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ABSTRACT

To generate synthetic tabular data for subsequent use in machine learning, it is usu-
ally proposed to use all sorts of autoencoders, based on the assumption that their
ability to ”reproduce” input data from points of a low-dimensional latent space
automatically means ”reproducing” the statistical and structural properties of the
distribution of the original sample. No evidence is provided for the truth of this as-
sumption. The article proposes a consistent data generation method based on the
authors’ approach to solving the unary classification problem by a fully connected
neural network (multilayer perceptron) with piecewise-linear activation functions.
The output of such a network is shown to be an adaptive histogram estimate of
the distribution density specified on a compact set. Consistency conditions for
nonparametric estimates of this type were obtained in Devroye et al. (2013). The
tabular data are synthesized by thinning random vectors uniformly distributed on
a compact set according to the empirical distribution density obtained. The results
of the method are illustrated by model examples.

1 INTRODUCTION

The generation of synthetic tabular data is an essential component in the development of artificial
intelligence (AI) systems, particularly in cases where access to real-world data is restricted due to
privacy concerns, proprietary limitations, or data scarcity. Synthetic data enables model training,
data augmentation, reproducibility of research, and secure data sharing. To be useful, such data
must preserve the structural and statistical properties of real datasets while ensuring the protection
of sensitive information.

Synthetic data can be generated using various approaches, including machine learning (ML)-based
methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs), as
well as traditional statistical methods such as nonparametric density estimation Akkem et al. (2024).
Statistical methods typically require consistency as a necessary condition, ensuring that the syn-
thetic distribution converges to the true data distribution as the sample size increases. In contrast,
neural network-based generative models often rely on empirical validation using benchmark datasets
without theoretical guarantees regarding their ability to preserve statistical properties.
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Among the widely used ML-based generative approaches, autoencoders attempt to reconstruct the
original data from a compressed latent space, assuming that such a transformation captures the
essential features of the distribution. GANs employ a generator-discriminator framework to produce
samples that resemble real data Jordon et al. (2018), while VAEs introduce probabilistic modeling
to learn a latent representation that enables sample diversityWan et al. (2017). Despite their success,
these methods suffer from several drawbacks, such as mode collapse in GANs, difficulties in defining
an appropriate latent space in autoencoders, and the challenge of maintaining statistical consistency
in VAEs. Moreover, none of these methods offer a theoretical foundation ensuring the preservation
of the statistical properties of the original data.

In this paper, we propose a consistent method for synthetic data generation using unary classification
with a fully connected neural network (multilayer perceptron, MLP) equipped with piecewise-linear
activation functions (ReLU, Leaky-ReLU, Abs). Unlike traditional generative models, our approach
employs a trained classifier to approximate the density of the original data distribution. Specifically,
we train an MLP to distinguish real data points from a uniform background distribution within a
compact domain. The classifier’s output is then used to filter newly sampled background points,
effectively producing a synthetic dataset that follows the empirical density of the original data.

Neural networks have previously been applied to density estimation, as discussed in (Magdon-Ismail
& Atiya, 1998). However, unlike traditional neural density estimators, which approximate probabil-
ity densities directly via parameterized functions, our approach utilizes an MLP in a classification
framework, interpreting its output as an adaptive histogram estimator. This interpretation allows for
direct connections to nonparametric density estimation methods and provides a structured approach
to synthetic data generation through controlled sampling.

Our key hypothesis is that the trained neural network acts as an adaptive histogram estimator of the
underlying density function. Since MLPs with piecewise-linear activation functions partition the
feature space into linear regions, they naturally approximate complex distributions. This formula-
tion aligns with nonparametric density estimation techniques, particularly histogram-based methods,
whose consistency conditions have been established in Devroye et al. (2013). While traditional his-
togram estimators introduce discontinuities, the neural network provides a smooth approximation,
as it adjusts hyperplane orientations to balance density variations.

The main contributions of this work are as follows:

• We introduce a consistent synthetic data generation method based on unary classification
with a multilayer perceptron.

• We provide a theoretical perspective on how MLPs approximate density functions by par-
titioning the input space into linear subregions.

• We demonstrate empirically that the proposed method preserves the cluster structures and
statistical properties of the original data distribution.

• We present visualizations of synthetic datasets and covariance matrix comparisons for high-
dimensional cases, confirming the validity of the approach.

The remainder of the paper is organized as follows. Section 2 presents the formal problem statement
and methodology. Section 3 describes the experimental setup and provides results on synthetic
datasets. Section 4 discusses the theoretical implications of the method and its limitations. Finally,
Section 5 concludes the paper and outlines directions for future research.

2 PROBLEM STATEMENT AND METHODOLOGY

2.1 PROBLEM STATEMENT

Let X = {x1, x2, . . . , xn} ⊂ Rd be a given dataset sampled from an unknown probability distri-
bution with a density function pX(x). The goal of synthetic data generation is to construct a new
dataset X̃ = {x̃1, x̃2, . . . , x̃m} that approximates the statistical properties of X while maintaining
privacy constraints.

2



Published as a conference paper at MathAI 2025

A common approach to density estimation involves constructing a nonparametric estimator p̂X(x)
of pX(x). We propose an alternative method based on unary classification in which a neural network
is trained to distinguish real data from a background distribution.

2.2 UNARY CLASSIFICATION

The method for generating synthetic samples is based on the construction of a Bayesian unary classi-
fier. In (Lukianov et al., 2024), a method for extrapolating a Bayesian binary classifier was proposed,
where an additional artificially generated ”background” class with a label ”0” is introduced along-
side two classes labeled ”+1” and ”-1”. This background class represents a random sample drawn
from a uniform distribution over a given compact set. In this formulation, the modified classifier
can not only assign an observation to one of the two classes but also reject classification if the dis-
criminant function is close to zero. As a result, input observations falling outside the support of the
original distribution will be rejected.

A unary Bayesian classifier differs from the modified binary classifier in that the original dataset
consists of observations from only one class, labeled ”1,” while the background class observations
are labeled ”0.” Formally, the unary classification problem is formulated as follows.

Let (X,Y ) be a random variable where X is a d - dimensional random vector with a mixture density
αf(x)+(1−α)p(x), where f(x) is the density of the target class, p(x) is the density of the uniform
background distribution over a compact set K, and α is a weighting coefficient, 0 ≤ α ≤ 1.
The label Y takes values of 1 or 0 depending on whether X belongs to the original sample or the
background.

The posterior probability, or regression function, of Y given X is defined as:

g(x) = P (Y = 1|X = x) = E(Y |X = x) =
αf(x)

αf(x) + (1− α)p(x)
. (1)

If g(x) were known, the unary classification problem could be solved by classifying x as part of the
target distribution if g(x) > 0, and rejecting it otherwise. However, since g(x) is typically unknown,
an approximation must be constructed from the given data.

Let c(X) be a continuous function defined on K. Consider the mean squared approximation prob-
lem:

c∗(x) = argminE(c(x)− Y )2. (2)

Since:

E(c(x)− Y )2 = E(c(x)− g(x) + g(x)− Y )2 = E(c(x)− g(x))2 + E(g(x)− Y )2, (3)

and the second term is independent of c(x), the problem reduces to the approximation of the regres-
sion function:

c∗(x) = argminE(c(x)− g(x))2. (4)

As the function c(x), a multilayer perceptron (MLP) with L hidden layers of k neurons each and
piecewise linear activation abs is considered. According to the universal approximation theorem
(Cybenko, 1989), for any ε > 0, there exist values of k and L such that for any x ∈ K:

sup |c(x)− g(x)| < ε. (5)

Thus, an ε - approximate solution of (2) theoretically exists.

For a statistical formulation, let the given sample {Xi, Yi}ni=1 where Xi ∈ K be interpreted as a
labeled set of n observations from the target density f(x). To construct a mixed dataset with density
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αf(x) + (1− α)p(x), artificial background samples {Xj , 0}n+m
j=n+1 are added, where m = n · 1−α

α
and Xj is drawn from a uniform distribution over K.

Let C(k, L) be the class of MLPs with piecewise linear activation abs and given L and k. The
optimization problem is formulated as:

n+m∑
i=1

(cn(Xi)− Yi)
2 → min, (6)

where the minimization is over all cn(X) ∈ C(k, L).

Let c∗(X) be the solution (6), referred to as the neural regression function. The corresponding
perceptron partitions K into N disjoint cells: K = {K1,K2, . . . ,KN} (Kovalenko, 2022).

To justify consistency of c∗(x), consider a piecewise constant function of histogram regression
hn(X) defined by minimizing:

n+m∑
i=1

(hn(Xi)− Yi)
2 → min, (7)

over all piecewise constant functions defined on cells Kr of K. Let X ∈ Kr. Within each cell Kr,
the problem (7) reduces to:

n1(X) · (hnr − 1)2 + n0(X) · (hnr − 0)2 → min, (8)

where hn(X) = hnr
, n1(X) =

∑n+m
i=1 I{Xi∈Kr,Yi=1}, n0(X) =

∑n+m
i=1 I{Xi∈Kr,Yi=0}. Differen-

tiating with respect to hnr yields the solution of (7):

h∗
n(X) =

n1(X)

n1(X) + n0(X)
=

fn(X)

fn(X) + 1−α
α · pn(X)

, (9)

where fn(X) = n1(X)
n·V (Kr)

- is histogram density f(x) estimates at cell Kr, pn(X) = n0(X)
n·V (Kr)

- is
histogram uniform density estimates at cell Kr and V (Kr) - is measure of the cell Kr.

Asymptotic conditions for strong consistency of adaptive histogram estimators are given in (De-
vroye, 1989; Devroye et al., 2013), requiring cell diameters to shrink while maintaining sufficiently
many points per cell. These conditions hold even for moderate values of k and L, e.g., for d = 10,
k = 10, L = 2, N exceeds tens of thousands, necessitating millions of background points for proper
coverage. In filled cells, where both target and background points are present, h∗

n(X) and c∗(X) are
close. In background-only cells, h∗

n(X) = 0, while c∗(X) is interpolated due to continuity. In high-
density regions, c∗(X) is significantly above zero, whereas in low-density regions, it approaches
zero.

Therefore, for sufficiently large n and appropriately chosen k and L, the neural regression c∗(X) is
a consistent estimator of g(X).

2.2.1 PARTITIONING INDUCED BY THE PERCEPTRON

A multilayer perceptron with piecewise linear activations partitions the input space into disjoint re-
gions, analogous to histogram bins. Each region is defined by a unique pattern of neuron activations:
if the sign of each neuron’s pre-activation output is fixed, the perceptron behaves as a linear operator
within that region. Given a cell, the density estimate follows:

p(x) ≈ Ndata

Ndata +Nbackground
, (10)

where Ndata and Nbackground denote real and background sample counts.
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Unlike traditional histograms with sharp bin boundaries, the perceptron forms a continuous approx-
imation, as its activation patterns define smooth transitions between regions. Figure 1 illustrates this
structure using a simple 2-5-5-1 network applied to a spiral dataset. The decision tree representation
clarifies how hierarchical neuron activations contribute to partition formation (showed only neurons
that split space, neurons A2, A4, A3, and C1 exhibit negative values, while neurons A1 and A3 are
positive).

Figure 1: Example of perceptron decision tree based on neurons signs.

This theoretical foundation suggests that the classifier-based synthetic data generation method ef-
fectively combines the strengths of both histogram-based and continuous density estimation ap-
proaches, allowing for structured yet smooth synthetic data generation.

2.3 METHODOLOGY

2.3.1 BACKGROUND DATA GENERATION

The background points are sampled from a uniform distribution within a compact domain K ⊂ Rd.
For each dataset, K is chosen as an axis-aligned hyperrectangle that extends beyond the real data
distribution by a margin of 20–50% in each dimension. This margin ensures that the classifier
receives sufficient negative samples to distinguish the support of the data distribution and allow
for the decision function to be pushed toward the zero plane. A set of background points B =
{b1, b2, . . . , bn} is sampled uniformly from K, ensuring that |B| = |X|.

2.3.2 TRAINING THE CLASSIFIER

A multilayer perceptron (MLP) classifier c : Rd → [0, 1] is trained on the combined dataset X ∪B
with binary labels:

c(x) = 1, x ∈ X,

c(b) = 0, b ∈ B.

The network is optimized to minimize the mean squared error (MSE) loss:

L =
∑
x∈X

(1− c(x))2 +
∑
b∈B

(0− c(b))2. (11)

Background points are generated at each epoch during training, rather than being fixed once before
the start of the training process.

The model is trained using the MSE loss rather than cross-entropy. While cross-entropy is a standard
choice for classification, MSE provides a smoother approximation of posterior probabilities with-
out requiring an explicit softmax or sigmoid transformation and does not enforce a hard decision
boundary. This property aligns with our goal of estimating a continuous density function, where
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the network output should reflect a smooth probability estimate rather than a sharp classification
decision. Additionally, MSE implicitly encourages regression-like behavior, allowing the output to
approximate g(x) without requiring explicit probabilistic normalization and aligns better with the
histogram interpretation of the classifier output.

2.3.3 SYNTHETIC DATA SAMPLING

Once trained, the classifier is used to filter new background samples. A set of candidate points B̃ is
drawn uniformly from K, and each point b̃ ∈ B̃ is retained with probability c(b̃). The resulting set
X̃ serves as the synthetic dataset:

X̃ = {b̃ ∈ B̃ | ξ < c(b̃)}, (12)

where ξ ∼ Uniform(0, 1) is a random variable.

3 EXPERIMENTAL SETUP AND RESULTS

3.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed synthetic data generation method, experiments are con-
ducted on synthetic datasets where the underlying data distribution is explicitly known. This allows
for an objective assessment of the method’s ability to preserve statistical properties and structural
characteristics.

Three distinct types of datasets are considered:

• Spiral dataset: a two-dimensional dataset where points form a spiral pattern (Figure 2 on
the left). This dataset tests the model’s ability to capture and replicate complex cluster
structures with nonlinear boundaries.

• Two-sphere dataset: a two-dimensional dataset consisting of two circular clusters with
radius R = 0.25 positioned at (−0.5, 0) and (0.5, 0), separated by a distance d = 0.5
along the X-axis (Figure 2 on the right). This dataset is designed to test the method’s
ability to maintain well-separated clusters in the generated data.

• Gaussian mixtures: multivariate Gaussian distributions with known means and covariance
matrices (Figure 3). This dataset is used to assess whether the synthetic data preserves
high-order statistical dependencies, such as covariance structure.

For each dataset, the classifier-based generation method is applied, and the resulting synthetic dataset
is compared to the original data using both visual and statistical analyses.

Figure 2: Spiral dataset (left) and spheres dataset (right) examples.
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Figure 3: Gaussian dataset covariance matrix example.

To assess the robustness of the approach, multiple neural network architectures are employed for
training:

• d-10-1: A simple architecture with a single hidden layer of 10 neurons.
• d-10-100-1: A deeper network with an intermediate layer of 100 neurons to increase ca-

pacity.
• d-10-10-10-1: A balanced architecture with three hidden layers of 10 neurons each.

where d represents the input dimensionality of the dataset.

Training is conducted for 100 epochs using a batch size of 32. The datasets consist of 1000 points.
Mean Squared Error (MSE) loss is employed instead of cross-entropy to provide a smooth output
distribution that aligns with density estimation objectives. The models are optimized using the Adam
optimizer with a learning rate of 10−3.

3.2 RESULTS

The experimental results demonstrate that the proposed approach effectively replicates the structure
of the original datasets while maintaining key statistical properties.

For the spiral dataset, visual inspection of the generated synthetic data (Figure 4) shows that the
method successfully captures the intricate, nonlinear cluster structure. The synthetic points align
well with the original spiral arms, indicating the classifier effectively models the density of the
dataset.

For the two-sphere dataset, the generated synthetic data maintains the separation between the two
clusters (Figure 5). The density distribution of the synthetic points remains consistent with that of
the original dataset, demonstrating that the proposed method preserves cluster integrity in settings
where distinct modes are present.

For the Gaussian mixtures, the covariance matrices of the synthetic and original datasets are com-
puted and compared (Figure 6). The results indicate that the synthetic dataset closely matches the
covariance structure of the original data. However, for high-dimensional Gaussian distributions (e.g.,
d = 10), while the overall structure of the covariance matrix is preserved, the variance values tend
to be slightly inflated. This effect is attributed to noise amplification in high-dimensional spaces,
where the classifier’s decision boundaries become more fragmented due to sparsity.

To further illustrate the quality of the generated data, Figure 7 presents scatter plots of synthetic and
original samples projected onto each pair of feature dimensions. In these plots, red points represent
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real data, while green points denote synthetic samples. The visual comparison confirms that the
synthetic data retains the cluster structure of the original distribution, although slight deviations in
density can be observed in some projections.

Figure 4: Spiral synthetic data.

Figure 5: Spheres synthetic data.

To provide a comprehensive overview of the method’s performance, we present results for the most
representative neural network configurations. While smaller models (e.g., d-10-1) demonstrate a ba-
sic ability to separate density regions, deeper architectures (e.g., d-10-100-1) offer enhanced fidelity
in capturing fine-grained structures within the data. The trade-offs between model complexity and
generalization to different distributions are further discussed in Section 4.

Overall, the results confirm that the proposed classifier-based synthetic data generation method can
effectively model diverse data distributions, maintaining both global and local statistical properties.

4 DISCUSSION

Despite the effectiveness of the proposed approach, challenges persist, particularly concerning high-
dimensional data. As the dimensionality increases beyond 10, generating high-quality synthetic
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Figure 6: Gaussian synthetic data covariance matrix.

Figure 7: Gaussian synthetic data projections.

background samples becomes increasingly difficult. This is due to the sparsity of data in high-
dimensional spaces, which affects the classifier’s ability to generalize well across the entire domain.

Another critical observation is the effect of network depth and neuron count on the partitioning of the
input space. Larger networks introduce a finer subdivision of the feature space, leading to smaller
partitions analogous to histogram bins. This behavior suggests that as the network complexity grows,
the generated density function exhibits finer granularity, which may not always align with the desired
statistical properties of the target distribution.

Additionally, rather than directly sampling from the generated probability distribution, it may be
beneficial to introduce a confidence threshold β. By filtering out points where C(x) < β, it is
possible to ensure that only highly confident synthetic samples are retained. This threshold acts as a
tunable parameter that balances the trade-off between dataset quality and sample size: increasing β
reduces noise in the generated dataset but at the cost of lower sample diversity.

Future work could explore adaptive thresholding mechanisms and alternative techniques for han-
dling high-dimensional distributions more effectively.
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4.1 DIFFERENCES FROM LATENT SPACE-BASED MODELS

Unlike deep generative models such as CTGAN (Habibi et al., 2023) and TVAE (Ishfaq et al., 2018),
which model latent representations of tabular data, our method is designed as a direct density and
adaptive histogram-based approach. The primary focus of this work is on the theoretical formulation
of density estimation via unary classification rather than empirical performance on structured tabular
datasets. Future work could explore comparisons with these models in real-world applications.

4.2 BIAS PROPAGATION AND ETHICAL CONSIDERATIONS

While synthetic data generation can help mitigate data scarcity and privacy concerns, it also carries
risks of bias propagation. Since the proposed method learns the density distribution from an existing
dataset, any biases present in the original data may be reflected in the generated samples. This effect
is particularly relevant when the training data exhibit class imbalances or underrepresented subpopu-
lations. Unlike adversarial generative models, which can explicitly enforce fairness constraints, our
approach relies on the assumption that the classifier approximates the true underlying distribution
without correction mechanisms.

To address this limitation, future work could explore methods for bias detection and mitigation
within the proposed framework. Potential strategies include modifying the background sampling
process to compensate for imbalanced regions or incorporating fairness-aware training objectives to
adjust the classifier’s density estimates.

5 CONCLUSION

The proposed classifier-based synthetic data generation method provides a structured approach to
generating high-fidelity synthetic datasets while preserving key statistical properties of the original
data. Through extensive experiments on various synthetic datasets, including spirals, separated
spherical clusters and Gaussian mixtures, the approach has demonstrated its capability to maintain
both local and global data structures.

One of the key advantages of this method is its ability to adaptively shape synthetic data distributions
based on the learned classifier output. By leveraging neural networks with different architectures, the
model is capable of capturing complex density patterns, ensuring that the synthetic data remains a
faithful representation of the original distribution. However, as highlighted in the discussion, certain
limitations emerge, particularly in high-dimensional settings, where the generation of meaningful
background samples remains a challenge.

The experimental findings indicate that the choice of network depth and width significantly impacts
the granularity of the generated density function. More complex networks tend to create finer par-
titions in feature space, which can be beneficial for capturing intricate details but may also lead to
over-segmentation of density regions. Furthermore, the introduction of a confidence threshold β
offers a mechanism to refine the selection of synthetic samples, providing a balance between dataset
fidelity and sample sufficiency.

Future work should explore strategies to mitigate the challenges associated with high-dimensional
spaces, potentially incorporating adaptive sampling techniques or hybrid approaches that combine
classifier-based generation with density estimation methods. Additionally, extending the method to
real-world datasets and assessing its effectiveness in privacy-preserving data synthesis remains an
important direction for further research.

In conclusion, the proposed approach represents a step forward in synthetic data generation, offer-
ing a practical and scalable framework for preserving statistical characteristics while allowing for
controlled dataset synthesis. Its flexibility make it a promising candidate for applications in machine
learning, privacy preservation, and statistical modeling.
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