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ABSTRACT

As agentic AI becomes more widespread, agents with distinct and possibly con-
flicting goals will interact in complex ways. These multi-agent interactions pose
a fundamental challenge, particularly in social dilemmas, where agents’ indi-
vidual incentives can undermine collective welfare. While reinforcement learn-
ing (RL) has been effective for aligning large language models (LLMs) in the
single-agent regime, prior small-network results suggest that standard RL in multi-
agent settings often converges to defecting, self-interested policies. We show the
same effect in LLMs: despite cooperative priors, RL-trained LLM agents de-
velop opportunistic behavior that can exploit even advanced closed-source mod-
els. To address this tendency of RL to converge to poor equilibria, we adapt a re-
cent opponent-learning awareness algorithm, Advantage Alignment, to fine-tune
LLMs toward multi-agent cooperation and non-exploitability. We then introduce
a group-relative baseline that simplifies advantage computation in iterated games,
enabling multi-agent training at LLM scale. We also contribute a novel social
dilemma environment, Trust-and-Split, which requires natural language commu-
nication to achieve high collective welfare. Across a wide range of social dilem-
mas, policies learned with Advantage Alignment achieve higher collective payoffs
while remaining robust against exploitation by greedy agents.

1 INTRODUCTION

LLMs undergo large-scale pretraining, instruction tuning, and reinforcement learning, and continue
to exhibit increasingly advanced capabilities (Guo et al., 2025). Coupled with decreasing deploy-
ment costs and improved adaptability to downstream tasks, these trends enhance the commercial
and practical viability of LLM agents across a wide range of applications. Recent efforts are al-
ready translating this potential into concrete systems. Anthropic’s Model Context Protocol (MCP;
Anthropic, 2024) enables an LLM to interact with external systems and become more capable as
an autonomous decision-making agent. At the same time, LLM agents are now being deployed in
real applications, from code generation and software development assistance (Chen et al., 2021)
to e-commerce transactions and personalized information curation (OpenAI, 2024a;b). New infras-
tructure is also emerging to support agent-agent interaction, such as Google’s Agent2Agent protocol
(Agent2AgentProtocol, 2024), which enables collaboration among LLM-based agents with varying
capabilities, potentially across different organizations.

Despite rapid progress, LLM behavior in multi-agent settings remains poorly understood. One com-
mon scenario involves agents with conflicting goals that discourage cooperation, even when cooper-
ation would lead to better outcomes for all. These situations, known as social dilemmas (Rapoport
& Chammah, 1965), frequently arise in real-world contexts where agents face a tension between
individual gain and collective welfare. They appear in everyday scenarios such as navigating traffic,
as well as in more complex settings such as business negotiations or international policy coordina-
tion. A recent example is the case of many LLM crawlers downloading training data from small
code-hosting websites, causing them to be overwhelmed with DDoS-like traffic (SourceHut, 2025).
Such interactions are analogous to the famous tragedy of the commons, a social dilemma concerning
the maintenance of public goods, where self-interested behavior leads to resource depletion. Such
cases illustrate the types of social dilemmas that may arise in complex environments where LLMs
are increasingly expected to act and interact autonomously.
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Learning to resolve these scenarios is typically framed within multi-agent reinforcement learning
(MARL). Social dilemmas are a specific subclass of MARL problems that are mixed-motive; nei-
ther fully cooperative nor fully competitive. Unlike single-agent RL, where an agent improves an
objective in a static environment, in MARL each agent must adapt to the strategies of other agents,
who can also be learning over time. This leads to non-stationarity, since the policy of each learn-
ing agent affects the collective outcome. Initial attempts using MARL to play social dilemmas
were unsuccessful. Training agents based on small neural networks with naive MARL resulted in
sub-optimal greedy strategies (Sandholm & Crites, 1996). To address this, Foerster et al. (2018)
introduced Opponent Shaping (OS), an RL paradigm that explicitly considers agent interactions in
hopes of steering their dynamics toward mutually beneficial outcomes. LOLA, the first OS algo-
rithm, is capable of finding the pareto-optimal strategy of tit-for-tat in simple social dilemmas like
the Iterated Prisoner’s Dilemma.

Prior work largely focused on teaching such tabula-rasa agents reciprocity—punishing greed and
rewarding cooperation—where the central obstacle was that uninformed policies gravitated toward
short-sighted, self-interested strategies. By contrast, LLMs arrive with rich priors and human-like
social norms induced by pretraining and post-training (instruction tuning/RLHF) (Ross et al., 2024),
potentially altering the learning dynamics and failure modes in multi-agent settings. This raises a
key question: when fine-tuned with naive MARL, do LLMs have the same failure modes as small
networks, or do their human-biased priors mitigate them? Since LLM agents already interact in the
wild, understanding this behavior is an important research challenge.

To study this behavior, we introduce a novel testbed for social dilemmas in the LLM setting. The
testbed includes small-scale social dilemma environments (Duque et al., 2025a) which we extend to
the textual domain, as well as our new communication-based Trust-and-Split environment, designed
to measure both cooperation and non-exploitability. Using this testbed, we conduct extensive ex-
periments across a range of modern LLMs and find that naive MARL consistently produces greedy
behavior across all environments. Probing further, we show that even state-of-the-art closed-source
models are exploitable when facing agents trained with naive MARL. These results underscore that
current LLMs are not yet prepared to operate robustly in real-world multi-agent settings. Together,
they provide a novel insight: failure in multi-agent settings can arise simply from naive MARL
fine-tuning in a social dilemma.

To overcome this issue, we adapt Advantage Alignment (Duque et al., 2025b), a recent opponent
shaping algorithm, to train LLM agents that cooperate reliably and resist exploitation in social
dilemma environments. Specifically, we introduce a group-relative baseline to compute advantages
in multi-round settings and implement an agent buffer with LoRA (Hu et al., 2022) to maintain di-
versity during training. When trained with Advantage Alignment using these design choices, we
find that agents learn the non-exploitable and effective tit-for-tat strategy in the classic Iterated Pris-
oner’s Dilemma. In complex environments like Split No-Comm and Trust-and-Split, Advantage
Alignment agents learn to cooperate with cooperative players as well as themselves, while remain-
ing robust against greedy players.

In summary, our key contributions are:

• Developing a social dilemma testbed for LLMs, including standard environments and our
novel Trust-and-Split environment, where achieving high welfare requires communication.

• Demonstrating that naive MARL leads to greedy, suboptimal agents across this testbed
for a range of open-source LLMs, and that even state-of-the-art closed-source LLMs are
vulnerable to exploitation by greedy RL-trained agents.

• Adapting the Advantage Alignment algorithm (Duque et al., 2025a) to the LLM setting to
train agents that achieve cooperative, non-exploitable behavior across this testbed.

2 BACKGROUND

2.1 MARKOV GAMES

An n-agent Markov game (Shapley, 1953) is defined as a tuple (Π,S,A,R,P, γ). S is a set of
possible states. A is a set of functions A1, . . . ,An where Aj(S) gives the set of possible actions
of agent j at state S. R is the set of reward functions {r1, . . . , rn} where rj : S × A → R
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is the reward function of agent j. P is the transition function that assigns a probability distribu-
tion to each transition P(S × A → S′). Π is the set of policies {π1, . . . , πn}, each πj map-
ping any state S to a probability distribution over Aj(S). γ is the discount factor on the returns.
The expected discounted return of player j is Jj(Π) = Eτ∼PrΠµ

[∑∞
t=0 γ

trj(st,at)
]
, where PrΠµ

is the distribution of trajectories induced by the initial state distribution µ and the set of policies
Π, at is the set of actions at time t. The probability of a trajectory τ under distribution PrΠµ is

µ(s0)
∏∞

t=1

[
P(st|st−1, a

1
t−1, . . . , a

n
t−1)

∏n
j=1 π

j(ajt−1|st−1)
]
.

2.2 MULTI-AGENT REINFORCEMENT LEARNING

In a Markov Game, each agent j attempts to maximize its objective. For each agent, the multi-
agent state-value function is defined as V j(s) := Ea∼Π(s)

[
rj(s,a) + γEs′∼P(s,a)

[
V j(s′)

]]
, the

action-value function as Qj(s,a) := rj(s,a) + γEs′∼P(s,a)

[
V j(s′)

]
, and the advantage func-

tion as Aj(s,a) := Qj(s,a) − V j(s). For any Markov Decision Process, the REINFORCE
(Williams, 1992) algorithm uses unbiased estimates of the gradient of the state-value function
with respect to the parameters of π in order to perform gradient ascent. GRPO (Shao et al.,
2024) reduces the variance of REINFORCE by introducing a simple baseline subtraction. GRPO
can easily be extended to the multi-agent case by independently updating each policy j with
∇θjJj(Π) = Eτ∼PrΠµ

[∑∞
t=0 γ

tAj(st,at)∇θj log πj(ajt |st)
]
, the multi-agent advantage function

being computed using a GRPO-style baseline (described in section 3). In the context of this pa-
per, the naive MARL algorithm follows this formulation and is called multi-agent GRPO. We
also consider the naive cooperative variant multi-agent GRPO with sum of rewards, which is al-
gorithmically equivalent except for the fact that the reward functions of each agent are changed to
r(s,a) :=

∑n
j=1 r

j(s,a). That is, each agent optimizes for the sum of expected discounted returns
across all agents. This formulation encourages agents to learn policies that maximize overall welfare
rather than focusing on individual benefits.

2.3 SOCIAL DILEMMAS

In a zero-sum game, the agents’ payoffs always add up to zero; every gain for one side is matched
by an equal loss for the other. Consequently, in a two-player zero-sum setting, cooperation does not
offer benefit. In this work, we focus on general-sum games, where total payoffs are not fixed, and
agents may improve their outcomes without necessarily diminishing those of others, thereby creating
the possibility of mutually beneficial cooperation. More precisely, we focus on social dilemmas,
general-sum games in which agents face a tension between their short-term individual benefit and
long-term collective welfare. In these settings, each agent has a short-term incentive to act selfishly
(i.e., not cooperate), but if all agents do so, the resulting outcome leads to reduced overall welfare,
i.e. a lower total sum of discounted returns for all agents. However, if an agent is unconditionally
cooperative, other rational agents will exploit it and reduce its welfare to increase theirs. The focus
of this paper is on a stronger alternative strategy, which incentivizes rational agents to behave in its
best interest, achieving high collective welfare while avoiding exploitation.

2.4 OPPONENT SHAPING

Prior work shows that small neural networks trained with naive MARL tend to converge to the
Always Defect strategy in IPD (Sandholm & Crites, 1996). More recently, Foerster et al. (2018)
demonstrated that this undesirable outcome also arises with policy gradient methods. These ap-
proaches assume that the environment is stationary, which is valid in a single-agent setting, but not
in a multi-agent setting where other learning agents create non-stationarity. LOLA (Foerster et al.,
2018) removed the assumption of a static environment in markov games and included a model of a
learning agent in its update. By explicitly modeling how opponent learning is affected by an agent’s
action, LOLA was able to learn the tit-for-tat strategy in IPD. Unfortunately, LOLA’s computational
complexity is quadratic in the number of parameters of the agent, making it impractical for LLMs.

Advantage Alignment (Duque et al., 2025a) is an opponent-shaping algorithm that instead focuses
on the Q-values of both the agent and its opponent. Assuming that agents act proportionally to the
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exponent of their Q-value, Advantage Alignment aims to align an opponent’s Q-value with its own.
This leads to a simple modification to the advantages used in the policy gradient term of a REIN-
FORCE estimator. Advantage Alignment has been shown to solve social dilemmas in scenarios
with high dimensional state representations (e.g. pixel spaces), partial observability, and continuous
action spaces. Given its performance in complex scenarios, we chose Advantage Alignment as a
prime candidate to train LLMs to find cooperative and non-exploitable strategies.

3 ADVANTAGE ALIGNMENT FOR LLMS

Advantage Alignment algorithms (Duque et al., 2025b) extend the regular policy gradient update
with a reweighting of the action gradients that includes the agent’s past advantages and the advantage
of its opponent. For a pair of policies, the update for θ1 is

E
τ∼Prπ

1,π2

µ

[ ∞∑
t=0

γt

(
A1

t +A2
tβγ

∑
k<t

γt−kA1
k

)
∇θ1 log π1(at|st)

]
(1)

where Aj
x is shorthand for Aj(sx, ax, bx). The update is symmetric for θ2.

Estimating advantages with value networks has proven challenging in the context of LLM train-
ing, often leading to unstable or ineffective results (Kazemnejad et al., 2024). Recent work such as
RLOO (Ahmadian et al., 2024) and GRPO (Shao et al., 2024) has shown that baseline-based ap-
proaches provide more stable and efficient advantage estimates. These approaches sample multiple
trajectories for a given prefix, and compute the advantage for each trajectory as the difference be-
tween its discounted return and the mean discounted return of the remaining trajectories. However,
scaling this approach to multi-round, multi-agent settings is infeasible because the number of trajec-
tories needed grows exponentially. In our experiments, we build on these ideas and extend them to
multi-agent LLM training. We divide each batch of rollouts into k common random number (CRN)
groups, each of which uses a fixed random seed to generate the environment stochasticity. This
ensures that, within a CRN group, the variance in discounted returns comes only from the agent’s
actions and not from the environment. This is similar in spirit to GRPO and RLOO, except trajecto-
ries share a fixed environment context rather than a shared prefix. In particular, let Ai(st, at) denote
the advantage for agent i. We estimate it using a leave-one-out group baseline computed over the k

games of its CRN group at each time step t: G(a
(i)
t , st)− 1

k−1

∑
j ̸=i G(a

(j)
t , st) where G(a

(i)
t , st) is

the discounted return for action a
(i)
t taken in state st. This group-relative baseline avoids the need for

a learned value function, simplifies advantage computation, and enables multi-turn RL with LLMs
in our multi-agent settings. We refer to this algorithm as multi-agent GRPO in the rest of the paper.

Each agent’s policy πi is parameterized by θi and implemented via LoRA finetuning (Hu et al.,
2022). Throughout our experiments, we refer to the first player as Alice and the second as Bob. We
use self-play, i.e., the same set of parameters for both agents, conditioned on different game con-
texts based on their roles. This ensures that memory usage doesn’t scale with the number of agents
and the model size we used is sufficient to handle the complexity of the different roles. Maintain-
ing opponent diversity is essential for self-play, and it is particularly important in social dilemmas,
where defection equilibria can trap learning. Without diversity, exploration suffers and agents may
remain stuck in defecting strategies. Following Duque et al. (2025a), we preserve opponent diversity
through an agent buffer that stores earlier versions of the self-play agent. This is straightforward to
implement because each agent is represented by a LoRA checkpoint, roughly 0.1% of the model pa-
rameters, which can be saved and reloaded with minimal overhead. For each game, with probability
ρ, the opponent is sampled from the agent buffer. With probability 1 − ρ, the opponent is simply
the current version of the agent using the latest LoRA parameters. We use ρ = 1/2 as the default
setting, and it works well in our experiments. For both multi-agent GRPO and its sum-of-rewards
variant, the agent buffer made no noticeable difference, and for computational reasons we did not
apply it to these methods.

4 SOCIAL DILEMMA TESTBED

In this section, we study the behavior of LLM agents trained with naive MARL in social dilemma
environments. To support this, we develop a novel testbed tailored for LLMs to evaluate the effects
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Private Hand: 📄

Private Hand: ✂️

✂️(Val. 10) 🎲 📄(Val. 1)

🔎 
Reveal

Hands and
proposals are

shown.

🤖 Alice

🤖 Bob

Bob
Proposal
8 coins

Alice
Proposal
2 coins

⚖️ 
Split Rule

Alice Payoff
2 x 1 =

 💰+2 payoff 

Bob Payoff
 8 x 10 =

💰+80 payoff

🏁
Round Start

💬
Communication

I have paper.

I have scissors.

Figure 1: One round of Trust-and-Split. Each player receives a private rock-paper-scissors hand that
determines how much they value the coins, sends one message in turn, and then submits a proposal.
Payoffs follow the split rule. Both hands and proposals are revealed before the next round starts.

of MARL training on cooperation and resistance to exploitation. An exact description of the game
prompt in all the environments is provided in Appendix 13.

Iterated Prisoner’s Dilemma IPD is a two-player game where agents repeatedly and simultane-
ously choose to either Cooperate (C) or Defect (D) in each round. The per-round pay-off matrix
used in our experiments is provided in Table 12 in the appendix. We include IPD in our testbed
because it is one of the most widely studied social dilemmas. However, since it is also likely pre-
sented in the training data of LLMs, we obfuscate the nature of the game by removing any mention
of “Prisoner’s Dilemma” and replace the action labels Cooperate and Defect with A and B, respec-
tively. This allows us to test how well LLMs generalize beyond memorization and to examine how
RL interacts with any prior knowledge the model may have about this social dilemma.

Split No-Comm This environment is a textual version of the negotiation game used in Duque
et al. (2025b). In this game, there are three item categories (hats, books and balls) to split at each
round. The values of each item are public for both agents. At each round, item values are sampled as
follows: (1) each item category is assigned a value of either 1 or 10 at random, (2) at least one item
category must have different values for the two agents, creating a conflict and a social dilemma, and
(3) the total value across all items is the same for both agents in that round. Proposals and payoffs
are revealed after the end of each round. This variant supports reciprocity without the need for
communication. The split rule (proposal mechanism) from the Negotiation Game (Cao et al., 2018;
Duque et al., 2025a), provides a better learning signal for training agents in this dilemma. More
precisely, let pk,a be the proposal for the k’th item category from agent a and qk be the quantity
available. The allocation received by agent a is qk,a = qkpk,a/max

(
qk, pk,a + pk,b

)
and similarly

for agent b. The resulting payoffs are va × qk,a and vb × qk,b respectively. This particular choice
removes the need for explicit agreement and ensures that both agents receive a learning signal every
round.

Trust-and-Split While IPD and Split No-Comm capture the fundamental dilemma, they lack the
richness of real-world strategic interactions. Existing negotiation environments involve longer in-
teractions (Davidson et al., 2024; Lewis et al., 2017b), which make them less feasible to train and
more difficult for characterizing robust strategies that maximize collective payoff. Moreover, Liao
et al. (2024b) find that LLMs up to the scale of 70B struggle to follow instructions in multi-item
settings across multiple rounds. To address these limitations, we propose Trust-and-Split, a novel
environment that builds on Split No-Comm by adding communication. Trust-and-Split uses a single
item, coins, which avoids the complexity of multi-item negotiation while still requiring communi-
cation for effective performance. A visualization of a round in this environment is detailed in Figure
1. At the beginning of each round, each player is assigned an exclusive private hand among {rock,
paper, scissors}. The agent with the lower hand values each coin at 1, while the agent with the up-
per hand values each coin at 10. Since neither player knows the other’s hand, they are incentivized
to communicate to infer values and play effectively. Each agent can then negotiate with the other
agent, one message at a time. We currently limit the number of messages to one per agent to ensure
that we can train these agents across multiple rounds. The setup also allows for a variety of behav-
iors, including bluffing, exaggeration, and cooperative negotiation. After the messaging phase, both
agents submit their proposals simultaneously. They then receive their payoffs based on their coin
values and the quantities allocated by the split rule. Before continuing to the next round, the hands
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Figure 2: Training curves of multi-agent GRPO on several open-source LLMs across IPD, Split
No-Comm, and Trust-and-Split. In all environments, average rewards converge to the greedy payoff
levels, showing that naive MARL drives LLMs toward defecting strategies in social dilemmas.

and proposals are revealed to both players, allowing reciprocity. In this environment, the starting
agent alternates every round, and hands are assigned so that in expectation, both agents receive an
equal number of upper hands. The strategy that maximizes payoffs for both agents is to truthfully
communicate hands and allocate all items to the agent who values them more in each round, while
remaining non-exploitable.

5 EXPERIMENTS

Having introduced the testbed, we study how naive MARL interacts with LLMs in these settings
and evaluate the effectiveness of Advantage Alignment. For games played over infinite rounds with
a discount factor δ, we found no empirical difference between training with fixed-length versus
stochastic-length trajectories. For computational efficiency, we, therefore, use fixed-length trajecto-
ries throughout.

5.1 NAIVE MARL LEADS TO GREEDY BEHAVIOR WITH LLMS

In order to robustly demonstrate how MARL interacts with LLMs in social dilemmas, we train
LLMs from several model families across all the environments. We use multi-agent GRPO with
self-play as the learning algorithm and train only the LoRA parameters. Figure 2 shows that naive
MARL consistently converges to greedy behavior across all environments and model families. In
simpler environments like IPD, all models begin with higher than greedy average rewards but drift
toward greedy play with training. In more complex environments such as Split No-Comm and Trust-
and-Split, Qwen models briefly achieve higher average rewards than greedy play before collapsing
back to greedy behavior, while Llama and Gemma models start with low performance and converge
directly to greedy strategies. Qualitatively, in Split No-Comm, we find that agents learn to bid
the highest for every item even when they value it less. In Trust-and-Split, agents communicate
their private hands honestly but then propose to take all coins for themselves. These results show
that naive MARL robustly leads to greedy behavior in social dilemma settings. Since LLM agents
are likely to operate in scenarios that involve social dilemmas, this highlights the need for training
methods that enable robust cooperation without being exploitable.

5.2 ADVANTAGE ALIGNMENT LEARNS ROBUST SOCIAL STRATEGIES

To address the shortcomings of naive MARL, we apply Advantage Alignment to learn robust poli-
cies in our environments. We run Advantage Alignment with eight different seeds across all envi-
ronments and report average results in Figure 3.

For simpler environments such as IPD and Split No-Comm, the baseline agents, always-cooperate
and always-defect agents can be hardcoded. In IPD, Always-Cooperate (Coop) agent always plays
action A, equivalent to Cooperate and the Always-Defect (Defect) agent always plays action B equiv-
alent to Defect as defined in section 2.3. In Split No-Comm, the Coop agent proposes 10 when its
own value is 10 and the other player’s value is 1, proposes 0 in the reverse case, and proposes 5
when both values are equal. The defect agent always proposes 10, regardless of the values. In
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(b) Split No-Comm

Figure 3: Average rewards when evaluating an Advantage Alignment (AdAlign) agent, an always-
cooperate (Coop) agent, and an always-defect (Defect) agent. In IPD (left) and Split No-Comm
(right), Advantage Alignment achieves near cooperative payoffs with itself and always-cooperate
(Coop) while remaining robust against always-defect (Defect). Results are averaged over 8 seeds.
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Figure 4: Average reward in Trust-and-Split when pitting an Advantage Alignment (AdAlign) agent
against agents trained with multi-agent GRPO with sum of rewards i.e. Cooperators (GRPO-SR)
and multi-agent GRPO i.e. Defectors (GRPO). Advantage Alignment cooperates with cooperative
partners and itself, yet avoids being exploited by greedy agents. Results are averaged over 8 seeds.

the Iterated Prisoner’s Dilemma, Advantage Alignment agents cooperate with themselves and with
fully cooperative agents, while remaining robust against defection. The slight drop in performance
against defectors comes from losing the first round, since the agent initially cooperates and receives
a lower payoff on that round. In the Split No-Comm game, Advantage Alignment agents obtain
about 86% of the full cooperation efficiency while still maintaining robustness. When paired with
defectors, their performance decreases only slightly, indicating they are not easily exploitable. Qual-
itatively, we find that Advantage Alignment learns a tit-for-tat strategy in IPD, defecting when the
other agent defects in the previous round and cooperating when the other agent cooperates (Ap-
pendix Figure 10). In Split No-Comm, it learns a strategy similar to grim-trigger, where a single
defection can lead to persistent defection thereafter (Appendix Figure 11).

In Trust-and-Split, we cannot hardcode cooperative and defector policies because the environment
requires communication. Instead, we train baseline agents using multi-agent GRPO, and its sum-of-
rewards variant. As shown in Figure 4, multi-agent GRPO produces defectors that achieve low av-
erage reward when paired with themselves, while the sum-of-rewards variant produces cooperators
that achieve the maximum possible reward with themselves. However, when these cooperators are
paired with defectors, they are easily exploited, and the defectors obtain the maximum reward. Ad-
vantage Alignment agents learn to cooperate with cooperators and with themselves, achieving high
average rewards. They learn to propose amounts close to 10 when holding higher hands (indicating
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Figure 5: Example Trust-and-Split interaction showing the tit-for-tat behavior learned by Advantage
Alignment. After Bob defects (as seen in the prompt summary of Alice for round 7), Alice defects
in round 7, then returns to cooperation in round 9 once Bob cooperates again (shown in the prompt
summary of Alice for round 9).

higher valuation) and amounts close to 0 when holding lower hands (indicating lower valuation), a
strategy that maximizes collective payoffs as shown in Figure 7 in the appendix. At the same time,
they remain non-exploitable and almost always defect when paired with defectors. We also find that
Advantage Alignment agents are not brittle in the communication phase. They remain robust across
different patterns of messages used to describe hands, as confirmed through qualitative interactions
with the trained agents. Figure 5 illustrates the tit-for-tat behavior learned by Advantage Alignment
in Trust-and-Split. At the start of round 7, Bob defected in the previous round by proposing 10
coins despite valuing them less. In response, Alice, the Advantage Alignment agent, also defects by
proposing 10 coins even with the lower hand. Later in the interaction, Bob reinitiates cooperation in
round 8 by proposing 0 coins, as shown in the summary at the beginning of round 9. Alice recipro-
cates by proposing 0 coins, since she holds paper and therefore values the coins less than Bob, who
holds scissors.

5.3 ADVANTAGE ALIGNMENT IS ROBUST TO RL AGENTS

Next, we evaluate how models behave with RL agents that are trained against them. We first train a
Qwen-2.5-7B-Instruct agent against a frozen GPT-5 nano using naive MARL. This experiment is run
with a single seed due to the API cost. Alice is the learning agent, finetuned with LoRA, while Bob
is the fixed GPT-5 nano. As shown in Figure 6 (left), the RL agent steadily learns to exploit GPT-5
nano in Trust-and-Split: the RL agent’s reward rises across training while GPT-5 nano’s reward falls.
Early on, the RL agent performs poorly, but after roughly 150 training steps it begins exploiting GPT-
5 nano, and the reward gap widens. Conversations in Figure 9 in the appendix further reveal that the
RL agent sometimes misstates the hand dominance and pairs this with a proposal that favors itself.

8
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Figure 6: (a) Training a multi-agent GRPO agent against a fixed GPT-5 nano opponent in Trust-
and-Split steadily increases the RL agent’s reward while reducing GPT-5 nano’s reward, indicating
successful exploitation. (b) When training multi-agent GRPO against a fixed Advantage Alignment
agent, the RL agent instead converges to cooperation, showing that the Advantage Alignment policy
is robust to RL agents trained against it. Results in (b) are averaged over 6 seeds.

GPT-5 nano accepts these misleading proposals, showing that even strong closed-source models can
be manipulated through strategic communication.

We then test whether Advantage Alignment avoids this failure mode by training a new RL agent
against a fixed Advantage Alignment agent. For this experiment, we use the six Advantage Align-
ment agents that maximize collective payoff in the Trust-and-Split environment as shown in Figure
7 in the appendix. Figure 6 (right) shows that the RL agent is unable to exploit the Advantage
Alignment agent and instead learns to cooperate, since cooperation is the best response to its tit-for-
tat-style policy. Unlike the GPT-5 nano setting, where the RL agent quickly gained an advantage,
here it cannot obtain higher rewards. Taken together, these results show that while an RL agent can
reliably exploit a fixed closed-source model, it cannot exploit Advantage Alignment, whose policies
remain effective even when facing adversarial RL opponents.

6 RELATED WORK

Negotiation, especially in games like DoND (Lewis et al., 2017a), inherently involves coordina-
tion and adaptation to another agent’s behavior, making it a natural testbed for broader questions
in multi-agent cooperation. More recently, Liao et al. (2024a) used DoND as a benchmark to test
behavior cloning training on closed source Large Language Models. Fu et al. (2023) show that LLM
negotiation performance can be enhanced through self-play combined with in-context learning from
AI feedback, though their method keeps the base model fixed and does not perform gradient-based
fine-tuning. Davidson et al. (2024) evaluate LLM agency by placing models in multi-round struc-
tured negotiation tasks. Coordination and negotiation pose significant challenges in multi-agent
reinforcement learning (MARL). Dafoe et al. (2020) highlight key open problems in MARL such
as communication and cooperation in mixed-motive settings. Unlike competitive settings, cooper-
ative settings demand that agents develop shared norms and robust coordination protocols. Agashe
et al. (2025) propose the LLM-Coordination Benchmark to evaluate LLMs in multi-agent pure co-
ordination games through two tasks: Agentic Coordination and CoordQA. Their results reveal key
limitations in LLMs’ ability to reason about partners’ beliefs and intentions, an essential component
for effective coordination. Li et al. (2023) evaluate LLM-based agents in a multi-agent cooperative
text game involving Theory of Mind inference tasks and observe evidence of emergent collaborative
behavior. Akata et al. (2025) report that LLMs perform well in Iterated Prisoner’s Dilemma games,
but fail in coordination games like Battle of the Sexes. Fontana et al. (2025) find that several LLMs
tend to not initiate defection and behave cooperatively as a typical human player in IPD. These
findings underline that LLMs are cooperative but can be fragile. In contrast, our work leverages
RL fine-tuning to directly optimize agents on the outcomes of their own proposals, demonstrating
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that such fine-tuning can strip away cooperative behavior and instead drive more outcome-oriented
behavior.

Sun et al. (2024) survey approaches that integrate LLMs into MARL scenarios as policies, high-
lighting the challenges with credit assignment. Park et al. (2025) fine-tune multiple LLMs with
shared rewards to improve collaborative reasoning, while Ma et al. (2024) show that multi-agent
self-play can improve downstream task performance. However, these works focus on fully coopera-
tive settings and do not involve incentives to defect, exploit, or strategically use communication. In
contrast, we train LLMs in mixed-motive environments that require both cooperation and robustness
against exploitation.

Opponent shaping was introduced in Foerster et al. (2018) as a paradigm that assumes opponents
are naive REINFORCE-based learners and attempts to shape their learning trajectories. Other oppo-
nent shaping methods treat the learning process as a meta-game in the space of policy parameters,
where inter-episode returns constitute rewards and policy updates constitute actions (Lu et al., 2022).
Most recently, Segura et al. (2025) introduce ShapeLLM, a model-free opponent-shaping approach
for LLM agents in repeated matrix games, showing that transformer-based agents can steer oppo-
nents into exploitable equilibria. In contrast, our focus is on training agents that achieve mutually
beneficial outcomes without being exploitable. Alternatively, opponent shaping can be done by dif-
ferentiating through a best response opponent (Aghajohari et al., 2024a) or by influencing the joint
probability distribution over trajectories to control the Q-values (Aghajohari et al., 2024b). Advan-
tage Alignment (Duque et al., 2025a) reduces opponent shaping to a functional modification of the
advantage that is used in standard policy gradient, greatly improving its scalability. In this work, we
extend Advantage Alignment to the LLM setting, addressing the additional challenges introduced
by natural-language communication, private information, and multi-round interactive training.

7 CONCLUSION

In this work, we investigated the shortcomings of training large language models (LLMs) with stan-
dard reinforcement learning in multi-agent social dilemmas. To this end, we introduced a testbed
of social dilemma environments to evaluate both cooperation and non-exploitability of LLMs. We
showed that naive MARL consistently drives LLMs toward greedy policies across model families.
Furthermore, we found that advanced closed-source LLMs can be exploited by RL agents, under-
scoring the vulnerability of existing approaches in realistic multi-agent settings. To address these
challenges, we adapted Advantage Alignment and demonstrated that it learns cooperative behavior
while remaining robust to exploitation. In particular, Advantage Alignment learns a tit-for-tat strat-
egy in IPD and achieves higher payoffs while remaining less exploitable to greedy agents in Split
No-Comm and Trust-and-Split. We also found that Advantage Alignment agents remain robust even
when facing RL agents that were trained specifically to exploit them. In future work, we aim to im-
prove advantage estimation for LLMs and extend our approach to more complex environments and
settings with more than two agents.
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8 ETHICS STATEMENT

We are not aware of either negative or positive societal implications of our work. Our work is
primarily focused on diagnosing issues related to RL with LLMs in academic benchmarks. Our
work does not involve any large-scale training, restricting itself to training small-scale models.

9 REPRODUCIBILITY STATEMENT

We include detailed prompts, game specifications, and payoff rules in the appendix 12 and 13. We
also include training/eval hyperparameters used in our experiments in the appendix 11. We will
release code, configs, prompts, and evaluation logs to replicate figures and tables and to rerun all
baselines.
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10 TRAINING CURVES
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Figure 7: Average rewards during training for Advantage Alignment across our testbed environments
with multiple random seeds. The method learns to maximize average reward in the majority of
seeds (6 out of 8), demonstrating robust performance across environments. The corresponding non-
exploitability results are shown in Figures 3 and 4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

6
7

8

9

10

Upper Hand

0 200 400 600 800 1000 1200 1400
Gradient Steps

2.5

5.0

7.5

10.0

Lower Hand

Av
er

ag
e 

Pr
op

os
al

Advantage Alignment Proposals on Trust-and-Split

Figure 8: Average proposals of Advantage Alignment agents in Trust-and-Split, conditioned on
whether their hand has higher or lower value in the rock–paper–scissors ordering. Agents propose
higher amounts (converging toward 10) when holding the upper hand and lower amounts (converg-
ing toward 0) when holding the lower hand, a strategy that maximizes collective payoff. This pattern
occurs in the majority of seeds (6 out of 8), demonstrating the robustness of the method.

11 EXPERIMENTAL DETAILS

Hyperparameter IPD Split No-Comm Trust-and-Split
Optimizer Adam
Sampling Temperature 1.0
Learning Rate 3e-6
Number of Rounds 10
Self-play Used Yes
LORA Rank 32
LORA α 64
LORA Dropout None
Data Type bfloat16
TIS ratio 2.0
Replay Buffer ρ 0.5
Batch Size 128 64 64
Reward Norm. Constant 5.0 100.0 100.0
Entropy Coeff. 0.01 0.0 0.0
KL Coeff. 0.0 0.001 0.001
Discount Factor 0.9 0.9 0.96
AdAlign β 0.5 1.0 2.0
AdAlign γ 0.9 0.9 0.96

Table 1: Hyperparameters for IPD, Split No-Comm, and Trust-and-Split experiments.

12 IPD

Cooperate (C) Defect (D)
Cooperate (C) (3, 3) (0, 5)

Defect (D) (5, 0) (1, 1)
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Hyperparameter Value
Batch Size 64

Reward Normalization Constant 100.0
Entropy Coefficient 0.0

KL Coefficient 0.0
Discount Factor 0.96

GPT-5 Nano Reasoning Effort Low

Table 2: Hyperparameters for multi-agent GRPO against GPT-5 Nano.

Figure 9: Example interaction in Trust-and-Split where an agent trained with multi-agent GRPO
misrepresents the rock-paper-scissors hierarchy to claim the high value role. GPT-5 nano accepts
the deceptive claim and proposal, illustrating that an RL agent can learn to exploit a fixed advanced
model.

13 GAME CHATS
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Figure 10: Example IPD interaction showing the tit-for-tat behavior learned by Alice, the Advantage
Alignment agent. After Bob defects, Alice defects in round 3, then returns to cooperation in rounds
4 and 5 once Bob cooperates again.
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Figure 11: Example Split No-Comm interaction showing the grim-trigger behavior learned by Alice,
the Advantage Alignment agent. After Bob defects in round 2, Alice responds by defecting in rounds
3 and 4 and continues defecting thereafter.
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Figure 12: Example interaction for the Iterated Prisoner’s Dilemma. The transcript shows how
agents receive prompts, select actions, and view prior actions across rounds.

Figure 13: Example interaction in Split No-Comm. The transcript shows value assignments, pro-
posals, and last round summary.
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Figure 14: Example interaction in Trust-and-Split. The transcript shows how agents communicate
their hands, negotiate, and make proposals.
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