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ABSTRACT

Offline Reinforcement Learning (Offline RL) is challenged by distributional shift
and value overestimation, which often leads to poor performance. To address
this issue, a popular class of methods use behavior regularization to constrain the
learned policy to stay close to the behavior policy. However, this approach can be
too limiting when the behavior policy is suboptimal. To overcome this limitation,
we propose to conduct behavior regularization directly on an optimal supported
dataset, which can both ensure that the learned policy is not too far removed
from the dataset, and reduce any potential bias towards the optimization objective.
We introduce Optimal Supported Dataset generation via Stationary DIstribution
Correction Estimation (OSD-DICE) to generate such a dataset. OSD-DICE is
based on the primal-dual formulation of linear programming for RL. It uses a single
minimization objective to avoid poor convergence issues often associated with
this formulation, and incorporates two key designs to ensure polynomial sample
complexity under general function approximation and single-policy concentrability.
After generating the near-optimal supported dataset, we instantiate our framework
by two representative behavior regularization-based methods and show safe policy
improvement over the near-optimal supported policy. Empirical results validate the
efficacy of OSD-DICE on tabular tasks and demonstrate remarkable performance
gains of the proposed framework on D4RL benchmarks.

1 INTRODUCTION

Offline Reinforcement Learning (RL) allows the policy to be learned from a fixed dataset without
further interactions. However, the offline learning paradigm usually raises the distributional shift
between the learning policy and the dataset, and thus suffers from severe value overestimation (Levine
et al., 2020; Fujimoto et al., 2019). A major solution to this issue is the use of pessimism principle,
which resorts to pessimistic value estimates to eliminate the negative impact of overestimation
(Buckman et al., 2020; Jin et al., 2021; Xie et al., 2021; Cheng et al.). One broad category of practical
methods fulfills pessimism through behavior regularization, which constrains the learned policy to
lie close to the behavior policy. This is typically achieved by adding a penalty term to the critic or
actor loss measuring the divergence of the learning policy from the behavior policy.(Kumar et al.,
2019; Fujimoto et al., 2019; Wu et al., 2019; Kostrikov et al., 2021; Kumar et al., 2020; Fujimoto &
Gu, 2021). Clearly, regularized optimization that is subject to behavior regularization typically leads
to a sub-optimal solution, as it trades off the optimal policy against the behavior policy. And it is
commonly known to be too restrictive to achieve good performance both theoretically and empirically
given a poor behavior policy (Kumar et al., 2019; Wu et al.)

Actually, as pessimism principle indicates, the purpose of the behavior regularization is to act as a
pessimistic penalty that ensures the learned policy is in support, as opposed to forcing the solution
towards an improper behavioral policy. Therefore, any policy supported by the dataset can be regarded
as the “behavior policy”, and there is likely room for improvement by adopting a more effective
“behavior policy”. Ideally, the optimal policy supported by the dataset should serve as the preferred
“behavior policy”, as it both encourages the learned policy to stay in support and reduces any potential
bias towards the optimization objective, compared to the original behavior policy. Based on this
concept, we propose to implement behavior regularization with the optimal supported (in-support)
policy in this paper. This can be achieved by conducting offline RL methods directly on the optimal
supported dataset. Intuitively, the new dataset can be seen as having been collected according to
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the optimal supported policy, and is expected to enjoy a much higher performance compared to the
previous one. By doing so, the learned policy can be driven towards the optimal direction supported
by the dataset.

The primal-dual formulation of Linear Programming (LP) for MDPs is suitable for obtaining the
optimal supported dataset. In this approach, conventional policy optimization is transformed into a
constrained (regularized) LP optimization, with distribution correction (or density ratio) treated as
a variable. By reweighing the original dataset with the learned optimal density ratio, the intended
dataset can be obtained spontaneously. Although significant theoretical progress has been made
recently in this area (Zhan et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al., 2022), the practical
implementation of this formulation continues to be a challenge. They have typically relied either on
multi-level nested optimization (Zhan et al., 2022; Rashidinejad et al., 2022), which can introduce
well-known issues with numerical instability and local convergence (Goodfellow et al., 2020), or
additional constraints that can be challenging to accommodate in practice (Ozdaglar et al., 2022). A
related practical approach Lee et al. (2021) attempts to circumvent these limitations by transforming
the multi-level optimization into a single minimization. However, this method is known to generate a
biased objective on stochastic MDPs, due to the double-sampling design and nonlinear properties
involved, making the resulting solution lack optimality guarantees.

In order to obtain a practical solution that is also backed up by strong theoretical support, we develop
Optimal Supported Dataset generation via Stationary DIstribution Correction Estimation (OSD-
DICE), which enjoys both practical advantage by adopting the single minimization objective, and
optimality guarantee by the introduction of two key designs. To be more precise, we leverage the
maximum likelihood of the transition model for advantage estimation instead of relying on single
transition estimation, then the overall objective bias can be bounded small enough. Furthermore, we
enhance the convexity of the objective function by introducing a squared regularization term. This
term does not alter the optimal solution, but greatly benefits the smoothness of the objective. Building
upon these improvements, we are able to establish polynomial sample complexity guarantees for
OSD-DICE under general function approximation and single-policy concentrability.

After obtaining the near-optimal dataset, we instantiate our proposed framework in conjunction with
two representative behavior regularization-based methods: Behavior Cloning (BC) and Conservative
Q-Learning (CQL)(Kumar et al., 2020). This leads to optimal supported dataset-based BC (osd-BC)
and optimal supported dataset-based CQL (osd-CQL) respectively. Additionally, we present the safe
policy improvement over the near-optimal supported policy for both osd-BC and osd-CQL. Extensive
experimental study is also conducted on tabular tasks and standard offline RL benchmark D4RL (Fu
et al., 2020), which confirms the efficacy of OSD-DICE and showcases the performance enhancement
of offline RL with the aid of an optimal supported dataset.

2 RELATED WORK

RL algorithms are particularly prone to failure when used in the offline setting, due to the erroneous
value estimation induced by the distributional shift between the dataset and the learning policy. To
address this issue, one broad category of methods adopts behavior regularization, which constrains
the learned policy to stay close to the behavior policy, either explicitly or implicitly. Various
implementations have been proposed, primarily differing in the choice of behavior regularizer, such
as KL (Fujimoto et al., 2019; Wu et al., 2019), MMD (Kumar et al., 2019), and others (Kumar et al.,
2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021). This class of methods is conceptually supported
by the pessimism principle, which suggests that pessimism can be incorporated into the policy
evaluation process to mitigate overestimation and achieve good performance even with imperfect data
coverage (Buckman et al., 2020; Jin et al., 2021; Liu et al., 2020b; Kumar et al., 2021; Rashidinejad
et al., 2021; Xie et al., 2021; Zanette et al., 2021; Cheng et al.).

Some methods exploit the primal-dual formulation of LP instead of typical dynamic programming
to learn(Lee et al., 2021; Zhan et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al., 2022). These
approaches learn optimal density ratio and then extract the optimal policy through the learned
density ratio. This concept gains theoretical and empirical success in the off-policy evaluation (OPE)
(Nachum et al., 2019a;b; Zhang et al., 2020; Nachum & Dai, 2020), and attains theoretical progress
in offline RL field recently (Zhan et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al., 2022).
Although these methods have shown theoretical success, they present practical difficulties. For
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example, (Zhan et al., 2022; Rashidinejad et al., 2022) involve multi-level nested optimization known
to cause numerical instability and local convergence problems, while (Ozdaglar et al., 2022) rely on
impractical extra constraints. While (Lee et al., 2021) attempts to make this formulation practical,
it results in a biased objective function and lacks theoretical guarantees. Our proposed OSD-DICE
builds on this by integrating two crucial designs into the single minimization objective introduced in
(Lee et al., 2021), resulting in a practical algorithm with polynomial sample complexity.

There is a type of research that still exists which utilizes a reweighing strategy to reduce weights
for out-of-distribution (OOD) data (Wu et al., 2021) or focus more on high return state-action pairs.
In the latter category, one direct approach is to select the trajectory with the highest return in the
dataset for subsequent learning (Emmons et al., 2021), or to imitate the action with the highest value
function (Chen et al., 2020). The more common practice is to adopt exponentiated advantage or return
estimates as importance weights, with different methods of advantage estimation(Wang et al., 2018;
Liu et al., 2020a; Hong et al.; Yue et al., 2023; Xu et al., 2023). While simple and intuitive, most of
these methods do not have a theoretical guarantee of obtaining the near-optimal supported policy.
The most pertinent study to our research is Hong et al. (2023) conducted during the same period.
This study also suggests utilizing optimal density ratios as weights.However, it is worth mentioning
that Hong et al. (2023) primarily focuses on the scenario where γ = 1. Consequently, they propose
a unique algorithm to estimate the optimal density ratio, but no evidence is provided to support its
optimality. Our method targets the more common case of γ < 1 and theoretically guarantees learning
the near-optimal density ratio. Additionally, when combined with typical offline RL algorithms, it
can achieve near-optimal supported policies, which is not possessed by the aforementioned works.

3 BACKGROUND

Markov decision process. An infinite-horizon discounted MDP is described by a tuple M =
(S,A, P,R, ρ, γ), where S is the state space, A is the action space, P : S × A → ∆(S) is
the transition kernel, R : S × A → ∆([0, 1]) encodes a family of reward distributions with r :
S × A → [0, 1] as the expected reward function, ρ : S → ∆(S) is the initial state distribution and
γ ∈ [0, 1) is the discount factor. We assume S and A are both finite sets. A stationary(stochastic)
policy π : S → ∆(A) specifies a distribution over actions in each state. Each policy π induces a
discounted stationary distribution over state-action pairs dπ : S ×A → [0, 1] defined as dπ(s, a) :=
(1 − γ)

∑∞
t=0 γ

tPt(st = s, at = a;π), where Pt(st = s, at = a;π) denotes (s, a) visitation
probability at step t, starting at s0 ∼ ρ(·) and following π. We abuse notation and also write
dπ(s) =

∑
a∈A dπ(s, a) to denote the discounted state stationary distribution.

An important quantity is the value of a policy π, which is the discounted sum of rewards V π(s) :=
E [
∑∞
t=0 γ

trt|s0 = s, at ∼ π(·|st),∀t ≥ 0] starting at s ∈ S. Q function Qπ(s, a) of a policy is
similarly defined. We write J(π) := (1− γ)Es∼ρ [V π(s)] = Es,a∼dπ [r(s, a)] to represent a scalar
summary of the performance of a policy π. We also denote by π∗ an optimal policy that maximizes
the above objective.

Offline reinforcement learning. We focus on the offline RL, where the agent is only provided with a
previously-collected offline dataset D = {(si, ai, ri, s′i)}Ni=1. Here, ri ∼ R(si, ai), s

′
i ∼ P (·|si, ai),

and we assume (si, ai) pairs are independently and identically distributed(i.i.d.) according to a data
distribution µ ∈ ∆(S ×A). We also denote the conditional probability µ(a|s) by πβ(a|s) and call
πβ(a|s) the behavior policy. However, µ is not assumed to be induced by πβ for generality. We also
use µ(s) to represent the marginal distribution of state, i.e. µ(s) =

∑
a∈A µ(s, a). We also assume

access to a dataset D0 = {si}N0
i=1 with i.i.d. samples from the initial distribution ρ, similar to prior

works (Zhan et al., 2022). The goal of offline RL is to learn a policy π̂ based on the offline dataset so
as to minimize the sub-optimality with respect to an optimal policy π∗, i.e. J(π∗)− J(π̂) with high
probability.

Marginalized importance sampling. In this paper, we consider primal-dual formulation of LP
that aims at learning weights w(s, a) to represent discounted stationary distribution when multiplied
by data distribution: dw(s, a) = w(s, a)µ(s, a). Also denote dw(s) =

∑
a∈A dw(s, a). We define

the policy induced by w as πw(a|s) = dw(s, a)/dw(s) for dw(s) > 0 and πw(a|s) = 1/|A| for
dw(s) = 0. Typically, dw is not necessarily equal to dπw for any w, but it holds true for the true
density ratio of any π.
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4 METHOD

This section is divided into three parts. Section 4.1 introduces the primal-dual formulation of offline
RL, along with the challenges associated with solving it. We will learn the optimal supported dataset
based on this formulation. Section 4.2 presents OSD-DICE algorithm, which generates a near-optimal
supported distribution with polynomial sample complexity under general function approximation and
single-policy concentrability assumptions. In Section 4.3, we describe how to combine the learned
near-optimal distribution and the resulting dataset with representative behavior regularization-based
offline RL algorithms, and show how this leads to safe policy improvement beyond the optimal
supported policy. The proofs for all of the theoretical results are included in Appendix A.

4.1 PRIMAL-DUAL FORMULATION OF LP FOR OFFLINE RL

We start with the following regularized dual formulation of LP for policy optimization (Lee et al.,
2021)

max
d≥0

Es,a∼d [r(s, a)]− αE(s,a)∼µ

[
f

(
d(s, a)

µ(s, a)

)]
s.t. d(s) = (1− γ)ρ(s) + γ

∑
s′,a′

P (s|s′, a′)d(s′, a′) ∀s ∈ S. (1)

where E(s,a)∼µ

[
f
(
d(s,a)
µ(s,a)

)]
= Df (d∥µ) is the f -divergence between the learning d and the dataset

distribution µ, with f being some strictly convex and continuously differentiable function, and α
is a hyper-parameter used to control the degree of closeness between the two distributions. Once
the optimal stationary distribution is obtained, one can recover the optimal policy from the optimal
stationary distribution easily. The constrained problem (1) can be converted into an unconstrained
problem by using Lagrangian multiplier ν ∈ RS and replacing d with the density ratio w (Lee et al.,
2021; Zhan et al., 2022).

min
ν

max
w≥0

Lα(w, ν) = (1− γ)Es∼ρ[ν(s)] + E(s,a)∼µ[w(s, a)eν(s, a)]− αE(s,a)∼µ[f(w(s, a))], (2)

where eν(s, a) := r(s, a) + γ
∑
s′ P (s′|s, a)ν(s′)− ν(s) and we refer to it as the advantage. We

denote the optimum of (2)as (ν∗α, w
∗
α). When α = 0, ν∗0 is exactly the optimal state-value function

V π∗
, and d∗0 := w∗

0 · µ is the discounted stationary distribution of the optimal policy.

We can show that for any w, the associated stationary distribution dπw of πw (defined in Section 3) is
supported by the data distribution µ, with the proof given in Appendix A.1.
Proposition 1 (in-support property). For any bounded w, dπw(s, a) = 0, for all the (s, a) pairs
satisfying µ(s, a) = 0.

Our goal is to learn the optimal w∗
α, which satisfies dw∗

α
= dπw∗

α exactly as w∗
α is the true density

ratio induced by the natural policy πw∗ , and thus enables us to apply importance weights w∗
α to

reweigh the distribution µ. This is the primary reason for adopting this formulation since it facilitates
the natural generation of an in-support near-optimal stationary distribution. Once we reweigh D by
w∗
α, we can obtain a sampled dataset from dw∗

α
, which is referred to as the optimal supported dataset,

denoted by Dosd. In the following text, for the sake of simplicity, we will use d∗α to represent dw∗
α

.

To avoid the numerical instability and poor convergence issue (Goodfellow et al., 2020) caused
by directly optimizing the minimax optimization (2), Lee et al. (2021) proposes to substitute the
closed-form solution of the inner optimization w∗

ν(s, a) into (2), with

w∗
ν(s, a) = max

(
0,
(
f ′)−1

(
eν(s, a)

α

))
, (3)

where (f ′)−1 is the inverse function of the derivative f ′ of f , so that the overall problem is reduced
into a single optimization problem:

min
ν

Lα (w∗
ν , ν) = (1− γ)Es∼ρ(s)[ν(s)] + E(s,a)∼µ

[
−αf

(
max

(
0,
(
f ′)−1

(
1

α
eν(s, a)

)))]
+ E(s,a)∼µ

[
max

(
0,
(
f ′)−1

(
1

α
eν(s, a)

))
(eν(s, a))

]
(4)
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Lee et al. (2021) optimizes the empirical version of Lα (w∗
ν , ν), denoted as L̂α (w∗

ν , ν), and utilizes
a single-transition estimation ẽν = r(s, a) + γν(s′) − ν(s) to approximate eν . However, due to
the non-linearity and double-sample problem present in the objective, this gives rise to a biased
estimate of Lα (w∗

ν , ν) for stochastic MDPs, as discussed in Lee et al. (2021). As a result, whether
the minimum of L̂α (w∗

ν , ν) is the true optimum of Lα (w∗
ν , ν) remains unknown. In the following

section, we will present a practical algorithm that tackles the aforementioned issues and helps obtain
a near-optimal ŵα for Lα (w∗

ν , ν),

4.2 OSD-DICE METHOD

Instead of solving (4) directly, we propose to solve

min
ν∈V

Lα(ν) := Lα (w
∗
ν , ν) + E(s,a)∼µ1w∗

ν(s,a)>0[eν(s, a)
2], (5)

where an additional squared regularization term is introduced, and 1A denotes a indicator function
satisfying 1A = 1 if A is true else 0. The regularization term, as proven in Lemma 4, does not
alter the optimal solution of (4). However, it does introduce certain properties resembling strong
convexity and plays a crucial role in guaranteeing that the solution obtained from optimizing Lα(ν)
is an approximate global optimum. Conversely, if we were to eliminate the regularization term, the
resulting optimization objective Lα(w

∗
ν , ν) would lack strong convexity, thus he behavior of the

objective function near the optimal value may be too flat, making it difficult to bound the difference
between the learned solution and the optimal solution, potentially leading to an undesired solution.

We optimize the empirical version of Lα(ν):

min
ν∈V

L̂α (ν) := L̂α (w∗
ν , ν) +

1

N

N∑
j=1

[êν(sj , aj)]
2 · 1ŵα(sj ,aj)>0, (6)

and L̂α (w
∗
ν , ν) is the empirical version of Lα (w∗

ν , ν) with

L̂α (w∗
ν , ν) = (1− γ)

1

N0

N0∑
j=1

[ν(s0,j)] +
1

N

N∑
j=1

[
−αf

(
max

(
0,
(
f ′)−1

(
1

α
êν(sj , aj)

)))]

+
1

N

N∑
j=1

[
max

(
0,
(
f ′)−1

(
1

α
êν(sj , aj)

))
êν(sj , aj)

]
. (7)

Here, ŵα(s, a) = max
(
0, (f ′)

−1
(
êν(s,a)
α

))
and we let êν(s, a) := r(s, a) +

γ
∑
s′ P̂ (s′|s, a)ν(s′) − ν(s), with P̂ being the maximum likelihood estimate of the transition

model learned from a function class P using an additional dataset Dm. This treatment effectively
mitigates the issue of bias mentioned earlier by ensuring that the empirical objective and the expected
objective can be closely controlled, particularly when the sample size N is sufficiently large. More-
over, the error associated with this treatment is solely determined on of |P| and N . The overall
algorithm process of OSD-DICE is put in Algorithm 1.

Algorithm 1 OSD-DICE

Inputs: A function f , datasets D, D0, Dm, functions classes V , P .
Estimate transitions via maximum likelihood: P̂ = argmaxP∈P

∑Nm

i=1 logP (s′i | si, ai)
Find a solution ν̂α to (6)
Compute ŵα = max

(
0, (f ′)

−1
(
êν̂α
α

))
Return: ŵα, ν̂α.

4.2.1 THEORETICAL RESULTS FOR OSD-DICE

We will provide the sample complexity of OSD-DICE under the following assumptions. All involved
constants are parameterized by α following the same treatment of (Zhan et al., 2022).
Assumption 1. (Realizability of V , P) Suppose ν∗α ∈ V , P ∗ ∈ P , where V and P are function
classes.
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Assumption 2. (Boundedness of V) Suppose ν(s) ≤ Bν,α, for any s ∈ S, ν ∈ V .
Assumption 3. (Properties of f ) Suppose f satisfies the following properties:
(i): f is strongly convex.
(ii): (f ′)−1(x) is Bf ′,α-continuous for |x| ∈ [0, Be,α/α], where Be,α := (1 + γ)Bν,α + 1. Denote
the bound of |(f ′)−1(x)| as Bw,α in this domain.
(iii): 0 < f(x) ≤ Bf,α on 0 ≤ x ≤ Bw,α.

Remark 1. Since the input of (f ′)−1(x) is êν/α in L̂α(ν), we specify the domain of (f ′)−1(x) in
(ii) through bounding êν . Then the domain of f(x) in L̂α(ν) is [0, Bw,α], as shown in (iii). It is also
straightforward to verify that the commonly used χ2-divergence with f(x) = 1

2 (x − 1)2 satisfies
Assumption 3.

Assumption 4. (π∗
α-concentrability ) d

∗
α(s,a)
µ(s,a) ≤ Bw,α,∀s ∈ S, a ∈ A.

Remark 2. It is much weaker than all-policy concentrability (Munos & Szepesvári, 2008;
Chen & Jiang, 2019). Here we reuse Bw,α from (ii) of Assumption 3, since d∗α/µ = w∗

α =

max
(
0, (f ′)

−1
(
eν∗

α
(s,a)

α

))
≤ Bw,α as assumed in (ii).

Assumption 5. (Continuity for L̂α(ν)) Given some δ ∈ (0, 1), for any ν ∈ V , µ(s, a)eν(s, a) /∈
B(αf ′(0), ϵm), where ϵm = 2

√
log 3|P|/δ

Nm
and B(x, r) is a ball with x as the center and r as the

radius.
Remark 3. Assumption 5 is a technical assumption to ensure the continuity of L̂α(ν) for all ν ∈ V .
We remark that ν∗α satisfies the conditions in Assumption 5 given that eν∗

α
(s, a) ̸= αf ′(0), ∀(s, a) ∈

{(s, a) : w∗
α(s, a) = 0} and Nm is large enough. At this time, a neighborhood of ν∗also belongs to

V . Besides, the constraints on V gradually decrease as Nm increases.

With above assumptions and notation, we present sample complexity of OSD-DICE.
Theorem 4 (Sample Complexity of OSD-DICE). Fix some α > 0. Suppose Assumptions 1-5 hold
for the said α. Then with at least probability 1− δ, the output of Algorithm 1 satisfies

∥dŵα
− d∗α∥1 ≤ ∥ŵα − w∗

α∥2,µ ≤ EN,N0,Nm,α, (8)
where EN,N0,Nm,α is a polynomial about N,N0, Nm, α and its specific form is defined in (54) in
Appendix A.
Remark 5. Theorem 4 shows that Algorithm 1 can obtain a near-optimal distribution for regularized
problem (2) with polynomial sample complexity. For a simple choice of f(x) = (x−1)2

2 , assume that

Bν,α ≥ 1, α ≤ 1 and N0 = Nm = N , then EN,N0,Nm,α = Õ

(
B3/2

ν,α

α3/2 N
−1/4

)
, which leads to the

sample complexity Õ
(
B6

ν,α

α6ϵ4

)
.

Furthermore, OSD-DICE is capable of efficiently learning a near-optimal distribution even for the
unregularized problem (i.e. α = 0 ) by carefully controlling the magnitude of α. The sample
complexity of OSD-DICE for the unregularized setting is well-characterized by the following
theorem:
Theorem 6 (Sample complexity of competing with d∗0). For any ϵ > 0. Suppose that r :=
min r(s, a) > 0, and there exists d∗0 that satisfies Assumption 4 with α = 0. Besides, assume that As-

sumption 1-5 hold for α = αϵ :=
ϵ

2r·Bf,0
and f(x) = (x−1)2

2 . Then if N = Nm = N0 = Õ
(
B6

ν,αϵ

ϵ6

)
,

the output of Algorithm 1 with input α = αϵ satisfies

∥d∗0 − d̂αϵ
∥1 ≤ ϵ, (9)

with at least probability 1− δ.

4.3 BEHAVIOR REGULARIZATION-BASED OFFLINE RL WITH OPTIMAL SUPPORTED DATASET

With the help of the resulting high-quality distribution dŵα
obtained in Section 4.2, conventional

offline RL methods based on behavior regularization can be further enhanced. In this section, we
instantiate this idea with two representative algorithms and show safe policy improvement over the
optimal π∗

α. In fact, safe policy improvement over π∗
0 can also be established in a a similar manner,

provided that α is small enough, we omit it for the sake of simplicity.
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4.3.1 BEHAVIOR CLONING WITH OPTIMAL SUPPORTED DATASET

One straightforward behavior regularization method is Behavior Cloning(BC). We can perform BC
on dŵα

, which also serves as the policy extraction phase as follows.

πŵα(a|s) =

ŵα(s, a)µ(s, a)/
∑
ā

ŵα(s, ā)µ(s, ā), for
∑
ā

ŵα(s, ā)µ(s, ā) > 0,

1/|A|, else
(10)

In practice, given the policy space Π ⊆ (S → ∆(A)), we optimize the log-likelihood on Dosd to
obtain π̂osd-BC

α by

π̂osd-BC
α = argmax

π̃∈Π

N∑
i=1

ŵα(si, ai) log π̃(ai|si), (osd-BC)

Theorem 7 (Sample complexity of osd-BC). Fix α > 0. Suppose Assumption 1-5 hold for the said α.
Besides, we further assume that for all ν ∈ V and their induced approximate optimal ŵν , πŵν

∈ Π.

Let E ′
N =

√
log |Π||V|/δ

N . Then with at least probability 1− 2δ,

J (π∗
α)− J(π̂osd-BC

α ) ≤ 1

1− γ
Es∼d∗α

[∥∥∥π∗
α(· | s)− π̂osd-BC

α (· | s)
∥∥∥
1

]
≤ 3

1− γ
EN,N0,Nm,α +

2

(1− γ)2
E ′
N .

(11)

Remark 8. Similar to Remark 5, the sample complexity of osd-BC under quadratic f is

Õ
(

B6
ν,α

α6(1−γ)4ϵ4

)
. Besides, under the same conditions in Theorem 6, the sample complexity of

competing with π∗
0 is Õ

(
B6

ν,αϵ

(1−γ)4ϵ6

)
.

4.3.2 BEHAVIOR REGULARIZATION WITH OPTIMAL SUPPORTED DATASET

While BC-based methods are capable of finding the near-optimal policy supported by µ, they may
overlook policies with higher performance that are not yet covered by µ. In fact, a class of generalized
behavior regularization-based methods as proposed in (Kumar et al., 2020; Cheng et al.), can optimize
policies across a much wider space and potentially discover superior policies, if the Bellman error
is small on µ and generalizes well beyond the support of µ. Hence, we propose to adopt one
representative formulation of this class: minimax offline RL with relative pessimism (Cheng et al.)
on dŵα

and give rise to osd-MiniMax formulation.

Concretely, we still search for good policies from a policy class Π but additionally assume access
to a value function class F ⊆ (S ×A → [0, 1/(1− γ)]) to model the Q-functions of policies. osd-
MiniMax solves the following bi-level optimization problem. Intuitively, π̂osd-minimax

α attempts to
maximize the value predicted by fπ , and fπ performs a relatively pessimistic policy evaluation of a
candidate π with respect to the near-optimal supported policy πŵα

.

π̂ osd-MiniMax
α = argmax

π∈Π
Edŵα

[fπ(s, π)− fπ(s, a)] (12)

s.t. fπ = argmin
f∈F

Edŵα
[f(s, π)− f(s, a)] + βEdŵα

[((f − T πf)(s, a))2], (13)

where β is a hyperparameter, and f(s, π) =
∑
a π(a|s)f(s, a). The following theorem shows that

π̂ osd-MiniMax
α is a safe policy improvement over the optimal policy π∗

α.
Theorem 9 (Safe improvement over π∗

α for osd-MiniMax). Suppose that Assumptions 1-5 hold, and
for all π ∈ Π, Qπ ∈ F , and πŵα

∈ Π, then with at least probability 1−δ, we have J(π̂ osd-MiniMax
α ) ≥

J(π∗
α)− 2

1−γ EN,N0,Nm,α.

In practice, osd-MiniMax can be achieved by implementing CQL (Kumar et al., 2020) on Dosd,
named osd-CQL. The conservative value evaluation in osd-CQL can be modeled by (13) with 1/β the
conservative coefficient, and the policy improvement in osd-CQL can be modeled by (12). Although
osd-CQL maximizes fπ(s, π) instead of fπ(s, π)− fπ(s, a) for policy improvement, the two are
essentially equivalent as the minus term in equation (12) is irrelevant to π.
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Theorem 10 (Safe improvement over π∗
α for osd-CQL, informal). Suppose that Assumptions 1-5

hold. Let π̂osd-CQL be the policy obtained by osd-CQL. Then with at least 1− 2δ , π̂osd-CQL satisfies

J(π̂osd-CQL) ≥ J(π∗
α)−

2

1− γ
EN,N0,Nm,α − sampling error + αcql · positive term (14)

where αcql is the conservative coefficient.

5 EXPERIMENTAL EVALUATION

5.1 RANDOM MDPS (TABULAR MDPS)

We begin by evaluating OSD-DICE on randomly generated MDPs. We employ randomly gen-
erated MDPs with a state space size |S| = 60, an action space size |A| = 8, a discount fac-
tor of γ = 0.95. We then formulate a data-collection policy aligned with a predefined de-
gree of optimality, ζ ∈ {0.8, 0.9}. Following this, we collect N trajectories (where N ∈
{200, 300, 400, 500, 600, 700, 800}) from the generated MDP and the associated data-collection
policy πµ. Subsequently, the accumulated trajectories are given to offline RL algorithm. The can-
didate transition model class P is set to contain the true transition model P ∗. We then evaluate the
algorithm’s performance, both in terms of the mean performance and the Conditional Value at Risk
(CVaR) at the 5% threshold, which considers the worst 5% runs. Experimental details are put in
Appendix B.

Figure 1: Comparison between OSD-DICE, OptiDICE and OptiDICE with squared regularization in
random MDPs

We compared OSD-DICE with OptiDICE (Lee et al., 2021) and "OptiDICE+SquareReg" in Figure
1 to examine the individual contributions of the approximated advantage estimator and squared
regularization. The comparison between the yellow and green curves demonstrates that using squared
regularization alone outperforms OptiDICE in terms of both mean performance and CVaR, especially
in scenarios with higher levels of behavior optimality. This indicates a significantly positive impact of
squared regularization. Furthermore, comparing the green and blue curves reveals that incorporating
the approximated advantage estimator further enhances the mean performance and CVaR. This
confirms the distinct benefits of using an approximated advantage estimator.

5.2 D4RL BENCHMARK

We evaluate OSD-DICE on continuous MDPs using the D4RL offline RL benchmarks (Fu et al.,
2020), Maze2D (3 datasets), Gym-MuJoCo (12 datasets) and Antmaze (4 datasets) are selected
from the D4RL dataset. Please note that in this setting, we have chosen to use the single-transition
estimator to approximate eν . This decision is based on the fact that the MDPs involved in these tasks
are approximately deterministic, and it is discussed in Lee et al. (2021) that the bias issue is not a
concern in this situation. Therefore, we can rely on the single-transition estimator to provide reliable
results in this situation. Implementation details, experimental configurations and hyperparameter
selection can be found in Appendix C.

Comparison against OptiDICE. We compare OSD-BC with OptiDICE in Appendix E Table 3.
We also compare OSD-CQL with OptiDICE-CQL, where density ratio weights are obtained from
OptiDICE, in Appendix D Figure 2 (b) (β = 0.). The results indicate that in Maze2d domain,
OSD-BC performs similarly to OptiDICE. In Locomotion domain, OSD-BC significantly outper-
forms OptiDICE. When combined with CQL, OSD-CQL outperforms OptiDICE-CQL in Maze2d,
Locomotion, and Antmaze domain. This confirms the role of the regularization term.
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Comparison against other Reweighing Methods. On the D4RL benchmarks, we implement
OSD method on top of BC and two representative behavior regularization-based algorithms
TD3BC(Fujimoto & Gu, 2021) and CQL (Kumar et al., 2020). We compare OSD against dif-
ferent reweighing strategies in Table 1, including uniform strategy, which is the original algorithm,
“top%10” method, which picks the top10% of trajectories based on cumulative reward to learn,
AW(Hong et al.) and RW (Hong et al.), which leverage exponential advantage and exponential return
to reweigh. We also compare osd-BC with some other weighted-BC approaches, see Table 3 in
Appendix E, and compare osd-CQL with some other state-of-the-art reweighing approaches, see
Table 4 in Appendix F.

Table 1: Averaged normalized scores on MuJoCo locomotion, Maze2d and Antmaze tasks over three seeds.
Note that unif=uniform, M=Maze2d, Ho=Hopper, Ha=Halfcheetah, W=Walker2d, A=Antmaze.

BC TD3BC CQL
unif 10% AW RW OSD(ours) unif 10% AW RW OSD(ours) unif 10% AW RW OSD(ours)

M-u 5.5 -13.2 6.8 5.2 123.3±23 31.4 -2.8 62.0 66.6 70.±24 -14.5 12.5 20.7 13.5 148.4±33.
M-m 11.4 16.5 14.9 12.7 81.0±9.4 26.3 51.0 43.2 47.8 105.8±34 27.8 5.5 -2.9 32.0 102.5±13.0
M-l -0.4 6.1 10.3 8.9 154.0±21.4 130.1 71.2 68.7 52.7 164.2±42 -1.8 14.2 9.9 1.7 132.2±13.3

M-total 16.6 9.4 32.1 26.8 358.3 189.2 119.4 173.9 189.2 340.9 11.5 32.2 27.7 47.2 383.1
Ho-r 3.9 4.3 4.6 4.6 31.5±0.3 8.4 7.8 4.5 4.1 13.2 9.2 10.1 7.2 2.3 32.6±0.4
Ho-m 54.0 56.3 57.1 56.5 59.7±3.1 59.7 65.2 62.7 61.2 69.2±4.3 59.1 64.2 68.5 63.9 88.6±1.9

Ho-m-r 27.9 70.4 69.2 71.4 35.8±3.9 64.1 91.2 93.2 90.0 93.2±13.1 95.6 93.2 93.6 93.7 100.8±1.0
Ho-m-e 51.2 110.0 110.7 109.3 95.3±8.0 95.4 107.7 111.0 110.5 110.9±2.9 104.5 105.5 110.4 110.0 109.0±4.7

Ha-r 2.3 1.8 2.2 2.0 5.1±1.3 12.2 10.3 11.2 13.1 16.7±0.1 21.3 2.4 9.5 7.8 27.5±0.1
Ha-m 42.2 42.2 42.0 42.3 42.5±0.4 48.3 45.3 48.6 48.3 51.2±0.5 48.5 45.2 48.2 49.0 59.5±0.45

Ha-m-r 35.8 26.1 39.6 39.2 39.5±2.4 44.6 42.2 45.0 45.5 45.9±0.7 47.0 42.5 44.6 45.3 51.5±0.2
Ha-m-e 56.3 92.1 92.0 91.5 85.8±3.8 88.8 73.4 97.7 97.6 89.2±4.8 93.0 78.2 87.5 80.0 93.7±4.1

W-r 1.4 1.3 1.3 1.1 5.8±2.8 1.1 2.3 1.0 1.6 2.2±0.1 5.1 9.3 4.7 0.2 5.6±1.2
W-m 65.7 70.2 70.1 64.9 73.0±4.3 84.3 78.2 82.2 81.5 82.0±2.8 82.2 76.7 82.3 75.4 83.3±1.0

W-m-r 16.7 54.5 55.3 47.5 56.2±5.8 80.1 71.8 77.8 69.9 89.5±2.9 71.3 75.0 78.1 62.0 86.3±8.2
W-m-e 96.5 108.4 107.1 107 107.4±2.1 109.9 108.9 110.1 110.2 110.5±0.1 108.9 108.9 109.3 108.6 110.5±0.1
L-total 454.4 633.9 657.3 665.5 637.6 696.9 699.5 745.0 732.6 773.8 745.7 711.2 743.9 698.2 848.9

A-u 53.5 60.0 54.1 61.0 85.0±14.5 17.3 53.6 43.0 46.6 66.7±15.0 76.0 69.3 77.0 72.0 91.0±7
A-u-d 45.0 43.5 44.0 50.0 65.0±6.5 64.6 29.0 67.3 63.3 70.7±8.3 48.0 24.7 36.0 43.0 55.7±5.5
A-m-d 0.0 36.0 22. 28.0 10.0±2.5 3.6 3.3 0.0 3.6 0.3±0.5 0.0 0.0 6.0 23.0 42.0±6.9
A-m-p 0.0 43.3 22. 22. 12.0±{5.5} 0.0 2.0 0.3 0.0 1.0±0 2.4 0.0 10.7 26.0 39.0±8.5
A-total 98.5 182.8 142.0 161.0 172.0 85.5 87.9 110.6 110.9 138.7 126.4 94.0 129.7 164.0 227.7

We can draw the following conclusions from Table 1. Firstly, OSD-embedded algorithms outperform
their corresponding original algorithms in all three classes of tasks. This indicates that OSD effectively
distinguishes the importance level of samples, and the usage of a near-optimal supported dataset
significantly boosts the performance of the original algorithms. Next, when OSD is combined with
BC, OSD-BC performs significantly better than other reweighing baselines on Maze2d task and
performs comparably to these baselines on Locomotion and Antmaze tasks. When combined with
TD3BC and CQL, OSD algorithm outperforms other reweighing methods in all three classes of tasks.
In particular, the advantage is more pronounced when combined with CQL, which is consistent with
the theoretical results. Lastly, while top10% strategy is a competitive method when combined with
BC, its effectiveness does not improve when combined with behavior regularization-based methods.
In fact, it even shows a significant decline in performance on some tasks. This suggests that although
it can improve data quality, continuing with policy optimization becomes difficult due to the reduction
in the total amount of data.

6 CONCLUSION AND FUTURE WORK

We propose to perform behavior regularization-based offline RL on an optimal supported dataset
rather than the original dataset. This approach encourages the learned policy to stay within the support
of the dataset while minimizing the potential bias towards the optimization objective. To obtain
the optimal supported dataset, we introduce OSD-DICE, which has a proven polynomial sample
complexity under general function approximation and single-policy concentrability. We also show
safe policy improvement over the near-optimal supported policy when using representative behavior
regularization-based offline RL methods. Our empirical results demonstrate the effectiveness of
OSD-DICE on tabular tasks and the performance enhancement it induces on D4RL benchmarks. In
our future work, we aim to extend the application of our proposed framework to a broader range of
offline RL methods and more complex tasks, while further refining the sample complexity.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

To proceed, we divide the state-action space Z := S × A into Zin := {(s, a)|µ(s, a) > 0} and
Zout := {(s, a), µ(s, a) = 0}.

Lemma 1. If (s, a) ∈ Zout, then ρ(s)πw(a|s) = 0 for any w ∈ W .

Proof. We argue that for any (s, a) ∈ Zout, either (i) µ(s) = 0 or (ii) µ(s) ̸= 0 and πβ(a|s) = 0,
where πβ is the behavior policy defined in Section 3. For case (ii), one has πw(a|s) = 0 due to the
construction of πw, then ρ(s)πw(a|s) = 0 holds true straightforwardly. For case (i), we can prove
that ρ(s) = 0 and then ρ(s)πw(a|s) = 0 holds true naturally. We derive ρ(s) = 0 by contradiction:
if it was wrong, one would had d⋆(s) ≥ (1− γ)ρ(s) > 0, then there existed some a ∈ A such that
d∗(s, a) > 0, which induced d∗(s,a)

µ(s,a) = ∞, and this contradicts with Assumption 4.

Proof of Proposition 1. Since µ satisfies

µ(s, a) =
∑
s′,a′

πβ(a|s)P (s|s′, a′)︸ ︷︷ ︸
Pπβ ((s′,a′)→(s,a))

µ(s′, a′),∀(s, a) ∈ Z, (15)

then for (s, a) ∈ Zout, one has

Pπβ ((s′, a′) → (s, a)) = 0,∀(s′, a′) ∈ Zin. (16)

This implies that πβ(a|s) = 0 when P (s|s′, a′) > 0. By the construction of πw, we can derive that
πw(a|s) = 0 when P (s|s′, a′) > 0, which implies that

Pπw((s′, a′) → (s, a)) = 0, ∀(s, a) ∈ Zout,∀(s′, a′) ∈ Zin. (17)

Combining the conclusion that ρ(s)πw(a|s) = 0,∀(s, a) ∈ Zout from Lemma 1, it can be deduced
that πw can visit Zout neither by starting from the initial distribution ρ(s) nor by starting from Zin,
then dπw(s, a) = 0,∀(s, a) ∈ Zout.

A.2 PROOFS OF THEOREM 4

Before proceeding, we first present some lemmas to bound the difference between the true transition
model and the learned transition model.

Lemma 2. (Convergence of MLE for learning transitions (Geer, 2000)) Given a realizable model
class P that contains the true model P ∗ and a dataset D = {(si, ai, s′i)} with (si, ai) ∼ µ, s′i ∼
P ∗(·|si, ai), let P̂ be

P̂ = argmax
P∈P

N∑
i=1

logP (s′i|si, ai). (18)

Fix the failure probability δ > 0. Then, with probability at least 1 − δ, we have the following
concentration on the squared Hellinger distance between P̂ and P ∗:

Es,a∼µ

[∑
s′

(√
P̂ (s′ | s, a)−

√
P (s′ | s, a)

)2
]
≲

log(|P|/δ)
N

(19)

Lemma 3. With probability at least 1− δ
3 ,

Eµ
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)| ≤ 2

√
log 3|P|/δ

Nm
, (20)
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Proof. Notice that

Eµ
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)| =
∑
s,a,s′

µ(s, a)|P̂ (s′|s, a)− P (s′|s, a)|

=
∑
s,a,s′

(√
µ(s, a)(

√
P̂ (s′|s, a) +

√
P (s′|s, a))

)
·
(√

µ(s, a)

∣∣∣∣√P̂ (s′|s, a)−
√
P (s′|s, a)

∣∣∣∣)

≤

∑
s,a,s′

µ(s, a)(

√
P̂ (s′|s, a) +

√
P (s′|s, a))2

1/2

·

∑
s,a,s′

µ(s, a)(

√
P̂ (s′|s, a)−

√
P (s′|s, a))2

1/2

(21)

≤ 2

√
log 3|P|/δ

Nm
, (with probability at least 1− δ

3
) (22)

where (21 holds due to Holder inequality, and (22) holds due to Lemma 2.

Recall some definitions presented in the main text.

eν(s, a) := r(s, a) + γ
∑
s′

P (s′|s, a)ν(s′)− ν(s) (expected advantage of ν)

êν(s, a) := r(s, a) + γ
∑
s′

P̂ (s′|s, a)ν(s′)− ν(s) (empirical advantage of ν)

w∗
ν(s, a) := max

(
0, (f ′)

−1
(
1

α
eν(s, a)

))
(optimal w of ν)

ŵν(s, a) := max

(
0, (f ′)

−1
(
1

α
êν(s, a)

))
(empirical optimal w of ν),

We next give a lemma to show an important property for the optimal ν∗α of (2):
Lemma 4. The optimal ν∗α, w∗

α of (2) satisfies

Eµ1w∗
α(s,a)>0[eν∗

α
(s, a)]2 = 0.

Proof. Since ν∗α is the optimal solution to the regularized primal-dual program (2), it is equal
to the value function (Zhan et al., 2022). Then eν∗

α
is the optimal advantage function and

Eµ(s,a)[w∗
α(s, a)eν∗

α
] = 0 since it captures the optimal advantage of optimal policy. Therefore,

eν∗
α
= 0 on all (s, a) satisfying w∗

α(s, a) > 0. So we obtain Lemma 4 straightforwardly.

By Lemma 4 we can deduce the following lemma directly:
Lemma 5. The optimal solution to (2) is also the optimal solution to L (w∗

ν , ν).

Next we introduce a new function h(x) by

h(x) := −f
(
max

(
0, (f ′)

−1
(x)
))

+max
(
0, (f ′)

−1
(x)
)
· x.

Define

L (w∗
ν , ν) = (1− γ)Es∼ρ(s)[ν(s)] + E(s,a)∼µ

[
αh

(
1

α
eν(s, a)

)]
+ Eµ1w∗

ν(s,a)>0[eν(s, a)]
2. (expected objective)

L̂D (ŵν , ν) = (1− γ)
1

N0

N0∑
j=1

[ν(s0,j)] +
1

N

N∑
j=1

[
αh

(
1

α
êν(s, a)

)]

+
1

N

N∑
j=1

1ŵν(s,a)>0[êν(sj , aj)]
2, (empirical objective)

14



Under review as a conference paper at ICLR 2024

then L̂D (ŵν , ν) is actually the objective (6) of Algorithm 1.

Throughout the sequel, we will denote the optimal solution to L (w∗
ν , ν) as ν∗ and the optimal solution

to L̂D (ŵν , ν) as ν̂ for simpilicity, our goal is to bound w∗
ν∗ and ŵν̂ .

We further define two intermediate objectives as

L (ŵν , ν) = (1− γ)Es∼ρ(s)[ν(s)] + E(s,a)∼µ

[
αh

(
1

α
êν(s, a)

)]
+ Eµ1ŵν(s,a)>0[êν(s, a)]

2, (expected objective with empirical êν)

L̂D (w∗
ν , ν) := (1− γ)

1

N0

N0∑
j=1

[ν(s0,j)] +
1

N

N∑
j=1

[
αh

(
1

α
eν(sj , aj)

)]

+
1

N

N∑
j=1

1w∗
ν(sj ,aj)>0[eν(sj , aj)]

2. (empirical objective with expected eν)

Lemma 6. Let

ϵN,N0,Nm
:= 2α(Bf,α+

Bw,αBe,α
α

+B2
e,α)

√
2 log 6|V|/δ

N
+ 2Bν,α

√
2 log 6V|/δ

N0

+ 4(Bw,α + 2Be,α)Bν,α

√
log 3|P|/δ

Nm
, (23)

where Be,α = 1 + (1 + γ)Bν,α. Then

L (w∗
ν̂ , ν̂)− L (w∗

ν∗ , ν∗) ≤ ϵN,N0,Nm
.

Proof. Decompose the objective difference according to

L (w∗
ν̂ , ν̂)− L (w∗

ν∗ , ν∗) ≤ L (w∗
ν̂ , ν̂)− L (ŵν̂ , ν̂)︸ ︷︷ ︸

T1

+L (ŵν̂ , ν̂)− L̂D (ŵν̂ , ν̂)︸ ︷︷ ︸
T2

+ L̂D (ŵν̂ , ν̂)− L̂D (ŵν∗ , ν∗)︸ ︷︷ ︸
T3

+ L̂D (ŵν∗ , ν∗)− L (ŵν∗ , ν∗)︸ ︷︷ ︸
T4

+ L (ŵν∗ , ν∗)− L (w∗
ν∗ , ν∗)︸ ︷︷ ︸

T5

. (24)

It is straightforward that T3 ≤ 0 since ν̂ is the minimum of L̂D (ŵν , ν).

• Upper bounded of T2, T4

for any ν ∈ V , let hνi = h
(
1
α êν(si, ai)

)
+ 1ŵ(si,ai)>0êν(si, ai)

2. From Assumption 2 we have

|êν(s, a)| ≤ 1 + (1 + γ)Bν,α = Be,α, (25)

then by (ii) and (iii) in Assumption 3 we have

|hνi | ≤ Bf,α +
Bw,αBe,α

α
+B2

e,α. (26)

Notice that hνi is independent for different i, thus using Hoeffding’s inequality and and for any t > 0,

Pr

[
| 1

N

N∑
i=1

hνi − E[hνi ] |≤ t

]
≥ 1− 2 exp

 −Nt2

2
(
Bf,α +

Bw,αBe,α

α +B2
e,α

)2
 .

(27)
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Let t =
(
Bf,α +

Bw,αBe,α

α +B2
e,α

)√
2 log

6|V|
δ

N , we have with at least probability 1− δ
3|V| ,

| 1

N

N∑
i=1

hνi − E[hνi ] |≤
(
Bf,α +

Bw,αBe,α
α

+B2
e,α

)√
2 log 6

δ

N
. (28)

Therefore by union bound, with at least probability 1− δ
3 , we have for all ν ∈ V ,

| 1
N

N∑
i=1

hνi − E[hνi ]| ≤ (Bf,α +
Bw,αBe,α

α
+B2

e,α)

√
2 log 6|V|/δ

N
. (29)

Similarly, we have with at least probability 1− δ
3 , for all ν ∈ V ,

| 1

N0

N0∑
j=1

ν(s0,j)− Eρ[ν(s)]| ≤ Bν,α

√
2 log 6|V|/δ

N0
. (30)

Therefore, with at least probability 1− 2
3δ we have

T2, T4 ≤ α(Bf,α +
Bw,αBe,α

α
+B2

e,α)

√
2 log 6|V|/δ

N
+Bν,α

√
2 log 6V|/δ

N0
. (31)

• Upper bounded of T1, T5

For all ν ∈ V , we can express the difference of L (w∗
ν , ν) and L (ŵν , ν) by

|L (w∗
ν , ν)− L (ŵν , ν) | = αEµ

[
h

(
1

α
eν(s, a)

)
− h

(
1

α
êν(s, a)

)]
+ Eµ

[
1w∗

ν(s,a)>0eν(s, a)
2 − 1ŵν(s,a)>0êν(s, a)

2
]
. (32)

We bound the error of the squared terms first. By Lemma 3, one has

|µ(s, a)[eν(s, a)− êν(s, a)]| = µ(s, a)
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)| ≤ ϵm, (33)

then we can deduce that êν(s, a) < αf ′(0) given that eν(s, a) < αf ′(0) − ϵm/µ(s, a), and
êν(s, a) > αf ′(0) given that eν(s, a) > αf ′(0) + ϵm/µ(s, a), due to the assumption that
eν(s, a) /∈ (αf ′(0)− ϵm/µ(s, a), αf ′(0) + ϵm/µ(s, a)) for all ν ∈ V . So

Eµ
[
1w∗

ν(s,a)>0eν(s, a)
2 − 1ŵν(s,a)>0êν(s, a)

2
]

= Eµ
[
1eν(s,a)>αf ′(0)eν(s, a)

2 − 1êν(s,a)>αf ′(0)êν(s, a)
2
]

= Eµ1eν(s,a)>αf ′(0)

[
eν(s, a)

2 − êν(s, a)
2
]
≤ Eµ [(eν(s, a) + êν(s, a)) (eν(s, a)− êν(s, a))]

≤ 2Be,αEµ|eν(s, a)− êν(s, a)| ≤ 2Be,αBν,αEµ
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)|. (34)

To bound the rest error in (32), from (Lee et al., 2021) we have

h′(x) = − f ′
(
(f ′)

−1
(x)
)

︸ ︷︷ ︸
(identity function)

(
(f ′)

−1
)′

(x) +
(
(f ′)

−1
)′

(x) · x+ (f ′)
−1

(x)

= −x ·
(
(f ′)

−1
)′

(x) +
(
(f ′)

−1
)′

(x) · x+ (f ′)
−1

(x)

= (f ′)
−1

(x).

Since (f ′)
−1

(x) is upper bounded by Bw,α by (ii) of Assumption 3, h′(x) is upper bounded by Bw,α
too, which implies that h(x) is Lipschitz continuous with a Lipschitz constant Bw,α, thus

αEµ
[
h

(
1

α
eν(s, a)

)
− h

(
1

α
êν(s, a)

)]
≤ Bw,αEµ|eν(s, a)− êν(s, a)|

≤ Bw,αEµ
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)|ν(s′) ≤ Bw,αBν,αEµ
∑
s′

|P̂ (s′|s, a)− P (s′|s, a)| (35)
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Combining (34),(35) and Lemma 3 yields that with probability at least 1− δ
3 ,

|L (w∗
ν , ν)− L (ŵν , ν) | ≤ 2(Bw,α + 2Be,α)Bν,α

√
log 3|P|/δ

Nm
(36)

By (24), (31) and (36) together we obtain Lemma 6.

Lemma 7. The solution ν̂ to L̂D(ŵν , ν) and the optimal ν∗ satisfy

∥w∗
ν̂ − w∗

ν∗∥2,µ ≤ Bf ′,α

α

√
1− γ

√
ϵN,N0,Nm

. (37)

Proof. By the definition of L(w∗
ν , ν),

L(w∗
ν , ν) = (1− γ)Es∼ρ(s)[ν(s)] + E(s,a)∼µ

[
αh

(
1

α
eν(s, a)

)
+ 1eν(s,a)>αf ′(0)eν(s, a)]

2

]
.

(38)

Now we denote Z1 = {(s, a) : eν∗(s, a) > αf ′(0)}, Z2 = {(s, a) : eν∗(s, a) ≤ αf ′(0)}.,
S1 = {s :

∑
a w

∗
ν∗(s, a) > 0} and S2 = {s :

∑
a w

∗
ν∗(s, a) = 0}.

For the learned ν̂, there exist three cases:
Case (i):

eν̂(s, a)

{
> αf ′(0),∀(s, a) ∈ Z1,

≤ αf ′(0),∀(s, a) ∈ Z2

(39)

At this time,

L(w∗
ν̂ , ν̂) = = (1− γ)

∑
s∈S1

ρ(s)ν̂(s) +
∑

(s,a)∈Z1

µ(s, a)

(
αh(

1

α
eν̂(s, a)) + e2ν̂(s, a)

)

+ (1− γ)
∑
s∈S2

ρ(s)ν̂(s) +
∑

(s,a)∈Z2

µ(s, a)

(
αh(

1

α
eν̂(s, a))

)
:= LZ1

(w∗
ν̂ , ν̂) + LZ2

(w∗
ν̂ , ν̂). (40)

Since ρ(s) = 0 on S2, then LZ2(w
∗
ν̂ , ν̂) = −αf(0)

∑
(s,a)∈Z2

µ(s, a) = LZ2(w
∗
ν∗ , ν∗). Therefore,

we have

L(w∗
ν̂ , ν̂)− L(w∗

ν∗ , ν∗) = LZ1
(w∗

ν̂ , ν̂)− LZ1
(w∗

ν∗ , ν∗) ≤ ϵN,N0,Nm
. (41)

Combining the fact that h′′(x) ≥ 0 for all x from Proposition 2 in (Lee et al., 2021) and the 2-
strongly-convexity of x2, we know that L(w∗

ν , ν) is 2(1− γ)-strongly-convex with respect to ν and
∥ · ∥2,µ on Z1, yielding√ ∑

(s,a)∈Z1

(ν̂(s, a)− ν∗(s, a))2 ≤

√
LZ1(w

∗
ν̂ , ν̂)− LZ2(w

∗
ν∗ , ν∗)

(1− γ)
≤
√

ϵN,N0,Nm

(1− γ)
. (42)

Then on Z1, we have

∥w∗
ν̂ − w∗

ν∗∥2,µ ≤ Bf ′,α

α

√
Eµ[eν̂(s, a)− eν∗(s, a)]2

=
Bf ′,α

α
∥eν̂(s, a)− eν∗(s, a)∥2,µ ≤ Bf ′,α

α
(1− γ)∥ν̂(s, a)− ν∗(s, a)∥2,µ

≤ Bf ′,α

α

√
1− γ

√
ϵN,N0,Nm

. (43)

Combining the fact that w∗
ν̂(s, a) = w∗

ν∗(s, a) = 0 on Z2, Lemma 7 holds true for all (s, a).

Case (ii): there exists some (s̄, ā) ∈ Z1 such that eν̂(s̄, ā) ≤ αf ′(0). By the optimality of
L(w∗

ν∗ , ν∗) and L(w∗
ν∗ , ν∗) − Eµ1eν∗>αf ′(0)e

2
ν∗ , the density ratio drop from w∗

ν∗(s̄, ā) to 0 must

17
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be compensated by some other (s̃, ã), such that w∗
ν̂(s̃, ã) > 0 and its positive contribution to

L(w∗
ν∗ , ν∗)− Eµ1eν∗>αf ′(0)e

2
ν∗ satisfies

(1− γ)ρ(s̃))[ν̂(s̃)] + αµ(s̃, ã)h

(
1

α
eν̂(s̃, ã)

)
− (1− γ)ρ(s̃))[ν∗(s̃)]− αµ(s̃, ã)h

(
1

α
eν∗(s̃, ã)

)
≥ O(∆),

(44)

where we use O(∆) to represent some constant independent of ϵN,N0,Nm . This implies that the
change from ν∗(s̃) to ν̂(s̃) will be larger than some constant O(∆)by Assumption 3. Then by the
optimality of L(w∗

ν∗ , ν∗),

L(w
∗
ν̂ , ν̂)− L(w

∗
ν∗ , ν∗) ≥ e2ν̂(s̃, ã) ≥ O(∆), (45)

this is contradictory to Lemma 6 So it is impossible for case (ii) to occur.

Case (iii): there exists some (s̄, ā) ∈ Z2 such that eν̂(s̄, ā) > αf ′(0). Then by the optimality of
L(w∗

ν∗ , ν∗),

L(w∗
ν̂ , ν̂) ≥ L(w∗

ν∗ , ν∗) + e2ν̂(s̄, ā). (46)

Combining Lemma 6 we have

e2ν̂(s̄, ā) ≤ ϵN,N0,Nm
, (47)

then for small enough ϵN,N0,Nm
,

eν̂(s̄, ā)− αf ′(0) > |αf ′(0)/2| := O(∆) (48)

Then by Assumption (ii) of 3, we have

w∗
eν̂
(s̄, ā) ≥ O(∆). (49)

The growth from w∗
ν∗(s̄, ā) = 0 to w∗

ν̂(s̄, ā) necessarily accompanies the decrease from w∗
ν∗(s̃, ã) to

w∗
ν̂(s̃, ã) for some (s̃, ã) ∈ Z1, then from (ii) in Assumption 3, the change from eν∗(s̃, ã) to eν̂(s̃, ã)

should be larger than some constant O(∆). At this time,

L(w∗
ν̂ , ν̂)− L(w∗

ν∗ , ν∗) ≥ e2ν̂(s̃, ã) ≥ O(∆), (50)

which is contradictory to Lemma 6 again. So case (iii) is also impossible to occur.

Considering the overall cases, it can be concluded that Lemma 7 is valid.

Lemma 8.

∥ŵν̂ − w∗
ν∗∥2,µ ≤ Bf ′,α

α
(
√

2Be,α +
√

1− γ)
√
ϵN,N0,Nm . (51)

Proof. We decompose the objective by

∥ŵν̂ − w∗
ν∗∥2,µ = ∥ŵν̂ − w∗

ν̂∥2,µ + ∥w∗
ν̂ − w∗

ν∗∥2,µ. (52)

It is easy to prove that max
(
0, (f ′)−1(x)

)
is also Bf ′,α-continuous through (ii) of Assumption 3,

then

∥ŵν̂ − w∗
ν̂∥2,µ ≤ Bf ′,α

α

√
Eµ[êν̂(s, a)− eν̂(s, a)]2

≤
√
2Be,α

Bf ′,α

α

√
Eµ|êν̂(s, a)− eν̂(s, a)| ≤

√
2Be,α

Bf ′,α

α

(
4 log 3|P|/δ

N

)1/4

≤
√
2Be,α

Bf ′,α

α
ϵN,N0,Nm

, (53)

where penultimate line holds due to (35) and (21).

Combine (53) and Lemma 7 together yields Lemma 8.
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Proof of Theorem 4. Notice that ŵν̂ = ŵα and w∗
ν∗ = w∗

α, then by Lemma 6 and Lemma 8, we can
obtain the second inequality of Theorem 4, where

EN,N0,Nm,α =
Bf ′,α

α
(
√
2Be,α +

√
1− γ)

√
ϵN,N0,Nm

. (54)

The first inequality holds since

∥d̂ŵα
− d∗α∥1 = ∥ŵα − w∗

α∥1,µ ≤ ∥ŵα − w∗
α∥2,µ. (55)

Then we finish the proof.

A.3 PROOF OF THEOREM 6

Proof of Theorem 6. Similar to the proof in Corollary 1 in (Zhan et al., 2022), we divide the proof
into two steps. We first show that d∗0 − d∗αϵ

≤ ϵ
2 and we then bound d∗αϵ

− d̂ŵαϵ
by utilizing Theorem

4.

•: Bounding d∗0 − d∗αϵ
. Notice that d∗αϵ

is the stationary distribution of π∗
αϵ

and π∗
αϵ

is the solution
to the regularized problem, then

E(s,a)∼d∗αϵ
[r(s, a)]− αE(s,a)∼µ

[
f
(
w∗
αϵ
(s, a)

)]
≥ E(s,a)∼d∗0 [r(s, a)]− αE(s,a)∼µ [f (w∗

0(s, a))] ,

which implies

J (π∗
0)− J

(
π∗
αϵ

)
= E(s,a)∼d∗0 [r(s, a)]− E(s,a)∼d∗αϵ

[r(s, a)]

≤ αE(s,a)∼µ [f (w∗
0(s, a))]− αE(s,a)∼µ

[
f
(
w∗
αϵ
(s, a)

)]
≤ αE(s,a)∼µ [f (w∗

0(s, a))]

≤ αBf,0. (56)

Combining the assumption that r > 0 and the choice of αϵ, we have

∥d∗0 − d∗αϵ
∥ ≤ ϵ

2
. (57)

•: Bounding d∗αϵ
− d̂ŵαϵ

. Using Theorem 4, we know that if N,N0, Nm satisfies the following
conditions,

N ≥ C1

(
B2
f,0B

4
f ′,αr

2

ϵ2
(2Be,α + 1− γ)2(

B2
ν

ϵ2
+

2Bf,0Bw,αBe,αr

ϵ
+B2

e,α)
2

)
log

6|V|
δ

,

Nm ≥ C2

(
B2
f,0B

4
f ′,αr

2

ϵ2
(2Be,α + 1− γ)2(2Bw,αBν,α + 4Be,αBν,α)

2

)
· log 3|P|

δ

N0 ≥ C3

(
B2
f,0B

4
f ′,αr

2

ϵ2
(2Be,α + 1− γ)2B2

ν,α

)
log

6|V|
δ

, (58)

then with at least probability 1− δ,

∥d∗αϵ
− d̂αϵ

∥ ≤ ϵ

2
. (59)

Using (59) and (57), we concludes that

∥d∗0 − d̂αϵ
∥1 ≤ ϵ (60)

holds with at least probability 1− δ. This finishes our proof.

A.4 PROOF OF THEOREM 7

Two lemmas are first introduced as follows:
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Lemma 9 (Theorem 1 in (Zhan et al., 2022)). Suppose that Assumption 1 -4 hold, πŵα
is the policy

induced by the output of Algorithm 1, then

J(π∗
α)− J(πŵα

) ≤ 1

1− γ
Ed∗α [∥π

∗
α(·|s)− πŵα

(·|s)∥1] ≤
2

1− γ
∥ŵα − w∗

α∥2,µ. (61)

Lemma 10. (Convergence of MLE for behavior cloning (Rajaraman et al., 2020)) For all w, Given
a realizable policy class Πw that contains the true policy πw and the dataset Dw = {(si, ai)} with
si ∈ dw(s), ai ∈ πw(ai|si), let π̂w be

π̂w = arg max
π̃w∈Πw

N∑
i=1

w(si, ai) log π̃w(ai|si), (62)

then with probability at least 1− δ,

Edw(s)∥π̂w − πw∥1 ≤
√

log |Πw||W |/δ
N

(63)

Proof of Theorem 7. By performance difference inequality we have

J(π∗
α)− J(π̂osd-bc

α ) ≤ 1

1− γ
Ed∗α [∥π

∗
α − π̂osd-bc

α ∥1]

≤ 1

1− γ
Ed∗α [∥π

∗
α − πŵα

∥1] + +
1

1− γ
Ed∗α [∥πŵα

− π̂osd-bc
α ∥1]. (64)

The first term can be bounded by 2
1−γ ∥ŵα − w∗

α∥2,µ by Lemma 9. The second term satisfies

1

1− γ
Ed∗α [∥πŵα

− π̂osd-bc
ŵα

∥1] ≤
1

1− γ
Edŵα

[∥πŵα
− π̂osd-bc

ŵα
∥1] +

1

1− γ
E|d∗α−dŵα |[∥πŵα

− π̂osd-bc
ŵα

∥1]

≤ 2

(1− γ)2

√
ln |Πw||W |/δ

N
+

1

1− γ
∥|d∗α − dŵα

|∥1 (65)

≤ 2

(1− γ)2

√
ln |Πw||W |/δ

N
+

1

1− γ

√
EN,N0,Nm,α, (66)

=
2

(1− γ)2

√
ln |Πν ||V|/δ

N
+

1

1− γ
EN,N0,Nm,α

=
1

1− γ

(
EN,N0,Nm,α +

2

1− γ
E ′
N

)
where (65) comes from Lemma 10 and Theorem 4, respectively.

Putting (64) -(66) together finishes our proof.

A.5 PROOF OF THEOREM 9

Recall the following minimax offline RL formulation with relative pessimism proposed in (Cheng
et al.),

π̂∗ ∈ argmax
π∈Π

Lµ (π, fπ) (67)

s.t. fπ ∈ argmin
f∈F

Lµ(π, f) + βEµ(π, f) (68)

where β ≥ 0 is a hyperparamter, and
Lµ(π, f) := Eµ[f(s, π)− f(s, a)] (69)

Eµ(π, f) := Eµ
[
((f − T πf) (s, a))

2
]
. (70)

It is proved that
Lemma 11 (Proposition 3 in (Cheng et al.)). If Qπ ∈ F , and µ(a|s) ∈ Π, then for any β ≥ 0,
J(π̂∗) ≥ J(µ).

Proof of Theorem 9. By replacing µ in this formulation with dŵα
, Theorem 9 can be easily obtained

by combining Lemma 11, Lemma 9 and Theorem 4 together.

20



Under review as a conference paper at ICLR 2024

A.6 PROOF OF THEOREM 10

The formal version of Theorem 10 is as follows:

Theorem 11. Suppose that Assumptions 1-4 hold. Let π̂osd-CQL be the policy obtained by osd-CQL.
Then with at least 1− 2δ, π̂osd-CQL satisfies

J(π̂osd-CQL) ≥ J(π∗
α)−

2

1− γ
EN,N0,Nm,α − ζ, (71)

with high probability 1− 2δ, where ζ is given by

ζ = 2

(
Cr,δ
1− γ

+
γCT,δ

(1− γ)2

)
E
s∼dπ̂osd-CQL

M̂

[√
|A|√
|N |

√
DCQL (π̂osd-CQL, πŵα

) (s) + 1

]

− αcql
1

1− γ
E
s∼dπ̂osd-CQL

M̂

[DCQL

(
π̂osd-CQL, πŵα

)
(s)]. (72)

Cr,δ and CT,δ are constants defined in (Kumar et al., 2020), M̂ is the empirical dynamic kernel,
DCQL(·, ·) is the CQL distance between two policies.

The first term and the second term of ζ are called “sampling error” and “positive term” in Theorem
10.

Proof. Since we conduct CQL on Dosd, this means that the behavior policy is πŵα
. Then by Theorem

3.6 in (Kumar et al., 2020), it is straightforward to derive that with probability at least 1− δ,

J(π̂osd-CQL) ≥ J(πŵα
)− ζ. (73)

Then combining (73) with Lemma 9, we finish our proof.

B EXPERIMENTAL CONFIGURATION FOR FINITE MDPS

OSD-DICE for Finite MDPs For finite MDPs, we can reformulate the expected objective of
OSD-DICE into vector-matrix form:

min
ν

max
w≥0

Lα(w, ν) = (1−γ)ρ⊤ν−α

2
(w−1)⊤D(w−1)+w⊤Deν+β(1w>0eν)

⊤D(1w>0eν) (74)

where ν ∈ R|S| is a |S|-dimensional vector, w ∈ R|S||A| is a |S||A|-dimensional vector, and
R ∈ R|S||A| is a |S||A|-dimensional reward vector, and D = diag (dπµ) ∈ R|S||A|×|S||A| is the
diagonal matrix induced by µ, β is used to control the degree of the squared term and is set as 0.01.
Moreover, we choose the X 2-divergence by f(x) = 1

2 (x− 1)2 for brevity. Let T ∈ R|S||A|×|S| and
B ∈ R|S||A|×|S| be the matrices satisfying the following equations:

T ν ∈ R|S||A| s.t. (T ν)((s, a)) =
∑
s′

P (s′ | s, a) ν (s′)

Bν ∈ R|S||A| s.t. (Bν)((s, a)) = ν(s)
(75)

So eν = R+ γT ν − Bν. Then, by substituting the closed-form solution of the inner maximization
w∗
ν = max

(
0, 1

αeν + 1
)

into Lα(w, ν) and considering (f ′)
−1

(x) = x+ 1, we can get:

min
ν

L (w∗
ν , ν) = L(ν) := (1−γ)ρ⊤ν−α

2
(w∗

ν − 1)D (w∗
ν − 1)+w∗⊤

ν Deν+β(1w∗
ν>0eν)

⊤D(1w∗
ν>0eν)

(76)
In OSD-DICE, we use some approximator P̃ in the function class P to approximate P and obtain
ẽν . We then perform Newton’s method to solve the optimization problem with the gradients and
the Hessian of the objective with respect to ν. We can derive the gradient and the Hessian with the
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following steps, and then perform the iteration process to compute an optimal ν∗:

m = I
(
1

α
ẽν + 1 ≥ 0

)
w∗
ν =

(
1

α
ẽν + 1

)
⊙m

J =
∂w∗

ν

∂ν
=

1

α
(γT − B)⊙m

g =
∂L(ν)

∂ν
= (1− γ)ρ− αJ⊤D (w∗

ν − 1) + J⊤Dẽν + (γT − B)⊤Dw∗
ν + 2β(γT − B)⊤Dẽν1w̃ν>0

H =
∂2L(ν)

∂ν2
= −αJ⊤DJ + J⊤D(γT − B) + (γT − B)⊤DJ + 2β(γT − B)⊤D(γT − B)1w̃ν>0

(77)

Note that P̃ is designed to be selected from a realizable function class P := {P : P = θ0P
∗+θ1P1+

θ2P2 + θ3P3} with P1, P2, P3 being some fixed stochastic matrix and θ := (θ0, θ2, θ3, θ4) being
learned. Then P̃ can be much more accurate than the empirical P̂ induced by the single-transition
estimation used in OptiDICE (Lee et al., 2021).

MDP generation In alignment with the experimental settings in (Lee et al., 2021), we
employ randomly generated MDPs with a state space size |S| = 60, an action space size
|A| = 8, a discount factor of γ = 0.95, and a deterministic initial state distribution, i.e.,
ρ(s) = 1 for a fixed s = s0. The transition model has a connectivity of 8, meaning that for
every state-action pair (s, a), non-zero transition probabilities are allocated to 8 distinct states
(s′1, · · · , s′8). The transition probabilities are generated randomly using a Dirichlet distribution
[p (s′1 | s, a) , p (s′2 | s, a) , p (s′3 | s, a) , p (s′4 | s, a) , p (s′5 | s, a) , p (s′6 | s, a) , p (s′7 | s, a) , p (s′8 | s, a)] ∼
Dir(1, 1, 1, 1, 1, 1, 1, 1). A reward of 1 is assigned to the state that minimizes the optimal state value
at the initial state; other states are associated with zero rewards. This reward function design can
be perceived as a method of specifying a target state that poses the greatest challenge in terms of
accessibility from the initial state. The episode terminates once the agent successfully reaches the
rewarding goal state.

Task Descriptions We perform an extensive empirical evaluation of the tabular OSD-DICE’s efficacy
and stability. This evaluation leverages a series of MDPs which are generated randomly and accompa-
nied by varying numbers of trajectories and varying degrees of optimality of the data-collection opti-
mality. The experiment is conducted in accordance with the protocols in (Lee et al., 2021). Our exper-
imental setup involves 10,000 independent runs. In each run, we first randomly generate an MDP and
then formulate a data-collection policy aligned with a predefined degree of optimality, ζ ∈ {0.8, 0.9}.
Following this, we collect N trajectories (where N ∈ {200, 300, 400, 500, 600, 700, 800}) from
the generated MDP and the associated data-collection policy πµ. Subsequently, the constructed
data-collection policy and the accumulated trajectories are given to offline RL algorithm. We then
evaluate the algorithm’s performance, both in terms of the mean performance and the Conditional
Value at Risk (CVaR) at the 5% threshold, which considers the worst 5% runs.

C EXPERIMENTAL CONFIGURATION FOR D4RL TASKS AND
HYPERPARAMETER CONFIGURATION

Task Descriptions We use Maze2D, Gym-MuJoCo and Antmaze environments of D4RL benchmark
(Fu et al., 2020) to evaluate our method in continuous control tasks. We summarize the descriptions
of tasks in D4RL paper (Fu et al., 2020) as follows:

Maze2D is a navigation task in 2D state space, while the agent tries to reach a fixed goal location. By
using priorly gathered trajectories, the goal of the agent is to find out a shortest path to reach the goal
location. The complexity of the maze increases with the order of “maze2d-umaze”, “maze2d-medium”
and “maze2d-large”.

Gym-MuJoCo locomotion domains involves three agents: halfcheetah, hopper, and walker2d. For
each agent, four datasets are provided which correspond to behavior policies with different qualities:
random, medium, medium-replay and medium-expert.
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AntMaze domains consist of sparse-reward tasks and require “stitching” fragments of suboptimal
trajectories traveling undirectedly to find a path from the start to the goal of the maze.

For Gym-MuJoCo locomotion domains, we use v2 datasets, and for the rest domains, we use v0
datasets.

Implementation Details for OSD-DICE In practice, we made two adaptation modifications for
D4RL tasks compared to the theoretical algorithms: (i) we still adopt the single-transition estimator
to approximate eν , as the state and action spaces are continuous and the MDPs are approximately
deterministic on these tasks, so the single-transition estimator is simple and reliable in this situation.
(ii) we follow (Lee et al., 2021) to additionally add a normalization constraint

∑
s,a w(s, a)µ(s, a) = 1

which does not not affect the correctness of the all the conclusions. Than (6) becomes

min
ν∈V

L̂α (ν) = (1− γ)
1

N0

N0∑
j=1

[ν(s0,j)] + λ+
1

N

N∑
j=1

[
−αf

(
max

(
0, (f ′)

−1
(
1

α
êν,λ(sj , aj)

)))]

+
1

N

N∑
j=1

[
max

(
0, (f ′)

−1
(
1

α
êν,λ(sj , aj)

))
êν,λ(sj , aj)

]

+ β
1

N

N∑
j=1

1ŵν,λ(sj ,aj)>0[êν,λ(sj , aj)]
2, (78)

where λ is the Lagrange multiplier and êν,λ = êν − λ. We use νθ network to represent ν and adopts
fully-connected MLPs with two hidden layers and ReLU activations, where the number of hidden
units on each layer is 256. For the optimization of ν, we use stochastic gradient descent with Adam
optimizer and its learning rate is 0.0003. The batch size is set to be 512. Following (Lee et al.,
2021), we choose the soft version of X 2-divergence by f(x) = x log x − x + 1 if 0 < x < 1 or
1
2 (x − 1)2 else. When combined with BC, we follow (Lee et al., 2021) to preprocess the dataset
D by interpreting terminal states as absorbing states and using the absorbing-state implementation
proposed in (Lee et al., 2021), and also standardize observations and rewards. When combined with
CQL and TD3BC, we do not apply absorbing state and keep the dataset preprocessing method the
same with CQL and TD3BC, respectively. The selection for α is listed in Table 2 and β = 0.001.
After training ν and λ for 500,000 steps, we fix the parameters and continue with the subsequent
policy optimization. In the policy optimization phase, we set boundaries for the learned weights
based on the histograms, resulting an interval of [0.1, 10] for all tasks.

Implementation Details for osd-BC Our implementation of osd-BC builds upon the official code
of (Lee et al., 2021). We use tanh-squashed normal distribution πψ to represent the learning policy in
osd-BC and πψ adopts fully-connected MLPs with two hidden layers and ReLU activations, where the
number of hidden units on each layer is equal to 256. We regularize the entropy of πψ with learnable
entropy regularization coefficients, where the target entropy are set to be the same as those in SAC. For
the optimization of πψ , we use stochastic gradient descent with Adam optimizer and its learning rate
is 0.0003. The batch size is set to be 512. Before training neural networks, we preprocess the dataset
D by interpreting terminal states as absorbing states and using the absorbing-state implementation
proposed in (Lee et al., 2021). We also standardize observations and rewards. πψ is updated for
1000, 000 steps. For each task, we search the coefficient α within {0.0001, 0.001, 0.01, 0.1, 1} which
is described in Table 2:

Implementation Details for osd-CQL and osd-TD3BC We develop osd-CQL and osd-TD3BC
based on codebase (Sun, 2023), and we keep the hyperparameters and implementation of CQL and
TD3BC consistent with the codebase. For learning both the critic and actor, fully-connected MLPs
with 3 hidden layers and ReLU activations are used, where the number of hidden units on each
layer is 256. For CQL, the learning rates for critic and actor are 0.0003 and 0.0001 respectively,
the conservative coefficient is 5, the actions samples number is 10, and the batch size is 256. For
TD3BC, the learning rates for critic and actor are both 0.0003, and its conservative coefficient is
2.5, the exploration noise is 0.1, the policy noise is 0.2. We also implement osd-CQL based on
https://github.com/young-geng/CQL and find it performs better on Antmaze domain,
so we report the results of osd-CQL on Antmaze through this implementation. The selection for α is
listed in Table 2, and β = 0.001. We update the critic and actor for 1000, 000 steps,
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Table 2: Hyperaparameters for α

Task osd-BC osd-TD3BC osd-CQL
maze2d-umaze 0.001 0.001 0.001
maze2d-medium 0.001 0.001 0.001
maze2d-large 0.001 0.001 0.001
hopper-random 0.001 1.0 1.0
hopper-medium 1.0 1.0 1.0
hopper-medium-replay 1.0 1.0 1.0
hopper-medium-expert 0.01 1.0 1.0
halfcheetah-random 0.001 1.0 1.0
halfcheetah-medium 1.0 1.0 1.0
halfcheetah-medium-replay 1.0 1.0 1.0
halfcheetah-medium-expert 0.01 1.0 1.0
walker2d-random 1.0 1.0 1.0
walker2d-medium 1.0 1.0 1.0
walker2d-medium-replay 1.0 1.0 1.0
walker2d-medium-expert 0.01 1.0 1.0
antmaze-umaze 1.0 1.0 1.0
antmaze-umaze-diverse 1.0 1.0 1.0
antmaze-medium-diverse 1.0 1.0 1.0
antmaze-medium-play 0.01 1.0 1.0

Evaluation Protocol and Baselines We report the average undiscounted normalized return after
the policy is trained for one million training steps, with 10 evaluation episodes per method. The
BC-related baselines are developed using the official implementation of (Hong et al.). For CQL-
based and TD3BC-based baselines, we re-implement top10%, AW and RW strategies on the same
codebase (Sun, 2023) to achieve fair comparison. In particular, we adopt the same implementation of
(Hong et al.) to implement top10%, AW and RW strategies on top of https://github.com/
young-geng/CQL for Antmaze domain, to make a fair comparison for this domain. We also
conduct hyperparameter selection for these baselines.

D ABLATION STUDY FOR α AND β

(a) ablation for α (b) ablation for β

Figure 2: Ablation Study for α and β

We conduct ablation studies for OSD-CQL to further assess the sensitivity of α and β in Figure 2.
Each bar in the histogram represents the average score of in the corresponding domain. It can be
seen that OSD-CQL maintains good scores under different α on Maze2d and Antmaze, indicating
that OSD-CQL is robust to α for these domains. It is worth mentioning that even though there exist
better choices for α on Antmaze, we still set α = 1.0 for the sake of hyperparameter consistency. By
keeping α setting constant, we vary β and find that OSD-CQL is not very sensitive to changes in β.
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Table 3: Comparison between OSD-BC and other Weighted BC methods

Method Type Weighted BC
D4RL Task OptiDICE PRO-RL AWR osd-BC
maze2d-u 123.7 8.0 1.0 123.3 ± 23
maze2d-m 123.8 16.3 7.6 81.0 ± 9.4
maze2d-l 113.3 0.1 23.7 154.0 ± 21.4

maze2d-total 360.8 24.4 32.3 358.3
hopper-r 31.3 5.1 10.2 31.5 ± 0.3
hopper-m 58.3 38.1 35.9 59.7 ± 3.1

hopper-m-r 27.7 32.3 28.4 35.8 ± 3.9
hopper-m-e 66.4 55.4 27.1 95.3 ± 8.0

halfcheetah-r 8.2 2.5 2.5 5.1 ± 1.3
halfcheetah-m 42.3 2.5 37.4 42.5 ± 0.4

halfcheetah-m-r 38.9 2.3 40.3 39.5 ± 2.4
halfcheetah-m-e 73.0 2.2 52.7 85.8 ± 3.8

walker2d-r 8.6 -0.2 1.5 5.8 ± 2.8
walker2d-m 53.1 1.2 17.4 73.0 ± 4.3

walker2d-m-r 54.6 -0.2 15.5 56.2 ± 5.8
walker2d-m-e 88.7 0.3 53.8 107.4 ± 2.3

locomotion total 551.1 141.5 322.7 637.6

It is worth noting that when β = 0, OSD-CQL performs worse than when β > 0 in all three domains,
which also confirms the role of the regularization term.

E COMPARISON BETWEEN OSD-BC AND OTHER WEIGHTED BC BASELINES

We also compare osd-BC against some other weighted BC methods and demonstrate the superiority
of our approach. Among the baselines, OptiDICE (Lee et al., 2021) and PRO-RL (Zhan et al.,
2022) use the same primal-dual formulation as our method and extract the final policy by density
ratio-weighted BC. AWR (Peng et al., 2019) are also weighted BC methods, but use exponential
advantage as the importance weights. Upon analyzing Table 3, we observe that osd-BC demonstrates
comparable performance to OptiDICE for Maze2d domain, while outperforming other method by a
significant margin in the locomotion domain. We attribute this improvement to two factors. Firstly,
osd-BC approaches the problem through a simple minimization process, thereby avoiding numerical
instability and local convergence issues that may arise with nested optimization methods such as
PRO-RL. Secondly, osd-BC learns the near-optimal density ratio with a guarantee of theoretical
soundness, which is an advantage not shared by AWR.

F COMPARISON BETWEEN OSD-CQL AND OTHER BASELINES

We also evaluate our osd-CQL method against other state-of-the-art (SOTA) methods and several
recent reweighing baselines. These baselines consist of EDAC (An et al., 2021), which implements
pessimism by considering uncertainty; UWAC (Wu et al., 2021), which reweighs state-action pairs
according to uncertainty; IVR Xu et al. (2023), which is an in-sample approach, serves the dual
purpose of reweighing data; OPER (Yue et al., 2023), similar to Hong et al., which reweighs data
based on both advantage and return; and DM (Hong et al., 2023), which is most relevant to our
method, reweighing data using a learned optimal density ratio. The comparison is demonstrated as
Table 4, showing that OSD-CQL outperforms other baselines on most datasets. Besides, we also
compare OSD-CQL with the reweighing baselines on some mixed datasets in Table 5, the results
show that OSD-CQL performs comparable or even better than other baselines on these datasets.
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Table 4: Comparison between OSD-CQL and other reweighing methods and SOTA methods

OPER-A EDAC IVR-SQL IVR-EQL DM UWAC OSD-CQL
maze2d-u 42.4±5.94 25.46±9.93 62.43±3.27 61.82±20.51 172.6±59.62 6.1±3.0 148.4±33.0
maze2d-m 19.85±1.91 23.22±13.65 37.07±2.15 4.84±9.36 48.77±12.09 21.2±2.5 102.5±13.0
maze2d-l 6.25±10.54 10.78±18.79 56.83±0.82 62.64±6.06 23.93±36.74 6.8±5.6 132.2±13.3
hopper-r 11.75±0.21 7.7±0.3 0.81±0.04 4.52±1.09 10.45±3.32 2.6±0.1 32.6±0.4
hopper-m 67.4±0.71 101.3±0.8 60.34±5.09 62.75±1.62 75.65±11.1 49.7±7.4 88.6±1.9

hopper-m-r 99.2±2.55 101.5±0.6 82.97±11.68 64.77±18.70 59.64±8.77 30.8±13.1 100.8±1.0
hopper-m-e 106.45±0.64 88.1±32.3 106.75±8.56 86.30±4.04 57±47.6 50.9±7.8 109.0±4.7

halfcheetah-r 24.85±1.48 28.4±0.3 14.60±0.54 15.93±1.11 7.97±1.42 2.3±0.005 27.5±0.1
halfcheetah-m 49.5±0.28 64.2±2.1 47.81±0.23 49.02±0.04 48.21±0.41 42.0±0.47 59.5±0.45
halfcheetah-m 46.25±0.07 63.3±1.7 44.71±0.24 44.80±1.10 45.41±0.98 36.4±4.4 51.5±0.2

halfcheetah-m-e 92±0.57 72.2±32.6 92.22±2.78 82.27±6.52 48.62±11.9 42.95±0.3 93.1±4.7
walker2d-r 2.55±1.20 0.0±0.0 0.09±0.12 0.78±0.19 2.99±3.08 2.8±0.2 5.6±1.2
walker2d-m 83.75±1.20 89.8±0.4 83.20±1.27 54.07±6.01 69.98±4.03 78.3±2.8 83.3±1.0

walker2d-m-r 80.05±11.95 81.7±0.1 70.86±8.63 24.81±10.78 75.41±9.02 25.5±7.1 86.3±8.2
walker2d-m-e 110.05±0.07 113.9±0.4 110.92±0.40 108.46±3.74 100.3±8.28 107.16±2.8 110.5±0.1

Table 5: Comparison between OSD-CQL and other reweighing methods on mixed datasets

Uniform AW RW IVR-SQL IVR-EQL OPER DM OSD-CQL
hopper-r-m-0.5-v2 64.0±1.9 60.65±0.19 60.65±0.19 65.31±0.96 4.49±1.82 58.8±0.4 7.18±9.32 75.7±3.9
hopper-r-e-0.5-v2 69.6±37.6 73.03±2.41 73.03±2.41 104.46±3.02 2.38±0.44 84.1±6.8 56.05±63.6 74.9±9.9

halfcheetah-r-m-0.5-v2 49.7±0.8 49.1±0.42 49.1±0.42 45.11±0.47 47.04±0.25 49.6±0.1 48.04±0.07 55.3±0.3
halfcheetah-r-e-0.5-v2 52.9±2.5 65.89±8.58 65.89±8.58 82.86±3.73 86.43±6.18 64.2±0.3 28.44±3.06 69.8±5.1

G IMPLEMENTATION DETAILS FOR BASELINES

AW, RW and top10%. The BC-related baselines are developed using the official implementation of
(Hong et al.). For CQL-based and TD3BC-based baselines, we re-implement top10%, AW and RW
strategies on the same codebase (Sun, 2023) to achieve fair comparison. All parameters related to
CQL are kept consistent with OSD-CQL. Besides, we adopt the same implementation of (Hong et al.)
to implement top10%, AW and RW strategies on top of https://github.com/young-geng/
CQL for Antmaze domain, to make a fair comparison for this domain. For AW and RW, we perform a
search on the hyperparameter λ from the set {1.0, 0.1, 0.01}, and determine that the optimal λ is 0.1
so we present the corresponding results for this value.

EDAC, UWAC and IVR. Due to the independence of these baselines from our approach, we
reproduce the results using their respective official codes and use the default hyperparameter settings
provided in their official codes.

OPER-A. OPER can be combined with different algorithms as a plugin. In order to compare with
OSD-CQL, we choose OPER-CQL for comparison. It includes two modes: OPER-A and OPER-R.
Since OPER-R mode is similar to RW, and the paper shows that OPER-A has better performance, we
choose OPER-A mode for comparison. Specifically, in phase one, we use the official source code of
OPER to generate weights. In phase two, we used the weights generated in phase one as sampling
weights to reweigh CQL based on the (Sun, 2023). All parameters related to CQL are kept consistent
with OSD-CQL.

DW. DW can also be combined with different algorithms as a plugin so we choose DW-CQL for
comparison. We re-implemented DW-CQL based on (Sun, 2023), but the performance was not
as good as the official source code reproduction. Therefore, we choose to showcase the effect of
reproducing the official source code. At the same time, to ensure a fair comparison, we keep the
key parameters of DW-CQL and OSD-CQL consistent, including conservative weight, learning rate,
network structure, etc.

H OBSERVATION STUDY OF THE LEARNED DENSITY RATIO

Before presenting the results, we first visualize the learned density ratio to see if it has learned useful
information and revealed any underlying patterns in the datasets. To this end, we plot the histograms
of ŵα for each dataset. Take “hopper” task in Figure ?? as an example, it can be observed that
(i) OSD-DICE does assign distinguishable weights to different samples, and these weights are all
distributed within a reasonable range. (ii), the weights for “medium”, “medium-replay” and “medium-
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expert” datasets are relatively uniformly distributed, while those for “random” dataset are more
exclusively focused on 1.0. This implies that the samples are more distinguishable for “medium”,
“medium-replay” and “medium-expert”, and almost equally bad for “random”. (iii) Compared to
“medium” and “medium-replay”, “medium-expert” has more samples with weights close to 0 and
more samples with weights greater than 4. This phenomenon aligns with the composition method
of “medium-expert”, which is a mixture of medium data and expert data. Similar patterns can also
be observed for “halfcheetah” and “walker2d” tasks in Appendix H, showing that OSD-DICE can
indeed learn the importance levels of different samples in a dataset.

The histograms of the learned density ratio for “halfcheetah” and “walker2d” tasks are shown in
Figure 3

Figure 3: Histograms of the learned density ratio for Halfcheetah tasks and Walker2d tasks. The
x-axis represents the value of density ratio, and the y-axis represents the probability density.
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