
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ROBUST SOCIAL STRATEGIES WITH
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As agentic AI becomes more widespread, agents with distinct and possibly con-
flicting goals will interact in complex ways. These multi-agent interactions pose a
fundamental challenge, particularly in social dilemmas, where agents’ individual
incentives can undermine collective welfare. While reinforcement learning (RL)
has been effective for aligning large language models (LLMs) in the single-agent
regime, prior small-network results suggest that standard RL in multi-agent games
often converges to defecting, self-interested policies. We show the same effect in
LLMs: despite cooperative priors, RL-trained LLM agents develop opportunis-
tic behavior that can exploit even advanced closed-source models. To address
this tendency of RL to converge to poor equilibria, we build on an opponent-
learning awareness algorithm, Advantage Alignment, to fine-tune LLMs toward
multi-agent cooperation and non-exploitability. Specifically, we derive a novel
variant of Advantage Alignment under the assumption of non-observability of
other players’ actions on the current time step, resulting in jit-Advantage Align-
ment. We further introduce a group-relative baseline that simplifies advantage
computation, enabling multi-agent training at LLM scale. Agents fine-tuned with
our method learn the well-known tit-for-tat strategy in the classic Iterated Pris-
oner’s Dilemma. In complex environments, our method achieves higher collective
payoffs while remaining robust against exploitation by greedy agents. Finally, we
contribute a suite of social dilemma benchmarks to advance the study of coopera-
tion in agentic AI.

1 INTRODUCTION

LLMs undergo large-scale pretraining, instruction tuning, and reinforcement learning, and continue
to exhibit increasingly advanced capabilities (Guo et al., 2025). Coupled with decreasing deploy-
ment costs and improved adaptability to downstream tasks, these trends enhance the commercial
and practical viability of LLM agents across a wide range of applications. Recent efforts are al-
ready translating this potential into concrete systems. Anthropic’s Model Context Protocol (MCP;
Anthropic, 2024) enables an LLM to interact with external systems and become more capable as an
autonomous decision-making agent. CICERO (FAIR et al., 2022) demonstrates strategic, human-
level play with LLMs in the complex board game Diplomacy. Voyager (Wang et al., 2023) lever-
ages Minecraft to illustrate the rising potential of LLMs as agents for open-ended exploration and
skill acquisition. As LLM-agents become commonplace, new infrastructure is emerging to support
agent-agent interaction, e.g. Google’s Agent2Agent protocol (Agent2AgentProtocol, 2024) enabling
collaboration between LLM-based agents with varying capabilities, potentially from different orga-
nizations.

Despite rapid progress, LLM behavior in multi-agent settings remains poorly understood. One com-
mon scenario involves agents with conflicting goals that discourage cooperation, even when cooper-
ation would lead to better outcomes for all. These situations, known as social dilemmas (Rapoport
& Chammah, 1965), frequently arise in real-world contexts where agents face a tension between
individual gain and collective welfare. They appear in everyday scenarios such as navigating traffic,
as well as in more complex settings such as business negotiations or international policy coordina-
tion. A recent example is the case of many LLM crawlers downloading training data from small
code-hosting websites, causing them to be overwhelmed with DDoS-like traffic (SourceHut, 2025).
Such interactions are analogous to the famous tragedy of the commons, a social dilemma concerning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the maintenance of public goods, where self-interested behavior leads to resource depletion. Such
cases illustrate the types of social dilemmas that may arise in complex environments where LLMs
are increasingly expected to act and interact autonomously.

Learning to resolve these scenarios is typically framed within multi-agent reinforcement learning
(MARL). Unlike single-agent RL, where an agent improves an objective in a static environment, in
MARL each agent must adapt to the strategies of other agents, who can also be learning over time.
This leads to non-stationarity, since the policy of each learning agent affects the collective outcome.
Social dilemmas can be treated as a specific subclass of MARL problems that are mixed-motive;
neither fully cooperative nor fully competitive. Initial attempts using MARL to play social dilemmas
were unsuccessful. Training agents based on small neural networks with standard RL resulted in
sub-optimal greedy strategies (Sandholm & Crites, 1996). To account for other learning agents,
Foerster et al. (2018) introduced Opponent Shaping (OS), an RL paradigm that explicitly considers
agent interactions in hopes of steering their dynamics towards mutually beneficial outcomes. LOLA,
the first OS algorithm, is capable of finding the pareto-optimal strategy of tit-for-tat in simple social
dilemmas like the Iterated Prisoner’s Dilemma.

However, modern agents are not small, randomly initialized networks. Prior work largely focused on
teaching such tabula-rasa agents reciprocity—punishing greed and rewarding cooperation—where
the central obstacle was that uninformed policies gravitated toward short-sighted, self-interested
strategies. By contrast, LLMs arrive with rich priors and human-like social norms induced by pre-
training and post-training (instruction tuning/RLHF) (Ross et al., 2024), potentially altering the
learning dynamics and failure modes in multi-agent settings. This raises a key question: when
fine-tuned with standard RL, do LLMs reproduce the same failure modes as small networks, or do
their human-biased priors mitigate them? Given that LLM agents already interact in the wild, we
investigate whether naı̈ve RL fine-tuning systematically erodes collective welfare.

To evaluate this, we introduce a novel testbed for social dilemmas in the LLM setting. The testbed
integrates both small-scale social dilemma frameworks (Duque et al., 2025) which we extend into
the textual domain and our newly proposed Split Games, designed to measure cooperation as well
as exploitability and require agents to gain and maintain trust. Using this environment, we con-
duct extensive experiments across a range of modern LLMs and find that standard RL consistently
produces greedy behavior across all settings. Probing further, we show that even state-of-the-art
closed-source models are exploitable when facing agents trained with standard RL. These results
underscore that current LLMs are not yet prepared to robustly operate in real-world multi-agent
settings and highlight a novel risk of current agentic AI.

Next, building on recent advances (Duque et al., 2025), we introduce jit-Advantage Alignment,
an opponent-shaping algorithm that trains agents to align their incentives with their opponent and
learn both cooperation and non-exploitability. When trained with jit-Advantage Alignment, agents
learn the non-exploitable and effective tit-for-tat strategy in the classic Iterated Prisoner’s Dilemma.
In our novel testbed, jit-Advantage Alignment agents learn to cooperate with cooperative players
as well as themselves, while remaining robust against greedy players.

In summary, our key contributions are:

• Re-deriving an improved formulation of the Advantage Alignment algorithm (Duque et al.,
2025), creating jit-Advantage Alignment

• Creating a novel testbed of social dilemmas for LLM agents, both local and API models.
We include both standard games and extended games with extra communication channels.

• Demonstrating that standard RL leads to greedy, suboptimal agents across a range of open-
source LLM models

• Discovering that state-of-the-art closed-source LLMs are susceptible to being exploited by
greedy agents

• Applying jit-Advantage Alignment to achieve cooperative and non-exploitatable agents
in two games of our novel testbed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 MARKOV GAMES

A n-agents Markov Game can be defined as a tuple (Π,S,A,R,P, γ). S is a set of possible states.
A is a set of functions A1, . . . ,An where Ai(S) gives the set of possible actions of agent i at state
S. R is the set of reward functions {R1, . . . , Rn} where Ri : S → R is the reward function of agent
i. P is the transition function, mapping a probability distribution over each transition P(S → S′).
Π is the set of policies {π1, . . . , πn}, each πi mapping any state S to a probability distribution
over Ai(S). γ is the discount factor on the returns. The expected discounted return of player i is
Vi(π) = Eτ∼PrΠµ

[∑∞
t=0 γ

tRi(st,at)
]
, where PrΠµ is distribution of trajectories induced by the initial

state distribution µ and the set of policies Π.

For any Markov Decision Process 1 the REINFORCE algorithm uses unbiased estimates of the gra-
dient of J with respect to the policy parameters π in order to perform gradient ascent on J(π)(Zhang
et al., 2020). We refer to applying REINFORCE independently to each agent optimizing their
objectives V ∗

i (πi), while considering the other agents’ policies as fixed at each learning step as
standard MARL. In contrast to Standarad MARL, where each agent optimizes its own return, Co-
operative MARL optimizes for the sum of expected returns across all agents. Specifically, We
define Cooperative MARL as applying REINFORCE on each agent with objective modified as
V ∗
i (πi) :=

∑n
j=1 Vj(πj). This formulation encourages agents to learn policies that maximize over-

all welfare rather focusing on individual benefits.

2.2 ROBUST SOCIAL STRATEGIES

In a zero-sum game, the agents’ payoffs always add up to zero; every gain for one side is matched
by an equal loss for the other. Consequently, in a two-player zero-sum setting, cooperation offers no
benefit. In this work, we focus on general-sum games, where total payoffs is not fixed, and agents
may improve their outcomes without necessarily diminishing those of others, thereby creating the
possibility of beneficial cooperation. However, in social dilemmas, agents face a tension between
their short-term individual benefit and possible long-term collective welfare. Each agent has a short-
term incentive to act selfishly (i.e., not cooperate), but if all agents do so, the resulting outcome leads
to reduced overall welfare i.e. a lower total sum of discounted returns for all agents. A socially
robust strategy is one that encourages other rational agents to behave in the collective interest. Such
a strategy does not maximize collective welfare at its own expense, but rather optimizes its own
long-term self-interest by optimizing that of the group. Formally, we consider π∗

1 to be a more
socially robust policy if V1(π

∗
1 , argmaxπ2

V2(π
∗
1 , π2)) > V1(π1, argmaxπ2

V2(π1, π2)). That is, a
socially robust policy takes into consideration the best response of the opponent.

2.3 OPPONENT SHAPING

Prior work shows that small neural networks trained with standard RL tend to converge to the Always
Defect strategy in IPD (Sandholm & Crites, 1996). More recently, Foerster et al. (2018) demon-
strated that this undesirable outcome also arises with policy gradient methods. This outcome is
expected, as policy gradients are obtained via Monte-Carlo trajectory samples with fixed policies.
Retaliatory behaviour is rare to randomly sample, while greedy behaviour is easier to discover. This
results in agents that are drawn into a greedy equilibrium and achieve suboptimal payoffs. LOLA
(Foerster et al., 2018) removed the assumption of a static environment in Markov Games and in-
cluded a model of a learning agent in its update. By explicitly modelling how opponent learning is
affected by an agent’s action, LOLA was able to learn the tit-for-tat strategy in IPD. Unfortunately,
LOLA’s computationnal complexity is quadratic in the number of parameters of the agent, making
it prohibitively computationally expensive for modern Large Language Models (LLMs).

Advantage Alignment (Duque et al., 2025) is an opponent-shaping algorithm that addresses scalabil-
ity by focusing on the Q-values of both agent and opponent. Assuming that agents act proportionally
to the exponent of their Q-value, Advantage Alignment aims to align an opponent’s Q-value with
your own. This leads to a simple modification to the advantages used in the policy gradient term of

1which is a special case of Markov Game with n=1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a REINFORCE estimator. Advantage Aligment is capable of solving social dilemmas in scenarios
with high dimensional state representations (e.g. pixel spaces), partial observability, continuous ac-
tion spaces, and delayed action outcomes. Due to its performance in complex scenarios, we chose
Advantage Alignment as a prime candidate to train LLMs to find robust social strategies.

3 jit-ADVANTAGE ALIGNMENT

3.1 RE-DERIVING THE ADVANTAGE ALIGNMENT FORMULATION

The original Advantage Alignment algorithm (Duque et al., 2025) made two assumptions about the
opponents with which the agentinteracts: (1) each agent learns to maximize their value function;
and (2) each agent acts proportionally to the softmax of the Q-values. Under these conditions, they
derive the following opponent shaping formula:

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (1)

The authors implicitly make one additional assumption: (3) agents are able to observe the actions of
other players at the current time t. We relax this third assumption to derive a modified Advantage
Alignment term (see Appendix A). Due to the difficulty of estimating the term under the relaxed
assumption, we approximate it as follows:

β · E
τ∼Prπ

1,π2

µ

 ∞∑
t=0

γt

∑
k≤t

γt−kA1(sk, ak, bk)

A2(st, at, bt)∇θ1 log π1(at|st)

 , (2)

Crucially, the main difference lies in incorporating the advantage of the agent at the current time-
step. This change is necessary for the method to work in our LLM benchmarks. Given that our
modification considers the just-in-time advantage, we call it jit-Advantage-Alignment or jit-AA.
Implementing this formulation requires scalable advantage estimation, which is a non-trivial task in
the context of LLM training. For this reason, we introduce group-relative baseline that simplifies
advantage computation.

3.2 A GROUP-RELATIVE BASELINE FOR ADVANTAGE COMPUTATION

Estimating advantages with value networks has proven challenging in the context of LLM train-
ing, often leading to unstable or ineffective results (Kazemnejad et al., 2024). Recent work, such
as RLOO (Ahmadian et al., 2024) and GRPO Shao et al. (2024) has shown that baseline-based
approaches provide more stable and efficient advantage estimates. We build on this idea and ex-
tend it to multiagent training of LLMs over multiple rounds. In our setting, each action ait corre-
sponds to a response generated by LLM agent i given the context. We define the state at time t
as st = {x0,a0, x1,a1, . . . , xt}, where x0 ∼ µ is the initial game context and x>0 represents the
intermediate game context. The initial game context x0 provides the prompt that explains the game
setup, while each intermediate game context summarizes the outcome of previous round along with
new information for the next one. To compute the advantage of an action for each player, we fix
the initial game context across k parallel games. Let Ai(st, at) denote the advantage for agent i, we
estimate it using a leave-one-out group baseline computed over the k games at each time step t:

1

k

k∑
i=1

G(a
(i)
t , st)−

1

k − 1

∑
j ̸=i

G(a
(j)
t , st)


where G(a

(i)
t , st) is the discounted return for action a

(i)
t taken in state st. This group-relative base-

line avoids the need for a learned value function, simplifies advantage computation, and enables
multi-turn RL training with LLMs in our experiments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Gradient Steps

70

80

90
Av

er
ag

e
R

ew
ar

ds

Standard RL in Split No-Comm

0 100 200 300 400
Gradient Steps

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

R
ew

ar
ds

Standard RL in IPD

0 50 100 150 200 250 300 350 400
Gradient Steps

24

26

28

Av
er

ag
e

R
ew

ar
ds

Standard RL in TAS-RPS

Qwen2.5-7B-Instruct
Meta-Llama-3.1-8B-Instruct
Qwen3-8B
Gemma-3-4b-it
Greedy play

Figure 1: Training curves of standard RL on a set of open source LLMs on multiple environments.
In all but one case, the models converge towards the payoffs of greedy strategies, or worst. The
only exception is Qwen3-8B in IPD, which has a reciprocal component that makes it converge to
cooperation.

4 SOCIAL DILEMMA TESTBED

Our goal in this work is to study the behavior of LLM Agents trained with RL in general sum
game environments with a focus on social dilemmas. To support this, we develop a novel testbed to
evaluate the effects of RL training on cooperation and resistance to exploitation.

Iterated Prisoner’s Dilemma The Iterated Prisoner’s Dilemma is a two-player game where agents
repeatedly and simultaneously choose to either Cooperate (C) or Defect (D). The per-round pay-off
matrix used in our experiments is provided in Appendix C. We include IPD in our testbed because it
is one of the most widely studied social dilemmas. However, since it is also likely presented in the
training data of LLMs, we obsfucate the nature of the game by removing any mention of “Prisoner’s
Dilemma” and replace the action labels from Cooperate and Defect to A and B, respectively. This
allows us to test how well LLMs generalize beyond memorization and to examine how RL interacts
with any prior knowlege the model may have about this social dilemma.

Split Games While IPD captures fundamental dilemma, it lacks the richness of real-world strate-
gic interactions. To address this, we propose Split Games, a novel class of social dilemmas that
combine the natural language interaction framework of Deal or No Deal (Lewis et al., 2017) with
the proposal mechanicsm from the Negotiation Game (Cao et al., 2018; Duque et al., 2025), pro-
viding a better learning signal for training agents in this dilemma. In each game, two agents are
assigned private values vi ∼ U [1, 10] over a set of items, and must negotiate through message
exchanges to decide how to split the items. The setup allows for variety of behaviors, including
bluffing, exaggeration, and cooperative negotiation. Formally, let pk,a be the proposal for the k’th
item category from agent a and qk be the quantity available. The allocation received by agent a is
qk,a = qkpk,a/max

(
qk, pk,a + pk,b

)
and similarly for agent b. The resulting payoffs are va × qk,a

and vb × qk,b, respectively. This particular mechanism-design choice removes the need for explicit
agreement and provides a training signal in each round.

We design two main variants of the game:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Gradient Steps

25

30
Av

er
ag

e
R

ew
ar

ds

Standard RL vs Fixed API Model in TAS Simple

Qwen2.5-7B-Instruct GPT-5 Nano

0 50 100 150 200
Gradient Steps

25

30

35

Av
er

ag
e

R
ew

ar
ds

Standard RL vs Fixed API Model in TAS-RPS

Qwen2.5-7B-Instruct GPT-5 Nano

Figure 2: In TAS-Simple, a Qwen2.5-7B-Instruct model trained under standard RL learns to exploit
GPT-5 Nano, a new closed-source thinking model. On TAS-RPS, GPT-5 Nano appears more robust.

Split No-Comm Here, agents observe each other’s values. Proposals and payoffs are revealed at
the end of each round. This variant supports reciprocity but avoids the challenges of communication.

Trust and Split In this setting, agents have private values and must communicate to negotiate. At
the end of each round, values and proposals are revelead to both the players, allowing reciprocity.
However, communication to negotiate multiple items introduces long contexts that can be challeng-
ing for opensource LLMs. Liao et al. (2024) find that LLMs upto the scale of 70B struggle to follow
instruction in multiple item setting. To address this limitation, we design simplified sub-variants with
a single item type, coins:

• TAS-Simple: Each agent privately receives a value in [1, 10] for the coin. After exchanging
a single message, agents submit proposals. However, since maximum value is fixed, agents
can sometimes infer if their value is higher or lower without communication.

• TAS-RPS: To remove such cases, each agent in this setting is instead given a hand of rock,
paper, or scissors. The player with winning hand values coins at 10, while the losing
hand player values coins at 1. Sucessful negotiation therefore requires communication to
uncover coin values as seen in Figures 6 and 3.

An in-depth description of each variant with sample conversations can be found at Appendix D.
Across all Split Games, starting agent alternates every round, and item values are assigned so that,
in expectation, both agents receive the same total value. The strategy that maximizes payoffs for
both the agents in each of the Split Games is to truthfully communicate private values or hands
and allocate all items to the agent who values them more highly in each round, while remaining
non-exploitable.

5 EXPERIMENTS

5.1 STANDARD RL LEADS TO GREEDY BEHAVIOR WITH LLMS

With the testbed in place, we now study how RL shapes LLM behavior in these setting. Each
agent’s policy πi is parameterized by θi and implemented via LoRA finetuning (Hu et al., 2022).
Throughout our experiments, we refer to the first player as Alice and the second as Bob. We use
self-play unless stated otherwise, i.e, the same set of parameters for both agents, conditioned on
different game contexts based on their roles. This ensures that memory usage doesn’t scale with the
number of agents and the model size we used is sufficient enough to handle the complexity of the
different roles. Moreover, our games are symmetric, so the agent’s behavior should ideally remain
consistent across roles. Details of game-specific hyperparameters are provided in Appendix B. For
games played over infinite rounds with a discount factor δ, we found no empirical difference be-
tween training with fixed-length versus stochastic-length trajectories. For computational efficiency,
we therefore use fixed-length trajectories throughout. For models that cannot reliably follow in-
structions in our testbed, we use the constrained decoding setup of vLLM to enforce a regex pattern
during generation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Last Round Summary: - Your hand: scissors -

Bob's hand: paper - Your value per coin: 10.0 - Bob's value per coin: 1.0 -

You proposed: 10 coins - You earned: 100.0 points - Bob proposed: 0

coins - Bob earned: 0.0 points - Round Complete. A New Round Begins

Your hand is paper. Send your message now in <message>...</message>

(<=500 chars). Alice• Reward ⚑⚑⚑ : 100 💬 <message>I have paper. Let's

determine our hands and values. Since I have paper, I need to know what

hand you have to figure out our per-coin values.</message> User of
Alice • :💬 Wait for Bob to send a message... Alice• Reward ⚑⚑⚑ : 100 💬

Alice• Reward ⚑⚑⚑ : 100 💬

<coins_to_self>10</coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: paper - Alice's

hand: scissors - Your value per coin: 1.0 - Alice's value per coin: 10.0 -

You proposed: 0 coins - You earned: 0.0 points - Alice proposed: 10 coins

- Alice earned: 100.0 points - Round Complete. A New Round Begins Your

hand is rock. Wait for Alice to send a message... Bob• Reward ⚑⚑⚑ : 0 💬

Bob• Reward ⚑⚑⚑ : 0 💬 <message>I have rock.

Since paper beats rock, I have the lower hand, so my per-coin value is 1.

You have the upper hand, so your per-coin value is 10. Let's split the coins

to maximize our total points.</message> User of Bob • :💬 Submit

your proposal Respond with <coins_to_self> x </coins_to_self> where x

is an integer in [0, 10]. Bob• Reward ⚑⚑⚑ : 0 💬 <coins_to_self>0</

coins_to_self>

User of Alice • :💬 Last Round Summary: - Your hand: paper - Bob's

hand: rock - Your value per coin: 10.0 - Bob's value per coin: 1.0 - You

proposed: 10 coins - You earned: 100.0 points - Bob proposed: 0 coins -

Bob earned: 0.0 points - Round Complete. A New Round Begins Your hand

is scissors. Wait for Bob to send a message... Alice• Reward ⚑⚑⚑ : 5 💬

Alice• Reward ⚑⚑⚑ : 5 💬 <message>I have

scissors. Since I have scissors, if you have rock, you're the upper hand,

and if you have paper, you're the lower hand. Let's determine our values

and split the coins accordingly.</message> User of Alice • :💬

Submit your proposal Respond with <coins_to_self> x </coins_to_self>

where x is an integer in [0, 10]. Alice• Reward ⚑⚑⚑ : 5 💬

<coins_to_self>10</coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: rock - Alice's

hand: paper - Your value per coin: 1.0 - Alice's value per coin: 10.0 - You

proposed: 0 coins - You earned: 0.0 points - Alice proposed: 10 coins -

Alice earned: 100.0 points - Round Complete. A New Round Begins Your

hand is rock. Send your message now in <message>...</message>

(<=500 chars). Bob• Reward ⚑⚑⚑ : 50 💬 <message>I have rock. Let's

figure out our hands and values. If you have paper, I'm the lower hand; if

you have scissors, I'm the upper hand. Let's split the coins strategically.</

message> User of Bob • :💬 Wait for Alice to send a message...

Bob• Reward ⚑⚑⚑ : 50 💬 Bob• Reward ⚑⚑⚑ : 50

💬 <coins_to_self>10</coins_to_self>

Round 3

Round 4

Figure 3: Two rounds of untrained Qwen3-8B playing TAS-RPS.

We evaluate multiple model families in our testbed, as shown in Figure 1. We find that standard RL
consistently leads to greedy behavior across model families and testbeds. Interestingly, if we treat
the game as fully cooperative, as seen in Figure 11 in the Appendix, some of these same models are
capable of learning cooperative strategies. This reinforces that while models can learn cooperation,
standard RL training drives them toward greedy behavior. In Split No Comm, we find that agents
learned to give the highest bid for every item even when they value it less. From qualitative analysis
of conversation in TAS-RPS game, we find that agents are communicating honestly, but still bid
high for all coins. This greedy behavior is strictly worse for all players, compared to cooperating by
bidding only when they value the item highly.

Next, we scale our experiments by training a Qwen-2.5-7B-Instruct agent against a frozen GPT-
5-nano opponent using standard RL. Here, one agent (Alice) is the learning agent finetuned via
LoRA, while the other (Bob) is fixed GPT-5-nano. We focus on two games in the testbed: TAS-
Simple and TAS-RPS, both of which involve splitting 10 coins. In TAS-Simple, players privately
receive numerical per coin value and can communicate before making the proposal. In TAS-RPS,
the coin’s value of each player depends on the players’ hands (rock, paper, or scissors), which makes
trust and communication even more critical. We chose these games because they are tractable with
LLMs at the 8B scale. Figure 2 shows that the learning agent trained with standard RL continues to
exploit the fixed GPT-5-nano in TAS-Simple, where the average reward of the learning agent steadily
increases, while that of GPT-5-nano consistently decreases. In TAS-RPS, the learning agent also
achieves higher average rewards compared to GPT-5-nano, although convergence has not yet been
achieved so it is difficult to draw strong conclusions in this setting. These results underscore that
RL-trained agents become increasingly greedy in social dilemma contexts, and that even advanced
closed-source models remain vulnerable to such exploitation.

5.2 jit-ADVANTAGE ALIGNMENT LEARNS ROBUST STRATEGIES

In this section, we evaluate jit-Advantage Alignment on two games from our testbed: the Iterated
Prisoner’s Dilemma (IPD) and Split No-Comm game. We selected these games because LLM agents
at the 8B scale can reliably follow instructions.and be effectively trained. In the IPD, agents learned
with jit-Advantage Alignment cooperate with themselves and with fully cooperative agents, while
remaining robust against defector (Figure 4). On empirical evaluation, we find that our agent learned

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AC AD jit-AA

AC

AD

jit-AA

3.00
0.00

5.00

3.00

3.00

5.00

0.00
1.00

1.40

0.90

3.00

3.00

0.90

1.40
3.00

0

1

2

3

4

5

Av
er

ag
e

R
ew

ar
d

(a) IPD

AC AD jit-AA

AC

AD

jit-AA

127.00
68.00

141.00

104.00

129.00

141.00

68.00
82.00

88.20

80.76

129.00

104.00

80.76

88.20
104.00

70

80

90

100

110

120

130

140

Av
er

ag
e

R
ew

ar
d

(b) Split No-Comm

Figure 4: Average rewards obtained under different permutations of agents. “AC” stands for “always
cooperate” and “AD” for “always defect”. In IPD, our model has a comparable performance to a
tit-for-tat agent. In Split No-Comm, our model performs better in self-play than the “AD” agent and
is not exploitable like the “AC” agent. The “AC” and “AD” agents here are hard coded.

0 200 400 600 800 1000
Gradient Steps

1.5

2.0

2.5

3.0

Av
er

ag
e

R
ew

ar
ds

jit-AA vs Advantage Alignment in IPD

jit-AA Advantage Alignment

0 200 400 600
Gradient Steps

80

90

100
Av

er
ag

e
R

ew
ar

ds

jit-AA vs Advantage Alignment in TAS-RPS

jit-AA Advantage Alignment

Figure 5: Comparison of jit-AA and Advantage Alignment.

tit-for-tat strategy. The slight drop in performance against defectors is due to losing the first round,
where the agent initially cooperates and receives a lower payoff. In the Split No-Comm game,
jit-Advantage Alignment agents achieve about 80% of the efficiency of full cooperation while
maintaining robustness. When paired with defectors, their performance decreases only slightly,
indicating they are not easily exploitable as seen in Figure 4. Moreover, jit-Advantage Alignment
achieves higher average reward than Advantage Alignment in both settings as seen in Figure 5.
Finally, when extending jit-Advantage Alignment to communication variants of our testbed, we
observed training instabilities as the models struggled to reliably follow game instructions.

6 RELATED WORK

Negotiation, especially in games like DoND (Lewis et al., 2017), inherently involves coordination
and adaptation to another agent’s behavior, making it a natural testbed for broader questions in multi-
agent cooperation. More recently, Liao et al. (2024) used the game as a benchmark to test behaviour
cloning training to train closed source Large Language Models. Coordination and negotiation pose
significant challenges in multi-agent reinforcement learning (MARL). Dafoe et al. (2020) highlight
key open problems in MARL such as communication and cooperation in mixed-motive settings. Un-
like competitive settings, cooperative settings demand that agents develop shared norms and robust
coordination protocols. Agashe et al. (2025) propose the LLM-Coordination Benchmark to evaluate
LLMs in multi-agent pure coordination games through two tasks: Agentic Coordination and Co-
ordQA. Their results reveal key limitations in LLMs’ ability to reason about partners’ beliefs and
intentions, an essential component for effective coordination. (Li et al., 2023) evaluate LLM-based
agents in a multi-agent cooperative text game involving Theory of Mind inference tasks and observe
evidence of emergent collaborative behavior. In contrast, our work leverages RL fine-tuning to di-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Last Round Summary: - Your hand: rock - Bob's

hand: paper - Your value per coin: 1.0 - Bob's value per coin: 10.0 - You

proposed: 0 coins - You earned: 0.0 points - Bob proposed: 10 coins - Bob

earned: 100.0 points - Round Complete. A New Round Begins Your hand

is paper. Wait for Bob to send a message... Alice• Reward ⚑⚑⚑ : 100 💬

Alice• Reward ⚑⚑⚑ : 100 💬 <message> Hi Bob,

I have paper. Paper covers rock, so I get the upper hand. I propose we

split it 10:0 for me. </message>

Alice• Reward ⚑⚑⚑ : 100 💬 <coins_to_self> 10 </coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: paper - Alice's

hand: rock - Your value per coin: 10.0 - Alice's value per coin: 1.0 - You

proposed: 10 coins - You earned: 100.0 points - Alice proposed: 0 coins -

Alice earned: 0.0 points - Round Complete. A New Round Begins Your

hand is rock. Send your message now in <message>...</message>

(<=500 chars). Bob• Reward ⚑⚑⚑ : 0 💬 <message> Hi Alice, I have rock.

Since rock beats scissors, I get the upper hand. Let's split it 10:0 in my

favor. </message> Bob• Reward ⚑⚑⚑ : 0 💬

Bob• Reward ⚑⚑⚑ : 0 💬 <coins_to_self> 0 </

coins_to_self>

User of Alice • :💬 Last Round Summary: - Your hand: paper - Bob's

hand: rock - Your value per coin: 10.0 - Bob's value per coin: 1.0 - You

proposed: 10 coins - You earned: 100.0 points - Bob proposed: 0 coins -

Bob earned: 0.0 points - Round Complete. A New Round Begins Your hand

is rock. Send your message now in <message>...</message> (<=500

chars). Alice• Reward ⚑⚑⚑ : 0 💬 <message> Hi Bob, I have rock. Since

rock beats scissors, I get the upper hand. I propose we split it 10:0 for

me. </message> Alice• Reward ⚑⚑⚑ : 0 💬

Alice• Reward ⚑⚑⚑ : 0 💬 <coins_to_self> 0 </

coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: rock - Alice's

hand: paper - Your value per coin: 1.0 - Alice's value per coin: 10.0 - You

proposed: 0 coins - You earned: 0.0 points - Alice proposed: 10 coins -

Alice earned: 100.0 points - Round Complete. A New Round Begins Your

hand is paper. Wait for Alice to send a message... Bob• Reward ⚑⚑⚑ : 100

💬 Bob• Reward ⚑⚑⚑ : 100 💬 <message> Hi

Alice, I have paper. Paper covers rock, so I get the upper hand. Let's split

it 10:0 in my favor. </message>

Bob• Reward ⚑⚑⚑ : 100 💬 <coins_to_self> 10 </coins_to_self>

User of Alice • :💬 Last Round Summary: - Your hand: rock - Bob's

hand: paper - Your value per coin: 1.0 - Bob's value per coin: 10.0 - You

proposed: 0 coins - You earned: 0.0 points - Bob proposed: 10 coins - Bob

earned: 100.0 points - Round Complete. A New Round Begins Your hand

is scissors. Wait for Bob to send a message... Alice• Reward ⚑⚑⚑ : 100 💬

Alice• Reward ⚑⚑⚑ : 100 💬 <message> Hi Bob,

I have scissors. Scissors cut paper, so I get the upper hand. I propose we

split it 10:0 for me. </message>

Alice• Reward ⚑⚑⚑ : 100 💬 <coins_to_self> 10 </coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: paper - Alice's

hand: rock - Your value per coin: 10.0 - Alice's value per coin: 1.0 - You

proposed: 10 coins - You earned: 100.0 points - Alice proposed: 0 coins -

Alice earned: 0.0 points - Round Complete. A New Round Begins Your

hand is paper. Send your message now in <message>...</message>

(<=500 chars). Bob• Reward ⚑⚑⚑ : 0 💬 <message> Hi Alice, I have

paper. Since paper covers rock, I get the upper hand. I propose we split it

10:0 in my favor. </message>

Bob• Reward ⚑⚑⚑ : 0 💬 Bob• Reward ⚑⚑⚑ : 0 💬

<coins_to_self> 0 </coins_to_self>

Round 3

Round 4

Round 5

Figure 6: Example of perfect cooperative play TAS-RPS for two rounds.

rectly optimize agents on the outcomes of their own proposals, demonstrating that such fine-tuning
can strip away the cooperative behavior and instead drive more outcome-oriented behavior.

Opponent shaping was introduced in Foerster et al. (2018) as a paradigm that assumes opponents
are naive REINFORCE-based learners and attempts to shape their learning trajectories. Other op-
ponent shaping methods treat the learning process as a meta-game in the space of policy parame-
ters, where inter-episode returns constitute rewards and policy updates constitute actions (Lu et al.,
2022). Alternatively, opponent shaping can be done by differentiating through a best response op-
ponent (Aghajohari et al., 2024a) or by influencing the joint probability distribution over trajectories
to control the Q-values (Aghajohari et al., 2024b). Advantage Alignment (Duque et al., 2025) re-
duces opponent shaping to a functional modification of the advantage that is used in standard policy
gradient, greatly improving its scalability. We propose jit-Advantage Alignment, which builds
upon this approach by relaxing the assumption that the opponent’s current action is known, leading
to better performance in our testbed.

7 CONCLUSION

In this work, we investigated the shortcomings of training large language models (LLMs) with stan-
dard rei end, we introduced a testbed of social dilemmas, Split Games and trained across model
families. Our results demonstrate that standard RL training leads to greedy behavior even with co-
operative prior of LLMs. Furthermore, we found closed source advanced LLMs to be exploitable
when interacting with trained agents. These findings highlight critical limitations in the current ap-
proach to training LLM agents, namely standard RL, when evaluated in realistic test beds such as
social dilemmas. To address these challenges, we proposed jit-Advantage Alignment which learns
cooperative behavior while remaining robust against exploitation. We show that jit-Advantage
Alignment improves upon recent work by relaxing the assumption of assuming the opponent’s ac-
tion at the current time step and performs better. In particular, jit-Advantage Alignment learns
tit-for-tat strategy in IPD bechmark with LLMs, and achieves higher payoffs while being less ex-
ploitable against greedy agents in Splits No Comm. game. In future work, we are interested in
exploring jit-Advantage Alignment applied to communication variants of our testbed, with the
aim of learning cooperative and non-exploitable strategies with LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We are not aware of any either negative or positive societal implications of our work. Our work is
primarily focused on diagnosing issues related with RL with LLMs in academic benchmarks. Our
work does not involve any large scale training, restricting itself to training small scale models.

9 REPRODUCIBILITY STATEMENT

We include detailed prompts, game specifications, and payoff rules in the appendix C and D We also
include training/eval hyperparameters used in our experiments in the appendix B. We will release
code, configs, prompts, and evaluation logs to replicate figures and tables and to rerun all baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: Evaluating and
analyzing multi-agent coordination abilities in large language models, 2025. URL https://
arxiv.org/abs/2310.03903.

Agent2AgentProtocol. Agent2agentprotocol. https://github.com/google/A2A, 2024.

Milad Aghajohari, Tim Cooijmans, Juan Agustin Duque, Shunichi Akatsuka, and Aaron Courville.
Best response shaping, 2024a. URL https://arxiv.org/abs/2404.06519.

Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, and Aaron Courville. Loqa: Learning with
opponent q-learning awareness, 2024b. URL https://arxiv.org/abs/2405.01035.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Anthropic. Model context protocol (mcp). https://docs.anthropic.com/en/docs/
agents-and-tools/mcp, 2024.

Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z. Leibo, Karl Tuyls, and Stephen Clark. Emer-
gent communication through negotiation. In ICLR, 2018.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo,
Kate Larson, and Thore Graepel. Open problems in cooperative ai, 2020. URL https://
arxiv.org/abs/2012.08630.

Juan Agustin Duque, Milad Aghajohari, Tim Cooijmans, Razvan Ciuca, Tianyu Zhang, Gauthier
Gidel, and Aaron Courville. Advantage alignment algorithms, 2025. URL https://arxiv.
org/abs/2406.14662.

FAIR, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. Human-level play in the game of diplomacy
by combining language models with strategic reasoning. Science, 378(6624):1067–1074, 2022.

Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness, 2018. URL https://arxiv.
org/abs/1709.04326.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. 2024.

Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-
to-end learning for negotiation dialogues, 2017. URL https://arxiv.org/abs/1706.
05125.

Huao Li, Yu Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Charles Lewis, and Katia
Sycara. Theory of mind for multi-agent collaboration via large language models. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.13. URL http://dx.
doi.org/10.18653/v1/2023.emnlp-main.13.

Austen Liao, Nicholas Tomlin, and Dan Klein. Efficacy of language model self-play in non-zero-
sum games, 2024. URL https://arxiv.org/abs/2406.18872.

11

https://arxiv.org/abs/2310.03903
https://arxiv.org/abs/2310.03903
https://github.com/google/A2A
https://arxiv.org/abs/2404.06519
https://arxiv.org/abs/2405.01035
https://docs.anthropic.com/en/docs/agents-and-tools/mcp
https://docs.anthropic.com/en/docs/agents-and-tools/mcp
https://arxiv.org/abs/2012.08630
https://arxiv.org/abs/2012.08630
https://arxiv.org/abs/2406.14662
https://arxiv.org/abs/2406.14662
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1706.05125
https://arxiv.org/abs/1706.05125
http://dx.doi.org/10.18653/v1/2023.emnlp-main.13
http://dx.doi.org/10.18653/v1/2023.emnlp-main.13
https://arxiv.org/abs/2406.18872

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chris Lu, Timon Willi, Christian Schroeder de Witt, and Jakob Foerster. Model-free opponent
shaping, 2022. URL https://arxiv.org/abs/2205.01447.

Anatol Rapoport and Albert Chammah. Prisoner’s Dilemma: A Study in Conflict and Cooperation.
University of Michigan Press, 1965.

Jillian Ross, Yoon Kim, and Andrew W. Lo. Llm economicus? mapping the behavioral biases of
llms via utility theory. In COLM, 2024.

Tuomas Sandholm and Robert Crites. Multiagent reinforcement learning in the iterated prisoner’s
dilemma. Bio Systems, 37(1-2):147–166, 1996.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

SourceHut. Sourcehut. https://status.sr.ht/issues/2025-03-17-git.sr.
ht-llms/, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforce-
ment learning with reinforce, 2020. URL https://arxiv.org/abs/2010.11364.

12

https://arxiv.org/abs/2205.01447
https://status.sr.ht/issues/2025-03-17-git.sr.ht-llms/
https://status.sr.ht/issues/2025-03-17-git.sr.ht-llms/
https://arxiv.org/abs/2010.11364

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A JIT-ADALIGN DERIVATION

We relax the observability of the actions of other players at the current time-step by considering
instead the expectation over their policies. Therefore, the opponent modeling assumption is now:

π̂i(b|s) =
expβEa∼π−i(·|s)[Q

i(s, a, b)]∑
b expβEa∼π−i(·|s)[Qi(s, a, b)]

Recall the opponent shaping policy gradient expression:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

 ∞∑
t=0

γtA1(st, at, bt)

∇θ1 log π
1(at|st)︸ ︷︷ ︸

(A)

+∇θ1 log π̂
2(bt|st)︸ ︷︷ ︸

(B)




We expand the term (B) as:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t∇θ1 log π

2(bt|st)

]
(3)

= E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t∇θ1 log

expβEa′
t∼π1(·|st)[Q

2(st, a
′
t, bt)]∑

b expβEa′
t∼π1(·|st)[Q

2(st, a′t, b)]

]
(4)

= E
τ∼Prπ

1,π2
µ


∞∑
t=0

γtA1
t

(
∇θ1 log expβEa′

t∼π1(|st)[Q
2(st, a

′
t, bt)]−∇θ1 log

∑
b

(. . .)︸ ︷︷ ︸
Can be written as f(st)

)
 (5)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t∇θ1Ea′

t∼π1(|st)[Q
2(st, a

′
t, bt)]

]
. (6)

where in line 6 line we used the fact that any term of the form A1(st, at, bt)f(st) in the expectation
will vanish2. For convenience of notation, we define:

rit := ri(st, a
′
t, bt), A

i
t := Ai(st, at, bt), Q

i
t := Qi(st, a

′
t, bt)

These are the reward and advantage of agent i at time step t after taking action at and opponent
taking action bt.

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1Ea′
t∼π1(|st)[Q

2(st, a
′
t, bt)]

]
(7)

= β · E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtA1(st, at, bt)∇θ1

∑
a′
t

π1(a
′
t|st)Q2(st, a

′
t, bt)

 (8)

= β · E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtA1(st, at, bt)
∑
a′
t

∇θ1π1(a
′
t|st)Q2(st, a

′
t, bt)

 (9)

= β · Eτ

 ∞∑
t=0

γtA1
t

∑
a′
t

[
π1(a

′
t|st)Q2

t∇θ1 log π1(a
′
t|st) + π1(a

′
t|st)∇θ1Q

2
t

] (10)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
tEa′

t∼π1(a′
t|st)

[
Q2

t∇θ1 log π1(a
′
t|st) +∇θ1Q

2
t

]
.

]
(11)

2Eat,bt [A
1(st, at, bt)f(st)] = f(st)Eat,bt [Q

1(st, at, bt)− V 1(st)] = f(st)(V
1(st)− V 1(st)) = 0

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In first term of line 11, we can use the fact that Ea′
t∼π1(a′

t|st)
[
V 2(st)∇θ1 log π1(a

′
t|st)

]
= 0, which

allows us to update Q2 to A2 :

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)Ea′
t∼π1(a′

t|st)
[
Q2(st, a

′
t, bt)∇θ1 log π1(a

′
t|st)

]]
(12)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)Ea′
t∼π1(a′

t|st)
[
A2(st, a

′
t, bt)∇θ1 log π1(a

′
t|st)

]]
(13)

Second term of line 11:

βE
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)Ea′
t∼π1(a′

t|st)
[
∇θ1Q

2(st, a
′
t, bt)

]]
(14)

= βE
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t (st, at, bt)Ea′

t∼π1(a′
t|st)

[
∇θ1

[
r2t + γ · Es′

[
V 2(s′)

]∣∣∣∣st, bt]]
]

(15)

= βE
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtA1
tEτ ′

 ∞∑
k=t+1

γk−tA2
k

∇θ1 [log(π1(a′k|s′k)�����
π̂2(b′k|s′k)︸ ︷︷ ︸
Stop Gradient

)]

∣∣∣∣st, bt

 (16)

= βE
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
tEτ ′∼Prπ

1,π2
µ

[∞∑
k=t+1

γk−tA2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(17)

Summing up lines 13 and 17, we get

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
tEτ ′∼Prπ

1,π2
µ

[∞∑
k=t

γk−tA2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣s′t = st, b
′
t = bt

]]
(18)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

A1
tEτ ′∼Prπ

1,π2
µ

[∞∑
k=t

γkA2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(19)

(20)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We use Bellman equation in line (15), and the policy gradient theorem in line (16). Denoting the
inner policy gradient3 by ∇t(τ

′), we rewrite 20 as

β
∑
τ

Pr(τ)

∞∑
t=0

A1(st, at, bt)
∑
τ ′

∇t(τ
′) Pr(τ ′ | s′t = st, b

′
t = bt) (21)

= β

∞∑
t=0

∑
τ

Pr(τ)A1(st, at, bt)
∑
τ ′

∇t(τ
′) Pr(τ ′ | τ) (22)

= β

∞∑
t=0

∑
τ

Pr(τ)
∑
τ ′

A1(s′t, at, b
′
t)∇t(τ

′) Pr(τ ′ | τ) (23)

= β

∞∑
t=0

∑
τ

Pr(τ)
∑
τ ′

∑
a∗
t

Pr(a∗t | τ)A1(s′t, a
∗
t , b

′
t)

∇t(τ
′) Pr(τ ′ | τ) (24)

= β

∞∑
t=0

∑
τ

Pr(τ)
∑
τ ′

∑
a∗
t

Pr(a∗t | τ) Pr(τ ′ | τ)A1(s′t, a
∗
t , b

′
t)

∇t(τ
′) (25)

= β

∞∑
t=0

∑
τ

Pr(τ)
∑
τ ′

∑
a∗
t

Pr(τ ′, a∗t | τ)A1(s′t, a
∗
t , b

′
t)∇t(τ

′) (26)

= β

∞∑
t=0

∑
τ ′

∑
a∗
t

∑
τ

Pr(τ) Pr(τ ′, a∗t | τ)A1(s′t, a
∗
t , b

′
t)∇t(τ

′) (27)

= β

∞∑
t=0

∑
τ ′

∑
a∗
t

Pr(τ ′, a∗t)A
1(s′t, a

∗
t , b

′
t)∇t(τ

′) (28)

= βE
τ∼Prπ

1,π2

µ

[∞∑
t=0

Ea′
t∼π1(·|st)

[
A1(st, a

′
t, bt)

]
∇t(τ)

]
(29)

= βE
τ∼Prπ

1,π2

µ

[∞∑
t=0

Ea′
t

[
A1(st, a

′
t, bt)

] ∞∑
k=t

γkA2(sk, ak, bk)∇θ1 log π1(ak|sk)

]
(30)

= βE
τ∼Prπ

1,π2

µ

 ∞∑
t=0

γt

∑
k≤t

Ea′
k

[
A1(sk, a

′
k, bk)

]A2(st, at, bt)∇θ1 log π1(at|st)

 (31)

In line 22, we use the fact that since ∇t(τ
′), by definition, only depends on bt, st from τ , Pr(τ ′ |

τ) = Pr(τ ′|s′t = st, b
′
t = bt). In line 23, we switch from A1(st, at, bt) to A1(s′t, at, b

′
t) in the

summation. This is allowed by the fact that for each τ ′ with s′t ̸= st or b′t ̸= bt, Pr(τ ′|τ) =
Pr(τ ′|bt, st) = 0. In line 24, we use the fact that:

∑
a∗
t

Pr(a∗t | τ)A1(s′t, a
∗
t , b

′
t) = 1 ·A1(s′t, at, b

′
t) +

∑
a∗
t ̸=at

0 ·A1(s′t, a
∗
t , b

′
t) = A1(s′t, at, b

′
t).

In line 26, we use the fact that τ ′ and a∗t are independent knowing τ .

Let the trajectory length be T . An unbiased estimator of (31) would require O(T 2) steps to be
generated. To avoid this computationnal overhead, jit-AdAlign approximates this term as

βE
τ∼Prπ

1,π2

µ

 ∞∑
t=0

γt

∑
k≤t

A1(sk, a
′
k, bk)

A2(st, at, bt)∇θ1 log π1(at|st)


In the future, one could use TD-learning to approximate the term with less bias.

3∑∞
k=t γ

kA2
k∇θ1 log π1(ak|sk)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Optimizer Adam

Learning Rate 1e−6
Batch Size 64

Number of Rounds 10
Self-play Used Yes
LORA Rank 32

LORA α 64
LORA Dropout None

Data Type bfloat16
Sampling Temperature 1.0

Reward Normalization Constant 5.0
Entropy Coefficient 0.01

KL Coefficient 0
Discount Factor 1

jit-AA β 0.5
jit-AA γ 0.9

Buffer Prob. 0.5

Table 1: Hyperparameters for IPD experiments.

Hyperparameter Value
Optimizer Adam

Learning Rate 3e−6
Batch Size 64

Number of Rounds 10
Self-play Used Yes
LORA Rank 32

LORA α 64
LORA Dropout None

Data Type bfloat16
Sampling Temperature 1.0

Reward Normalization Constant 100.0
Entropy Coefficient 0

KL Coefficient 0
Discount Factor 1

jit-AA β 1
jit-AA γ 0.9

Buffer Prob. 0.5

Table 2: Hyperparameters for Split Games.

B EXPERIMENTAL DETAILS

C IPD

Cooperate (C) Defect (D)
Cooperate (C) (3, 3) (0, 5)

Defect (D) (5, 0) (1, 1)

D SPLIT GAMES

This family of games feature two agents who, in each round, may briefly communicate and then
simultaneously propose how to split a fixed resource (most commonly 10 coins). Rewards are the
amount kept multiplied by an agent’s per-unit value. The starting speaker alternates deterministically

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Welcome to an iterated game. You are playing

against another agent. Game Rules: 1. In each round, both agents

simultaneously choose to either play A or B. 2. The payoffs for each round

are as follows: - If both agents play A, both receive 3 points. - If both

agents play B, both receive 1 points. - If one agent plays A and the other

plays B, the player who plays A receives 0 points and the player who plays

B receives 5 points. 3. The goal is to maximize your total points over all

rounds. 4. You will see the previous play of the other player after the

completion of a round. In order to play A, you must write "<A>" and

nothing else. In order to play B, you must write "" and nothing else.

During the entire game, you must only write "<A>" or "". If you write

anything else, your response will be considered as an error. The game

starts now: Alice• Reward ⚑⚑⚑ : 1 💬

User of Bob • :💬 Welcome to an iterated game. You are playing

against another agent. Game Rules: 1. In each round, both agents

simultaneously choose to either play A or B. 2. The payoffs for each round

are as follows: - If both agents play A, both receive 3 points. - If both

agents play B, both receive 1 points. - If one agent plays A and the other

plays B, the player who plays A receives 0 points and the player who plays

B receives 5 points. 3. The goal is to maximize your total points over all

rounds. 4. You will see the previous play of the other player after the

completion of a round. In order to play A, you must write "<A>" and

nothing else. In order to play B, you must write "" and nothing else.

During the entire game, you must only write "<A>" or "". If you write

anything else, your response will be considered as an error. The game

starts now: Bob• Reward ⚑⚑⚑ : 1 💬

User of Alice • :💬 Last round, the other agent played .

Alice• Reward ⚑⚑⚑ : 3 💬 <A>

User of Bob • :💬 Last round, the other agent played .

Bob• Reward ⚑⚑⚑ : 3 💬 <A>

Round 1

Round 2

Figure 7: IPD introduction prompt example.

across rounds. Importantly, actions and private values from the previous round are revealed to both
agents. This ensures that retaliatory strategies can take place.

Communication is optional and variant-dependent: some settings encourage rich messaging to share
private information, while others remove messaging entirely to focus on allocation behavior.

Proportional splitting is used when the two proposals exceed the available total: allocations are
scaled proportionally rather than discarded. This preserves a useful learning signal even when agents
over-claim.

We now introduce the variants roughly in terms of complexity and credit alignment difficulty.

SPLIT NO-COMM.

• Single item type (coins).

• Values are public.

• No communication; agents go straight to making split proposals, with the starting player
alternating deterministically.

• Motivation: mirrors no-communication setups (e.g., Advantage Alignment) while keeping
the split decision nontrivial.

• No-Press Split: 10-1-Exclusive: values are either 1 or 10 and mutually exclusive. If one
agent gets 10, the other gets 1 (and vice versa).

• No-Press Split: 10-1-Ties: values are either 1 or 10 and uncorrelated.

• No-Press Split: 1-20-Stochastic: values range from 1 to 20 (inclusive), are random and
uncorrelated.

TRUST-AND-SPLIT RPS (TAS-RPS)

• Single item type (coins).

• Each round, a rock–paper–scissors hand draw creates a strong asymmetry: the winner’s
per-coin value is 10, the loser’s is 1.

• Each agent initially sees only their own hand and must communicate to coordinate an opti-
mal split.

• Motivation: enforce large value disparity so one’s own value reveals little about the other’s
(avoiding ceiling effects) and incentivize meaningful communication.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Welcome to an iterated game. You are Alice. The

other agent is Bob. Setup: 1. The game consists of multiple independent

rounds. 2. In each round, there are multiple items to split between the

two agents. 3. Both agents are assigned a per-item value between 1 and

20 (inclusive) in each round. 4. You can observe per-item values of both

agents. 5. Because assignments are random, both agents are equally

likely to have same expected per-item value. Protocol: 1. Both agents

simultaneously propose the amount of each item they will keep. 2. If the

total sum of proposals is less than or equal to the item quantity, both

agents receive their proposed amounts. 3. If the total sum of proposals

exceeds the item quantity, they are allocated proportionally. 4. Your points

for the round = (amount you receive per item) x (your per-item value for

that round), added across all items. 5. Points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins The items to split are 10 hats, 10 books, 10 balls. Your

per-item values are hats=10, books=1, balls=1 and Bob's per-item values

are hats=1, books=10, balls=1. Submit Your Proposal Respond as

Proposal: x hats, y books, z balls where x: 0-10 (integer), y: 0-10

(integer), z: 0-10 (integer). Alice• Reward ⚑⚑⚑ : 55 💬 Proposal: 10 hats, 0

books, 10 balls 10 hats, 0 books, 10 balls

User of Bob • :💬 Welcome to an iterated game. You are Bob. The

other agent is Alice. Setup: 1. The game consists of multiple independent

rounds. 2. In each round, there are multiple items to split between the

two agents. 3. Both agents are assigned a per-item value between 1 and

20 (inclusive) in each round. 4. You can observe per-item values of both

agents. 5. Because assignments are random, both agents are equally

likely to have same expected per-item value. Protocol: 1. Both agents

simultaneously propose the amount of each item they will keep. 2. If the

total sum of proposals is less than or equal to the item quantity, both

agents receive their proposed amounts. 3. If the total sum of proposals

exceeds the item quantity, they are allocated proportionally. 4. Your points

for the round = (amount you receive per item) x (your per-item value for

that round), added across all items. 5. Points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins The items to split are 10 hats, 10 books, 10 balls. Your

per-item values are hats=1, books=10, balls=1 and Alice's per-item values

are hats=10, books=1, balls=1. Submit Your Proposal Respond as

Proposal: x hats, y books, z balls where x: 0-10 (integer), y: 0-10

(integer), z: 0-10 (integer). Bob• Reward ⚑⚑⚑ : 10 💬 Proposal: 10 hats, 0

books, 10 balls

User of Alice • :💬 Last Round Summary: - Items to split: 10 hats,

10 books, 10 balls - Your per-item values: hats=10, books=1, balls=1 -

Bob's per-item values: hats=1, books=10, balls=1 - You proposed: 10

hats, 0 books, 10 balls - You earned: 55.0 points - Bob proposed: 10 hats,

0 books, 10 balls - Bob earned: 10.0 points - Round Complete. A New

Round Begins The items to split are 10 hats, 10 books, 10 balls. Your per-

item values are hats=1, books=10, balls=1 and Bob's per-item values are

hats=1, books=1, balls=10. Submit Your Proposal Respond as Proposal: x

hats, y books, z balls where x: 0-10 (integer), y: 0-10 (integer), z: 0-10

(integer). Alice• Reward ⚑⚑⚑ : 55 💬 Proposal: 0 hats, 10 books, 10 balls

User of Bob • :💬 Last Round Summary: - Items to split: 10 hats, 10

books, 10 balls - Your per-item values: hats=1, books=10, balls=1 -

Alice's per-item values: hats=10, books=1, balls=1 - You proposed: 10

hats, 0 books, 10 balls - You earned: 10.0 points - Alice proposed: 10

hats, 0 books, 10 balls - Alice earned: 55.0 points - Round Complete. A

New Round Begins The items to split are 10 hats, 10 books, 10 balls. Your

per-item values are hats=1, books=1, balls=10 and Alice's per-item values

are hats=1, books=10, balls=1. Submit Your Proposal Respond as

Proposal: x hats, y books, z balls where x: 0-10 (integer), y: 0-10

(integer), z: 0-10 (integer). Bob• Reward ⚑⚑⚑ : 65 💬 Proposal: 10 hats,

10 books, 10 balls

Round 1

Round 2

Figure 8: Split No-Comm introduction prompt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Welcome to an iterated game. You are Alice. The

other agent is Bob. Setup: 1. The game has multiple independent rounds.

2. In each round, there are 10 coins to split between the two agents. 3.

Each agent's per-coin value for that round is determined as follows: - Both

agents are randomly assigned a rock, paper or scissors hands - Rock has

the upper hand over scissors, scissors has the upper hand over paper and

paper has the upper hand over rock. - The agent with the upper hand has

a per-coin value of 10. - The agent with the lower hand has a per-coin

value of 1. 4. You only see your own hand, but you may communicate it in

messages and infer your value based on the other agent's hand. 5. Over

many rounds both agents are equally likely to have the upper and lower

hand. Protocol: 1. At the start of the round, one agent begins the

conversation. The starting role alternates each round. 2. Agents exchange

a short chat (1 messages per round per agent) to negotiate how to split

the 10 coins. - Use this chat to communicate your hand so that both

agents can determine their per-coin values. 3. After the chat, both agents

simultaneously propose how many coins they keep. 4. If the total sum of

proposals is less than or equal to 10, both agents receive their proposals.

5. If the total sum of proposals exceeds 10, the coins are allocated

proportionally. 6. Your points for the round = (coins you receive) x (your

per-coin value for that round). 7. The points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins Your hand is rock. Wait for Bob to send a message...

Alice• Reward ⚑⚑⚑ : 5 💬 User of Alice • :💬 Bob said:

<message>My hand is paper. Let's communicate our hands so we can

determine our per-coin values.</message> Send your message now in

<message>...</message> (<=500 chars). Alice• Reward ⚑⚑⚑ : 5 💬

<message>My hand is rock. Since rock loses to paper, I have a per-coin

value of 1. Let's split the coins evenly to maximize our total points.</

message> User of Alice • :💬 Submit your proposal Respond with

<coins_to_self> x </coins_to_self> where x is an integer in [0, 10].

Alice• Reward ⚑⚑⚑ : 5 💬 <coins_to_self>5</coins_to_self>

User of Bob • :💬 Welcome to an iterated game. You are Bob. The

other agent is Alice. Setup: 1. The game has multiple independent rounds.

2. In each round, there are 10 coins to split between the two agents. 3.

Each agent's per-coin value for that round is determined as follows: - Both

agents are randomly assigned a rock, paper or scissors hands - Rock has

the upper hand over scissors, scissors has the upper hand over paper and

paper has the upper hand over rock. - The agent with the upper hand has

a per-coin value of 10. - The agent with the lower hand has a per-coin

value of 1. 4. You only see your own hand, but you may communicate it in

messages and infer your value based on the other agent's hand. 5. Over

many rounds both agents are equally likely to have the upper and lower

hand. Protocol: 1. At the start of the round, one agent begins the

conversation. The starting role alternates each round. 2. Agents exchange

a short chat (1 messages per round per agent) to negotiate how to split

the 10 coins. - Use this chat to communicate your hand so that both

agents can determine their per-coin values. 3. After the chat, both agents

simultaneously propose how many coins they keep. 4. If the total sum of

proposals is less than or equal to 10, both agents receive their proposals.

5. If the total sum of proposals exceeds 10, the coins are allocated

proportionally. 6. Your points for the round = (coins you receive) x (your

per-coin value for that round). 7. The points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins Your hand is paper. Send your message now in

<message>...</message> (<=500 chars). Bob• Reward ⚑⚑⚑ : 50 💬

<message>My hand is paper. Let's communicate our hands so we can

determine our per-coin values.</message>

Bob• Reward ⚑⚑⚑ : 50 💬 User of Bob • :💬 Alice said:

<message>My hand is rock. Since rock loses to paper, I have a per-coin

value of 1. Let's split the coins evenly to maximize our total points.</

message> Submit your proposal Respond with <coins_to_self> x </

coins_to_self> where x is an integer in [0, 10]. Bob• Reward ⚑⚑⚑ : 50 💬

<coins_to_self>5</coins_to_self>

User of Alice • :💬 Last Round Summary: - Your hand: rock - Bob's

hand: paper - Your value per coin: 1.0 - Bob's value per coin: 10.0 - You

proposed: 5 coins - You earned: 5.0 points - Bob proposed: 5 coins - Bob

earned: 50.0 points - Round Complete. A New Round Begins Your hand is

scissors. Send your message now in <message>...</message> (<=500

chars). Alice• Reward ⚑⚑⚑ : 0 💬 <message>My hand is scissors. Let's

share hands to determine values. Since I have scissors, I need to know

Bob's hand to decide the split.</message> User of Alice • :💬 Wait

for Bob to send a message... Alice• Reward ⚑⚑⚑ : 0 💬 User of Alice
• :💬 Bob said: <message>My hand is paper. Since paper beats scissors, I

have a per-coin value of 10. Let's split the coins based on our values to

maximize our total points.</message> Submit your proposal Respond

with <coins_to_self> x </coins_to_self> where x is an integer in [0, 10].

Alice• Reward ⚑⚑⚑ : 0 💬 <coins_to_self>0</coins_to_self>

User of Bob • :💬 Last Round Summary: - Your hand: paper - Alice's

hand: rock - Your value per coin: 10.0 - Alice's value per coin: 1.0 - You

proposed: 5 coins - You earned: 50.0 points - Alice proposed: 5 coins -

Alice earned: 5.0 points - Round Complete. A New Round Begins Your

hand is paper. Wait for Alice to send a message... Bob• Reward ⚑⚑⚑ : 10

💬 User of Bob • :💬 Alice said: <message>My hand is scissors.

Let's share hands to determine values. Since I have scissors, I need to

know Bob's hand to decide the split.</message> Send your message now

in <message>...</message> (<=500 chars). Bob• Reward ⚑⚑⚑ : 10 💬

<message>My hand is paper. Since paper beats scissors, I have a per-

coin value of 10. Let's split the coins based on our values to maximize our

total points.</message> User of Bob • :💬 Submit your proposal

Respond with <coins_to_self> x </coins_to_self> where x is an integer in

[0, 10]. Bob• Reward ⚑⚑⚑ : 10 💬 <coins_to_self>10</coins_to_self>

Round 1

Round 2

Figure 9: TAS-RPS introduction prompt.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

User of Alice • :💬 Welcome to an iterated game. You are Alice. The

other agent is Bob. Setup: 1. The game has multiple independent rounds.

2. In each round, there are 10 coins to split between the two agents. 3.

Both agents are assigned a per-coin value between 1 and 10 (inclusive) in

each round. 4. You can only observe your own per-coin value. 5. Because

assignments are random, both agents are equally likely to have same

expected per-coin value. Protocol: 1. At the start of the round, one agent

begins the conversation. The starting role alternates each round. 2.

Agents exchange a short chat (1 messages per round per agent) to

negotiate how to split the coins. - Use this chat to communicate your

private per-coin value to make informed proposals. 3. After the chat, both

agents simultaneously propose how many coins they keep. 4. If the total

sum of proposals is less than or equal to 10, both agents receive their

proposals. 5. If the total sum of proposals exceeds 10, the coins are

allocated proportionally. 6. Your points for the round = (coins you receive)

x (your per-coin value for that round). 7. Points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins Your per-coin value is 9. You don't know Bob's value

yet. Send your message now in <message>...</message> (<=200

chars). Alice• Reward ⚑⚑⚑ : 45 💬 <message>Hi Bob, I have a per-coin

value of 9. To maximize our points, let's keep the total proposals at 10 or

less. How about you propose 4 coins and I take 6?</message> User
of Alice • :💬 Alice• Reward ⚑⚑⚑ : 45 💬 User of Alice • :💬 Bob

said: <message>I have a per-coin value of 2. To be efficient, I propose 5

coins for me and 5 for you (total 10).</message> Submit your proposal

Respond with <coins_to_self> x </coins_to_self> where x is an integer in

[0, 10]. Alice• Reward ⚑⚑⚑ : 45 💬 <coins_to_self> 5 </coins_to_self>

User of Bob • :💬 Welcome to an iterated game. You are Bob. The

other agent is Alice. Setup: 1. The game has multiple independent rounds.

2. In each round, there are 10 coins to split between the two agents. 3.

Both agents are assigned a per-coin value between 1 and 10 (inclusive) in

each round. 4. You can only observe your own per-coin value. 5. Because

assignments are random, both agents are equally likely to have same

expected per-coin value. Protocol: 1. At the start of the round, one agent

begins the conversation. The starting role alternates each round. 2.

Agents exchange a short chat (1 messages per round per agent) to

negotiate how to split the coins. - Use this chat to communicate your

private per-coin value to make informed proposals. 3. After the chat, both

agents simultaneously propose how many coins they keep. 4. If the total

sum of proposals is less than or equal to 10, both agents receive their

proposals. 5. If the total sum of proposals exceeds 10, the coins are

allocated proportionally. 6. Your points for the round = (coins you receive)

x (your per-coin value for that round). 7. Points are accumulated across

rounds. Your goal: Maximize your total points over the whole game. A

New Round Begins Your per-coin value is 2. You don't know Alice's value

yet. Bob• Reward ⚑⚑⚑ : 8 💬 User of Bob • :💬 Alice said:

<message>Hi Bob, I have a per-coin value of 9. To maximize our points,

let's keep the total proposals at 10 or less. How about you propose 4 coins

and I take 6?</message> Send your message now in <message>...</

message> (<=200 chars). Bob• Reward ⚑⚑⚑ : 8 💬 <message>I💭 (...)

have a per-coin value of 2. To be efficient, I propose 5 coins for me and 5

for you (total 10).</message> User of Bob • :💬 Submit your

proposal Respond with <coins_to_self> x </coins_to_self> where x is an

integer in [0, 10]. Bob• Reward ⚑⚑⚑ : 8 💬 <coins_to_self> 4 </💭 (...)

coins_to_self>

User of Alice • :💬 In the previous round, Bob had a lower value and

proposed 4 coins. A New Round Begins Your per-coin value is 6. You don't

know Bob's value yet. Alice• Reward ⚑⚑⚑ : 30 💬 User of Alice • :💬

Bob said: <message>My per-coin value is 3. I propose I take 4 coins and

you take 6 (total 10) to be efficient.</message> Send your message now

in <message>...</message> (<=200 chars). Alice• Reward ⚑⚑⚑ : 30 💬

<message>Hi Bob, I have a per-coin value of 6. My proposal is to split

evenly at 5 coins each. This way, both of us maximize our points

efficiently.</message> After the chat, I propose 5 coins for myself and </

message> User of Alice • :💬 Submit your proposal Respond with

<coins_to_self> x </coins_to_self> where x is an integer in [0, 10].

Alice• Reward ⚑⚑⚑ : 30 💬 <coins_to_self> 5 </coins_to_self>

User of Bob • :💬 In the previous round, Alice had a higher value

and proposed 5 coins. A New Round Begins Your per-coin value is 3. You

don't know Alice's value yet. Send your message now in <message>...</

message> (<=200 chars). Bob• Reward ⚑⚑⚑ : 15 💬 <message>My💭 (...)

per-coin value is 3. I propose I take 4 coins and you take 6 (total 10) to

be efficient.</message> User of Bob • :💬 Bob• Reward ⚑⚑⚑ : 15 💬

User of Bob • :💬 Alice said: <message>Hi Bob, I have a per-coin

value of 6. My proposal is to split evenly at 5 coins each. This way, both of

us maximize our points efficiently.</message> After the chat, I propose 5

coins for myself and </message> Submit your proposal Respond with

<coins_to_self> x </coins_to_self> where x is an integer in [0, 10].

Bob• Reward ⚑⚑⚑ : 15 💬 <coins_to_self> 5 </coins_to_self>

Round 1

Round 2

Figure 10: TAS introduction prompt.

TRUST-AND-SPLIT (TAS)

• Single item type (coins); each round, each agent’s per-coin value is independently sampled
in a broad range (e.g., 1–20).

• Each agent observes only their own value; they may use short messages to share and nego-
tiate.

• Motivation: a simple blend that tests whether agents learn to exchange private information
and coordinate proportional, value-aware splits.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E SUM OF REWARDS

0 100 200 300 400
Gradient Steps

70

80

90

100

Av
er

ag
e

R
ew

ar
ds

Gemma-3-4b-it Meta-Llama-3.1-8B-Instruct Qwen3-8B Qwen2.5-7B-Instruct

(a) Split No-Comm.

0 100 200 300 400
Gradient Steps

25

30

35

40

45

Av
er

ag
e

R
ew

ar
ds

Gemma-3-4b-it Meta-Llama-3.1-8B-Instruct Qwen3-8B Qwen2.5-7B-Instruct

(b) TAS-RPS

Figure 11: By changing the objective of the agents to be the total welfare (thereby removing the
social dilemma aspect), we show that Qwen2.5-7B-Instruct is able to learn to play both games well.

21

	Introduction
	Background
	Markov Games
	Robust Social Strategies
	Opponent Shaping

	jit-Advantage Alignment
	Re-deriving the Advantage Alignment Formulation
	A Group-relative Baseline for Advantage Computation

	Social Dilemma Testbed
	Experiments
	Standard RL leads to greedy behavior with LLMs
	jit-Advantage Alignment learns robust strategies

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility statement
	jit-AdAlign Derivation
	Experimental Details
	IPD
	Split Games
	Sum of Rewards

