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Figure 1: The Neverwhere Benchmark Suite. We offer over sixty high-quality Gaussian splatting-
based evaluation environments, and the Neverwhere graphics tool-chain for producing accurate
collision mesh. Our aim promote reproducible robotics research via fully automated, continuous
testing in closed-loop evaluation.

Abstract

State-of-the-art visual locomotion controllers are increasingly capable at han-1

dling complex visual environments, making evaluating their real-world perfor-2

mance before deployment increasingly difficult. This work intends to narrow this3

train/evaluation gap by developing a collection of hyper-photo-realistic, closed-4

loop evaluation environments – The Neverwhere Benchmark Suite – comprised of5

over sixty 3D Gaussian Splatting of urban indoor and outdoor scenes. Our goal is to6

encourage large-scale and reproducible robot evaluation by making it easier to cre-7

ate and integrate Gaussian splats-based reconstructions into simulated continuous8

testing setups. We also underscore the potential pitfalls of relying exclusively on9

3D Gaussian-generated data for training, by providing policy checkpoints trained10

over multiple Neverwhere scenes and their performance when evaluated in novel11

scenes. Our analysis illustrates the necessity of sourcing diverse data to ensure12

performance. Anonymous Website: link13
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Figure 2: Task Waypoints Layout. From left to right: Hurdle, Gaps, Stairs, Ramp. The robot starts
from the right. Yellow cones indicate waypoints, whereas red cones are the final goal.

1 Introduction14

The past few years witnessed a rapid acceleration in progress in robotics. Data-driven, general-15

purpose learning algorithms, which treat specific tasks as data points from a general problem class,16

proved to be the scalable approach to producing robots that are robust, capable, and intelligent. As17

our robots graduate the confined lab environments to face the open world, real-world evaluation18

and hand-crafted simulation environments are proving insufficient. We need an evaluation strategy19

that is equally scalable to quantify progress. How do we create abundantly diverse and realistic20

environments to test our robot?21

This work aims to develop a scalable approach to testing real-world visuomotor policies in automated,22

closed-loop simulations. We focus on visual locomotion in legged robots as our test bed, a class of23

robotic tasks where perception is tightly coupled with actions. Our intention is to start with a domain24

where the 3D environment is complex, but the physics is relatively simple. Our main contribution is25

Neverwhere (see Fig. 1), a collection of over 60 high-fidelity digitally recreated scenes that covers26

diverse urban structure, including stairs, speed bumps, indoor carpeted lab spaces and the outdoor,27

with and without vegetation. An equally essential objective is to empower the community to build28

their own set of benchmarks.29

The Neverwhere tool-chain address three essential challenges in building evaluation environments30

for robots: The primary challenge is to capture the world in its full messiness which exceeds the31

expressivity of traditional 3D mesh. The second challenge is that in practice, quadruped robots32

observe the world from an angle that sits out of the distribution of human camera views. This coupled33

with the extraordinary expressivity of the Gaussian substrate, results in poorly rendered ego camera34

input. The final challenge is about geometry. It remains difficult, in practice, to obtain detailed35

collision mesh from 3D Gaussian that are modeled using hand-held iPhone videos. We solve all three36

challenges, by developing a better initialization scheme that takes advantage of traditional multi-vew37

stereo reconstruction (Sec. 4).38

Our contributions are summarized as follows:39

• We introduce the Neverwhere benchmark suite, featuring over 60 high-quality environments40

powered by 3D Gaussians, encompassing a diverse range of urban indoor and outdoor scenes.41

• We present a data collection toolchain that facilitates the generation of new benchmark environments42

with minimal human intervention, allowing users to create reconstructed scenes directly from43

uncalibrated images or videos.44

• We provide and release visual parkour policy checkpoints trained directly on the Neverwhere 3D45

Gaussian environments, offering baseline results to support further research and exploration.46

2 Related Works47

Robotics research has a long tradition of using physics simulation engines to evaluate planners48

and policies prior to real-world deployment [6, 27]. More recently, improvements in learning-49

based approach has enabled neural controllers to directly map high-dimension visual data into joint50

configurations [7, 5] while also expanding along the dimension of the number of skills learned by a51

2



Figure 3: Example Scenes and Collision Geometry. Showing a subset of the environments, on four
parkour locomotion tasks: Hurdles, Gaps, Stairs, and Ramps. The bottom row displays annotated
trails with labeled waypoints that define each evaluation task. All images are rendered.

single, general-purpose control policy [34, 1]. In contract, the rendering setup used by early robotics52

benchmarks [11] was relatively primitive as the intended purpose was for humans to visualize and53

debug failure, as opposed to simulating accurate camera sensor readings for a policy.54

Both the quality, and the range of physics and material have been improved significantly in more recent55

physics engines such as IssacSim [22] and ManiSkill3 [8, 26], extending coverage to deformable56

material, fluid, and caustics. Despite these improves, lack of 3D content remains a bottleneck. Recent57

benchmark efforts significantly raised the bar: BiGym [4], for instance, provided a high-quality,58

manually CAD’ed 3D collision mesh for an articulated dish washer. At the scene level, RoboCasa [20]59

provides fourteen manually designed kitchen scenes.60

Neverwhere differs from these prior efforts [21, 16, 10, 15, 4] in two ways: First, advancements61

in neural scene representation made investment in traditional assets and lighting setup less critical.62

Neverwhere uses 3D Gaussian Splatting to replace mesh-based rendering, which not only simplifies63

construction but also enables the creation of highly detailed digital replicas, which can be done by the64

end-user using Neverwhere’s open-source toolkit. Second, Neverwhere builds upon the MuJoCo [27]65

physics engine and aims to provide accurate collision geometry. It does so without requiring LiDAR66

sensors and depth measurements. The closest are simulators from autonomous driving that are67

used for closed-loop evaluation of self-driving vehicles (SDV). Among them, UniSim [30] uses68

detailed mapping data to create the environment and replay pre-recorded driving episodes to produce69

safety-critical scenarios involving pedestrians and other vehicles. Neverwhere is similar in spirit70

but currently lacks UniSim’s advanced scene decomposition and the ability to animate other actors.71
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Nevertheless, our goal is to use Neverwhere as a foundation for building open-source, customized72

evaluation setups for robotics, with plans to integrate more sophisticated capabilities in the future.73

Generative AI is increasingly being used in robotics to generate task scenarios, rewards, and assets.74

Platforms such as RoboCasa, RoboMimic, and MimicGen [20, 29, 18] employ generative models to75

diversify training environments. However, Neverwhere takes a different approach by emphasizing76

photo-realism and accurate modeling over diversity. We argue that when it comes to evaluation77

benchmarks, a deterministic, curated set of challenging test cases prioritizes signal over noise.78

Neverwhere’s use of 3D Gaussian splats is better suited for evaluation than for training, as the former79

favors reduced variability.80

3 Tasks and Reinforcement Learning Setup81

Neverwhere offers four types of parkour tasks. For each, there is a group of physical environments,82

created from 3D scans of two university campuses, featuring both outdoor and indoor domains with83

different obstacle layouts and appearances. The tasks were written in Python, and physics simulation84

is implemented with MuJoCo [27]. The locomotion setup follows:85

Action. The action space consists of twelve target joint positions for the quadruped robot, with each86

of the robot’s four legs having three actuated joints: hip abduction/adduction, hip flexion/extension,87

and knee flexion/extension.88

Observation. The observation includes the robot’s ego state, e = {v,q, q̇}, where v is the linear89

velocity, q the joint positions, and q̇ the joint velocities, along with the robot’s previous actions. For90

evaluating visual policies, we provide visual observations in different data modalities, including RGB91

renders from gsplat, depth maps, point clouds, and semantic maps. The rendering pipeline detailed in92

Sec. 3.2 provide these diverse data modalities for visual policies’ input.93

Privileged Observation. This includes a heightmap of the scene, offering a top-down view of the94

terrain, which can further be processed into ScanDots observation for lightweight inference [3]. The95

moving direction, represented as a single angle value, can also be provided to guide navigation.96

3.1 Parkour Tasks97

We designed four challenging scenarios to evaluate a robot’s ability to generalize locomotion98

skills, adapt to varying terrain, and handle physically demanding tasks, following the task design99

in [3](introducing in ascending order of difficulty.): 1) overcoming obstacles of a certain height100

(hurdles), 2) jumping across gaps of varying lengths (gaps), 3) navigating sloped surfaces (ramps),101

and 4) walking up stairs (stairs).102

We labeled waypoints to define a specific trail in each scene, outlining the exact task and target for103

the robot. We then measured the robot’s performance by calculating two metrics: the Success Rate,104

determined by the percentage of waypoints reached, and X displacement, the total distance moved in105

the +X direction. The following section provides detailed task definitions and the common waypoint106

distribution for each task. Illustrations of the waypoints are listed in Fig. 3.107

Hurdles. Most hurdle scenes are manually constructed. Each hurdle consists of several boxes108

arranged side by side to form a low barrier. Typically, 1 to 3 such barriers are placed consecutively109

within a scene, with waypoints labeled on top of each one. In addition to these manually created110

scenes, a small portion of the dataset uses natural outdoor elements, e.g. long stone benches, as111

hurdle obstacles.112

Gaps. All gap scenes are manually set up, either indoors or outdoors. We construct two box-based113

platforms with a 12-inch or 16-inch gap between them to simulate jumping over a gap. Waypoints114

are labeled on top center of the platforms.115

Ramps. Ramp scenes are designed to test the robot’s ability to walk on inclined surfaces. Around116

four sloped boards are placed in a staggered arrangement alongside a raised platform built from boxes.117

Waypoints are primarily placed at the end of each trail.118

Stairs. Stair scenes involve real-world staircases of various heights, materials, and textures, captured119

both indoors and outdoors. The robot is tasked with climbing up the stairs, and waypoints are placed120

along the steps.121
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Figure 4: Rendering Wrappers. We designed a rendering pipeline that provides diverse wrappers
for multi-modal observations, including but not limited to: color images from Gaussian splats, depth
maps, heightmaps, and LiDAR projections, to support a wide range of visual based policies.

3.2 Rendering Wrappers122

Gaussian Rendering. We adopt 3DGS [12] for photo-realistic rendering to reduce the domain gap123

in policy training and evaluation. 3DGS provides high-quality visual observations and real-time124

performance, making it well-suited for close-looped evaluation. To incorporate visual targets (e.g.,125

cones) that are not present in the original 3DGS scene, we blend them into the rendered view using126

semantic masks rendered from MuJoCo [27], enabling consistent integration of task-relevant cues.127

Through experiments (in Sec. 5.3), we found visual cones are strong visual cues that lead to better128

policies.129

Depth. Depth is obtained by converting MuJoCo-rendered maps [27] into MiDaS-style inverted130

depth [23]. These depth maps serve as observation inputs for robot policy learning. They can also be131

used as conditioning inputs for depth-conditioned generative models [33], enabling robust training132

and zero-shot transfer to real-world RGB inputs [31].133

Semantics Mask. We generate semantic masks by grouping objects based on naming rules, enabling134

simple target-background segmentation for downstream tasks.135

Heightmap. A top-down bird’s-eye-view heightmap is rendered to capture terrain geometry while136

excluding movable objects, aiding navigation and privileged policy training.137

LiDAR Projection. Simulated LiDAR rays produce point clouds based on scene geometry, supporting138

policies that rely on spatial awareness and obstacle detection.139

4 From Photons to Splats: The Neverwhere Environment Builder140

We aim to develop a scalable and efficient toolchain for creating benchmark scenes, enabling users141

to easily generate their own digital twins. Existing 3DGS techniques [13, 35, 14, 28, 32, 19, 9, 17]142

excel at visual fidelity, but the resulting meshes may lack the physical accuracy required for reliable143

physics-based interactions. Our robot needs precise collision geometry to be evaluated correctly.144

Developing high-fidelity digital replicas for robot simulation necessitates both high visual quality145

with minimal domain gap and accurate physical modeling of real-world geometry to facilitate robot146

interaction. By leveraging the power of robust and efficient SfM and MVS modules within a unified147

pipeline, Neverwhere automatically converts pose-free multi-view images into registered pairs of 3D148

Gaussians and high-quality collision geometry. Thus, by combining the strengths of 3D Gaussians149

for appearance representation with spatially aligned meshes for the robot simulation platform, we150

construct a complete physics-aware robot simulation environment.151

In detail, given a set of N uncalibrated images I = {Ii}
N

i=1
, a camera pose estimation module Θ is152

used to estimate their poses (Fig. 5-(2)), yielding P = {Pi}
N

i=1
. Subsequently, a mesh reconstruction153
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1. Scanning

2. Structure-from-Motion

3. Mesh Reconstruction 5. 3D Gaussian Splatting

4. Gaussian Initialization 6. Re-orientation

7. Trail Labeling

Figure 5: Neverwhere Toolchain. The toolchain takes (1) multi-view images as input and follows a
sequential process: (2) A Structure-from-Motion modules is applied to obtain camera calibrations, (3)
An optimization-based MVS module is used to estimate the scene geometry, (4) Points are sampled
from the textured meshes, which are then used as initializations for (5) training 3D Gaussians to
model the scene. Once the scene modeling is complete, human input is required for (6) reorienting
the mesh to align with scene conventions and (7) labeling waypoints for visual parkour policies.

module Φ(I,P) is employed to recover the scene mesh (Fig. 5-(3)). In our reconstruction toolchain,154

COLMAP [24, 25] is utilized as Θ for camera calibration, and OpenMVS [2] serves as Φ to process155

the calibrated poses and images into a fine-grained collision mesh M.156

Following this geometric reconstruction, we optimize 3D Gaussian Splats for scene appearance157

modeling (Fig. 5-(5)). Vanilla Gaussians are prone to overfitting to training views, often resulting in158

suboptimal novel view rendering quality when the viewpoint significantly deviates from the training159

data (e.g., views of a quadruped robot versus typical handheld camera views). To address this, we160

introduce geometrical constraints to achieve better novel view rendering. Therefore, we extract depth161

maps D = {Di}
N

i=1
and confidence maps C = {Ci}

N

i=1
for each image in I from the patch-matched162

geometric cache of M. These maps are then used to supervise 3D Gaussian training with the163

following loss term:164

L = (1− λr)
∥

∥

∥
I− Î

∥

∥

∥

1

+ λrLSSIM + λD

∥

∥

∥
C⊙ (D− D̂)

∥

∥

∥

1

(1)

Here, λD is the weight for depth supervision. In practice, we initialize Gaussians with sampled165

colored points (Fig. 5-(4)) from the collision mesh M, as this provides improved geometric priors166

compared to the standard initialization using SfM points.167

SfM methods recover scene geometry up to an arbitrary scale and orientation for uncalibrated images.168

Thus, the reconstructed Splats and Mesh are not aligned with real-world scale or the z-up convention,169

making them unready for robot simulation. Additionally, evaluating parkour policies requires task170

definitions within the scene, such as waypoint trails to measure robot success rates. To address this,171

we developed an intuitive labeling tool that lets users quickly reorient and rescale the mesh to match172

real-world coordinates (Fig. 5-(6)) and define tasks by labeling waypoints (Fig. 5-(7)). After labeling,173

the system automatically generates simulation task configurations for the benchmark environments.174

The full process takes about two minutes (see supplementary materials for demo).175

Improving 3DGS Modeling from Hand-held iPhone Videos. Accurate collision geometry is176

essential for precise contact and physics simulation. The typical solution involves using multi-view177

stereo methods to generate this geometry. However, geometry generated by mobile applications often178

lacks the details required for fine-grained contact simulation due to the limited computational power179

of mobile devices. Furthermore, these methods often require a depth sensor for robust reconstruction.180

We propose an alternative approach using OpenMVS to reconstruct physical geometry with enhanced181

quality and provide additional cache to improve 3DGS quality. This method produces high-quality,182

cost-effective geometry without requiring external sensors. As shown in Fig. 6, the meshes generated183
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PolyCam Ours

Figure 6: OpenMVS provides detailed geometry. (left) mesh taken
from a consumer 3D scanning app PolyCam. (right) reconstruction
from OpenMVS.

Confidence Map

Depth Map

Figure 7: Confidence and
depth maps. We extract these
from the SfM pipeline.

by OpenMVS [2] exhibit fine geometric details and provide good scene coverage, matching or even184

surpassing the results from on-device mobile software.185

Geometry Guided Gaussian Initialization. To achieve higher-quality 3DGS with improved ge-186

ometry and consistent depth, we use colored points sampled from the textured mesh produced by187

OpenMVS [2] for initialization (Fig. 5-(4)). This approach is more geometrically organized than188

using scattered points from SfM alone, as illustrated in Fig. 8, resulting in better 3DGS for rendering189

geometry-consistent views from robot’s views.190

5 Experiments191

Our design intention is for Neverwhere to be used as part of an automated, continuous testing setup192

that quickly and scalably uses closed-loop simulation to assess the policy before its real-world193

deployment. Training and testing environments have different requirements: the former benefits from194

system coverage and entropy, whereas the latter is better conducted deterministically to maximize195

interpretability. To explore the capabilities of the Neverwhere benchmark under constrained entropy196

and limited scenes, we conducted experiments on closed-loop training to provide additional insight.197

Although the results indicate limited generalization that restricts effective closed-loop training in this198

context, the benchmark consistently reflects the robot’s capabilities from an evaluation standpoint.199

5.1 Training Setup:200

We performed closed-loop training using a teacher-student behavior cloning approach. We re-trained201

a privileged teacher policy from [3] to provide guidance. We trained both depth-based and RGB-202

Scanned RGB SfM Points Ours

Figure 8: Gaussians Initialization. Instead of using SfM points, we utilize colored points sampled
from the reconstructed textured mesh generated by our pipeline for initialization, ensuring improved
geometric accuracy of the Gaussians.
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based visual policies (rendered via a Gaussian Splats wrapper) through on-policy learning. Dataset203

aggregation (DAgger) was employed, sampling 1,000 trajectories per DAgger iteration. The teacher204

policy architecture follows the approach described in [3]. For the student policies, we adopted Action205

Chunking Transformers (ACT) to improve their ability to handle challenging tasks such as gaps and206

ramps. We tried two settings:207

(1) Single-scene Training: We trained the policy on a single environment and performed 4 DAgger208

iterations. We evaluated its performance both on the training scene itself and on other scenes within209

the same task. Domain randomization was turned off for this setup.210

(2) Multi-scene Training: We split 70% of the scenes from a specific task to create a training set,211

and the remaining 30% were used for evaluation. The goal was to explore the policy’s ability to212

transfer across different simulated environments within the same task. For these experiments, we213

applied domain randomization during training: I. Depth visual policy, we added random noise to the214

depth maps and randomly zeroed some pixels. II. RGB visual policy, we applied random rotations,215

cropping, Gaussian blur, and color transformations to the input images.216

All experiments were conducted using the Unitree Go1 robot, with physics simulation powered by217

MuJoCo.218

5.2 Single-Scene Closed-Loop Training219

We first test whether a visual policy can fit well in a single domain, to verify both the robot’s learning220

ability and the effectiveness of our digital environment. We select three tasks in increasing order221

of difficulty: Hurdles (easy), Gaps (medium), and Stairs (hard). The policy is trained on one scene222

from each task and evaluated on all other scenes within the same task. To ensure variation, random223

noise is added to the trajectory, making the evaluation trails different from the training ones. As224

shown in Fig. 9, the policy performs well on the training scene but generalizes poorly on unseen225

scenes, which matches our expectation as the training domain is limited. One interesting finding is226

that performance slightly improves on some unseen scenes that share similar visual characteristics227

(e.g., both being outdoor environments) with the training domain, as observed in the bottom-right228

corner of each confusion matrix in Fig. 9.229

5.3 Multi-Scene Closed-Loop Training230

Given that policies fit well in a single domain, we further investigate whether our scenes support231

effective closed-loop training for visual policies. We evaluated on both training set and evaluation set,232

the performance gap between training and evaluation sets is large (about 50% on average) for the233

Stairs task Fig. 10-(A), but relatively small (about 10% on average) for the Gaps task Fig. 10-(B). This234

suggests that the trained visual policies exhibit limited generalization on our benchmark, particularly235

for more challenging tasks.236

Ablation on Observation Types: The above experiments do not use include those cones as observa-237

tion. We further investigate how different observation types affect policy performance. (1) RGB vs.238

Figure 9: Generalization of Single-Scene Policies. Each policy (row) is trained in a single environ-
ment. The cross-scene generalization shows clear clustering.
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(A) Stairs, RGB (B) Gaps, RGB (C) Gaps, Depth (D) Gaps, RGB (w/ Visual Cones) 

Figure 10: Results on Multi-Scene Closed-Loop Training. We split each task’s scenes into 70%
for training and 30% for evaluation. For each scene, we perform 50 rollouts and report the average
success rate over all rollouts in the train and evaluation sets. See the supplementary material for
visual references of the listed scene names.

Depth: As shown in Fig. 10-(B) and (C), both inputs are trained with domain randomization. While239

RGB yields moderate results, Depth performs poorly even on the training set, suggesting that depth240

represented in our benchmark is currently less effective for learning. (2) With vs. without visual241

cones: Comparing Fig. 10-(C) and (D), adding visual cones effectively improves training efficiency242

and overall performance on both training and evaluation sets. This highlights the benefit of consistent,243

explicit visual cues (e.g., cones) in aiding policy learning under diverse visual domains.244

5.4 Evaluating Visual Parkour Policies245

Table 1: Evaluating Lucidsim [31] with Our benchmark.

Tasks Scenes Rollouts Average Highest Median Lowest

hurdle 15 50 59.67% 95.33% 68.67% 0.00%
stairs 14 50 55.82% 93.16% 55.37% 2.78%

Neverwhere is designed to test robot246

policies before real-world deployment.247

We evaluate visual policy checkpoints248

trained by Lucidsim [31], analyzing249

their performance gap between simu-250

lation and real environments. Results251

show that Lucidsim achieves reasonable success rates, with some scenes exceeding 95% and most252

scenes above 50%. This aligns roughly with Lucidsim’s reported results of 73.3% for hurdles and253

100% for stairs. Note that the real-robot test environments differ from our benchmark, so performance254

differences are expected.255

6 Conclusion256

We proposed the Neverwhere benchmark suite along with a real-to-sim toolchain. Our goal is257

to provide the community with a practical tool for testing policies before real-world deployment,258

potentially as part of a continuous testing setup. This work aims to accelerate the development259

of scalable and efficient approaches for robot evaluation, as current robot policies are becoming260

increasingly capable while existing evaluation methods remain inefficient.261

Although the Neverwhere toolchain was initially designed for our locomotion evaluation benchmark262

suite, its capability for creating contact-aware real-world digital twins is broadly applicable across263

various domains. This unified framework, built on freely accessible pipelines, is designed to support264

the real-to-sim-to-real research community.265

Limitations. Although Neverwhere has provided over 60 diverse scenes, expanding the benchmark266

with additional diverse scenes requires further human intervention and effort, as the reconstructed 3D267

splats and meshes are not automatically aligned with real-world scale or the standard z-up orientation.268

This necessitates manual reorientation, rescaling, and task labeling before they can be used in robot269

simulations. Our future work will explore learning-based methods for automatic alignment and scene270

labeling of the 3D reconstructions.271
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NeurIPS Paper Checklist379

1. Claims380

Question: Do the main claims made in the abstract and introduction accurately reflect the381

paper’s contributions and scope?382

Answer: [Yes]383

Justification: The abstract states the goal of developing a scalable way to evaluate quadruped384

visual locomotion in simulation before real-world deployment and introduces the Never-385

where benchmark suite with over fifty high-fidelity scenes. The introduction reiterates this386

aim, presenting Neverwhere as a collection of digital twins for testing visuomotor policies387

and a toolchain for creating these environments.388

Guidelines:389

• The answer NA means that the abstract and introduction do not include the claims390

made in the paper.391

• The abstract and/or introduction should clearly state the claims made, including the392

contributions made in the paper and important assumptions and limitations. A No or393

NA answer to this question will not be perceived well by the reviewers.394

• The claims made should match theoretical and experimental results, and reflect how395

much the results can be expected to generalize to other settings.396

• It is fine to include aspirational goals as motivation as long as it is clear that these goals397

are not attained by the paper.398

2. Limitations399

Question: Does the paper discuss the limitations of the work performed by the authors?400

Answer: [Yes]401

Justification: The paper mentions limitations in the abstract, stating an intent to "highlight402

the limitations of treating 3D Gaussian as the sole data source for training". It also discusses403

challenges in the pipeline, such as inaccurate collision geometry for certain materials and404

handling varying material properties within a single mesh representation. The experiments405

section also notes that trained visual policies exhibited "limited generalization on our406

benchmark, particularly for more challenging tasks".407

Guidelines:408

• The answer NA means that the paper has no limitation while the answer No means that409

the paper has limitations, but those are not discussed in the paper.410

• The authors are encouraged to create a separate "Limitations" section in their paper.411

• The paper should point out any strong assumptions and how robust the results are to412

violations of these assumptions (e.g., independence assumptions, noiseless settings,413

model well-specification, asymptotic approximations only holding locally). The authors414

should reflect on how these assumptions might be violated in practice and what the415

implications would be.416

• The authors should reflect on the scope of the claims made, e.g., if the approach was417

only tested on a few datasets or with a few runs. In general, empirical results often418

depend on implicit assumptions, which should be articulated.419

• The authors should reflect on the factors that influence the performance of the approach.420

For example, a facial recognition algorithm may perform poorly when image resolution421

is low or images are taken in low lighting. Or a speech-to-text system might not be422

used reliably to provide closed captions for online lectures because it fails to handle423

technical jargon.424

• The authors should discuss the computational efficiency of the proposed algorithms425

and how they scale with dataset size.426

• If applicable, the authors should discuss possible limitations of their approach to427

address problems of privacy and fairness.428

• While the authors might fear that complete honesty about limitations might be used by429

reviewers as grounds for rejection, a worse outcome might be that reviewers discover430

limitations that aren’t acknowledged in the paper. The authors should use their best431
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judgment and recognize that individual actions in favor of transparency play an impor-432

tant role in developing norms that preserve the integrity of the community. Reviewers433

will be specifically instructed to not penalize honesty concerning limitations.434

3. Theory assumptions and proofs435

Question: For each theoretical result, does the paper provide the full set of assumptions and436

a complete (and correct) proof?437

Answer: [Yes]438

Justification: The paper details its methodological approach, including the formulation of the439

loss function used for 3D Gaussian training with depth supervision (Equation 1 in Section440

4). The components and rationale for this approach and the overall Neverwhere toolchain441

are described, outlining the conceptual basis for its construction and operation.442

Guidelines:443

• The answer NA means that the paper does not include theoretical results.444

• All the theorems, formulas, and proofs in the paper should be numbered and cross-445

referenced.446

• All assumptions should be clearly stated or referenced in the statement of any theorems.447

• The proofs can either appear in the main paper or the supplemental material, but if448

they appear in the supplemental material, the authors are encouraged to provide a short449

proof sketch to provide intuition.450

• Inversely, any informal proof provided in the core of the paper should be complemented451

by formal proofs provided in appendix or supplemental material.452

• Theorems and Lemmas that the proof relies upon should be properly referenced.453

4. Experimental result reproducibility454

Question: Does the paper fully disclose all the information needed to reproduce the main ex-455

perimental results of the paper to the extent that it affects the main claims and/or conclusions456

of the paper (regardless of whether the code and data are provided or not)?457

Answer: [Yes]458

Justification: The paper details the tasks, reinforcement learning setup (action space, ob-459

servation space, privileged observation), rendering wrappers used, and the training setup460

for experiments (teacher-student approach, DAgger, policy architecture, single-scene and461

multi-scene training configurations, domain randomization techniques). It also specifies the462

robot model and physics simulator (MuJoCo).463

Guidelines:464

• The answer NA means that the paper does not include experiments.465

• If the paper includes experiments, a No answer to this question will not be perceived466

well by the reviewers: Making the paper reproducible is important, regardless of467

whether the code and data are provided or not.468

• If the contribution is a dataset and/or model, the authors should describe the steps taken469

to make their results reproducible or verifiable.470

• Depending on the contribution, reproducibility can be accomplished in various ways.471

For example, if the contribution is a novel architecture, describing the architecture fully472

might suffice, or if the contribution is a specific model and empirical evaluation, it may473

be necessary to either make it possible for others to replicate the model with the same474

dataset, or provide access to the model. In general. releasing code and data is often475

one good way to accomplish this, but reproducibility can also be provided via detailed476

instructions for how to replicate the results, access to a hosted model (e.g., in the case477

of a large language model), releasing of a model checkpoint, or other means that are478

appropriate to the research performed.479

• While NeurIPS does not require releasing code, the conference does require all submis-480

sions to provide some reasonable avenue for reproducibility, which may depend on the481

nature of the contribution. For example482

(a) If the contribution is primarily a new algorithm, the paper should make it clear how483

to reproduce that algorithm.484
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(b) If the contribution is primarily a new model architecture, the paper should describe485

the architecture clearly and fully.486

(c) If the contribution is a new model (e.g., a large language model), then there should487

either be a way to access this model for reproducing the results or a way to reproduce488

the model (e.g., with an open-source dataset or instructions for how to construct489

the dataset).490

(d) We recognize that reproducibility may be tricky in some cases, in which case491

authors are welcome to describe the particular way they provide for reproducibility.492

In the case of closed-source models, it may be that access to the model is limited in493

some way (e.g., to registered users), but it should be possible for other researchers494

to have some path to reproducing or verifying the results.495

5. Open access to data and code496

Question: Does the paper provide open access to the data and code, with sufficient instruc-497

tions to faithfully reproduce the main experimental results, as described in supplemental498

material?499

Answer: [Yes]500

Justification: The paper states its intention to "release the Neverwhere benchmark suite,501

which comprises over 60 high-quality, ready-to-use scenes" and to provide "visual parkour502

policy checkpoints". It also mentions "We are committed to sharing the toolchain together503

with the benchmark suite".504

Guidelines:505

• The answer NA means that paper does not include experiments requiring code.506

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/507

public/guides/CodeSubmissionPolicy) for more details.508

• While we encourage the release of code and data, we understand that this might not be509

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not510

including code, unless this is central to the contribution (e.g., for a new open-source511

benchmark).512

• The instructions should contain the exact command and environment needed to run to513

reproduce the results. See the NeurIPS code and data submission guidelines (https:514

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.515

• The authors should provide instructions on data access and preparation, including how516

to access the raw data, preprocessed data, intermediate data, and generated data, etc.517

• The authors should provide scripts to reproduce all experimental results for the new518

proposed method and baselines. If only a subset of experiments are reproducible, they519

should state which ones are omitted from the script and why.520

• At submission time, to preserve anonymity, the authors should release anonymized521

versions (if applicable).522

• Providing as much information as possible in supplemental material (appended to the523

paper) is recommended, but including URLs to data and code is permitted.524

6. Experimental setting/details525

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-526

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the527

results?528

Answer: [Yes]529

Justification: The paper describes the experimental setup including data splits for multi-scene530

training (70% for training, 30% for evaluation), the use of DAgger with 1,000 trajectories531

per iteration, and the types of domain randomization applied. It also mentions the policy532

architecture used (Action Chunking Transformers for student policies) and the robot and533

simulator used. Specifics on hyperparameters like learning rates or optimizer details are534

stated in code.535

Guidelines:536

• The answer NA means that the paper does not include experiments.537
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• The experimental setting should be presented in the core of the paper to a level of detail538

that is necessary to appreciate the results and make sense of them.539

• The full details can be provided either with the code, in appendix, or as supplemental540

material.541

7. Experiment statistical significance542

Question: Does the paper report error bars suitably and correctly defined or other appropriate543

information about the statistical significance of the experiments?544

Answer: [Yes]545

Justification: The paper reports average success rates from multiple rollouts, which evaluates546

Lucidsim, further provides median, highest, and lowest success rates, offering information547

about the distribution and variability of these results across different scenes.548

Guidelines:549

• The answer NA means that the paper does not include experiments.550

• The authors should answer "Yes" if the results are accompanied by error bars, confi-551

dence intervals, or statistical significance tests, at least for the experiments that support552

the main claims of the paper.553

• The factors of variability that the error bars are capturing should be clearly stated (for554

example, train/test split, initialization, random drawing of some parameter, or overall555

run with given experimental conditions).556

• The method for calculating the error bars should be explained (closed form formula,557

call to a library function, bootstrap, etc.)558

• The assumptions made should be given (e.g., Normally distributed errors).559

• It should be clear whether the error bar is the standard deviation or the standard error560

of the mean.561

• It is OK to report 1-sigma error bars, but one should state it. The authors should562

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis563

of Normality of errors is not verified.564

• For asymmetric distributions, the authors should be careful not to show in tables or565

figures symmetric error bars that would yield results that are out of range (e.g. negative566

error rates).567

• If error bars are reported in tables or plots, The authors should explain in the text how568

they were calculated and reference the corresponding figures or tables in the text.569

8. Experiments compute resources570

Question: For each experiment, does the paper provide sufficient information on the com-571

puter resources (type of compute workers, memory, time of execution) needed to reproduce572

the experiments?573

Answer: [Yes]574

Justification: The paper specify the type of compute workers, memory, or time of execution575

for the experiments conducted in appendix.576

Guidelines:577

• The answer NA means that the paper does not include experiments.578

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,579

or cloud provider, including relevant memory and storage.580

• The paper should provide the amount of compute required for each of the individual581

experimental runs as well as estimate the total compute.582

• The paper should disclose whether the full research project required more compute583

than the experiments reported in the paper (e.g., preliminary or failed experiments that584

didn’t make it into the paper).585

9. Code of ethics586

Question: Does the research conducted in the paper conform, in every respect, with the587

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?588

Answer: [Yes]589
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Justification: The authors have reviewed the NeurIPS Code of Ethics.590

Guidelines:591

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.592

• If the authors answer No, they should explain the special circumstances that require a593

deviation from the Code of Ethics.594

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-595

eration due to laws or regulations in their jurisdiction).596

10. Broader impacts597

Question: Does the paper discuss both potential positive societal impacts and negative598

societal impacts of the work performed?599

Answer: [NA]600

Justification: The paper focuses on the technical contributions of the benchmark suite for601

evaluating visual parkour policies and does not contain a dedicated section addressing602

potential positive or negative societal impacts.603

Guidelines:604

• The answer NA means that there is no societal impact of the work performed.605

• If the authors answer NA or No, they should explain why their work has no societal606

impact or why the paper does not address societal impact.607

• Examples of negative societal impacts include potential malicious or unintended uses608

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations609

(e.g., deployment of technologies that could make decisions that unfairly impact specific610

groups), privacy considerations, and security considerations.611

• The conference expects that many papers will be foundational research and not tied612

to particular applications, let alone deployments. However, if there is a direct path to613

any negative applications, the authors should point it out. For example, it is legitimate614

to point out that an improvement in the quality of generative models could be used to615

generate deepfakes for disinformation. On the other hand, it is not needed to point out616

that a generic algorithm for optimizing neural networks could enable people to train617

models that generate Deepfakes faster.618

• The authors should consider possible harms that could arise when the technology is619

being used as intended and functioning correctly, harms that could arise when the620

technology is being used as intended but gives incorrect results, and harms following621

from (intentional or unintentional) misuse of the technology.622

• If there are negative societal impacts, the authors could also discuss possible mitigation623

strategies (e.g., gated release of models, providing defenses in addition to attacks,624

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from625

feedback over time, improving the efficiency and accessibility of ML).626

11. Safeguards627

Question: Does the paper describe safeguards that have been put in place for responsible628

release of data or models that have a high risk for misuse (e.g., pretrained language models,629

image generators, or scraped datasets)?630

Answer: [NA]631

Justification: The paper describes a benchmark suite based on 3D scans of university632

campuses and policy checkpoints for robot locomotion. While it involves real-world data,633

it doesn’t seem to fall into the high-risk categories. The data is for robotic environment634

simulation.635

Guidelines:636

• The answer NA means that the paper poses no such risks.637

• Released models that have a high risk for misuse or dual-use should be released with638

necessary safeguards to allow for controlled use of the model, for example by requiring639

that users adhere to usage guidelines or restrictions to access the model or implementing640

safety filters.641
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• Datasets that have been scraped from the Internet could pose safety risks. The authors642

should describe how they avoided releasing unsafe images.643

• We recognize that providing effective safeguards is challenging, and many papers do644

not require this, but we encourage authors to take this into account and make a best645

faith effort.646

12. Licenses for existing assets647

Question: Are the creators or original owners of assets (e.g., code, data, models), used in648

the paper, properly credited and are the license and terms of use explicitly mentioned and649

properly respected?650

Answer: [Yes]651

Justification: The paper cites various existing works and tools it builds upon or uses, such652

as COLMAP, OpenMVS, MuJoCo, gsplat, Vuer, and references research papers for policy653

architectures and datasets.654

Guidelines:655

• The answer NA means that the paper does not use existing assets.656

• The authors should cite the original paper that produced the code package or dataset.657

• The authors should state which version of the asset is used and, if possible, include a658

URL.659

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.660

• For scraped data from a particular source (e.g., website), the copyright and terms of661

service of that source should be provided.662

• If assets are released, the license, copyright information, and terms of use in the package663

should be provided. For popular datasets, paperswithcode.com/datasets has664

curated licenses for some datasets. Their licensing guide can help determine the license665

of a dataset.666

• For existing datasets that are re-packaged, both the original license and the license of667

the derived asset (if it has changed) should be provided.668

• If this information is not available online, the authors are encouraged to reach out to669

the asset’s creators.670

13. New assets671

Question: Are new assets introduced in the paper well documented and is the documentation672

provided alongside the assets?673

Answer: [Yes]674

Justification: The paper describes the new assets: the Neverwhere benchmark suite (over675

50-60 scenes), the data collection toolchain, and visual parkour policy checkpoints. The676

paper details the scene construction process, task definitions, and the nature of the scenes677

(digital replicas of urban indoor and outdoor environments). The intention to release these678

assets with the toolchain implies documentation will be provided.679

Guidelines:680

• The answer NA means that the paper does not release new assets.681

• Researchers should communicate the details of the dataset/code/model as part of their682

submissions via structured templates. This includes details about training, license,683

limitations, etc.684

• The paper should discuss whether and how consent was obtained from people whose685

asset is used.686

• At submission time, remember to anonymize your assets (if applicable). You can either687

create an anonymized URL or include an anonymized zip file.688

14. Crowdsourcing and research with human subjects689

Question: For crowdsourcing experiments and research with human subjects, does the paper690

include the full text of instructions given to participants and screenshots, if applicable, as691

well as details about compensation (if any)?692

Answer: [NA]693
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Justification: The research described in the paper involves creating digital twins of environ-694

ments and training robot policies in simulation. It does not appear to involve crowdsourcing695

experiments or research with human subjects as participants in studies.696

Guidelines:697

• The answer NA means that the paper does not involve crowdsourcing nor research with698

human subjects.699

• Including this information in the supplemental material is fine, but if the main contribu-700

tion of the paper involves human subjects, then as much detail as possible should be701

included in the main paper.702

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,703

or other labor should be paid at least the minimum wage in the country of the data704

collector.705

15. Institutional review board (IRB) approvals or equivalent for research with human706

subjects707

Question: Does the paper describe potential risks incurred by study participants, whether708

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)709

approvals (or an equivalent approval/review based on the requirements of your country or710

institution) were obtained?711

Answer: [NA]712

Justification: The paper does not describe research involving human subjects as study713

participants, so IRB approval or discussion of participant risks is not applicable.714

Guidelines:715

• The answer NA means that the paper does not involve crowdsourcing nor research with716

human subjects.717

• Depending on the country in which research is conducted, IRB approval (or equivalent)718

may be required for any human subjects research. If you obtained IRB approval, you719

should clearly state this in the paper.720

• We recognize that the procedures for this may vary significantly between institutions721

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the722

guidelines for their institution.723

• For initial submissions, do not include any information that would break anonymity (if724

applicable), such as the institution conducting the review.725

16. Declaration of LLM usage726

Question: Does the paper describe the usage of LLMs if it is an important, original, or727

non-standard component of the core methods in this research? Note that if the LLM is used728

only for writing, editing, or formatting purposes and does not impact the core methodology,729

scientific rigorousness, or originality of the research, declaration is not required.730

Answer: [NA]731

Justification: The paper focuses on visual parkour benchmarks, 3D scene reconstruction,732

and reinforcement learning for locomotion policies. There is no mention of Large Language733

Models (LLMs) being used as an important, original, or non-standard component of the734

core methods.735

Guidelines:736

• The answer NA means that the core method development in this research does not737

involve LLMs as any important, original, or non-standard components.738

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/739

LLM) for what should or should not be described.740
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