Kappa OA AA Kappa OA AA Kappa
3D-CNN 0.6589 0.4158 0.6436 0.7877 0.4875 0.7143 0.8089 0.7865 0.7323
AlexNet 0.8269 0.8157 0.8065 0.8791 0.8368 0.8383 0.9290 0.9182 0.9056
ResNet 0.8169 0.8158 0.8011 0.8581 0.8399 0.8105 0.9090 0.9142 0.8785

3D-DenseNet 0.8166 0.8255 0.8179 0.8588 0.8388 0.8081 0.9264 0.9184 0.9021
DenseNet 0.8039 0.8197 0.7989 0.8422 0.8233 0.7887 0.9036 0.8951 0.8719

SSUN 0.8179 0.8217 0.8211 0.8546 0.8768 0.8428 0.9359 0.9247 0.9151
SAGP 0.8288 0.8378 0.8079 0.8597 0.8428 0.8428 0.9109 0.8975 0.8814

MCNN-CP 0.8376 0.8277 0.8286 0.8599 0.8205 0.8116 0.9395 0.9251 0.9197
CAG 0.8469 0.8479 0.8362 0.9030 0.8881 0.8701 0.9528 0.9405 0.9340

BTA-Net 0.8589 0.8557 0.8480 0.9132 0.9074 0.8836 0.9585 0.9495 0.9377
TABLE VII

CLASSIFICATION PERFORMANCE OF THE DIFFERENT METHODS ON THE SA DATASET USING DIFFERENT TRAINING SAMPLES.

Methods
0.1% 1% 5%

OA AA Kappa OA AA Kappa OA AA Kappa
3D-CNN 0.5598 0.5478 0.5631 0.6505 0.4961 0.6138 0.7607 0.6185 0.7328
AlexNet 0.8927 0.8829 0.8711 0.9029 0.9267 0.8918 0.9419 0.9376 0.9353
ResNet 0.8821 0.8945 0.8744 0.8924 0.9220 0.8803 0.9180 0.9529 0.9087

3D-DenseNet 0.8839 0.8867 0.8912 0.8978 0.9356 0.8861 0.8969 0.9315 0.8854
DenseNet 0.8736 0.8817 0.8697 0.8854 0.9131 0.8723 0.9114 0.9447 0.9012

SSUN 0.8765 0.8746 0.8637 0.8959 0.9334 0.8841 0.9033 0.8823 0.8922
SAGP 0.8922 0.9067 0.8799 0.8972 0.9459 0.8856 0.9264 0.9569 0.9181

MCNN-CP 0.8769 0.9017 0.8742 0.8862 0.9177 0.8731 0.9211 0.9462 0.9121
CAG 0.9037 0.9166 0.8816 0.9114 0.9414 0.9015 0.9306 0.9584 0.9357

BTA-Net 0.9015 0.9207 0.8891 0.9177 0.9510 0.9078 0.9434 0.9696 0.9369
TABLE VIII

CLASSIFICATION PERFORMANCE OF THE DIFFERENT METHODS ON THE HOUSTON DATASET USING DIFFERENT TRAINING SAMPLES.

Methods
0.1% 0.5% 1%

OA AA Kappa OA AA Kappa OA AA Kappa
3D-CNN 0.7901 0.8004 0.7801 0.8158 0.8451 0.8217 0.8341 0.8215 0.8109
AlexNet 0.7966 0.7999 0.8023 0.8966 0.8907 0.8946 0.9129 0.8972 0.9001
ResNet 0.8015 0.7904 0.7895 0.8837 0.8879 0.8756 0.9101 0.8976 0.9124

3D-DenseNet 0.8066 0.8109 0.8042 0.9281 0.9408 0.9221 0.9356 0.9152 0.9143
DenseNet 0.7904 0.8105 0.8079 0.9476 0.9555 0.9431 0.9481 0.9249 0.9325

SSUN 0.8125 0.8056 0.8231 0.9435 0.9520 0.9389 0.9845 0.9755 0.9829
SAGP 0.8315 0.8478 0.8265 0.9488 0.9565 0.9387 0.9719 0.9655 0.9698

MCNN-CP 0.8269 0.8397 0.8178 0.9582 0.9627 0.9401 0.9817 0.9623 0.9779
CAG 0.8362 0.8501 0.8269 0.9678 0.9714 0.9625 0.9859 0.9906 0.9912

BTA-Net 0.8444 0.8547 0.8318 0.9770 0.9779 0.9751 0.9942 0.9942 0.9938

C. Comparison Results of Different Methods
This section will compare the quantitative classification

results and the classification effect in the case of small samples
with six other well-known methods, namely 3D-CNN [34],
AlexNet [32], ResNet [33], DenseNet [43], 3D-DenseNet [35],
SSUN [12], SAGP [11] ,MCNN-CP [36] and CAG [27]. For a

fair comparison, the input and parameter selection of these nine
methods were the same as the proposed BTA-Net, and the
number of iterations was based on the accuracy of the training
sample data converging to 1; for the rest of the settings, refer to
the previous section. For four HSIs datasets, the classification
performances of different algorithms under the training sample
sizes of 0.1%, 1%, 5%, 10%, and 15% were evaluated.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 9. Classification maps for the IP dataset using 5% training samples. (a)
Training set (5%). (b) Ground truth. (c) 3D-CNN. (d) AlexNet. (e) ResNet.
(f) 3D-DenseNet. (g) DenseNet. (h) SSUN. (i) SAGP. (j) MCNN-CP. (k)
CAG. (l) BTA-Net.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 10. Classification maps for the PU dataset using 1% training samples.
(a) Training set (1%). (b) Ground truth. (c) 3D-CNN. (d) AlexNet. (e)

ResNet. (f) 3D-DenseNet. (g) DenseNet. (h) SSUN. (i) SAGP. (j)
MCNN-CP. (k) CAG. (l) BTA-Net.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 11. Classification maps for the SA dataset using 1% training samples.
(a) Training set (1%). (b) Ground truth. (c) 3D-CNN. (d) AlexNet. (e)
ResNet. (f) 3D-DenseNet. (g) DenseNet. (h) SSUN. (i) SAGP. (j)
MCNN-CP. (k) CAG. (l) BTA-Net.

1) Comparison results on the IP dataset: The IP dataset
sample size is small and the distribution of 16 ground objects is
extremely uneven. Compared with the PU and SA datasets
using the lowest sample of 1%, this paper chooses 5% of the
training samples on the IP dataset. This is because the
Grass-pasture-mowed and Oats categories of the IP dataset
have only 28 and 20 samples, respectively. Even if 5% of the
samples were selected, only one sample was available for
training in this experiment (as shown in Table I). Therefore, 5%,
10%, and 15% were used as the training sets for the IP dataset.
It can be seen from Fig.9 that AlexNet has the worst
performance for classification and has a lot of noise. This is
because it is a method of shallow model classification and has
poor generalization ability, which is not enough to deal with
hyperspectral images' complex spectral spatial distribution.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3201056

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jiangnan University. Downloaded on November 12,2022 at 13:18:39 UTC from IEEE Xplore.  Restrictions apply. 



> TGRS < 11

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Fig. 12. Classification maps for the Houston dataset using 0.1% training samples. (a) Training set (0.1%). (b) Ground truth. (c) 3D-CNN. (d) AlexNet. (e)
ResNet. (f) 3D-DenseNet. (g) DenseNet. (h) SSUN. (i) SAGP. (j) MCNN-CP. (k) CAG. (l) BTA-Net.

CAG has a better visual experience among the remaining five
methods than SAGP, which uses increased network model
depth to extract more discriminatory features, and the proposed
BTA-Net is superior in detail to CAG, and it can classify edge
pixels more precisely and get closer to ground truth. Table V
shows the quantitative analysis results of various classification
models for the IP data set. It can also be seen that the
classification accuracy obtained by using the attention
mechanism method is significantly better than the accuracy
obtained by using the baseline and SSUN methods. This is due
to the attention mechanism in the training samples paying more
attention to features containing more semantic information.
Therefore, the highest classification precision is obtained by
BTA-Net using the three-direction attention mechanism. The
cross-attention mechanism used in CAG achieved better results
compared with the traditional attention mechanism used
in SAGP. The performance achieved by SAGP is 0.07–12.5%
higher than that of the four methods that do not use the attention
mechanism, which demonstrates the effectiveness of attention
mechanism in the HSIs classification task. It can be seen from
Table V that the residual structure significantly reduces the
model parameters; however, the model ’ s performance is
improved. This demonstrates that it is possible to improve the
classification performance of HSIs by ablating redundant
information; it also shows the rationality of BC. In addition, it
is also found that the performance of 3DCNN-based methods

does not perform well on small training samples, which
indicates that 3DCNN needs more training samples.
we introduced a new spatial attention to achieve a more robust
performance, considering the spatial relationship
characteristics of the feature map. OA is 0.07% ~ 12.5% higher
than the other six methods, AA is 0.07% ~ 12.5% higher than
the other six methods, and Kappa is 0.07% to 12.5% higher
than the other six methods. In addition, Fig.9 shows the
visualization classification maps of BTA-Net and the other six
algorithms on the IP dataset. Fig.13 also shows a visualization
of the confusion matrix.

(a)

(b)
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(c)
Fig. 13. Visualizations of the confusion matrix of the classification results
for the IP, PU, and SA datasets. (a) Training on 5%, 10%, and 15%
samples. (b) Training on 1%, 5%, and 10% samples. (c) Training on 1%,
5%, and 10% samples.
2)Comparison results on the PU dataset: The dataset of the
PU is characterized by scattered and sparse sample locations
and uneven distribution. The classification outputs of the
various algorithms used on this dataset are shown in Fig.10.
The proposed BTA-Net classification result has the least
number of misclassified ground objects, the overall is smoother,
and there are only a few noise points that are closer to the GT
when compared to other algorithms. Table VI also shows that
BCTDC has achieved outstanding advantages in all three
quantitative indicators. It can be seen that the three-direction
attention mechanism, which gives different weights to different
features from different directions, selects more effective
features, effectively uses more informative features, improves
the network's ability to extract features, and improves the
model's generalization ability. Because the PU dataset has a
larger sample size than the IP dataset, the accuracy of the
classification is relatively high, regardless of the method used.
Overall, OA, AA, and the Kappa coefficient obtained using
BTA-Net were 1.4% – 4.1%, 1.4 – 4.1%, and 1.4 – 4.1%
higher than those of the other methods. Fig. 13 also shows a
visualization of the confusion matrix.
3)Comparison results on the SA dataset: The sample
distribution of the SA dataset is more balanced than the IP and
PU datasets, and the classification difficulty is lower. It can be
seen from Fig. 11 and Table VII that all the methods achieved
excellent classification performance on the SA dataset, but the
Vinyard_untrained class was affected by spectral
characteristics, the performances of the other five groups of
methods were not satisfactory, and the three-direction attention
can be given from different directions. Assigning different
weights to different features can alleviate this limitation.
Therefore, the proposed BTA-Net method obtains more robust
results. Its OA, AA, and Kappa coefficient are higher than that
of other models by 1.4 – 4.1%, 1.4 – 4.1%, and 1.4 – 4.1%,
respectively. Fig. 13 shows the visualization results of the
confusion matrix.
4)Comparison results on the Houston dataset: Compared to the
previous four data sets, the Houston data set is a much larger
and more complex data set with very uneven categories. As can
be seen from Figure 12 and Table 8, all the methods achieved
good classification performance on the Houston data set, but
the railway category was affected by spectral features, and the
performance of the other nine groups of methods was not ideal.
Three-Directions attention could distribute the attention weight
of features from three different directions, thus alleviating this
limitation. Therefore, the proposed method achieves more
robust results. The OA, AA, and Kappa coefficients are
0.9-6.4%, 0.5-7.5%, and 0.5-6.2% higher than other methods
under 0.1% training samples, respectively.

TABLE IX
THE TOTAL PARAMETERS AND TEST TIMES OF THE PROPOSED BTA-NET AND

OTHER SIX METHODS ON THE IP, PU AND SA DATASETS

Methods
IP PU SA

Total
params Times Total

params Times Total
params Times

AlexNet 1,360,144 0.69s 3,869,269 5.37s 3,857,160 7.59s

ResNet 920,336 1.34s 903,573 4.98s 932,552 4.35s

DenseNet 2,393,432 1.63s 1,899,613 5.95s 3,022,952 6.52s

SSUN 1,196,795 15.55s 1,210,631 24.11s 1,345,179 39.25s

SAGP 3,828,368 3.72s 3,292,565 10.77s 2,976,072 13.29s

CAG 1,963,296 1.19s 1,945,637 5.43s 1,487,800 5.43s

BTA-Net 880,325 1.03s 867,525 4.21s 862,149 4.55s

D. Computational Complexity
For evaluating the proposed classification model, the total

parameters and calculation time are important indicators. Table
IX shows the total parameters and calculation times for the
BTA-Net and six other comparison algorithms. As shown in the
table, the proposed model takes slightly longer to calculate on
the IP dataset than AlexNet with only eight layers, but it is
faster than the other five methods. In addition, the calculation
time is reduced by 1.3% compared to a previous work [27]. The
proposed BTA-Net also achieved the best computational
performance on the PU and SA datasets, reducing the
computational cost by 1–3% compared to the other six methods.
Furthermore, we found that ResNet has good performance in
terms of the total parameters of the model, which is much lower
than the other five methods. However, on the four HSIs datasets,
the performance of BTA-Net is still 1–2% lesser than that of
ResNet. The introduction of the BC eliminates redundant
parameters and increases the number of effective features.
Therefore, to achieve the same performance, BTA-Net does not
require too many neurons in the convolutional layer; this
enables it to reduce the parameters in the model and effectively
decrease computation cost. It is worth noting that it is very
popular in practical applications to reduce model parameters
and calculation time without loss of classification performance.
In addition, the proposed BC can not only be used for the
experiments in the present study but can also be improved for
other baselines. Further, we replaced BC with one of the
convolutional layers in AlexNet to further demonstrate the
superiority of the Bole convolution.

(a) (b) (c)
Fig. 14. The change curve of OA, AA and Kappa under different training
samples. (a) IP. (b) PU. (c) SA.

E. Effects of Different Number of Training Samples
In Section IV.C, it was demonstrated that BTA-Net is

superior to several well-known algorithms in the
HSIs classification task. To further comprehensively evaluate
the algorithm, we divide the datasets into multiple samples for
experimentation. We divide the IP dataset into {5%, 10%, 15%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 99%} training samples,
and the PU and SA datasets into {1%, 5%, 10%, 15%, 20%,
40%, 50%, 60%, 70%, 80%, 99%} training samples. Using
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different numbers of training samples from four data sets, the
algorithm's classification accuracy is shown in Fig.14. For
starters, BTA-Net performed admirably on a smaller set of
training samples. Second, the learning model's classification
performance improved significantly as the number of training
samples increased. Finally, from 1% to 10% of the training
samples, the model's classification performance improved
qualitatively.

F. Ablation Experiment of Bole convolution
For the threshold, ablation experiments were set up, and the

coefficient of BC was rewarded in order to observe the effects
on the experimental results. On the IP dataset, we conducted
ablation experiments with 5% training samples.

(a) (b)

(c)
Fig. 15. Performance of the Bole convolution with different T and r values
on IP dataset. (a) OA. (b) AA. (c) Kappa.

TABLE X
THE AA PERFORMANCE OF THE BOLE CONVOLUTION WITH DIFFERENT T AND R

VALUES ON IP DATASET.
Reward→

1.3 1.5 1.8 2.0 2.5 3.0
Threshold↓

0.1 0.7953 0.7971 0.8056 0.8171 0.8075 0.7938
0.2 0.7798 0.7959 0.7994 0.8322 0.8298 0.7973
0.3 0.7911 0.8056 0.8059 0.8124 0.8051 0.7851
0.4 0.7899 0.7908 0.7974 0.8155 0.8262 0.8107
0.5 0.7719 0.7733 0.7918 0.7983 0.8297 0.7974
0.6 0.7765 0.7712 0.7831 0.7957 0.7959 0.7836
0.7 0.7657 0.7725 0.7835 0.7719 0.7729 0.7658

It can be seen from Table X that when the threshold T is set
to 0.2 and the reward coefficient r is set to 2.0, the accuracy of
each evaluation index is the highest. Redundant features are
effectively eliminated, and the classification accuracy of the
model is improved. Therefore, this proves that the feature
penalty and feature reward strategy of Bole convolution is
effective. In addition, it can be clearly seen from Fig. 15 that on
the three evaluation indicators of OA, AA, and
Kappa coefficient, as the threshold increases, the classification
performance of the model gradually increases, and then
gradually decreases. Similarly, as the reward coefficient
increases, the model classification performance gradually
increases, and then gradually decreases. This proves that when
the threshold is set to 0.2 and the reward coefficient is set to 2.0,
the model achieves the best performance. When T was 0.1, the

classification accuracy was low, indicating that the model
rewards some redundant information, which affects the
classification accuracy.

G. Ablation Experiment of Three-Directions Attention
Mechanism

This section conducts ablation experiments for the
three-directional attention mechanism to see how they affect
the experimental results. Similarly, We conducted ablation
experiments using 5% training on the IP dataset. "H" means
horizontal attention, "V" means vertical attention, and "S"
means spatial attention. In particular, "H-V" represents the
cross-attention mechanism of our previous work.

TABLE XI
RESULTS OF THE ABLATION STUDY OF THE THREE-DIRECTIONS ATTENTION

MECHANISM USING 5% TRAINING SAMPLES

Methods
IP(5%)

OA AA Kappa
H 0.7692 0.7318 0.7366

V 0.7042 0.7647 0.7304

S 0.7619 0.7827 0.7272
H-V 0.7697 0.7235 0.7364
H-S 0.8021 0.7543 0.7743
V-S 0.7766 0.7837 0.7449

BTA-Net 0.8162 0.8322 0.7894

(a) (b) (c)
Fig. 16. Limit pie charts using 5% of the training samples on the IP dataset.
(a) OA. (b) AA. (c) Kappa.
The performance of spatial attention is the best, as shown in
Table XI and Fig.16, whether single or combined attention is
used. The HSIs classification model's performance is
significantly improved by obtaining spatial features between
feature maps. Furthermore, it has been discovered that
combined attention is superior to a single attention mechanism,
demonstrating that assigning attention weights from different
directions is effective.

TABLE XII
ABLATION EXPERIMENT RESULTS OF WEIGHT ASSIGNMENT STRATEGY

Methods
IP(5%)

OA AA Kappa
Mul+Max 0.7798 0.7564 0.7476
Mul+Add 0.7868 0.7639 0.7560
(Max+Add)
BTA-Net 0.8162 0.8322 0.7894

Table XII shows that the combination of weight
maximization and addition strategy produces the best results,
while the combination of weight multiplication and addition
strategy outperforms the multiplication and maximization
strategy, demonstrating that the weight addition strategy is
superior to the weight maximization strategy, and the
maximization strategy is better than the multiplication strategy.
This also indirectly proves that the feature reward strategy of
Bole convolution is effective. We know that because the weight
is between (0,1), the multiplication strategy will cause the
weight to become smaller, thereby weakening the feature. Lead
to a decline in classification performance. Therefore, on the
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basis of eliminating redundant features, enhancing effective
features can improve model classification performance.

TABLE XIII
RESULTS OF THE ABLATION STUDY OF THE BC AND TDA ON THE BASELINE

MODELS

Methods
IP(5%)

OA AA Kappa
AlexNet 0.6932 0.7051 0.6474

AlexNet-BC 0.7411 0.7099 0.7046
AlexNet-TDA 0.7520 0.7665 0.7169

AlexNet-BC-TDA 0.7750 0.7695 0.7428

H. Effects of BC and TDA on the Baseline Models
We believe that in the HSIs classification task, the Bole

convolution and three-directions attention mechanism
proposed in this study are not only effective in this algorithm,
but can also be applied to improve other models. Therefore, in
this section, we choose the well-known AlexNet to perform
ablation experiments, and used BC, TDA and BC+TDA to
improve the performance of AlexNet. The experiment was
carried out using 5% of the training samples from the IP dataset.
Table XIII shows that the BC, TDA, and BC+TDA proposed in
this paper significantly improved AlexNet's classification
performance. BC application improved OA by 6.9%, TDA
application improved OA by 8.5 percent, and BC+TDA
application improved OA by 11.8 percent. This adds to the
evidence that BC and TDA are effective.

TABLE XIV
ABLATION EXPERIMENT RESULTS OF DIMENSIONALITY REDUCTION

Methods
IP(5%) PU(1%) SA(1%)

OA Kappa OA Kappa OA Kappa

NO_PCA 0.7914 0.7632 0.8956 0.8737 0.9063 0.8862
LDA 0.8105 0.8068 0.9099 0.8901 0.9125 0.9063

BTA-Net 0.8162 0.7894 0.9132 0.8836 0.9177 0.9078

I. Ablation Experiment of PCA Dimensionality Reduction
We verified the impact of PCA dimension reduction on

classification performance. The experiment used 5% of the
training samples from the IP, PU, and SA datasets. As shown in
Table XIV, dimensionality reduction using PCA improved
classification performance on the four datasets: OA increased
by 3.1%, 1.96%, and 1.26%, and Kappa increased by 3.39%,
1.13%, and 2.43%, and PCA is slightly better than LDA.

TABLE XV
ABLATION EXPERIMENT RESULTS OF THE PROPOSED SUBMODULE

Methods
IP(5%)

OA AA Kappa
BTA-Net-NO-BC 0.7793 0.7788 0.7468

BTA-Net-NO-TDA 0.7659 0.7332 0.7321
BTA-Net 0.8162 0.8322 0.7894

J. Ablation Experiment of Different Sub-modules
Ablation studies were conducted on different submodules of

BTA-Net. The results reported in Table XV show that the
classification performance decreased by 4.73%, 6.85%, and
5.7% in the three indicators when the BC module was removed.
However, excluding the TDA module, the classification
performance decreased by 6.56%, 13.5%, and 7.82%. This also
proves that the TDA module is superior to the BC module. By

allocating different attention weights in different directions,
more representative features can be obtained, which can
significantly improve the performance of the HSIs
classification model.

Fig. 17. Visualization results of the ablation study of the different tandems
TDA using 5% training samples on IP dataset.

K. Ablation Experiment of Different Tandems TDA
In this section, We present an ablation study on various

tandem TDAs, which was carried out on the IP dataset with 5%
training samples. Figure 16 shows that when two TDA modules
are used, the best results are obtained, whereas when one or
four TDA modules are used, the worst results are obtained. We
know from Section IV.J that the TDA module performs well in
feature selection, so more deep feature exploration via two
tandem TDAs should help improve the model's classification
performance.

L. t-SNE Data Distributions Visualization
In this section, we use t-SNE to verify whether the features

extracted by BTA-Net are beneficial and discriminative for
feature clustering for network training. Figure 18 shows the 2D
visualization of BTA-Net and nine comparison models on the
IP dataset, which clearly shows that our BTA-Net can
distinguish different types of data well. Specifically, the
clustering accuracy of 3D-CNN, AlexNet and ResNet models is
low, mainly because these models cannot mine discriminative
features on small samples and imbalanced data. Furthermore,
we can see that the features learned by BTA-Net are both
intra-class compact and inter-class separated, mainly thanks to
our Bole convolution and three-directions attention mechanism
modules.

(a) (b) (c)

(d) (e) (f)
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(g) (h) (i)

(j) (k)
Fig. 18. The 2D t-SNE feature visualization on the Indian Pines dataset
Using 5% training samples, showing the data distribution of labeled
samples in the feature space, with different colors corresponding to
different categories. (a) Original. (b) 3D-CNN. (c) AlexNet. (d) ResNet. (e)
3D-DenseNet. (f) DenseNet. (g) SSUN. (h) SAGP. (i) MCNN-CP. (j) CAG.
(k) BTA-Net.

V. CONCLUSION
In this paper, we propose a novel BTA-Net algorithm for

hyperspectral image classification, which includes a brand-new
Bole convolution and a novel three-directions attention
mechanism. In BC, we put forward the features punishment and
reward strategy, can efficiently eliminate redundant
information and enhance the effective features, reduce the
model parameters and to reduce the computational cost. In
TDA, we proposed assigning attention weights in three
directions (horizontal, vertical and spatial directions), which
can capture the best representative features, and propose weight
addition and maximization strategies. Through ablation studies,
it was demonstrated that spatial attention can most effectively
improve the classification performance. Moreover, the addition
strategy is better than the maximization strategy than the
multiplication strategy. In addition, the BC and TDA proposed
in this paper can also be used to improve other classification
models, which is an obvious contribution to the research
community. A series of comparative experiments and ablation
studies have demonstrated the effectiveness and superiority of
BTA-Net.

In future works, we will study the adaptive Bole
convolutional network and apply it to other classification
models and tasks.
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