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Abstract

Recent generative models produce images with a level of au-
thenticity that makes them nearly indistinguishable from real
photos and artwork. Potential harmful use cases of these mod-
els, necessitate the creation of robust synthetic image detec-
tors. However, current datasets in the field contain generated
images with questionable quality or have examples from one
predominant content type which leads to poor generalizabil-
ity of the underlying detectors. We find that the curation of a
balanced amount of high-resolution generated images across
various content types is crucial for the generalizability of de-
tectors, and introduce ImagiNet, a dataset of 200K examples,
spanning four categories: photos, paintings, faces, and mis-
cellaneous. Synthetic images in ImagiNet are produced with
both open-source and proprietary generators, whereas real
counterparts for each content type are collected from pub-
lic datasets. The structure of ImagiNet allows for a two-track
evaluation system: i) classification as real or synthetic and ii)
identification of the generative model. To establish a strong
baseline, we train a ResNet-50 model using a self-supervised
contrastive objective (SelfCon) for each track which achieves
evaluation AUC of up to 0.99 and balanced accuracy ranging
from 86% to 95%, even under conditions that involve com-
pression and resizing. The provided model is generalizable
enough to achieve zero-shot state-of-the-art performance on
previous synthetic detection benchmarks. We provide abla-
tions to demonstrate the importance of content types and pub-
lish code and data.

Introduction
State-of-the-art generative models are rapidly improving
their ability to produce nearly identical images to authen-
tic photos and artwork. Diffusion models (DMs) (Ho, Jain,
and Abbeel 2020; Rombach et al. 2022a), variational auto-
encoders (VAEs) (Harvey, Naderiparizi, and Wood 2022),
and generative adversarial networks (GANs) (Goodfellow
et al. 2014) are being utilized in various ways to achieve
data augmentation, text-to-image and image-to-image gen-
eration, inpainting and outpainting. They facilitate the pro-
duction of visuals and spatial effects for downstream use
in the entertainment, gaming, and marketing industries. On
the other hand, these models can be misused by malicious
actors (Masood et al. 2021). Thus, there is an increasing
demand for improved synthetic image recognition models.
Prior work (Wu, Zhou, and Zhang 2023; Gragnaniello et al.

Train/Eval Corvi2022 Wu2023 ArtiFact Ours
Balanced ✓/ ✗ ✓/ ✓ - / ✗ ✓/ ✓

Multiple
generators ✗/ ✓ ✓/ ✓ - / ✓ ✓/ ✓

Proprietary
generators ✗/ ✓ ✗/ ✓ - / ✗ ✓/ ✓

Multiple
content types ✗/ ✗ ✓/ ✓ - / ✓ ✓/ ✓

Synthetic
resolution

256 × 256 /

1024 × 1024

1024 × 1024 /

8000 × 8000

- /

200 × 200

1792 × 1024 /

1792 × 1024

Table 1: Feature comparison of previous synthetic datasets.
‘-’ signifies that data is not available.

2021; Corvi et al. 2022) employs standard classifiers but
struggles with overfitting, bias, and poor generalization to
novel generators, limiting effectiveness in synthetic content
detection. One key area that has yet to be fully explored in
synthetic detection is the creation of training datasets with a
broader range of content types and generator sources.

Previous datasets (Table 1) primarily feature GAN-
generated images and lack diversity in resolution, generator
types, and content, leading to biases and overfitting issues
(Corvi et al. 2022; Gragnaniello et al. 2021; Wu, Zhou, and
Zhang 2023; Torralba and Efros 2011). Rahman et al. (2023)
provide a diverse benchmark with multiple generators and
content types, but the resized low-resolution images make it
more suitable for benchmarking rather than training.

We propose a new benchmark and balanced training set
for synthetic image detection called ImagiNet1. It includes
images from novel open-source and proprietary generators.
Our main goal is to study ways to address the challenge of
generalizability by training on diverse data. The images are
created by either GAN (Goodfellow et al. 2014), DM (Rom-
bach et al. 2022b), or a proprietary generator – Midjourney
(Holz 2023) or DALL·E (Betker et al. 2023). Our bench-
mark includes two main testing tracks: synthetic image de-
tection and model identification. Testing is performed under
perturbations like JPEG compression and resizing, simulat-

1https://anonymous.4open.science/r/imaginet-E3DC



Real Synthetic
Source Number Source Number

Photos (30%)
ImageNet 7.5K StyleGAN-XL 7.5K
LSUN 7.5K ProGAN* 7.5K
COCO 15K SD v2.1/SDXL v1.0 15K

Paintings (22.5%)
StyleGAN3 11.25K
SD v2.1/SDXL v1.0 5.625K

WikiArt

Danbooru

11.25K

11.25K Animagine XL 5.625K

Faces (22.5%)
StyleGAN-XL 11.25KFFHQ 22.5K SD v2.1/SDXL v1.0 11.25K

Uncategorized (25%)
Midjourney* 12.5KPhotozilla 25K DALL·E 3* 12.5K

Total 100K Total 100K

Table 2: ImagiNet dataset structure with two main
categories and four subcategories. * signifies images

sourced from public datasets.

ing social network conditions as in previous works (Corvi
et al. 2022). All images are high-resolution, similar to those
on social networks, for more consistent results.

Dataset Construction
The ImagiNet dataset consists of images from various open-
source and proprietary image generators to encompass the
distinct “fingerprints” they impart.

Dataset Structure (Table 2) – The dataset structure is de-
signed to represent real-world scenarios where images of
different content types might be used. ImagiNet examples
are split into two main categories – real and synthetic im-
ages. To mitigate content-related biases, the dataset is di-
vided into four subcategories – photos, paintings, faces, and
miscellaneous. Such images are commonly found on the
World Wide Web and are the main subject of generative ap-
plications. We provide a balanced amount of synthetically
generated images and real counterparts in each subcategory.
The source datasets and generator models are given in Ta-
ble 2. Images from models marked with * are sourced as
follows: ProGAN from Wang et al. (2020), Midjourney from
Pan et al. (2023), DALL·E 3 from LAION (LAION 2023);
in addition we generated 800 DALL·E 3 images to reach
our desired dataset size. Synthetic groups are generated with
pre-trained models: GAN images are labeled as GAN, Sta-
ble Diffusion as SD, and proprietary models as standalone.

Real Images Sampling – The real images are randomly
sampled from each real counterpart dataset described in Ta-
ble 2 (Russakovsky et al. 2015; Yu et al. 2016; Lin et al.
2015; Tan et al. 2019; Anonymous, community, and Bran-
wen 2022; Karras, Laine, and Aila 2019; Singhal et al.

positive suffixCreate a technique painting in the style of style featuring subject

(a) Painting Generation

a professional photo portrait of age gender centered inside somewhere

looking at the camera with hair type , color eyes mouth typeeyes, , skin color skin

and expression expression and glasses or not positive suffix

(b) Face Generation

Figure 1: Prompt structures for image generation.

2021). The images in our test set are sampled from the vali-
dation and testing splits of these sets.

Image Generation Procedure – To generate images with
GANs (StyleGAN-XL (Sauer, Schwarz, and Geiger 2022),
StyleGAN3 (Karras et al. 2021)), we sample random latent
code (it is selected according to model requirements) for a
given seed and feed the generator with it unconditionally.
For DMs and private generators (SD v2.1 (Rombach et al.
2022b), SDXL v1.0 (Podell et al. 2023), Animagine XL
(Taqwa 2024), DALL·E 3 (Betker et al. 2023)), however,
textual guidance is needed, thus we first search manually
for appropriate negative prompts and positive suffixes to in-
crease the quality of the produced images. The construction
of each prompt is in descriptive form. For photos, we utilize
the captions from COCO (Chen et al. 2015) to prompt the
generators and achieve images with sufficient quality. For
paintings, instead of using a pre-generated set of captions
for prompting, we create lists of styles, techniques, and sub-
jects with GPT-3.5 Turbo (Brown et al. 2020). After that,
we fit these characteristics of the paintings in a descriptive
sentence shown in Figure 1a, which guides the model to gen-
erate varied images. The gaps are filled respectively with an
item from the given list, and in the end, a positive suffix is
added. The procedure for face generation is similar – Fig-
ure 1b presents the structure of the prompt. All the lists for
filling in the guiding instructions, as well as the positive suf-
fixes and negative prompts. The last model AnimagineXL, a
fine-tuned SDXL (Podell et al. 2023) variant for art genera-
tion, uses only tags from the Danbooru dataset (Anonymous,
community, and Branwen 2022) for prompting.

Dataset Splits – From the whole set, we sample 80%
of the images from each category and subcategory with an
equal number of images from the different generators. The
number of images in the training set is 160K, respectively
40K are left for testing. We aim to provide a balanced (an
equal number of images for each model) calibration set sam-
pled from the training set. It consists of 80K examples in
total.

Labelling and Evaluation Tracks – All the images of the
dataset are labelled. They have four labels – source (real or
synthetic), content type, generator group (e.g., GAN), and
specific generator (e.g., ProGAN). In our benchmark, we
have two tracks – synthetic image detection and model iden-
tification. Perturbations are applied on the test set to simulate
social network conditions (Corvi et al. 2022). First, we do a
large square crop (ranging from 256 to the smaller dimen-
sion of the image) of the image and, after that, resize it to



256× 256. After that, we compress 75% of the images with
JPEG or WebP compression.

Dataset Access – We provide the synthetic images we
generated for this work, along with those from DALL·E 3,
which are collected under a Creative Commons Zero license.
Both the real counterparts and the additional part of syn-
thetic content (Midjourney and ProGAN examples) can be
downloaded from their sources. The whole dataset can be
reconstructed with the scripts in our repository, which also
includes the list of sources and our synthetic data.

Baseline Training
To train our baseline, we initialize a ResNet-50 model with
pre-trained ImageNet weights and modify its early layers to
avoid downsampling, following Gragnaniello et al. (2021).

In the first stage of training, we train a backbone with a
contrastive objective LSC , as proposed by Bae et al. (2022):

LSC =
∑
i∈A
ω∈Ω

−1

|P (i)||Ω|

∑
p∈P (i)
ω′∈Ω

log
exp(ω(xi) · ω′(xp)/τ)∑

l∈Q(i)

exp(ω(xi) · ω′(xl)/τ)
(1)

where A ≡ {1, ..., N} is a set of indices for all batch ex-
amples, Q(i) ≡ A\{i} (similarity between zi and zi is re-
dundant), and P (i) ≡ {p ∈ Q(i) : ŷp = ŷi} is the set of
positive examples for a given example i.

A sub-network is attached to the backbone. Its main re-
sponsibility is to produce an alternative view of the images
in the latent space instead of additional augmented sam-
ples to design the SelfCon loss with a single-viewed (aug-
mented once) batch. The sub-network could be a fully con-
nected layer or another architecture with the same func-
tion as the backbone. The sub-net Hsub(.) is attached to the
backbone and projects the latent representations Fm(.) ob-
tained after the m-th ResNet block. The network has two
output mapping functions Ω ≡ {Hsub(Fm(.)), H(F (.))}
for a given input xi. In our case, the mapping functions
H(.) and Hsub(.) output representations in R128. This in-
volves accumulating LSC applied on two labellings - syn-
thetic detection and model identification labels, with each
loss assigned equal weight. When optimizing the model de-
tection objective, real images in the batch are ignored. To
address the increased memory demands of removing down-
sampling in early ResNet-50 layers and the large batch size
requirements of SelfCon, we adopt gradient caching (Gao
et al. 2021), a technique initially designed for language
model contrastive losses. We modify it for use with Self-
Con (Bae et al. 2022), SupCon (Khosla et al. 2021), and
SimCLR (Chen et al. 2020). This approach calculates the
loss on the entire batch but accumulates gradients in smaller
chunks, allowing for large batch sizes and efficient training
on memory-constrained GPUs.

The second stage involves calibrating the model. We de-
tach the sub-network and projection heads, replacing the
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Figure 2: Dimensionality reduction vizualization of the
backbone representations for a subset of ImagiNet.

output projection head with a multilayer perceptron classi-
fier. This classifier is then trained using cross-entropy loss
on a balanced dataset to perform both origin and model de-
tection. We update the batch normalization statistics within
the backbone’s residual blocks, following Schneider et al.
(2020), to enhance robustness against perturbations not en-
countered during pre-training.

Experiments and Results
First, we evaluate the described baseline against existing
synthetic datasets. Then, we examine the importance of bal-
ancing content types in ImagiNet for the performance of de-
tectors.

Baseline – During the first stage, the backbone is opti-
mized with SGD (Ruder 2017) for 400 epochs with batch
size N = 200 on the ImagiNet training set. The initial learn-
ing rate of 0.005 is warmed up linearly (Ma and Yarats 2021)
for 10 epochs and is cosine annealed (Loshchilov and Hutter
2017) afterwards. The second stage continues for 5 epochs
with AdamW optimizer (Loshchilov and Hutter 2017) and
constant learning rate 0.0001, weight decay 0.001, β1 = 0.9
and β2 = 0.99. After the pre-training procedure, we visual-
ize the model representations of the images in the test set by
applying Autoencoder dimensionality reduction (Meng et al.
2017). The plots in Figure 2 show the ability of our model
to cluster each generator’s images.

As shown in Table 3, the baseline achieves AUC of up
to 0.99 and balanced accuracy over 95% on ImagiNet. To
demonstrate its generalization abilities we evaluate zero-
shot performance on the datasets from (Wu, Zhou, and
Zhang 2023) in Table 4, and (Corvi et al. 2022) in Table
5. Our baseline is able to outperform the original method
of Wu2023 and remains comparable on Corvi2022’s bench-
mark. The baseline shows a substantial improvement of
12% in ACC on DALL·E 2 examples since it is trained on
DALL·E 3 images. The results on StyleGAN3 and Style-
GAN2 are increased by 1-2%. Table 6 presents a comparison
of the inference time of our detector with previous models.
We also train the model proposed in Corvi2022 on ImagiNet
to demonstrate that the balanced dataset elicits generalizable
performance regardless of the architecture and training pro-
cedure.



ACC / AUC Grag2021 Corvi2022 Wu2023 Corvi2022* Ours*

GAN 0.6889 / 0.8403 0.6822 / 0.8033 0.6508 / 0.6971 0.8534 / 0.9416 0.9372 / 0.9886
SD 0.5140 / 0.5217 0.6112 / 0.6851 0.6367 / 0.6718 0.8693 / 0.9582 0.9608 / 0.9922
Midjourney 0.4958 / 0.5022 0.5826 / 0.6092 0.5326 / 0.5289 0.8880 / 0.9658 0.9652 / 0.9949
DALL·E 3 0.4128 / 0.3905 0.5180 / 0.5270 0.5368 / 0.5482 0.8906 / 0.9759 0.9724 / 0.9963

Mean 0.5279 / 0.5637 0.5985 / 0.6562 0.5892 / 0.6115 0.8753 / 0.9604 0.9589 / 0.9930

Table 3: ImagiNet test set evaluation – best ACC/AUC. * means trained on ImagiNet.

ACC / AUC Wu2023 Ours*

DreamBooth 0.9049 / 0.9733 0.9601 / 0.9950
MidjoruneyV4 0.8907 / 0.9495 0.9675 / 0.9959
MidjourneyV5 0.8540 / 0.9224 0.9745 / 0.9991
NightCafe 0.8962 / 0.9652 0.8931 / 0.9644
StableAI 0.8806 / 0.9534 0.9574 / 0.9947
YiJian 0.8392 / 0.9233 0.9045 / 0.9726

Mean 0.8776 / 0.9479 0.9428 / 0.9870

Table 4: Practical test set (Wu, Zhou, and Zhang 2023)
evaluation – best ACC/AUC. * means trained on ImagiNet.

ACC / AUC Corvi2022 Corvi2022* Ours*

ProGAN 0.9117 / 0.9994 0.9030 / 0.9995 0.8974 / 0.9991
StyleGAN2 0.8662 / 0.9455 0.8675 / 0.9479 0.8884 / 0.9759
StyleGAN3 0.8557 / 0.9416 0.8705 / 0.9440 0.8824 / 0.9707
BigGAN 0.8952 / 0.9699 0.8980 / 0.9882 0.8934 / 0.9864
EG3D 0.9062 / 0.9756 0.8450 / 0.9160 0.8964 / 0.9913
Taming Tran 0.9112 / 0.9902 0.8538 / 0.9278 0.8829 / 0.9651
DALL·E Mini 0.9117 / 0.9914 0.9015 / 0.9792 0.8924 / 0.9786
DALL·E 2 0.6507 / 0.7590 0.7370 / 0.8302 0.7729 / 0.8590
GLIDE 0.9062 / 0.9780 0.8730 / 0.9429 0.8539 / 0.9347
Latent Diff 0.9117 / 0.9998 0.9017 / 0.9989 0.8959 / 0.9902
Stable Diff 0.9117 / 0.9999 0.9030 / 0.9998 0.8969 / 0.9956
ADM 0.7927 / 0.8772 0.7875 / 0.8710 0.7704 / 0.8550

Mean 0.8692 / 0.9523 0.8618 / 0.9446 0.8686 / 0.9585

Table 5: Corvi test set (Corvi et al. 2022) evaluation – best
ACC/AUC. * means trained on ImagiNet.

Content Type Balancing – To investigate the influence of
specific content types and identify potential biases, we con-
ducted an ablation study inspired by Leave-One-Out Cross-
Validation (LOOCV). Separate models were trained, each
with one content type excluded from its training data, while
maintaining equal training data overall. The isolation of the
specific category influence allows us to identify potential bi-
ases through drastic changes in performance when tested on
the unseen group of examples.

From the synthetic images in our ImagiNet dataset, we
focused on those generated by Stable Diffusion due to its
presence in all image subcategories, thus eliminating poten-
tial generator-specific biases. We sampled a balanced subset
containing 4500 real and 4500 synthetic (Stable Diffusion
only) images per subcategory (photos, paintings, faces). For
each model, we used a ResNet-18 architecture, training it
from scratch for 200 epochs to avoid any biases from pre-
trained models. Each model was trained on 18000 images

Grag2021 Corvi2022 Wu2023 Ours
24.30 49.53 16.01 25.10

Table 6: Inference time in milliseconds for 448× 448
image on RTX 4090 GPU.
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Figure 3: Mean accuracy and AUC on the different models
trained by leaving one content type out.

with one category left out. For evaluation, we sample 1000
real and 1000 synthetic images for each category.2

Figure 3 demonstrate that models trained by excluding a
specific content type exhibit overfitting and generally lower
synthetic accuracy when tested on that content type. No-
tably, the “Except Faces” model overfits the real image dis-
tribution, suggesting that bias is introduced not only by syn-
thetic images but also by real images. The AUC plot in Fig-
ure 3 reveals high variance from expected values for the “Ex-
cept Painting” and “Except Faces” models on their respec-
tive content types, highlighting the inability to distinguish
between the real and synthetic classes at all possible thresh-
olds. This suggests that training on diverse content types is
essential for mitigating bias. The baseline model, trained on
all types, does not overfit on the test set.

Conclusion
In this work: (1) we demonstrate the importance of balanc-
ing content types in synthetic image datasets; (2) we provide
a modest-in-size but high quality benchmark for training and
evaluating synthetic detectors; (3) we provide a strong base-
line which generalizes on third-party datasets.

2Our analysis revealed no significant bias toward the resolution
of real images across different content type groups.
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