
One-Shot Transfer Learning of Physics-Informed Neural Networks

Shaan Desai 1 2 Marios Mattheakis 2 Hayden Joy 2 Pavlos Protopapas 2 Stephen Roberts 1

Abstract
Solving differential equations efficiently and ac-
curately sits at the heart of progress in many areas
of scientific research, from classical dynamical
systems to quantum mechanics. There is a surge
of interest in using Physics-Informed Neural Net-
works (PINNs) to tackle such problems as they
provide numerous benefits over traditional numer-
ical approaches. Despite their potential benefits
for solving differential equations, transfer learn-
ing has been under explored. In this study, we
present a general framework for transfer learning
PINNs that results in one-shot inference for linear
systems of both ordinary and partial differential
equations. This means that highly accurate solu-
tions to many unknown differential equations can
be obtained instantaneously without retraining an
entire network. We demonstrate the efficacy of
the proposed deep learning approach by solving
several real-world problems, such as first- and
second-order linear ordinary equations, the Pois-
son equation, and the time-dependent Schrödinger
complex-value partial differential equation.

1. Introduction
Differential equations are used to study a broad array of phe-
nomena, from infection models in biology (Kaxiras et al.,
2020) to chaotic motion in physics (Choudhary et al., 2019).
As such, our ability to efficiently and accurately solve these
equations under various conditions remains a critical chal-
lenge in the scientific community. While traditional ap-
proaches such as Runge-Kutta (Dormand et al., 1987) and
Finite Element Methods are well studied and provide solu-
tions of high fidelity, recently, Physics-Informed Neural Net-
works (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021)
have attracted significant attention as an alternative frame-
work for solving differential equations. PINNs are Neural

1Machine Learning Research Group, University of Oxford,
Oxford, United Kingdom 2School of Engineering and Applied
Science, Harvard University, Cambridge, MA, U.S.A.. Correspon-
dence to: Shaan Desai <shaandesai@live.com>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

Networks (NNs) capable of leveraging data and known phys-
ical constraints to identify solutions to differential equations.
They have numerous advantages over traditional approaches
such as being able to easily incorporate data, eliminating the
need for a numerical integrator, being able to generate con-
tinuous and differentiable solutions, improving accuracy in
high dimensions, and maintaining memory efficiency (Kar-
niadakis et al., 2021). However, one of the limitations of
using PINNs is the computational expense associated with
training networks for different but closely linked tasks. To
address this, we explore how transfer learning - the method
of training a network on a task and transferring it to new
tasks, can be be used to overcome this bottleneck.

Specifically, we show that a PINN, pre-trained on a fam-
ily of differential equations, can be effectively re-used to
solve new differential equations. By freezing the hidden
layers of a pre-trained PINN, we demonstrate that solv-
ing new differential equations of the same family reduces
to optimizing/fine-tuning a linear layer. Furthermore, we
specifically show that in the special case of linear systems
of differential equations, this optimization is equivalent to
solving the normal equations for a latent space of learnt
functions. This implies that the optimal linear weights
needed to satisfy a new differential equation can be com-
puted in one-shot with the computational cost of a matrix
inversion. This therefore entirely eliminates the need for fur-
ther training/fine-tuning, dramatically reducing the training
overhead by orders of magnitude while maintaining high
fidelity solutions. We investigate the efficiency of this ap-
proach by solving several ordinary differential equations
(ODEs) as well as partial differential equations (PDEs) of
practical interest. For many systems, we are able to identify
highly accurate solutions to unseen differential equations
in a fraction of the time needed to train the equations from
scratch.

2. Background
The general form of an explicit nth order ODE can be written
as:

F (t, ψ, ψ(1),, ψ(n−1)) = ψ(n), (1)

where ψ(i) = diψ
dti is the ith derivative of the solution

ψ(t) with respect to the independent time variable t. Non-
homogeneous linear ODEs, a subclass of the general form

One-Shot Transfer Learning of Physics-Informed Neural Networks

of Eqn. 1, can be represented as follows:

D̂nψ = f(t); D̂nψ =

n∑
i=0

ai(t)ψ
(i), (2)

where n denotes the order of the ODE, f(t) is considered
a forcing (or control) term that influences the homogeneity
of the solution, and ai(t) is a time dependent coefficient for
each derivative.

Traditionally, when an ODE is known apriori, the differ-
ential equation can be solved using integrators (such as
Runge-Kutta) for given initial conditions (ICs). Recently,
it has been shown that neural networks can be used to effi-
ciently determine accurate solutions to such problems. One
such approach uses PINNs. PINNs use a neural network,
with weights parametrized by θ, to transform an input t to
output solutions ψθ(t). Then, by leveraging backpropaga-
tion and autograd (Maclaurin et al.), exact derivatives of
the network output can be computed with respect to the in-
put ∂ψ∂t . Therefore, given ICs uic = [ψ0, ψ

(1)
0 , .., ψ

(n−1)
0]T ,

and known differential operator D̂n and force f(t), the loss
function of a PINN is defined as:

L = (D̂nψθ(t)− f(t))2 + (D̄0ψθ(t)− ψic)
2, (3)

where D̄0ψ = [ψ(0), ψ(1)(0), ..., ψ(n−1)(0)]T . The first
term enforces the differential equation and the second en-
forces the initial conditions.

Indeed, such a loss can be enforced for other architectures
such as NeuralODE (Chen et al., 2018) and Reservoir Com-
puting (Mattheakis et al., 2021) which exploit recurrent
neural networks. However, such networks are not as easily
adaptable to PDEs as PINNs are. Many well known PDEs
such as the diffusion, wave as well as Schrödinger equa-
tion, can be modeled using PINNs. With PDEs, additional
variables are used as inputs [t, x, y, ...], so the output is a
function of these inputs ψ(t, x, y, ..) subject to certain ICs
and boundary conditions (BCs). As such, a loss function
similar to Eqn. 3 can be defined for PDEs.

The benefits of using a NN architecture to solve differential
equations (both ODEs and PDEs) over traditional methods
(such as Runge-Kutta or Finite Elements) include rapid
inference, elimination of the curse of dimensionality (Han
et al., 2018), no accumulation of errors as would be found
with integrators, continuously differentiable solutions, and
low memory cost (Karniadakis et al., 2021). While these
benefits have been extensively explored across a range of
applications (Sirignano & Spiliopoulos, 2018; Mattheakis
et al., 2022; Zhai & Hu, 2021; Wang et al., 2021; McClenny
& Braga-Neto, 2020; de Wolff et al., 2021), a limited study
exists on how transfer learning techniques can be used (Guo
et al., 2021; Wang et al., 2021; Mattheakis et al., 2021).
Transfer learning was first developed to accelerate network

optimization in computer vision where large datasets are
costly to re-train on for specific tasks. The main idea behind
the approach is to train a neural network on a large corpus
of data and then to freeze the network and re-use some
of the layers for new, unseen tasks. This was shown to
dramatically reduce training time while maintaining high
fidelity solutions in vision. With this in mind, we decided to
apply transfer learning to PINNs to significantly accelerate
the training on new equations. In doing so, we identify
a novel one-shot transfer learning framework for systems
of linear differential equations that significantly speeds up
inference on unseen linear systems.

3. Related Work
Constraining neural networks to learn solutions to differen-
tial equations was first introduced by Lagaris et al (1998).
The authors showed that partial derivatives of a neural net-
work output with respect to its inputs can be analytically
computed when the architecture of the network is known.
Therefore, given the solution and its derivatives, it is pos-
sible to simultaneously enforce the underlying differential
equation as well as the ICs and BCs. Indeed this approach
forms the basis of PINNs (Raissi et al., 2019; Karniadakis
et al., 2021) where the analytic derivatives from Lagaris
et al (1998) are replaced with backpropagation, i.e. re-
placing the need for an analytic derivation of the partial
derivatives. PINNs have since been extensively used across
many applications including non-linear structures (Zhang
et al., 2020), fluid flow on large domains (Wang et al., 2021),
moving boundaries (Wang & Perdikaris, 2021), inferring
micro bubble dynamics (Zhai & Hu, 2021), cardiac activa-
tion mapping (Sahli Costabal et al., 2020), ocean modelling
(de Wolff et al., 2021), bundle solvers (Flamant et al., 2020)
and stochastic and high-dimensional PDEs (Karniadakis
et al., 2021; Yang et al., 2018; Sirignano & Spiliopoulos,
2018).

Recently, this technique has been extensively used to learn
underlying dynamics from data - a concept first proposed
by Howse et.al (1996). For example, numerous works
show that energy conserving trajectories can be effec-
tively learnt from data by enforcing known energy con-
straints such as Hamiltonians (Greydanus et al., 2019;
Sanchez-Gonzalez et al., 2019), Lagrangians (Cranmer
et al., 2020) and variational integrators (Saemundsson et al.,
2020; Desai et al., 2021b) into networks. Extensions in
this direction have pushed the envelope to also learn non-
conservative/irreversible systems (Yin et al., 2021; Desai
et al., 2021a; Zhong et al., 2020; Lee et al., 2021) and con-
tact dynamics from sparse, noisy data (Hochlehnert et al.,
2021).

Other alternative methods to solve equations such as the
fourier neural operator (Li et al., 2020) have also emerged.

One-Shot Transfer Learning of Physics-Informed Neural Networks

These networks highlight how operator regression coupled
with fourier transforms can help us identify the underlying
dynamics of physical systems from data. To increase the
pace of innovation across these methods, several software
packages have been developed that use neural networks and
the backpropagation technique of PINNs to approximate so-
lutions of differential equations such as NeuroDiffEq (Chen
et al., 2020), DeepXDE (Lu et al., 2021), and SimNet (Hen-
nigh et al., 2020).

In spite of these developments, transfer learning remains
under explored. Wang et.al (2021) show transfer learning
methods can be used to stitch solutions together to resolve a
large domain. Yet further work by Mattheakis et.al (2021)
illustrates how a reservoir of weights can be transferred to
new ICs. Here, we push these further and identify a general
model-agnostic method to do one-shot inference for systems
of linear ordinary and partial differential equations.

4. Method
4.1. ODEs

We define a neural network such that the approximate
network solution ψ(t) at time points t is: ψ(t) =
H(t)θHWθW + BθB . In other words, the neural network,
parametrized by θ = [θH , θW , θB], transforms the inputs
t ∈ Rt×1 into a high dimensional, non-linear latent space
H ∈ Rt×h through a composition of non-linear activations
and hidden layers. Then, a linear combination of the latent
space is taken, akin to reservoir computing (Jaeger & Haas,
2004), to obtain the solution ψ(t).

To train the network, we design the final weights layer to
consist of multiple outputs, i.e. WθW ∈ Rh×q. This is
done so that multiple (q) solutions, ψ(t) ∈ Rt×q, can be
estimated and simultaneously trained to satisfy equations
that have different linear operators Dn defined by different
coefficients ai(t), as well as different initial conditions ψic,
and forces f . Bundle training allows us to (1) integrate
the training into a single network and (2) to encourage the
hidden states H(t) to be versatile across equations.

At inference, the weights for the hidden layers are frozen
and H is computed at specific time points t̂. The solution is
therefore ψ(t̂) = H(t̂)Wout where Wout is trainable. For a
new set of ICs ψ′

ic, source f ′, and differential operator D̂′
n

the loss of the linear ODE (Eqn. 3), becomes:

L = Ldiffeq + LIC

=
(
D̂′
nHWout − f ′(t)

)2

+
(
D̄0HWout − ψ′

ic

)2
(4)

Since Eqn. 4 is convex, the fine-tuning of Wout can be
computed analytically. In other words, to minimize L we
need to solve the equation ∂L/∂Wout = 0. The derivative

of the first term of Eqn. 4 is:

∂Ldiffeq

∂Wout
= 2

(
D̂′
nH

)T (
D̂′
nHWout − f ′(t)

)
. (5)

Taking the same approach for the second term of Eqn. 4
that enforces ICs, we obtain:

∂LICs

∂Wout
= 2(D̄0H)T (D̄0HWout − ψ′

ic). (6)

We let D̂′
nH = D̂H and D̄0H = D̄H to simplify the no-

tation. Adding the loss terms together and setting them to
zero yields the optimal output weights:

Wout =
(
D̂T
HD̂H + D̄T

HD̄H

)−1 (
DT
Hf

′(t) + D̄T
Hψ

′
ic

)
.

(7)

Therefore, given any fixed hidden states H(t̂) at fixed time-
points t̂, one can analytically compute a Wout for any linear
differential equation that minimizes 4. Broadly, we can
think of H as being a collection of non-orthogonal basis
functions that can be linearly combined to determine the
output function.

Note that one special outcome of this formalism is that the
matrix inversion at inference is independent of the ICs ψ′

ic
and force f ′, which means for any new ICs or f ′, Wout
can be computed with a simple matrix multiplication if the
inverse term in Eqn. 7 is pre-computed. The benefits of
this approach are multi-fold, given H we achieve fast infer-
ence (order of seconds for 1000s of differential equations),
eliminate the need for gradient-based optimization as no
further training is required, and maintain high accuracy if H
is well-trained. Indeed this approach relies on determining
an inverse matrix. If DT

HDH has a large condition number,
the matrix will have many eigenvalues close to zero - in-
dicating ill-conditioning. Experimentally, we circumvent
this issue by using regularisation or QR decomposition (see
Appendix).

We have shown that an analytic Wout can be determined for
linear non-homogeneous ODEs. However, the proposed net-
work design can still be used, as we show later, for efficient
transfer learning of non-linear ODEs.

4.2. PDEs

An important outcome of the formalism for ODEs is a nat-
ural extension to linear PDEs. Many PDEs that appear in
real-world problems are linear, including the diffusion equa-
tion, Laplace equation, the wave equation as well as the
time-dependent Schrödinger PDE. Considering one spatial
dimension x and one time dimension t, a general linear
second order differential equation takes the form:(

Dt +Dx +Dxt + V (t, x)
)
ψ(x, t) = f(x, t), (8)

One-Shot Transfer Learning of Physics-Informed Neural Networks

Differential Equation # Training Bundles # Test Bundles Test Time (s) Test Accuracy (MSE)
First-order linear ODEs 10 1000 7.4× 10−3 1.35± 1.65× 10−10

Second-order linear ODEs 10 1000 3.4× 10−3 2.84± 1.87× 10−9

Coupled linear oscillators 10 100 4.7× 10−2 2.29± 4.74× 10−12

Nonlinear oscillator 5 30 5.2 1.47± 3.88× 10−4

Poisson 4 100 33.2 3.60± 8.84× 10−5

Schrödinger 3 400 19.4 5.02± 8.92× 10−5

Table 1. Summary results of our method on all the systems investigated. Training on a few bundles is sufficient to rapidly and accurately
scale to many unseen conditions. Note that the nonlinear oscillator is optimized using gradient descent whereas the other methods are all
optimized using analytic Wout. For reference, training a PINN requires several thousand iterations to obtain accurate solutions, where a
single iteration costs 0.07s. All times are reported for a CPU.

where we denote a second order time operator Dtψ =∑2
i=1 ai(t, x)ψ

(i)
t , the spatial second-order operator

Dxψ =
∑2
i=1 bi(t, x)ψ

(i)
x , and a mixed space-time opera-

tor, Dxtψ = Dtxψ = c(x, t)ψxt. The coefficients a, b, c
and commonly called source and potential f, V functions,
respectively, are continuous functions of x, t, where the
lower indices indicate partial derivatives according to the
notation: ψ(i)

ν = ∂(i)ψ
∂ν(i) and ψνν′ = ∂2ψ

∂νν′ . The structure
of Eqn. 8 can generalize to higher orders and for more
variables.

The last part to complete the derivation is to enforce the
BCs and ICs in the loss function. For the purpose of the
derivation, we use Dirichlet BCs. Thus,

L = Ldiffeq + LIC + LBCs

=
(
D̂ψ − f(t, x)

)2

+ (ψ(0, x)− g(x))
2

+
∑
µ=L,R

(ψ(t, µ)−Bµ(t))
2
, (9)

where D̂ = (Dt+Dx+Dxt) + V (t, x), BL(t) and BR(t)
are the left and right boundary conditions, and g(x) is the
initial condition at t = 0. Similarly to the derivation for
ODEs, we analytically compute Wout of Eqn. 9, namely
we solve the equation ∂L/∂Wout = 0 considering a neural
solution of the form ψ = HWout. Starting with the first
term of Eqn. 9, we read:

∂Ldiffeq

∂Wout
= 2D̂T

H(D̂HWout − f(t, x)) (10)

where D̂H = D̂H . Accordingly, for the IC loss component
we obtain:

∂LIC

∂Wout
= 2HT

0 (H0Wout − g(0, x)), (11)

with H0 = H(0, x). For the BCs loss components we have:

∂LBCs

∂Wout
=

∑
µ=L,R

2HT
µ (HµWout −Bµ(t)) , (12)

where Hµ = H(t, µ). Piecing this all together yields:

Wout =

D̂T
HD̂H +

∑
µ=0,L,R

HT
µHµ

−1

D̂T
Hf(t, x) +

∑
µ=0,L,R

HT
µQµ(t, x)

 , (13)

where Q0 = g(x), QL = BL(t), and QR = BR(t).

We therefore show it is equally feasible to obtain an analytic
set of linear weights to determine solutions to PDEs. Indeed,
the accuracy of the solution depends heavily on how well
the hidden states H span the solution space. To encourage
a representative hidden space, we typically bundle train a
single network on different equations, namely a network
with multiple outputs.

5. Results
We investigate our method on numerous well known differ-
ential equations of practical interest. We present a summary
of our results in Table 1. The full training regime, network
design and test conditions can be found in the appendix.
For ODEs we report accuracy as the MSE of the residual:
|D̂nϕθ(t) − f(t)|2. For PDEs we report accuracy as the
MSE between the predicted solution and the analytic solu-
tion: |ψgt − ψpred|2.

In addition, we highlight how our solver can be used to
tackle specific challenges with learning from these equa-
tions.

5.1. ODEs

5.1.1. LINEAR ODES

To test the performance of our approach, we train both first-
and second-order methods of linear non-homogeneous dif-
ferential equations. For first order ODEs, the equation is
defined by the operator of Eqn. 2 with n = 1 and by speci-

One-Shot Transfer Learning of Physics-Informed Neural Networks

fying three quantities: the time-dependent coefficients a0,
the forces f , and the ICs. As such, any first-order linear non-
homogeneous ODE can be defined by the tuple (a0, f, ICs).
Given a pre-defined list of options for each quantity in the
tuple (see Appendix), we randomly sample 10 tuples for
training. We batch train our model on all the equations
simultaneously (i.e. Wout ∈ Rt×10). We then carry out
inference on 1000 randomly sampled test tuples using an-
alytic Wout from Eqn. 7. Results are presented in Table 1.
It is clear that for first-order differential equations, transfer
learning analytic Wout is significantly advantageous since
we obtain high-fidelity solutions. As such, we take a similar
approach for second order differential equations described
by the operator of Eqn. 2 for n = 2. We plot the results of
20 ODEs from the test set and compute their residuals in
Fig. 1 where ψ̇ = dψ/dt. Indeed, the overall test accuracy
depends on how well the hidden states span the space of
differential equations. We typically find that more training
bundles results in better test performance (see Appendix).

−5 0 5
ψ

−10

0

10

20

ψ̇

0 1 2 3
Time (s)

10−10

10−8

R
es

id
ua

ls

Figure 1. Predicted (colored) versus ground truth (dashed black)
phase space, namely a plot of space against velocity for different
times, to 20 second-order non-homogeneous ordinary differential
equations. Average residuals are shown in the bottom panel.

5.1.2. SYSTEMS OF ODES

Since an analytic Wout can be computed for linear ODEs,
the method naturally extends to systems of linear differential
equations (see Appendix for derivation). To highlight this,
we investigate a system of linear second-order ODEs of the
form ψ̈ = Aψ that describe a system of two coupled os-
cillators where ψ = [ψ1, ψ2] and A describes the coupling.
The equation is of the form:[

m 0
0 m

] [
ψ̈1

ψ̈2

]
=

[
k1 + k2 −k2
−k2 k1 + k2

] [
ψ1

ψ2

]
. (14)

We train the network to satisfy 10 different {m, k1, k2} val-
ues and initial conditions [ψ0, ψ̇0] (see Appendix for sam-
pling details) such that the pre-trained network can be used
to instantaneously compute accurate solutions for different
ICs of the coupled masses. We report the result of testing
100 different systems sampled from the same range as train-
ing in Table 1. Furthermore, we investigate an interesting
application in which the network can be exploited to identify
initial conditions of a coupled-oscillator system capable of
inducing beats - when two normal mode frequencies come
close (see Fig. 2) (Schwartz, 2017).

5.1.3. NONLINEAR ODE

Until this point, we have only investigated the success of
fine-tuning Wout analytically for linear ODEs, nevertheless
our network proposal can still be exploited to transfer learn
nonlinear ODEs. To do so, we replace the computation of
analytic Wout with gradient-based optimization. Note, since
the hidden weights are frozen, the final hidden activations
can be pre-computed given sampling points t for efficient
optimization. We use this approach to solve a Hamiltonian
nonlinear system described by the ODE:

ψ̈ = −ψ − ψ3, (15)

that conserves energy given by the Hamiltonian:

H =
ψ̇2

2
+
ψ2

2
+
ψ4

4
. (16)

We train the system on 5 initial positions ψ0 randomly sam-
pled in the range [0.5, 2.0] and with initial velocity ψ̇0 = 0.
The loss function during training consists of (1) a differen-
tial equation loss, (2) an initial condition loss, and (3) an
energy conservation loss penalty. The energy loss enforces
the Hamiltonian at all points in time to be the same, namely
LE = (H(ψ, ψ̇) − H(ψ0, ψ̇0))

2 (Mattheakis et al., 2022).
We then evaluate the performance of the hidden states on
30 ICs sampled in the same range (see Fig. 3). Since we
freeze the hidden layers, we can pre-compute the hidden ac-
tivations H(t̄) at fixed time t̄ and then fine-tune Wout using
gradient descent for 5000 epochs. Note that the optimization
can be done using other methods as well, including L-BFGS
since the entire problem is reduced to convex optimization.

One-Shot Transfer Learning of Physics-Informed Neural Networks

−1 0 1
ψ

−4

−2

0

2

4

ψ̇

x1

x2

−1

0

1

ψ

0.0 2.5 5.0 7.5 10.0
Time (s)

10−12

10−11

R
es

id
ua

ls

Figure 2. Phase space trajectories of the coupled oscillator system
for fixed mass and spring constants (top) and spatial solutions
(middle). One solution that induces beats is highlighted in color
while the other solutions appear in grey. The average residuals of
the total realizations are shown in the bottom panel. The initial state
of the masses influences how close the normal mode frequencies
get. Our network can identify solutions to all 100 initial conditions
in ∼ 10−2 seconds.

5.2. PDEs

PDEs can be used to model complex spatio-temporal sys-
tems making them of practical interest in numerous domains.
Typically, the most well-studied PDEs are linear and include
the diffusion, Poisson, and wave equations. To benchmark
the performance of this approach, we investigate the Poisson
equation and the time-dependent Schrödinger equation.

−1 0 1
ψ

−2

−1

0

1

2

ψ̇

0 1 2 3
Time (s)

10−5

10−4

R
es

id
ua

ls

Figure 3. Top: phase space of predicted trajectories of a nonlinear
oscillator system. The training curves ares shown in green and the
test in blue. Dashed black lines represent ground truth solutions.
Bottom: average residuals of 30 predicted solutions across differ-
ent initial conditions.

5.2.1. POISSON EQUATION

The Poisson equation is an extensively studied PDE in
physics, typically used to identify an electrostatic potential
ψ given a charge distribution ρ. In 2-D, it can be described
by:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ρ(x, y). (17)

We define this PDEs in the domain x ∈ [xL, xR] and y ∈
[yB , yT] with BCs:

ψ(xL, y) = ψ(xR, y) = ψ(x, yB) = ψ(x, yT) = 0. (18)

We train the network on 4 different charge distributions
ρ(x, y) = sin(kπx) sin(kπy) for k ∈ 1, 2, 3, 4. We then
evaluate the performance of our network in two settings.
The first is an ablation across 100 linearly spaced values of
k in [1, 4] (see Table 1). As a second experiment we test the
proposed transfer learning method on a harder testing force
function of the form:

ρtest =
1

4

4∑
k=1

(−1)k+12k sin(kπx) sin(kπy). (19)

One-Shot Transfer Learning of Physics-Informed Neural Networks

The solution is shown in the top graph of Fig. 4. To assess
the network performance, we plot in the lower graph of
Fig. 4 the mean square error (MSE) computed between the
predicted ψ(x, y) and the analytical solution which reads:

ψ(x, y) =
−1

2(kπ)2
sin(kπx) sin(kπy). (20)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

-4e-02

-3e-02

-3e-02

-2e-02

-2e-02

-1e-02

-5e-03

0e+00

5e-03

1e-02

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0e+00

2e-05

4e-05

6e-05

8e-05

1e-04

1e-04

1e-04

Figure 4. Predicted solution (top) of the Poisson equation with an
initial charge distribution ρ(x, y) composed of multiple frequen-
cies k. The network is pre-trained on the individual frequencies
and can obtain the solution to the combination in one-shot (35s)
with high fidelity/low MSE (bottom).

5.2.2. TIME-DEPENDENT SCHRÖDINGER EQUATION

In quantum mechanics the time-dependent Schrödinger
equation describes the propagation of a wavefunction
through space and time. The PDE in one-dimensional space
is of the form:

iℏ
∂

∂t
ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t), (21)

where ψ(x, t) is a complex-valued function called wave-
function, V (x) is a stationary potential function, m is the

0.50 0.75 1.00 1.25 1.50

σ

1

2

3

4

5

p 0

10−7

10−6

10−5

10−4

10−3

10−2

Figure 5. MSE between predicted and analytic solutions |ψ|2 as
a function of σ and p0. Red circles represent the three configura-
tions for which the network was batch trained. We see that as p0
increases, transfer learning Wout becomes less effective because of
the F-principle bottleneck for PINNs.

mass, and ℏ is a constant. We investigate the quantum free-
particle evolution for which V (x) = 0 for several initial
states ψ(x, 0).

To train the complex-valued wave-function, we separate
the real ψR and imaginary ψI parts (Raissi et al., 2019),
namely ψ(x, t) = ψR(x, t) + iψI(x, t). By plugging the
above form of ψ into Eqn. 21 we obtain a coupled system
of real-valued PDEs as:

∂

∂t

[
ψR
ψI

]
=

[
0 −ℏ/2m

ℏ/2m 0

]
∂2

∂x2

[
ψR
ψI

]
, (22)

which is of the form ψt = Aψxx. The system is linear and
thus, we can obtain analytic Wout. We consider a network
with two outputs per equation associating with ψR and ψI ,
where each output is, respectively, described by a set of
weights as Wout = [WR,WI]

T . Then, the network solutions
read:

[
ψR
ψI

]
=

[
H 0
0 H

] [
WR

WI

]
, (23)

By taking the L2 loss of Eqn. 22 as well as the BCs and ICs
we obtain:

Wout =(DT
HDH +HT

0 H0

+HT
d Hd + ḢT

d Ḣd)
−1(HT

0 ψ0),
(24)

where H0 = H(0, x), Hd = H(t, L)−H(t, R), and Ḣd =
Hx(t, L)−Hx(t, R).

To investigate a particular set of solutions, we define the

One-Shot Transfer Learning of Physics-Informed Neural Networks

−0.5

0.0

0.5

σ
=

0.
5

−0.5

0.0

0.5

σ
=

0.
6

−0.5 0.0 0.5

p0 = 1

−0.5

0.0

0.5

σ
=

0.
7

−0.5 0.0 0.5

p0 = 2
−0.5 0.0 0.5

p0 = 3

Figure 6. Real (x-axis) against imaginary (y-axis) wave-functions
of the predicted solutions ψ(Tmax, x) for different realizations of
σ, p0 with solid and dashed lines representing the predicted and
ground truth solutions. The diagonal configurations are used for
training. Non-diagonals constitute test configurations.

initial condition for this problem as:

ψ(x, 0) =
1

π1/4
√
σ
e−(x−x0)

2/(2σ2)+ip0x/ℏ, (25)

that leads to the exact solution:

ψ(x, t) =
e
− (x−(x0+p0t/m))2

2σ2(1+iℏt/mσ2) ei(p0x−Et)/ℏ

π1/4
√
σ(1 + iℏt/mσ2)

, (26)

where E = p20/2m.

We train a network simultaneously on three solutions of
Eqn. (21) with pairs of σ, p0 such that the network is trained
for (σ, p0) = {(0.5, 1), (0.6, 2), (0.6, 3)}. We show that by
using only 3 training ICs, accurate solutions to multiple
other configurations can be obtained instantly and with high
accuracy (see Fig. 5). We measure and present in Fig. 5
the accuracy of our predicted solution by computing the
MSE across time and space against the analytic solution
Eqn. 26. Furthermore, we show that near the bundles,
the predicted real-imaginary complex space under different
σ, p0 pairs tightly couples to the analytic solution (see Fig.
6). Our results also highlight the F-principle, a conclusion
drawn about deep networks which shows that high frequency
components require more training (Xu et al., 2019) as can be
seen in Fig. 5 by looking at higher p0 values which induce
higher frequency components in the solution ψ.

6. Conclusion
We have extensively shown how PINNs can be batch trained
on a family of differential equations to learn a rich latent

space that can be exploited for transfer learning. For linear
systems of ODEs and PDEs, the transfer can be reduced to
computing a closed-form solution for Wout resulting in one-
shot inference. This analytic solution significantly speeds
up inference on unseen differential equations by orders of
magnitude, and can therefore replace or augment traditional
transfer learning. In particular, we show that such a network
can identify first-order ODEs, second-order coupled ODEs,
Poisson and Schrödinger equations with high levels of ac-
curacy within a few seconds. Furthermore, in the nonlinear
setting, where a closed-form analytic Wout is not derived,
we show that our approach can still be used with gradient
descent to identify accurate solutions to the nonlinear os-
cillator system. These results are particularly important to
practitioners who seek to rapidly identify accurate solutions
to differential equations of the same type, namely of the
same order, but under different conditions and coefficients.
Indeed many new applications may arise as a consequence
of this approach, from transfer learning on large domains, to
solving high dimensional linear PDEs. Future work in this
direction may adapt to data-dependent settings, incorporate
non-linear outputs to develop one-shot training for nonlinear
equations, and investigate properties of the learnt hidden
space.

References
Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu,

S., Agarwal, D., and Giovanni, M. D. Neurodiffeq: A
python package for solving differential equations with
neural networks. Journal of Open Source Software, 5(46):
1931, 2020. doi: 10.21105/joss.01931.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J.,
and Duvenaud, D. K. Neural Ordinary Dif-
ferential Equations. pp. 6571–6583, 2018.
URL http://papers.nips.cc/paper/
7892-neural-ordinary-differential-equations.
pdf.

Choudhary, A., Lindner, J. F., Holliday, E. G., Miller, S. T.,
Sinha, S., and Ditto, W. L. Physics enhanced neural
networks predict order and chaos. arXiv:1912.01958
[physics], November 2019. URL http://arxiv.
org/abs/1912.01958. arXiv: 1912.01958.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian Neural Networks.
arXiv:2003.04630 [physics, stat], March 2020. URL
http://arxiv.org/abs/2003.04630. arXiv:
2003.04630.

de Wolff, T., Carrillo, H., Martı́, L., and Sanchez-Pi, N. To-
wards Optimally Weighted Physics-Informed Neural Net-
works in Ocean Modelling. arXiv:2106.08747 [physics],

http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://arxiv.org/abs/1912.01958
http://arxiv.org/abs/1912.01958
http://arxiv.org/abs/2003.04630

One-Shot Transfer Learning of Physics-Informed Neural Networks

June 2021. URL http://arxiv.org/abs/2106.
08747. arXiv: 2106.08747.

Desai, S., Mattheakis, M., Sondak, D., Protopapas, P., and
Roberts, S. J. Port-Hamiltonian Neural Networks for
Learning Explicit Time-Dependent Dynamical Systems.
CoRR, abs/2107.08024, 2021a. URL https://arxiv.
org/abs/2107.08024. eprint: 2107.08024.

Desai, S. A., Mattheakis, M., and Roberts, S. J. Vari-
ational integrator graph networks for learning energy-
conserving dynamical systems. Phys. Rev. E, 104:
035310, Sep 2021b. doi: 10.1103/PhysRevE.104.
035310. URL https://link.aps.org/doi/10.
1103/PhysRevE.104.035310.

Dormand, J. R., El-Mikkawy, M. E. A., and Prince, P. J.
Families of Runge-Kutta-Nystrom Formulae. IMA Jour-
nal of Numerical Analysis, 7(2):235–250, 1987. ISSN
0272-4979, 1464-3642. doi: 10.1093/imanum/7.2.235.
URL https://academic.oup.com/imajna/
article-lookup/doi/10.1093/imanum/7.2.
235.

Flamant, C., Protopapas, P., and Sondak, D. Solving Differ-
ential Equations Using Neural Network Solution Bun-
dles. arXiv:2006.14372 [physics], June 2020. URL
http://arxiv.org/abs/2006.14372. arXiv:
2006.14372.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamilto-
nian Neural Networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32, pp. 15379–15389. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/
9672-hamiltonian-neural-networks.pdf.

Guo, Y., Zhang, H., Wang, L., Fan, H., and Wang, X.
Transfer learning of chaotic systems. Chaos: An In-
terdisciplinary Journal of Nonlinear Science, 31(1):
011104, January 2021. ISSN 1054-1500, 1089-7682.
doi: 10.1063/5.0033870. URL http://arxiv.org/
abs/2011.09970. arXiv: 2011.09970.

Han, J., Jentzen, A., and E, W. Solving high-
dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sci-
ences, 115(34):8505–8510, 2018. doi: 10.1073/pnas.
1718942115. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1718942115.

Hennigh, O., Narasimhan, S., Nabian, M. A., Subramaniam,
A., Tangsali, K., Rietmann, M., del Aguila Ferrandis, J.,
Byeon, W., Fang, Z., and Choudhry, S. Nvidia simnet:
an ai-accelerated multi-physics simulation framework.
arXiv:2012.07938 [physics.flu-dyn], 2020. URL https:
//arxiv.org/abs/2012.07938.

Hochlehnert, A., Terenin, A., Sæmundsson, S., and Deisen-
roth, M. P. Learning Contact Dynamics using Physi-
cally Structured Neural Networks. arXiv:2102.11206
[cs, stat], February 2021. URL http://arxiv.org/
abs/2102.11206. arXiv: 2102.11206.

Howse, J. W., Abdallah, C. T., and Heileman, G. L. Gradi-
ent and Hamiltonian Dynamics Applied to Learning in
Neural Networks. In Touretzky, D. S., Mozer, M. C., and
Hasselmo, M. E. (eds.), Advances in Neural Information
Processing Systems 8, pp. 274–280. MIT Press, 1996.

Jaeger, H. and Haas, H. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless
communication. Science, 304(5667):78–80, 2004. doi:
10.1126/science.1091277.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed ma-
chine learning. Nature Reviews Physics, 3(6):422–
440, June 2021. ISSN 2522-5820. doi: 10.1038/
s42254-021-00314-5. URL http://www.nature.
com/articles/s42254-021-00314-5.

Kaxiras, E., Neofotistos, G., and Angelaki, E. The first
100 days: modeling the evolution of the COVID-19 pan-
demic. arXiv:2004.14664 [q-bio], April 2020. URL
http://arxiv.org/abs/2004.14664. arXiv:
2004.14664.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial Neural
Networks for Solving Ordinary and Partial Differential
Equations. IEEE Transactions on Neural Networks, 9(5):
987–1000, September 1998. ISSN 10459227. doi: 10.
1109/72.712178. URL http://arxiv.org/abs/
physics/9705023. arXiv: physics/9705023.

Lee, K., Trask, N. A., and Stinis, P. Machine learning
structure preserving brackets for forecasting irreversible
processes. arXiv:2106.12619 [physics], June 2021. URL
http://arxiv.org/abs/2106.12619. arXiv:
2106.12619.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A. M., and Anandkumar, A.
Fourier neural operator for parametric partial differen-
tial equations. CoRR, abs/2010.08895, 2020. URL
https://arxiv.org/abs/2010.08895.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. A deep
learning library for solving differential equations. SIAM
Review, 63:208–228, 2021. doi: 10.1137/19M1274067.

Maclaurin, D., Duvenaud, D., and Adams, R. P. Autograd:
Effortless Gradients in Numpy. pp. 3.

http://arxiv.org/abs/2106.08747
http://arxiv.org/abs/2106.08747
https://arxiv.org/abs/2107.08024
https://arxiv.org/abs/2107.08024
https://link.aps.org/doi/10.1103/PhysRevE.104.035310
https://link.aps.org/doi/10.1103/PhysRevE.104.035310
https://academic.oup.com/imajna/article-lookup/doi/10.1093/imanum/7.2.235
https://academic.oup.com/imajna/article-lookup/doi/10.1093/imanum/7.2.235
https://academic.oup.com/imajna/article-lookup/doi/10.1093/imanum/7.2.235
http://arxiv.org/abs/2006.14372
http://papers.nips.cc/paper/9672-hamiltonian-neural-networks.pdf
http://papers.nips.cc/paper/9672-hamiltonian-neural-networks.pdf
http://arxiv.org/abs/2011.09970
http://arxiv.org/abs/2011.09970
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://arxiv.org/abs/2012.07938
https://arxiv.org/abs/2012.07938
http://arxiv.org/abs/2102.11206
http://arxiv.org/abs/2102.11206
http://www.nature.com/articles/s42254-021-00314-5
http://www.nature.com/articles/s42254-021-00314-5
http://arxiv.org/abs/2004.14664
http://arxiv.org/abs/physics/9705023
http://arxiv.org/abs/physics/9705023
http://arxiv.org/abs/2106.12619
https://arxiv.org/abs/2010.08895

One-Shot Transfer Learning of Physics-Informed Neural Networks

Mattheakis, M., Joy, H., and Protopapas, P. Unsuper-
vised reservoir computing for solving ordinary differ-
ential equations. arXiv:2108.11417 [cs:LG], 2021. URL
http://arxiv.org/abs/2108.11417. arXiv:
2108.11417.

Mattheakis, M., Sondak, D., Dogra, A. S., and Protopapas,
P. Hamiltonian neural networks for solving equations of
motion. Phys. Rev. E, 105:065305, 2022. doi: 10.1103/
PhysRevE.105.065305. URL https://link.aps.
org/doi/10.1103/PhysRevE.105.065305.

McClenny, L. and Braga-Neto, U. Self-Adaptive Physics-
Informed Neural Networks using a Soft Attention Mecha-
nism. arXiv:2009.04544 [cs, stat], September 2020. URL
http://arxiv.org/abs/2009.04544. arXiv:
2009.04544.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems in-
volving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378:686–707, February
2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.
045. URL http://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Saemundsson, S., Terenin, A., Hofmann, K., and Deisen-
roth, M. Variational Integrator Networks for Physi-
cally Structured Embeddings. In Proceedings of the
Twenty Third International Conference on Artificial In-
telligence and Statistics, pp. 3078–3087. PMLR, June
2020. URL https://proceedings.mlr.press/
v108/saemundsson20a.html. ISSN: 2640-3498.

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E.,
and Kuhl, E. Physics-Informed Neural Networks for Car-
diac Activation Mapping. Frontiers in Physics, 8, 2020.
ISSN 2296-424X. doi: 10.3389/fphy.2020.00042. URL
https://www.frontiersin.org/articles/
10.3389/fphy.2020.00042/full. Publisher:
Frontiers.

Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., and
Battaglia, P. Hamiltonian Graph Networks with ODE
Integrators. arXiv:1909.12790 [physics], Septem-
ber 2019. URL http://arxiv.org/abs/1909.
12790. arXiv: 1909.12790.

Schwartz, M. Lecture 3: Coupled oscillators. pp. 6, 2017.

Sirignano, J. and Spiliopoulos, K. DGM: A deep learn-
ing algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, De-
cember 2018. ISSN 00219991. doi: 10.1016/j.
jcp.2018.08.029. URL http://arxiv.org/abs/
1708.07469. arXiv: 1708.07469.

Wang, H., Planas, R., Chandramowlishwaran, A., and
Bostanabad, R. Train Once and Use Forever: Solv-
ing Boundary Value Problems in Unseen Domains with
Pre-trained Deep Learning Models. arXiv:2104.10873
[physics], apr 2021. URL http://arxiv.org/
abs/2104.10873. arXiv: 2104.10873.

Wang, S. and Perdikaris, P. Deep learning of free boundary
and Stefan problems. Journal of Computational Physics,
428:109914, March 2021. ISSN 00219991. doi: 10.1016/
j.jcp.2020.109914. URL http://arxiv.org/abs/
2006.05311. arXiv: 2006.05311.

Xu, Z.-Q. J., Zhang, Y., and Xiao, Y. Training be-
havior of deep neural network in frequency domain.
arXiv:1807.01251 [cs, math, stat], October 2019. URL
http://arxiv.org/abs/1807.01251. arXiv:
1807.01251.

Yang, L., Zhang, D., and Karniadakis, G. E. Physics-
Informed Generative Adversarial Networks for Stochas-
tic Differential Equations. arXiv:1811.02033 [cs, math,
stat], November 2018. URL http://arxiv.org/
abs/1811.02033. arXiv: 1811.02033.

Yin, Y., Guen, V. L., Dona, J., de Bézenac, E., Ayed, I.,
Thome, N., and Gallinari, P. AUGMENTING PHYSI-
CAL MODELS WITH DEEP NET- WORKS FOR COM-
PLEX DYNAMICS FORECASTING. pp. 22, 2021.

Zhai, H. and Hu, G. Inferring micro-bubble dynamics
with physics-informed deep learning. arXiv:2105.07179
[physics], may 2021. URL http://arxiv.org/
abs/2105.07179. arXiv: 2105.07179.

Zhang, R., Liu, Y., and Sun, H. Physics-Informed
Multi-LSTM Networks for Metamodeling of Nonlinear
Structures. Computer Methods in Applied Mechanics
and Engineering, 369:113226, September 2020. ISSN
00457825. doi: 10.1016/j.cma.2020.113226. URL
http://arxiv.org/abs/2002.10253. arXiv:
2002.10253.

Zhong, Y. D., Dey, B., and Chakraborty, A. Dis-
sipative SymODEN: Encoding Hamiltonian Dynam-
ics with Dissipation and Control into Deep Learning.
arXiv:2002.08860 [cs, eess, stat], April 2020. URL
http://arxiv.org/abs/2002.08860. arXiv:
2002.08860.

http://arxiv.org/abs/2108.11417
https://link.aps.org/doi/10.1103/PhysRevE.105.065305
https://link.aps.org/doi/10.1103/PhysRevE.105.065305
http://arxiv.org/abs/2009.04544
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://proceedings.mlr.press/v108/saemundsson20a.html
https://proceedings.mlr.press/v108/saemundsson20a.html
https://www.frontiersin.org/articles/10.3389/fphy.2020.00042/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00042/full
http://arxiv.org/abs/1909.12790
http://arxiv.org/abs/1909.12790
http://arxiv.org/abs/1708.07469
http://arxiv.org/abs/1708.07469
http://arxiv.org/abs/2104.10873
http://arxiv.org/abs/2104.10873
http://arxiv.org/abs/2006.05311
http://arxiv.org/abs/2006.05311
http://arxiv.org/abs/1807.01251
http://arxiv.org/abs/1811.02033
http://arxiv.org/abs/1811.02033
http://arxiv.org/abs/2105.07179
http://arxiv.org/abs/2105.07179
http://arxiv.org/abs/2002.10253
http://arxiv.org/abs/2002.08860

One-Shot Transfer Learning of Physics-Informed Neural Networks

A. System of second order differential equations
To compute the analytic Wout for a system of second order differential equation we begin by defining:

ψ̈ = Aψ

where dots denote time derivatives and

ψ =

[
H 0
0 H

] [
Wq

Wp

]
.

Then, by computing the L2 loss on the equation above including initial conditions ψ0 = ψ(0), ψ̇0 = ψ̇(0) we obtain:

Wout =
(
DT
HDH +HT

0 H0 +HT
0dH0d

)−1
(
HT

0 ψ0 +HT
0dψ̇0

)
where

DH =

[
Ḧ 0

0 Ḧ

]
,

H0 =

[
H(0) 0
0 H(0)

]
,

H0d =

[
Ḣ(0) 0

0 Ḣ(0)

]
.

B. QR Decomposition
In the main manuscript, we define the loss function for ODEs as:

L = (D̂nuθ(t)− f(t))2 + (D̄0uθ(t)− uic)
2, (27)

For ease of notation, let D̂nuθ(t) = Ŷ , f(t) = Y , D̄0uθ(t) = Ŷ0 and uic = Y0. The loss function above can be re-written
as a single loss function s.t.:

L =

([
Ŷ

Ŷ0

]
−
[
Y
Y0

])2

. (28)

To see this, we can expand the vector notation as:

L =
([
Ŷ Ŷ0

]
−

[
Y Y0

])([Ŷ
Ŷ0

]
−

[
Y
Y0

])
, (29)

which when expanded resolves to Eqn.27.

By differentiating the above loss equation with respect to Wout and setting it to zero, we obtain a linear least squares problem
as (

HTH +HT
0 H0

)
Wout =

(
HTY +HTY0

)
, (30)

which is of the form
ATAWout = ATY. (31)

Since the left hand-side is a square matrix ATA, it is possible to take its pseudo-inverse. However, for a number of problems,
it is possible that the matrix A has a large condition number and therefore the squaring procedure of the normal equations
squares the condition number making it unstable. Although it is possible to take a pseudo-inverse, in such cases, rather than
using the normal equations to obtain a solution to Wout, it is possible to solve for Wout using QR decomposition. In other
words:

One-Shot Transfer Learning of Physics-Informed Neural Networks

AWout = Y, (32)

and since A is not square, we can decompose it into A = QR such as

Wout = R−1QTY. (33)

One advantage of using QR is that it avoids forming the gram matrix ATA of the normal equations which can be singular.

C. Computational Complexity
One special outcome of our formalism is that it separates the homogeneous part of the differential equation from the initial
conditions and forces. In other words, if we investigate the normal equations for Wout, we see that

Wout = (D̂T
HD̂H + D̄T

HD̄H)−1(DT
Hf

′(t) + D̄T
Hu

′
ic). (34)

Notice that the forces and initial conditions appear outside the matrix inversion. This is a particularly important feature as
it allows us to scale rapidly when the differential equation is fixed and the solution to many initial conditions or forces is
required. In fact, the computational complexity of the inversion is O(h3) where h is the number of output neurons of the
final hidden layer and the multiplication is O(h2m), where m is the number of initial conditions and forces. Therefore, if the
differential equation is fixed the total computational cost of computing Wout is O(h3 +mh2). However, if the differential
equation is not fixed and varies across all m samples, then the inversion has to be computed m times such that the total
computational cost is O(mh3 +mh2).

D. Training Configuration
All models are trained using an Adam optimizer with a learning rate of 10−3. The networks are all trained on a Macbook
Pro, 2.2 GHz Intel Core i7, 16 Gb RAM. We use 64-bit tensors.

Differential Equation Architecture (N bundles) # training Bundles Training Iterations # Training Collocation Points Evaluation Domain Evaluation Deltas Activations Optimizer
First-Order Linear Inhomogeneous 1-100-100-1*N 10 10000 30 t in [0,3] dt = 0.1 tanh Adam

Second-Order Linear Inhomogeneous 1-100-100-1*N 10 10000 30 t in [0,3] dt = 0.05 tanh Adam
Coupled-Oscillator 1-100-100-2*N 10 10000 50 t in [0,10] dt = 0.01 sin Adam

Non-Linear Oscillator 1-100-100-1*N 5 10000 60 t in [0,3] dt = 0.05 sin Adam
Poisson 2-100-100-1*N 4 40000 1000 x in [0,1], t in [0,1] dx = 0.01, dt = 0.01 sin Adam

Schroedinger 2-100-100-2*N 3 40000 1000 x in [-10,10], t in [0,1] dx = 0.1, dt = 0.01 α sin+(1− α) tanh Adam

First-Order Linear Inhomogeneous

The equation is of the form:
u̇+ a(t)u = f(t), (35)

subjected to an initial condition u0. We sample within:

f ∈ {cos(t), sin(t), t},
a ∈ {t, t2, 1},

(u0) ∈ [−5, 5].

Second-Order Linear Inhomogeneous

The equation is of the form:

ü+ a1(t)u̇+ a(t)u = f(t) (36)

with initial conditions u0 and u̇0. We sample within:

f ∈ {1, t, cos(t), sin(t)},
a ∈ {1, 3t, t2},
a1 ∈ {1, t2, t3},

(u0, u̇0) ∈ [−5, 5].

One-Shot Transfer Learning of Physics-Informed Neural Networks

Coupled oscillator

The equation is of the form:

[
m 0
0 m

] [
ü1
ü2

]
=

[
k1 + k2 −k2
−k2 k1 + k2

] [
u1
u2

]
. (37)

We sample:

m ∈ [1, 2],

(k1, k2) ∈ [0.5, 4.5],

(u0, u1, u̇1,0, u̇2,0) ∈ [−1.5, 1.5].

Nonlinear oscillator

The equation is:

ü+ u+ u3 = 0. (38)

We sample within:

(u0, u̇0) ∈ [0.5, 2].

Poisson equation
∇2u = ρ (39)

we sample:

ρ ∈ {sin(x) sin(y), sin(2x) sin(2y), sin(3x) sin(3y), sin(4x) sin(4y)}.

Schrodinger

[
u̇R
u̇I

]
=

[
0 −ℏ/2m

ℏ/2m 0

] [
u′′R
u′′I

]
(40)

where ψ = (uR, uI) and:

ψ(x, 0) =
1

π1/4
√
σ
e−(x−x0)

2/(2σ2)+ip0x/ℏ. (41)

and

σ ∈ {0.5, 0.6, 0.7},
p0 ∈ {1, 2, 3}.

E. Training Bundles
Typically, the more training bundles we use, the more diverse the hidden states have to be in order to generate accurate
solutions for all the training differential equations. As such, we would expect that a diverse set of hidden states should also
result in better inference for unseen differential equations. Experimentally, we find and show in Fig. 7 that for first order
differential equations this is true:

Of course doing this also increases the training overhead, thus empirically we use 10 consistently across our experiments.

One-Shot Transfer Learning of Physics-Informed Neural Networks

2 5 7 10 12 15 17 20
Number of Bundles

10−11

10−10

10−9

M
S

E

Figure 7. Test MSE as a function of number of bundles. The more bundles we use to train, the better our test accuracy gets.

