Amortized Bayesian Inference with Hybrid Expert-in-the-Loop and Learnable Summary Statistics

Anonymous authors
Paper under double-blind review

Abstract

Amortized Bayesian inference (ABI), a subset of simulation-based inference (SBI) fueled by neural networks, has rapidly grown in popularity across diverse scientific fields. Summary statistics are an essential dimensionality reduction component of ABI workflows and most methods to-date rely either on handcrafted (i.e., based on domain expertise) or end-to-end learned summary statistics. In this work, we explore three hybrid methods to harness the complementary strengths of both sources. The first method directly conditions a neural approximator on both summary types, thereby extending traditional end-to-end approaches in a straightforward way. The second method embeds both expert and learned summaries into a joint representation space which is explicitly optimized to encode decorrelated features. The third method employs an auxiliary generative model to learn a latent summary representation that is statistically independent from the expert summaries. We explore various aspects of our hybrid methodology across different experiments and model instances, including perfect domain expertise and imperfect artificial experts represented by pre-trained neural networks. Our empirical results suggest that hybrid representations can improve parameter estimation and model comparison in settings of scientific interest, warranting the viability of an "expert-in-the-loop" approach. The performance gains are especially promising in scenarios with low to medium simulation budgets.

1 Introduction

Computer simulations are becoming indispensable across the sciences (Lavin et al., 2021). Yet, the inverse problem of determining simulation parameters that faithfully emulate or forecast realworld phenomena tends to be arduous and analytically intractable. Generative neural networks are a promising new contender for solving inverse problems through simulation-based inference (SBI, Cranmer et al. 2020; Ardizzone et al. 2018). When trained on model simulations, these networks can perform scalable amortized Bayesian inference (ABI) on unseen real data (e.g., Avecilla et al. 2022, Radev et al., 2021b, Gonçalves et al., 2020). ABI has been shown to speed up industrial processes (Zhang \& Mikelsons, 2023a) and scale up Bayesian estimation to large data sets von Krause et al.,|2022). However, two major challenges for ABI tend to emerge in practice:

1. Accurate approximate inference given limited simulation budgets;
2. Sufficiently informative data compression given complex structure.

The first challenge arises when the forward problem of simulating a real-world process is computationally expensive and cannot be run ad infinitum in the context of online learning. Many interesting models and recent applications of SBI fall in this category (e.g., Zhang \& Mikelsons, 2023b|a Zeng et al., 2023; Vandegar et al., 2021). The second challenge arises from the very essence of (Bayesian) model-based reasoning, which seeks to recover informative low-dimensional representations of high-dimensional data with rich structure. In statistics and Bayesian inference, in particular, such representations are commonly termed summary statistics; good summary statistics respect the probabilistic symmetry of the data and achieve nearly lossless compression for downstream inference targets Bloem-Reddy \& Teh, 2020). However, good summary statistics are notoriously hard to engineer in practice (Bharti et al. 2022, Marin et al., 2018, Blum et al., 2013).

Figure 1: A conceptual illustration of neural simulation-based inference (SBI) with three different methods for obtaining summary statistics. Top row. In expert approaches, the data are reduced through hand-crafted summary statistics, leveraging domain expertise. Middle row. End-to-end learner approaches involve passing the data through a neural network (i.e., summary network) to acquire learned summaries. Bottom row. Hybrid approaches (ours) combine both sources of summary statistics (expert and learned). Regardless of the approach, summary statistics are then processed by an inference network which solves a Bayesian task (e.g., posterior estimation). The right panel displays posterior distributions for a single parameter of a complex neurocognitive model (Experiment 2) obtained using all three approaches with two separate simulation budgets (low; medium). The hybrid approach leads to more precise estimation in both settings.

Most SBI applications to-date rely on either hand-crafted (i.e., based on domain expertise) or end-to-end learned summaries, with the latter approach being employed even in scenarios with only a few hundred simulations available (e.g., Zhang \& Mikelsons, 2023b; Heringhaus et al. 2022; Zeng et al., 2023; Tsilifis et al. 2022). Expert summary statistics may be "leaky" and contain insufficient information for learning to infer from data (cf. Figure 1, top). Differently, end-to-end learning methods typically delegate the task to a neural network which may struggle in settings with low simulation budgets but improve as simulation throughput increases (cf. Figure 1. middle). Crucially, the design space of this summary network becomes a key hyperparameter in any such analysis and an underperforming network may be just as detrimental as poor expert information. Thus, we propose to explore an integrative approach which seamlessly combines both expert and learned statistics into ABI workflows (cf. Figure 1, bottom). In summary, our contributions are:

- an investigation of novel hybrid methods of varying complexity to synthesize expert and learnable summary statistics in ABI tasks;
- a comprehensive evaluation of the relative benefits of expert, learned, and hybrid summary statistics for different models, data types, and simulation budgets;
- an empirical demonstration that the synthesis of expert knowledge and learned summaries can improve ABI, especially in settings with low to medium simulation budgets.

2 Background

2.1 BAYESIAN INFERENCE WITH NEURAL NETWORKS

Given a collection of observations \boldsymbol{X} (i.e., data) and an observation model $p(\boldsymbol{X} \mid \boldsymbol{\theta})$ (i.e., a likelihood density), the goal of Bayesian modeling is to approximate the posterior distribution over hidden
(unobserved or unobservable) parameters $\boldsymbol{\theta}$

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{X})=\frac{p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{Z} \tag{1}
\end{equation*}
$$

as accurately as possible. Analytic solutions are typically intractable for most non-trivial models, since the normalizing constant, $Z=\mathbb{E}_{p(\boldsymbol{\theta})}[p(\boldsymbol{X} \mid \boldsymbol{\theta})]$, involves integration over a high-dimensional prior $p(\boldsymbol{\theta})$. Thus, a lot of research in Bayesian modeling has focused on developing methods for efficient conditional density estimation, with Markov chain Monte Carlo (MCMC) methods currently standing as the gold standard in terms of theoretical properties and practicability (Plummer, 2023, Carpenter et al., 2017). Nevertheless, a major challenge for MCMC methods remains their subpar efficiency for large data sets, complex models, or real-time inference.
Bayesian modeling becomes even more challenging when the likelihood density $p(\boldsymbol{X} \mid \boldsymbol{\theta})$ is not available in closed-form but only implicitly defined through a randomized simulation program G. In that case, most Monte Carlo approaches are not applicable, because even the (log) unnormalized posterior $p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$ cannot be evaluated explicitly. Thus, SBI has emerged as a general solution to analyze intractable models (Cranmer et al., 2020). More recently, neural density estimation has entered the scene as a flexible framework for modeling complicated distributions (Kobyzev et al. 2020; Papamakarios et al., 2021) and, by extension, conditional distributions arising in Bayesian modeling.
This work focuses on ABI methods which aim to directly approximate $p(\boldsymbol{\theta} \mid \boldsymbol{X})$ by training a generative network $q_{\phi}(\boldsymbol{\theta} \mid \boldsymbol{X})$ on model simulations $\{\boldsymbol{X}, \boldsymbol{\theta}\}$ (e.g., Ardizzone et al., 2018 Gonçalves et al. 2020). Once trained, such networks can approximate the posteriors for any set of new unlabeled observations $\left\{\boldsymbol{X}^{\text {new }}\right\}$ compatible with the model's configuration. Thus, the computational cost of the simulation-based training phase quickly amortizes over repeated inference queries, hence the term amortized inference. Furthermore, we suspect that our ideas will also apply to neural likelihood estimation (Papamakarios et al., 2019, Kelly et al. 2023), which targets the intractable likelihood density $p(\boldsymbol{X} \mid \boldsymbol{\theta})$ with the goal of applying MCMC with a neural surrogate.

2.2 SUMMARY STATISTICS AND SUFFICIENCY

The data \boldsymbol{X} in Bayesian problems usually exhibits some exploitable probabilistic symmetry; common data structures comprise sets of IID vectors, time series, or graphs (Orbanz \& Roy, 2014). Thus, even the simplest Bayesian models make use of summary statistics. Consider a toy conjugate Gaussian model given by

$$
\begin{equation*}
\text { Prior: } \theta \sim \mathcal{N}(0,1), \quad \text { Likelihood: } x_{n} \sim \mathcal{N}(\theta, 1) \text { for } n=1, \ldots, N \tag{2}
\end{equation*}
$$

The posterior of the Gaussian mean parameter θ is proportional to

$$
\begin{equation*}
p\left(\theta \mid x_{1}, \ldots, x_{N}\right) \propto \mathcal{N}\left(\frac{N}{N+1} \bar{x}, \frac{1}{N+1}\right) \tag{3}
\end{equation*}
$$

Thus, to estimate the posterior of θ for any fixed N, we can simply compute the sample mean, $\bar{x}=N^{-1} \sum_{n=1}^{N} x_{n}$, and throw away the raw data. In this case, the sample mean \bar{x} is a sufficient summary statistic, as it allows lossless compression of the data for the estimation problem at hand. In other words, sufficient statistics need not reconstruct the data \boldsymbol{X} perfectly; they need to capture the relevant information in \boldsymbol{X} for consistent inference of $\boldsymbol{\theta}$. More generally, a sufficient summary statistic, $S(\boldsymbol{X})$, is one that satisfies the following equality:

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{X})=p(\boldsymbol{\theta} \mid S(\boldsymbol{X})) \tag{4}
\end{equation*}
$$

Sufficient summary statistics exist for textbook Bayesian models (e.g., as in our Gaussian example above), but are typically hard to obtain in practice ${ }^{1}$ Indeed, insufficient summary statistics have been long known to plague approximate Bayesian inference (Robert et al., 2011), a predicament which has been dubbed the curse of insufficiency (Marin et al. 2018). Thus, the design of good summary statistics in SBI is essential and has attracted much research from various areas (see Related Work).

[^0]
3 Methods

3.1 Hybrid summary statistics

Given raw simulator outputs or real data $\boldsymbol{X} \in \mathcal{X}^{N}$, with \mathcal{X} not necessarily an Euclidean space, we consider two types of summary functions. The first is parameterized via a learner (i.e., a neural network), $L_{\vartheta}(\boldsymbol{X}), L_{\vartheta}: \mathcal{X}^{N} \rightarrow \mathbb{R}^{D}$, which appropriately encodes the probabilistic symmetry (e.g., permutation invariance) of the data into a compressed representation. For instance, we can use set transformers (Lee et al., 2019) for learning permutation-invariant representations of set-based data (Experiments 1 and 2) or temporal fusion transformers (Lim et al., 2021) for compressing multivariate time series data (Experiment 3). The second summary function $H(\boldsymbol{X}), H: \mathcal{X}^{N} \rightarrow \mathcal{H}$, is defined by a human or an artificial expert tasked to reduce the data based on their domain expertise (e.g., providing quantiles, moments, or predicted labels). The image \mathcal{H} of H may not necessarily conform to an Euclidean space, as the expert may provide a mixture of categorical, ordinal, and continuous summaries. In the following, we discuss how to combine these distinct representations of the same \boldsymbol{X} such that an inference network can infer $\boldsymbol{\theta}$ from the collective information contained in $L_{\vartheta}(\boldsymbol{X})$ and $H(\boldsymbol{X})$.

3.2 INFERENCE NETWORKS

To enable amortized ABI with neural networks, we can utilize any conditional neural density estimation family, such as normalizing flows (Papamakarios et al., 2021), score-based models (Geffner et al. 2022), or flow-matching methods (Chen \& Lipman, 2023). Here, we use conditional normalizing flows, F_{ϕ}, which represent the parameter posterior (Eq.[1) via the change-of-variables formula

$$
\begin{equation*}
q_{\phi}(\boldsymbol{\theta} \mid \boldsymbol{X})=p\left(\boldsymbol{z}=F_{\phi}(\boldsymbol{\theta} ; \boldsymbol{X})\right)\left|\frac{\partial F_{\phi}}{\partial \boldsymbol{\theta}}\right| \tag{5}
\end{equation*}
$$

where $p(\boldsymbol{z})$ is a simple base distribution from which we can easily draw samples (e.g., spherical Gaussian). Since the data \boldsymbol{X} can have varying shape, size, or a different structure from $\boldsymbol{\theta}$, we cannot simply concatenate $\boldsymbol{\theta}$ and \boldsymbol{X}, and enter them into $F_{\phi}(\boldsymbol{\theta} ; \boldsymbol{X})$. Thus, we need $H(\boldsymbol{X})$ and/or $L_{\vartheta}(\boldsymbol{X})$ not merely as a form of convenient dimensionality reduction, but as a proxy for making inference networks flexible and practically applicable by being agnostic to the peculiarities of \boldsymbol{X} 's structure.

3.3 DIRECT HYBRID METHOD

Our first hybrid method directly conditions the networks on $\boldsymbol{s}_{\vartheta}:=\left[L_{\vartheta}(\boldsymbol{X}), H(\boldsymbol{X})\right]$. A straightforward optimization criterion for amortized inference is thus

$$
\begin{equation*}
\left.\phi^{*}, \vartheta^{*}=\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[D_{\mathrm{KL}}\left[p(\boldsymbol{\theta} \mid \boldsymbol{X}) \| q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{s}_{\vartheta}\right)\right)\right]\right], \tag{6}
\end{equation*}
$$

where $D_{\mathrm{KL}}(\cdot \| \cdot)$ above is the Kullback-Leibler divergence between the analytic (true) and the approximate posterior. This criterion reduces to a tractable, doubly conditional maximum likelihood training objective

$$
\begin{equation*}
\phi^{*}, \vartheta^{*}=\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{\theta}, \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid L_{\vartheta}(\boldsymbol{X}), H(\boldsymbol{X})\right)\right] \tag{7}
\end{equation*}
$$

which we can approximate through batches of simulations $\{\boldsymbol{X}, \boldsymbol{\theta}\} \sim G$. If we condition only on the learned summaries $L_{\vartheta}(\boldsymbol{X})$, we recover the criterion from Radev et al. (2020a) which has been shown to automatically approximate maximally informative summary statistics for $\boldsymbol{\theta}$. Intuitively, when we also input the expert summaries, the summary network is implicitly encouraged to learn the incremental information about $\boldsymbol{\theta}$ contained in \boldsymbol{X}, which is not captured by the expert $H(\boldsymbol{X})$. Note, that the direct hybrid method features no direct structural connection between the expert and learned summaries. Thus, our next two methods focus on prescribing an explicit structure to the implied joint $p\left(L_{\vartheta}(\boldsymbol{X}), H(\boldsymbol{X})\right)$ and conditional $p\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)$ distributions, respectively.

3.4 Joint hybrid method

What if we wanted to learn a decorrelated joint representation of the expert and the learnable summaries, that is, a representation with pairwise independent components? One way to approach
this problem is to attempt to model $p\left(L_{\vartheta}(\boldsymbol{X}), H(\boldsymbol{X})\right)$ directly via a latent generative model with jointly independent latent codes. However, differently from $L_{\vartheta}(\boldsymbol{X})$, the expert summaries $H(\boldsymbol{X})$ may reside in a very different space (e.g., be discrete or exhibit artificial bounds), resulting in $p\left(L_{\vartheta}(\boldsymbol{X}), H(\boldsymbol{X})\right)$ being a complicated mixture distribution. In addition, the expert may provide a large number of partially redundant summary statistics (Raynal et al. 2019) which themselves may profit from some form of pre-processing or compression.

For the above reasons, we propose to introduce a further learnable transformation, $T_{\varphi}: \mathcal{E} \rightarrow \mathbb{R}^{D^{\prime}}$, which maps the expert summaries into real vectors $\boldsymbol{s}_{\varphi}=T_{\varphi} \circ H(\boldsymbol{X})$ We can interpret these vectors as expert embeddings. In practice, we can implement a simple linear transformation or a small neural network realizing a non-linear transformation. Thus, we can obtain joint representations $\boldsymbol{s}_{\vartheta}^{(\varphi)}:=\left[L_{\vartheta}(\boldsymbol{X}), T_{\varphi}(H(\boldsymbol{X}))\right]$ and enforce a spherical structure on the resulting joint summary space. To achieve the latter, we augment our original criterion (Eq. 7) by the kernel-based Maximum Mean Discrepancy (MMD, Gretton et al. 2012) between the joint summary representation and a spherical Gaussian:

$$
\begin{equation*}
\phi^{*}, \vartheta^{*}, \varphi^{*}=\underset{\phi, \vartheta, \varphi}{\arg \min } \mathbb{E}_{p(\boldsymbol{\theta}, \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{s}_{\vartheta}^{(\varphi)}\right)\right]+\lambda \cdot \operatorname{MMD}^{2}\left(p\left(\boldsymbol{s}_{\vartheta}^{(\varphi)}\right) \| \mathcal{N}(\mathbf{0}, \mathbb{I})\right) \tag{8}
\end{equation*}
$$

Here, λ is a hyperparameter which controls the importance of having a simple and decorrelated joint summary space. Setting $\lambda=0$ recovers our direct objective (Eq. 7) with an additional (unconstrained) learnable transformation of the expert summaries. The advantage of using the MMD 2 estimator is that we can easily compute its Monte Carlo estimate based on samples from $\mathcal{N}(\mathbf{0}, \mathbb{I})$ and $p\left(\boldsymbol{s}_{\vartheta}^{(\varphi)}\right)$. In addition to encouraging a decorrelated representation, the inclusion of a summary regularizer may help to highlight potential simulation gaps via feature-based out-ofdistribution (OOD) detection in real-data applications of ABI (Schmitt et al., 2021). A disadvantage of this approach is that having a simple and pairwise decorrelated joint summary distribution may be too strict or even an impossible requirement to fulfill in the presence of many redundant dimensions.

3.5 CONDITIONAL HYBRID METHOD

Finally, what if we wanted to learn summary representations that are guaranteed to be statistically independent from the expert summaries without transforming the latter in any way? To achieve this requirement, we propose to learn a conditional model over $p\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)$ which we parameterize through an auxiliary generative network $\boldsymbol{z}_{\vartheta}^{(\psi)}:=F_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) ; H(\boldsymbol{X})\right)$ with a simple base distribution. We can then train all networks (inference, summary, auxiliary) together by alternating between the following two optimization criteria

$$
\begin{align*}
\phi^{*}, \vartheta^{*} & =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{\theta}, \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right] \tag{9}\\
\psi^{*} & =\underset{\psi}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[-\log q_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)\right] \tag{10}
\end{align*}
$$

The first objective (Eq. 9] is almost the same as the one in Eq. 7, with the output of the summary network $L_{\vartheta}(\boldsymbol{X})$ replaced with its latent representation $\boldsymbol{z}_{\vartheta}^{(\psi)}$ generated by the auxiliary network F_{ψ}. Importantly, this method does not impose any restrictions on the outputs of $L_{\vartheta}(\boldsymbol{X})$ themselves, nor does it additionally transform the expert summaries $H(\boldsymbol{X})$. Moreover, it encourages i) maximally informative latent learned summaries $\boldsymbol{z}_{\vartheta}^{(\psi)}$ for $\boldsymbol{\theta}$ and ii) statistical independence between the learned and the expert summaries $H(\boldsymbol{X})$. Thus, optimal convergence under Eqs. 9 and 10 implies

$$
\begin{gather*}
I\left(\boldsymbol{\theta}, \boldsymbol{z}_{\vartheta^{*}}^{\left(\psi^{*}\right)} \mid H(\boldsymbol{X})\right)=\max _{\vartheta} I\left(\boldsymbol{\theta}, \boldsymbol{z}_{\vartheta}^{\left(\psi^{*}\right)} \mid H(\boldsymbol{X})\right) \tag{11}\\
\boldsymbol{z}_{\vartheta^{*}}^{\left(\psi^{*}\right)} \Perp H(\boldsymbol{X}), \tag{12}
\end{gather*}
$$

where $I(\cdot, \cdot)$ denotes the mutual information and the parameters of the summary network ϑ are considered fixed from the lens of F_{ψ}. The derivation can be found in the Appendix. Despite its desirable properties, we expect the conditional hybrid method to be the most challenging to optimize, as it necessitates the training of an additional neural density estimator. Moreover, as with the joint hybrid method, practical trade-offs may result from tying to optimize both criteria simultaneously.

Figure 2: Gaussian Toy example with sufficient statistics. Results from the low simulation budget setting $(B=1000)$ are shown. Panel a) depicts the trajectory of the average log posterior term (Eq. 7) for all methods. The direct Hybrid (D) converges to the baseline sufficient Expert, while the transformer-based Learner struggles to separate the independent parameter dimensions. The upper row of panel (b) depicts the marginal distribution of the learned summaries for each Hybrid method. The bottom row of panel b) plots one of the ground-truth sufficient expert statistics vs. its projection obtained from linear regression on the learned summaries. The joint Hybrid fairs poorly in terms of linear separability of its joint summary space, but is on par with the other Hybrids in terms of estimation, and still considerably outperforms the Learner (detailed results in the Appendix).

4 RELATED WORK

Hand-crafted statistics Rejection-based approximate Bayesian computation (ABC) methods (Sisson et al., 2018, Joyce \& Marjoram, 2008), but also more advanced Bayesian optimization approaches (Gutmann \& Corander, 2016; Järvenpää et al., 2019), have traditionally relied on lowdimensional hand-crafted summary statistics. Direct regression or classification approaches to ABC allow for entering a much larger number of hand-crafted summary statistics (Raynal et al., 2019 , Palestro et al., 2018, Blum et al. 2013, Blum \& François, 2010) but still require a preliminary manual selection of the summary vector. Thus, although the latter may be (pre-)processed by a machine learning algorithm, they are not explicitly synthesized with learnable representations of the raw data.

Learned summary statistics End-to-end approaches for automatically determining summary statistics have been extensively explored in the context of ABC applications (Fearnhead \& Prangle, 2012). Moreover, many neural approaches to SBI have explicitly focused on learning approximately sufficient statistics in tandem with neural approximators (Wrede et al., 2022, Radev et al., 2020ab Chen et al., 2021; Wiqvist et al. 2019; Chan et al., 2018), for integration with downstream ABC samplers (Jiang et al. | 2017), or in a fully unsupervised manner (Edwards \& Storkey, 2016; Albert et al. 2022). None of these methods have explored an expert-in-the-loop approach to augment the learnable summaries with available expert information in parallel to learning the statistics outright.

Hybrid and expert-in-the-loop approaches In the context of ABC, Bharti et al. (2022) have employed active learning to improve expert statistics and mitigate the impact of model misspecification. Differently, Tiihonen et al. (2022) have proposed to directly involve human experts for sample quality assurance in an otherwise automated Bayesian optimization of materials. Although these methods have not been employed in amortized inference contexts with summary networks or learnable embeddings, there is certainly a lot of potential for synergy.

5 EXPERIMENTS

The following experiments investigate the utility and properties of our hybrid methods across different settings and model configurations. To ensure fair comparisons, we keep the number of summary statistics equal across all experiments. For instance, if a hybrid method uses D expert and D^{\prime} learned

Table 1: Average, worst, and best posterior contraction and explained variance across 1000 test simulations from each joint model in Ghaderi-Kangavari et al. (2023), each summary type, and two training simulation budgets. Aggregated information from 150000 approximate posteriors.

	$\mathcal{M}_{1 a}$	$\mathcal{M}_{1 b}$	$\mathcal{M}_{1 c}$	\mathcal{M}_{2}	\mathcal{M}_{3}	$\mathcal{M}_{4 a}$	$\mathcal{M}_{4 b}$	\mathcal{M}_{5}	\mathcal{M}_{6}	\mathcal{M}_{7}	\mathcal{M}_{8}	\mathcal{M}_{9}	\mathcal{M}_{10}	\mathcal{M}_{11}	\mathcal{M}_{12}
1000 Simulations															
Hybrid (D)	Mean posterior contraction (uncertainty reduction, \uparrow)														
	0.82	0.84	0.75	0.78	0.62	0.62	0.70	0.75	0.77	0.95	0.80	0.85	0.75	0.98	0.87
	[0.47, 0.99]	[0.61, 0.99]	[0.45, 0.99]	[0.45, 0.93]	[0.28, 0.99]	[0.4, 0.93]	[0.34, 0.99]	[0.34, 0.99]	[0.36, 0.99]	[0.88, 0.99]	[0.38, 0.99]	[0.4, 0.99]	[0.36, 0.99]	[0.98, 0.99]	[0.72, 0.99]
Hybrid (J)	0.79	0.82	0.77	0.73	0.68	0.58	0.70	0.70	0.73	0.82	0.76	0.85	0.79	0.97	0.86
	[0.49, 0.98]	[0.44, 0.98]	[0.5, 0.98]	[0.42, 0.86]	[0.42, 0.98]	[0.44, 0.86]	[0.24, 0.98]	[0.32, 0.98]	[0.31, 0.98]	[0.49, 0.99]	[0.35, 0.98]	[0.49, 0.99]	[0.48, 0.97]	[0.96, 0.99]	[0.72, 0.99]
Hybrid (C)	0.71	0.70	0.63	0.62	0.56	0.49	0.61	0.60	0.61	0.92	0.78	0.77	0.68	0.95	0.82
	[0.24, 0.98]	[0.27, 0.98]	[0.14, 0.97]	[0.29, 0.76]	[0.17, 0.98]	[0.27, 0.83]	[0.17, 0.98]	[0.22, 0.98]	[0.13, 0.98]	[0.83, 0.98]	[0.4, 0.98]	[0.14, 0.98]	[0.22, 0.97]	[0.9, 0.99]	[0.65, 0.99]
Learner	0.48	0.46	0.47	0.53	0.41	0.37	0.42	0.51	0.42	0.50	0.55	0.54	0.49	0.80	0.62
	[0.04, 0.99]	[0.03, 0.99]	[0.06, 0.96]	[0.22, 0.78]	[0.05, 0.99]	[0.0, 0.85]	[-0.0, 0.99]	[0.08, 0.99]	[0.03, 0.99]	[0.13, 0.98]	[0.27, 0.93]	[-0.01, 0.98]	[0.06, 0.7]	[0.39, 0.99]	[0.31, 0.99]
Expert	0.80	0.79	0.73	0.69	0.60	0.54	0.69	0.67	0.66	0.78	0.74	0.84	0.72	0.96	0.80
	[0.39, 0.99]	[0.36, 0.99]	[0.39, 0.99]	[0.36, 0.86]	[0.24, 0.99]	[0.36, 0.8]	[0.33, 0.99]	[0.26, 0.98]	[0.26, 0.98]	[0.4, 0.99]	[0.26, 0.99]	[0.39, 0.99]	[0.34, 0.98]	[0.9, 0.99]	[0.63, 0.99]
	Mean explained variance (R^{2} score, point recovery, \uparrow)														
Hybrid (D)	0.79	0.83	0.71	0.73	0.58	0.49	0.65	0.74	0.73	0.93	0.76	0.81	0.70	0.97	0.83
	[0.36, 0.99]	[0.62, 0.99]	[0.45, 0.99]	[0.38, 0.89]	[0.22, 0.98]	[0.21, 0.89]	[0.25, 0.99]	[0.32, 0.99]	[0.3, 0.99]	[0.85, 0.99]	[0.33, 0.99]	[0.39, 0.99]	[0.32, 0.99]	[0.94, 0.99]	[0.61, 0.99]
Hybrid (J)	0.71	0.77	0.69	0.63	0.56	0.40	0.61	0.63	0.64	0.78	0.71	0.81	0.69	0.96	0.79
	[0.26, 0.98]	[0.29, 0.98]	[0.4, 0.98]	[0.29, 0.78]	[0.14, 0.98]	[0.15, 0.77]	[0.07, 0.98]	[0.22, 0.98]	[0.2, 0.99]	[0.43, 0.99]	[0.28, 0.98]	[0.41, 0.99]	[0.32, 0.98]	[0.91, 0.99]	[0.58, 0.99]
Hybrid (C)	0.71	0.70	0.66	0.59	0.55	0.40	0.60	0.62	0.61	0.92	0.76	0.80	0.70	0.96	0.82
	[0.32, 0.99]	[0.27, 0.99]	[0.34, 0.98]	[0.29, 0.74]	[0.13, 0.98]	[0.18, 0.82]	[0.16, 0.99]	[0.26, 0.98]	[0.21, 0.99]	[0.84, 0.99]	[0.34, 0.99]	[0.33, 0.99]	[0.36, 0.98]	[0.91, 0.99]	[0.59, 0.99]
Learner	0.43	0.42	0.40	0.47	0.34	0.29	0.39	0.48	0.38	0.48	0.49	0.54	0.44	0.79	0.61
	[-0.0, 0.98]	[-0.02, 0.98]	[-0.0, 0.98]	[0.06, 0.71]	[-0.02, 0.99]	[-0.02, 0.81]	[-0.01, 0.99]	[0.0, 0.99]	[-0.0, 0.99]	[0.09, 0.98]	[0.26, 0.9$]$	[-0.02, 0.99]	[-0.0, 0.64]	[0.42, 0.99]	[0.27, 0.99]
Expert	0.76	0.76	0.69	0.63	0.57	0.42	0.64	0.66	0.62	0.78	0.73	0.80	0.68	0.95	0.77
	[0.25, 0.99]	[0.31, 0.99]	[0.34, 0.99]	[0.26, 0.83]	[0.15, 0.98]	[0.24, 0.74]	[0.25, 0.99]	[0.26, 0.99]	[0.25, 0.99]	[0.42, 0.99]	[0.3, 0.99]	[0.38, 0.99]	[0.29, 0.99]	[0.87, 0.99]	[0.56, 0.99]
10000 Simulations															
Hybrid (D)	Mean posterior contraction (uncertainty reduction, \uparrow)														
	0.98	0.98	0.97	0.95	0.91	0.82	0.88	0.9	0.90	0.97	0.93	0.99	0.88	0.99	0.97
	[0.96, 0.99]	[0.96, 0.99]	[0.94, 1.0]	[0.91, 0.97]	[0.81, 0.99]	[0.61, 0.96]	[0.5, 0.99]	[0.52, 0.99]	[0.48, 0.99]	[0.94, 1.0]	[0.82, 1.0]	[0.98, 1.0]	[0.64, 0.99]	[0.98, 1.0]	[0.93, 1.0]
Hybrid (J)	0.98	0.98	0.97	0.93	0.89	0.80	0.85	0.89	0.90	0.97	0.92	0.99	0.88	0.99	0.97
	[0.96, 0.99]	[0.96, 0.99]	[0.92, 0.99]	[0.86, 0.97]	[0.78, 0.99]	[0.56, 0.97]	[0.41, 0.99]	[0.5, 0.99]	[0.43, 0.99]	[0.95, 1.0]	[0.77, 1.0]	[0.98, 0.99]	[0.66, 0.99]	[0.98, 0.99]	[0.93, 1.0]
Hybrid (C)	0.96	0.94	0.88	0.84	0.78	0.65	0.83	0.82	0.86	0.94	0.90	0.98	0.85	0.99	0.95
	[0.91, 0.99]	[0.9, 0.99]	[0.65, 0.99]	[0.47, 0.96]	[0.51, 0.99]	[0.33, 0.92]	[0.35, 0.99]	[0.35, 0.99]	[0.39, 0.99]	[0.86, 1.0]	[0.74, 1.0]	[0.96, 0.99]	[0.6, 0.99]	[0.98, 0.99]	[0.89, 0.99]
Learner	0.98	0.98	0.85	0.91	0.86	0.74	0.86	0.87	0.86	0.97	0.93	0.99	0.87	0.99	0.96
	[0.95, 0.99]	[0.95, 0.99]	[0.17, 0.99]	[0.83, 0.96]	[0.53, 0.99]	[0.48, 0.95]	[0.37, 0.99]	[0.32, 0.99]	[0.25, 0.99]	[0.94, 1.0]	[0.81, 1.0]	[0.98, 1.0]	[0.63, 0.98]	[0.98, 1.0]	[0.89, 0.99]
Expert	0.84	0.85	0.87	0.75	0.70	0.66	0.76	0.74	0.76	0.83	0.81	0.96	0.82	0.98	0.94
	[0.43, 0.99]	[0.48, 0.99]	[0.69, 0.99]	[0.4, 0.93]	[0.28, 0.99]	[0.4, 0.86]	[0.35, 0.99]	[0.34, 0.99]	[0.32, 0.99]	[0.48, 1.0]	[0.38, 1.0]	[0.88, 1.0]	[0.59, 0.99]	[0.96, 0.99]	[0.85, 0.99]
	Mean explained variance (R^{2} score, point recovery, \uparrow)														
Hybrid (D)	0.96	0.96	0.96	0.90	0.82	0.69	0.84	0.87	0.87	0.96	0.89	0.98	0.85	0.98	0.94
	[0.93, 0.99]	[0.94, 0.99]	[0.92, 0.99]	[0.79, 0.96]	[0.7, 0.99]	[0.48, 0.94]	[0.42, 0.99]	[0.5, 0.99]	[0.43, 0.99]	[0.91, 1.0]	[0.64, 1.0]	[0.96, 0.99]	[0.57, 0.99]	[0.96, 0.99]	[0.86, 0.99]
Hybrid (J)	0.96	0.96	0.95	0.87	0.80	0.67	0.80	0.86	0.86	0.96	0.88	0.98	0.85	0.98	0.94
	[0.92, 0.99]	[0.93, 0.99]	[0.9, 0.99]	[0.75, 0.95]	[0.67, 0.99]	[0.42, 0.94]	[0.32, 0.99]	[0.46, 0.99]	[0.42, 0.99]	[0.9, 1.0]	[0.64, 1.0]	[0.96, 0.99]	[0.57, 0.99]	[0.96, 0.99]	[0.85, 0.99]
Hybrid (C)	0.95	0.93	0.88	0.80	0.74	0.56	0.80	0.82	0.84	0.94	0.87	0.98	0.84	0.98	0.93
	[0.91, 0.99]	[0.87, 0.99]	[0.66, 0.99]	[0.46, 0.95]	[0.51, 0.99]	[0.29, 0.91]	[0.29, 0.99]	[0.42, 0.99]	[0.38, 0.99]	[0.87, 0.99]	[0.62, 0.99]	[0.95, 0.99]	[0.56, 0.99]	[0.95, 0.99]	[0.82, 0.99]
Learner	0.96	0.96	0.84	0.85	0.79	0.64	0.82	0.84	0.83	0.96	0.89	0.98	0.84	0.98	0.93
	[0.93, 0.99]	[0.93, 0.99]	[0.09, 0.99]	[0.68, 0.95]	[0.53, 0.99]	[0.31, 0.93]	[0.32, 0.99]	[0.34, 0.99]	[0.29, 0.99]	[0.9, 1.0]	[0.66, 1.0]	[0.95, 0.99]	[0.57, 0.98]	[0.96, 0.99]	$[0.81,0.99]$
Expert	0.81	0.81	0.83	0.69	0.65	0.54	0.70	0.72	0.70	0.81	0.80	0.91	0.79	0.97	0.89
	[0.35, 0.99]	[0.4, 0.99]	[0.6, 0.99]	[0.38, 0.89]	[0.22, 0.99]	[0.32, 0.82]	[0.3, 0.99]	[0.34, 0.99]	[0.3, 0.99]	[0.46, 1.0]	[0.4, 1.0]	[0.76, 0.99]	[0.57, 0.99]	[0.93, 0.99]	$[0.74,0.99]$

summary statistics, the corresponding end-to-end learner will use $D+D^{\prime}$ summaries. Full training, model, evaluation, and hyperparameter details are available in the Appendix ${ }^{2}$

5.1 Proof of concept: Gaussian toy model

Setup We set the stage with a simple 4D version of the conjugate Gaussian model from Eq. 2 with spherical Gaussian prior and likelihood. We simulate 1000 IID data sets of size $N=50$ and train the following amortized configurations: Expert, Learner, and our three Hybrid methods (abbreviated as D - direct, J - joint, C - conditional). In the Expert setup, the inference network is conditioned on the four sufficient statistics (i.e., empirical means), whereas in the Learner setup, a set transformer is tasked to learn them implicitly from data matrices $\boldsymbol{X} \in \mathbb{R}^{N \times 4}$. In all Hybrid setups, the inference network is fed two out of four empirical means and the dedicated summary networks need to learn the remaining two from the full data. We train all networks for 50 epochs and inspect their convergence, learned summary characteristics, and estimation performance.

Results Figure 2 depicts the main results (see Appendix for more detailed parameter estimation results and failure mode discussion). Clearly, the Expert setup (using the true sufficient statistics) is the baseline to which the simplest direct Hybrid (D) converges most closely, followed by the conditional and the joint Hybrid (cf. Figure 2a). In contrast, the Learner struggles in the context of the severely limited budget B and small data size N, and converges sub-optimally. Furthermore, we

[^1]

Figure 3: Left panel. A graphical illustration of the hybrid setup for estimating neurocognitive joint models. Right panel. Example posteriors of two parameters representing a mapping from EEG signals to cognitive parameters, η and σ, obtained from model \mathcal{M}_{7}. See Table 1 and Appendix for more detailed results.
obtain 1000 summary representations from all three Hybrid methods and visualize their bivariate distributions in the top panel of Figure 2b. For the direct and conditional Hybrid, these distributions are largely spherical, with the joint Hybrid exhibiting signs of under-regularization with $\lambda=1.0$. Finally, we regress the unseen sufficient statistics on the learned summaries as an indicator of how much information about the sufficient summaries is linearly encoded by the learned summaries (cf. Figure 2a, bottom row). The direct and conditional Hybrids seem to approximate the missing sufficient statistics well, with the direct hybrid achieving the highest explained variance (R^{2} score). The joint Hybrid fails to learn a linearly separable summary space but achieves on-par estimation (see Appendix for full results and the same experiment performed with a larger simulation budget).

5.2 COMPREHENSIVE STUDY: JOINT MODELS OF NEURAL AND BEHAVIORAL DATA

Setup Next, we perform a systematic evaluation of our methodology within a domain of significant scientific interest - joint models of neural and behavioral data (Turner et al., 2019, Nunez et al. 2022). Simultaneously predicting neural (e.g., electroencephalography, EEG) and behavioral (e.g., response times) data often involves models for which the likelihood is not available in closed-form. Indeed, Ghaderi-Kangavari et al. (2023) formulated 15 mechanistic models aiming to account for single-trial decision-making and EEG waveforms. For each of these models, we train 5 inference networks based on different summary functions (Expert; Learner; Hybrid (D); Hybrid (J); Hybrid (C)) and two simulation budgets (1000 or 10000 Simulations), resulting in 10 inference networks per model (see Figure 3, left panel, for a conceptual illustration of a hybrid approach). We then evaluate the performance of each configuration on 1000 validation simulations per model using two key metrics (Schad et al., 2021): i) the posterior contraction, computed as one minus the ratio of posterior to prior variance, and ii) the mean explained variance, quantified through the R^{2} score between posterior medians and true data-generating parameters. Such an experiment necessitates amortized inference, because it is based on a total of 1000×150 joint posteriors.

Results Table 1 summarizes the performance of the 5 different approaches, averaged across all $B=1000$ validation data sets for all 15 models and both training data budgets separately. The best performance is highlighted in bold. In the low training data regime (1000 simulations), all 3 hybrid approaches outperform the Learner and the Expert approach in both metrics, regardless of the model. Additionally, the Learner exhibits considerably lower performance than the Expert. In the medium data regime (10000 simulations), the Learner's performance is comparable to that of the Hybrid's for many models. However, for some models, particularly the more complex ones (e.g., $\mathcal{M}_{4 a}$), the Hybrid approaches still outperform the Learner in terms of both metrics. Further, when we look at the minima of both metrics the hybrid approximators clearly outperform the other two methods by a wide margin. In contrast to the low data regime, the Expert approach is vastly inferior to the Learner and Hybrid approaches in the medium data regime.

Figure 4: Lotka-Volterra model with artificial expert. Estimation error of all methods on the same 1000 test simulations. The estimation error is measured as the median absolute deviation (MAE) between posterior medians and ground-truth values aggregated across all four model parameters.

To provide a concrete illustration of these results, Figure 3 depicts 1000 posterior draws for two exemplar parameters, η and σ, which govern the mapping from EEG signals to cognitive parameters in \mathcal{M}_{7}. Already in the low data regime, the Hybrid (D) approach demonstrates a pronounced concentration of posterior mass around the true data-generating parameter values (indicated by dashed lines). When more training simulations become available, the Learner catches up with the Hybrids and achieves good sharpness (see Appendix for results from other models). Conversely, the Expert's sharpness hardly improves in the medium data regime.

5.3 NEURAL EXPERT: LOTKA-VOLTERRA DYNAMIC MODEL

Setup The purpose of the last experiment is to apply our hybrid methods to i) a dynamic model generating non-exchangeable data ii) using different summary networks (transformer vs. recurrent) and iii) an a pre-trained network acting as an artificial expert. We focus on a stochastic LotkaVolterra (LV) model, which has been extensively studied in the context of SBI (e.g., Lueckmann et al., 2021) The artificial expert is a pre-trained heteroskedastic neural network, which extends the approach of (Jiang et al., 2017) by estimating the posterior variances alongside the posterior means (Kendall \& Gal, 2017). The artificial Expert is pre-trained on $B=1000$ simulations, so it yields noisy and imperfect summaries. The same configurations as in the previous experiment are trained with two simulations budgets ($B \in\{1000,5000\}$).

Results Figure 4 summarizes the main results from the medium simulation budget setting ($B=$ 5000) in terms of estimation performance on 1000 unseen test simulations from the model. For both types of summary network (but especially the recurrent-convolutional), the direct and joint Hybrid methods achieve the lowest median absolute error (MAE) aggregated across the four model parameters. Further results and calibration diagnostics are available in the Appendix.

6 CONCLUSION AND FUTURE DIRECTIONS

We introduced three hybrid methods of varying complexity to synthesize expert and learnable summary statistics in amortized Bayesian inference. Our comprehensive evaluation suggests that the simplest hybrid method (directly including the expert representation without explicitly enforcing structure) can reap the most performance gains in low to medium simulation budgets. Still, having explicitly structured (Schmitt et al. 2021) or disentangled (Sorrenson et al., 2020) representations of expert and end-to-end learned summaries may be advantageous in terms of interpretability or robustness, and future research should investigate these issues. One may also incorporate active learning (Bharti et al., 2022) to further tune the expert summaries and reduce the potential impact of model misspecification. Finally, exploring the potential benefits of using hybrid summary statistics for sequential neural estimation methods (e.g., Durkan et al. 2018) seems to be a natural next step.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Carlo Albert, Simone Ulzega, Firat Ozdemir, Fernando Perez-Cruz, and Antonietta Mira. Learning summary statistics for bayesian inference with autoencoders. SciPost Physics Core, 5(3):043, 2022.

Simon Alexanderson and Gustav Eje Henter. Robust model training and generalisation with studentising flows. arXiv preprint arXiv:2006.06599, 2020.

Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730, 2018.

Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392, 2019.

Lynton Ardizzone, Jakob Kruse, Carsten Lüth, Niels Bracher, Carsten Rother, and Ullrich Köthe. Conditional invertible neural networks for diverse image-to-image translation. In Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen, Germany, September 28-October 1, 2020, Proceedings 42, pp. 373-387. Springer, 2021.

Grace Avecilla, Julie N Chuong, Fangfei Li, Gavin Sherlock, David Gresham, and Yoav Ram. Neural networks enable efficient and accurate simulation-based inference of evolutionary parameters from adaptation dynamics. PLoS biology, 20(5):e3001633, 2022.

Ayush Bharti, Louis Filstroff, and Samuel Kaski. Approximate bayesian computation with domain expert in the loop. In International Conference on Machine Learning, pp. 1893-1905. PMLR, 2022.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks. The Journal of Machine Learning Research, 21(1):3535-3595, 2020.

MGB Blum, Matthew Nunes, Dennis Prangle, and SA Sisson. A comparative review of dimension reduction methods in approximate bayesian computation. Statistical Science, 28(2):189-208, 2013.

Michael GB Blum and Olivier François. Non-linear regression models for approximate bayesian computation. Statistics and computing, 20:63-73, 2010.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language. Journal of statistical software, 76, 2017.

Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song. A likelihood-free inference framework for population genetic data using exchangeable neural networks. Advances in neural information processing systems, 31, 2018.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv preprint arXiv:2302.03660, 2023.

Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville, and Zhanxing Zhu. Neural approximate sufficient statistics for implicit models. International Conference on Learning Representations, 2021.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Conor Durkan, George Papamakarios, and Iain Murray. Sequential neural methods for likelihoodfree inference. arXiv preprint arXiv:1811.08723, 2018.

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint arXiv:1606.02185, 2016.

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate bayesian computation: semi-automatic approximate bayesian computation. Journal of the Royal Statistical Society Series B: Statistical Methodology, 74(3):419-474, 2012.

Tomas Geffner, George Papamakarios, and Andriy Mnih. Score modeling for simulation-based inference. arXiv preprint arXiv:2209.14249, 2022.

Amin Ghaderi-Kangavari, Jamal Amani Rad, and Michael D Nunez. A general integrative neurocognitive modeling framework to jointly describe eeg and decision-making on single trials. Computational Brain \& Behavior, pp. 1-60, 2023.

Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, et al. Training deep neural density estimators to identify mechanistic models of neural dynamics. Elife, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Michael U Gutmann and Jukka Corander. Bayesian optimization for likelihood-free inference of simulator-based statistical models. Journal of Machine Learning Research, 2016.

Monika E Heringhaus, Yi Zhang, André Zimmermann, and Lars Mikelsons. Towards reliable parameter extraction in mems final module testing using bayesian inference. Sensors, 22(14):5408, 2022.

Marko Järvenpää, Michael U Gutmann, Arijus Pleska, Aki Vehtari, and Pekka Marttinen. Efficient acquisition rules for model-based approximate bayesian computation. 2019.

Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate bayesian computation via deep neural network. Statistica Sinica, pp. 1595-1618, 2017.

Paul Joyce and Paul Marjoram. Approximately sufficient statistics and bayesian computation. Statistical applications in genetics and molecular biology, 7(1), 2008.

Ryan P Kelly, David J Nott, David T Frazier, David J Warne, and Chris Drovandi. Misspecificationrobust sequential neural likelihood. arXiv preprint arXiv:2301.13368, 2023.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43 (11):3964-3979, 2020.

Alexander Lavin, David Krakauer, Hector Zenil, Justin Gottschlich, Tim Mattson, Johann Brehmer, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, et al. Simulation intelligence: Towards a new generation of scientific methods. arXiv preprint arXiv:2112.03235, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A framework for attention-based permutation-invariant neural networks. In International conference on machine learning, pp. 3744-3753. PMLR, 2019.
Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4): 1748-1764, 2021.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Benchmarking simulation-based inference. In International conference on artificial intelligence and statistics, pp. 343-351. PMLR, 2021.

Jean-Michel Marin, Pierre Pudlo, Arnaud Estoup, and Christian Robert. Likelihood-free model choice. Chapman and Hall/CRC Press Boca Raton, FL, 2018.

Michael D. Nunez, Joachim Vandekerckhove, and Ramesh Srinivasan. A tutorial on fitting joint models of M/EEG and behavior to understand cognition. 2022.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable random structures. IEEE transactions on pattern analysis and machine intelligence, 37(2):437-461, 2014.

James J. Palestro, Giwon Bahg, Per B. Sederberg, Zhong-Lin Lu, Mark Steyvers, and Brandon M. Turner. A tutorial on joint models of neural and behavioral measures of cognition. 84:20-48, 2018. ISSN 1096-0880. doi: 10.1016/j.jmp.2018.03.003.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 837-848. PMLR, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of Machine Learning Research, 22(1):2617-2680, 2021.

Martyn Plummer. Simulation-based bayesian analysis. Annual Review of Statistics and Its Application, 10:401-425, 2023.

Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow: Learning complex stochastic models with invertible neural networks. IEEE transactions on neural networks and learning systems, 33(4):1452-1466, 2020a.

Stefan T Radev, Ulf K Mertens, Andreas Voss, and Ullrich Köthe. Towards end-to-end likelihoodfree inference with convolutional neural networks. British Journal of Mathematical and Statistical Psychology, 73(1):23-43, 2020b.

Stefan T Radev, Marco D’Alessandro, Ulf K Mertens, Andreas Voss, Ullrich Köthe, and PaulChristian Bürkner. Amortized bayesian model comparison with evidential deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2021a.

Stefan T Radev, Frederik Graw, Simiao Chen, Nico T Mutters, Vanessa M Eichel, Till Bärnighausen, and Ullrich Köthe. Outbreakflow: Model-based bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the covid-19 pandemics in germany. PLoS computational biology, 17(10): $\mathrm{e} 1009472,2021 \mathrm{~b}$.

Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, and Paul-Christian Bürkner. BayesFlow: Amortized Bayesian Workflows With Neural Networks. Journal of Open Source Software, 8(89):5702, 2023. doi: 10.21105/joss. 05702. URLhttps://joss.theoj.org/papers/10.21105/joss.05702.

Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. Abc random forests for bayesian parameter inference. Bioinformatics, 35(10):17201728, 2019.

Christian P Robert, Jean-Marie Cornuet, Jean-Michel Marin, and Natesh S Pillai. Lack of confidence in approximate bayesian computation model choice. Proceedings of the National Academy of Sciences, 108(37):15112-15117, 2011.

Daniel J Schad, Michael Betancourt, and Shravan Vasishth. Toward a principled bayesian workflow in cognitive science. Psychological methods, 26(1):103, 2021.

Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T Radev. Detecting model misspecification in amortized bayesian inference with neural networks. arXiv preprint arXiv:2112.08866, 2021.

Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian computation. CRC Press, 2018.

Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ica with general incompressible-flow networks (gin). arXiv preprint arXiv:2001.04872, 2020.

Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating bayesian inference algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788, 2018.

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J Gonçalves, David S Greenberg, and Jakob H Macke. Sbi-a toolkit for simulation-based inference. arXiv preprint arXiv:2007.09114, 2020.

Armi Tiihonen, Louis Filstroff, Petrus Mikkola, Emma Lehto, Samuel Kaski, Milica Todorović, and Patrick Rinke. More trustworthy bayesian optimization of materials properties by adding human into the loop. In AI for Accelerated Materials Design NeurIPS 2022 Workshop, 2022.

Panagiotis Tsilifis, Sayan Ghosh, and Valeria Andreoli. Inverse design under uncertainty using conditional normalizing flows. In AIAA Scitech 2022 Forum, pp. 0631, 2022.

Brandon M. Turner, Birte U. Forstmann, and Mark Steyvers. Joint Models of Neural and Behavioral Data. Computational Approaches to Cognition and Perception. Springer International Publishing, 2019. doi: 10.1007/978-3-030-03688-1.

Maxime Vandegar, Michael Kagan, Antoine Wehenkel, and Gilles Louppe. Neural empirical bayes: Source distribution estimation and its applications to simulation-based inference. In International Conference on Artificial Intelligence and Statistics, pp. 2107-2115. PMLR, 2021.

Mischa von Krause, Stefan T Radev, and Andreas Voss. Mental speed is high until age 60 as revealed by analysis of over a million participants. Nature human behaviour, 6(5):700-708, 2022.

Samuel Wiqvist, Pierre-Alexandre Mattei, Umberto Picchini, and Jes Frellsen. Partially exchangeable networks and architectures for learning summary statistics in approximate bayesian computation. In International Conference on Machine Learning, pp. 6798-6807. PMLR, 2019.

Fredrik Wrede, Robin Eriksson, Richard Jiang, Linda Petzold, Stefan Engblom, Andreas Hellander, and Prashant Singh. Robust and integrative bayesian neural networks for likelihood-free parameter inference. In 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1-10. IEEE, 2022.

Jice Zeng, Michael D Todd, and Zhen Hu. Probabilistic damage detection using a new likelihoodfree bayesian inference method. Journal of Civil Structural Health Monitoring, 13(2-3):319-341, 2023.

Yi Zhang and Lars Mikelsons. Sensitivity-guided iterative parameter identification and data generation with bayesflow and pels-vae for model calibration. Advanced Modeling and Simulation in Engineering Sciences, 10(1):1-28, 2023a.

Yi Zhang and Lars Mikelsons. Solving stochastic inverse problems with stochastic bayesflow. In 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 966-972. IEEE, 2023b.

APPENDIX

A Frequently Asked Questions (FAQ)

Q: How can I reproduce the results?

Code to reproduce all results is available along with the submission and under the following link [removed until publication].

Q: How can I apply hybrid methods to estimate Bayesian models?

Amortized simulation-based inference with complex data structures is made possible by different existing software built on top of popular deep learning frameworks (e.g., Radev et al., 2023, TejeroCantero et al. 2020).

Q: Why do I need the expert summaries when I can learn the summaries end-to-end?

End-to-end learning works best with efficient simulators which can generate synthetic data on demand. Still, it is possible that a summary network is not maximally expressive or unable to train optimally for a variety of reasons. Our experiments suggest that domain knowledge is especially helpful for settings with limited simulation budgets, since it helps the summary network to focus on encoding incremental information missing from the expert summaries.

Q: What is the difference between maximally informative and sufficient summary statistics?

Sufficient summary statistics in Bayesian analysis satisfy the following strict equality

$$
p(\boldsymbol{\theta} \mid \boldsymbol{X})=p(\boldsymbol{\theta} \mid S(\boldsymbol{X})) .
$$

In other words, you can replace the data \boldsymbol{X} with a reduced version $S(\boldsymbol{X})$ and still obtain a consistent and correct posterior. Differently, maximally informative statistics are merely locally optimal with respect to some distance or divergence between distributions. For instance, using the KullbackLeibler divergence, a maximally informative summary statistics S^{*} satisfies:

$$
\begin{equation*}
S^{*}=\underset{S}{\arg \min } D_{\mathrm{KL}}[p(\boldsymbol{\theta} \mid \boldsymbol{X}) \| p(\boldsymbol{\theta} \mid S(\boldsymbol{X}))] \tag{13}
\end{equation*}
$$

It is evident, that S^{*} may not be a sufficient statistic in non-convex optimization problems.

Q: Why do you need a summary network?

We need these neural data compressors because most real world data comes in various sizes and shapes which vary from application to application or even from inference query to inference query. Thus, we need an interface between the simulator (i.e., Bayesian model) and the inference network which renders the latter independent of the concrete data shape.

Q: Why do you need three different hybrid methods?

The hybrid methods explored in this work are only three of the many possible ways to combine expert and learnable representations for improving downstream inference tasks and enforcing specific probabilistic structure. In this work, we specifically focus on methods having somewhat different characteristics and somewhat understood theoretical properties.

Q: Can I use a different type of generative network for amortized Bayesian inference?

Definitely, normalizing flows (Papamakarios et al., 2021) are just one attractive family of neural density approximators. In principle, any neural density estimator or sampler, such as compositional score-based models (Geffner et al., 2022) or flow-matching networks (Chen \& Lipman, 2023), can be used for the inference network responsible for estimating the intractable posterior. Different architectures do tend to exhibit different empirical behavior though.

B Methods details

B. 1 Pseudocode: Direct hybrid method

Algorithm 1 summarizes the essential steps of the direct hybrid method. This method simply concatenates the learnable and expert summary vectors before passing them to a conditional neural density estimator.

```
Algorithm 1 Amortized Bayesian inference with a direct hybrid approach.
Require: Parameter prior, \(p(\boldsymbol{\theta})\), randomized simulator \(G(\boldsymbol{\theta})\), summary network \(L_{\vartheta}\), inference net-
    work \(F_{\phi}\), expert \(H\), batch size \(B\), simulation budget \(N\).
    Initialize empty data set \(\mathcal{D}=\{ \}\).
    for \(n=1, \ldots, N\) do
        Sample from prior: \(\boldsymbol{\theta}_{n} \sim p(\boldsymbol{\theta})\)
        Perform a simulator run: \(\boldsymbol{X}_{n}=G\left(\boldsymbol{\theta}_{n}\right)\)
        Add simulations to training data: \(\mathcal{D}:=\mathcal{D} \cup\left\{\left(\boldsymbol{\theta}_{n}, \boldsymbol{X}_{n}\right)\right\}\)
    end for
    while not converged do
        Sample batch from training data: \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{X}_{b}\right)\right\}_{b=1}^{B} \sim \mathcal{D}\)
        Compute learnable summaries: \(\left\{L_{\vartheta}\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
        Compute expert summaries: \(\left\{H\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
        Combine learnable and expert summaries: \(\left\{\boldsymbol{s}_{\vartheta, b}:=\left[L_{\vartheta}\left(\boldsymbol{X}_{b}\right), H\left(\boldsymbol{X}_{b}\right)\right]\right\}_{b=1}^{B}\)
        Compute maximum likelihood loss (Eq. 7 over batch \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{s}_{\vartheta, b}\right)\right\}_{b=1}^{B}\)
            Update network parameters \((\phi, \vartheta)\) via backpropagation
    end while
```


B. 2 Pseudocode: Joint hybrid method

Algorithm 2 summarizes the essential steps of the joint hybrid method. This method first embeds the expert statistics into a new vector space before concatenating them with the learnable vectors. The fully end-to-end learnable joint vector is then passed as the conditioning vector for a conditional neural density estimator.

```
Algorithm 2 Amortized Bayesian inference with a joint hybrid approach.
Require: Parameter prior, \(p(\boldsymbol{\theta})\), randomized simulator \(G(\boldsymbol{\theta})\), summary network \(L_{\vartheta}\), inference net-
    work \(F_{\phi}\), embedding network \(T_{\varphi}\), expert \(H\), batch size \(B\), simulation budget \(N\).
    Initialize empty data set \(\mathcal{D}=\{ \}\).
    for \(n=1, \ldots, N\) do
            Sample from prior: \(\boldsymbol{\theta}_{n} \sim p(\boldsymbol{\theta})\)
            Perform a simulator run: \(\boldsymbol{X}_{n}=G\left(\boldsymbol{\theta}_{n}\right)\)
            Add simulations to training data: \(\mathcal{D}:=\mathcal{D} \cup\left\{\left(\boldsymbol{\theta}_{n}, \boldsymbol{X}_{n}\right)\right\}\)
        end for
        while not converged do
            Sample batch from training data: \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{X}_{b}\right)\right\}_{b=1}^{B} \sim \mathcal{D}\)
            Compute learnable summaries: \(\left\{L_{\vartheta}\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
            Compute expert summaries: \(\left\{H\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
            Embed expert summaries: \(\left\{\boldsymbol{t}_{\varphi, b}=T_{\varphi}\left(H\left(\boldsymbol{X}_{b}\right)\right)\right\}_{b=1}^{B}\)
            Combine learnable and embedded expert summaries: \(\left\{\boldsymbol{s}_{\vartheta, b}^{(\varphi)}:=\left[L_{\vartheta}\left(\boldsymbol{X}_{b}\right), \boldsymbol{t}_{\varphi, b}\right]\right\}_{b=1}^{B}\)
            Compute augmented maximum likelihood loss (Eq. 8 ) over batch \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{s}_{\vartheta, b}^{(\varphi)}\right\}_{b=1}^{B}\right.\)
            Update network parameters \((\phi, \vartheta, \varphi)\) via backpropagation
        end while
```


B. 3 PSEUDOCODE: CONDITIONAL HYBRID METHOD

Abstract

Algorithm 3 summarizes the essential steps of the conditional hybrid method. This method embeds the learnable summary statistics into a latent space conditional on the expert information before combining them with the expert statistics. The combined vector is then passed as the conditioning vector for a conditional neural density estimator. The method requires a stop_gradient operator, since the summary and inference network parameters need to be updated by treating the conditional summary model's parameter fixed, and vice versa.


```
Algorithm 3 Amortized Bayesian inference with a conditional hybrid approach.
Require: Parameter prior, \(p(\boldsymbol{\theta})\), randomized simulator \(G(\boldsymbol{\theta})\), summary network \(L_{\vartheta}\), inference net-
        work \(F_{\phi}\), generative summary network \(F_{\psi}\), expert \(H\), batch size \(B\), simulation budget \(N\).
        Initialize empty data set \(\mathcal{D}=\{ \}\).
        for \(n=1, \ldots, N\) do
            Sample from prior: \(\boldsymbol{\theta}_{n} \sim p(\boldsymbol{\theta})\)
            Perform a simulator run: \(\boldsymbol{X}_{n}=G\left(\boldsymbol{\theta}_{n}\right)\)
            Add simulations to training data: \(\mathcal{D}:=\mathcal{D} \cup\left\{\left(\boldsymbol{\theta}_{n}, \boldsymbol{X}_{n}\right)\right\}\)
        end for
        while not converged do
            Sample batch from training data: \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{X}_{b}\right)\right\}_{b=1}^{B} \sim \mathcal{D}\)
            Compute learnable summaries: \(\left\{L_{\vartheta}\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
            Compute expert summaries: \(\left\{H\left(\boldsymbol{X}_{b}\right)\right\}_{b=1}^{B}\)
            Compute latent learnable summaries: \(\left\{\boldsymbol{z}_{\vartheta, b}^{(\psi)}:=F_{\psi}\left(L_{\vartheta}\left(\boldsymbol{X}_{b}\right) ; H(\boldsymbol{X})\right)\right\}_{b=1}^{B}\)
            Combine latent learnable and expert summaries: \(\left\{\boldsymbol{s}_{\vartheta, b}^{(\psi)}:=\operatorname{concat}\left(\boldsymbol{z}_{\vartheta, b}^{(\psi)}, H\left(\boldsymbol{X}_{b}\right)\right)\right\}_{b=1}^{B}\)
            Stop gradient w.r.t. \(\psi\)
            Compute maximum likelihood loss (Eq. 9 , over batch \(\left\{\left(\boldsymbol{\theta}_{b}, \boldsymbol{s}_{\vartheta, b}^{(\psi)}\right)\right\}_{b=1}^{B}\)
            Update network parameters \((\phi, \vartheta)\) via backpropagation
            Stop gradient w.r.t. \(\vartheta\)
            Compute maximum likelihood loss (Eq. 10p over batch \(\left\{\left(L_{\vartheta}\left(\boldsymbol{X}_{b}\right), H(\boldsymbol{X})\right)\right\}_{b=1}^{B}\)
            Update network parameters \(\psi\) via backpropagation
        end while
```


B. 4 DERIVATION OF CONDITIONAL HYbRID OPTIMIZATION

Recall, that in the conditional method, we are optimizing the following two objectives simultaneously:

$$
\begin{align*}
\phi^{*}, \vartheta^{*} & =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{\theta}, \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right] \tag{14}\\
\psi^{*} & =\underset{\psi}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[-\log q_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)\right] \tag{15}
\end{align*}
$$

Setting $\boldsymbol{z}_{\vartheta}^{(\psi)}=F_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) ; H(\boldsymbol{X})\right)$ and keeping F_{ψ} fixed, the first objective (Eq. 14 follows simply from

$$
\begin{align*}
\phi^{*}, \vartheta^{*} & =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[D_{\mathrm{KL}}\left[p(\boldsymbol{\theta} \mid \boldsymbol{X}) \| q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right]\right] \tag{16}\\
& =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[\mathbb{E}_{p(\boldsymbol{\theta} \mid \boldsymbol{X})}\left[\log p(\boldsymbol{\theta} \mid \boldsymbol{X})-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right]\right] \tag{17}\\
& =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[\mathbb{E}_{p(\boldsymbol{\theta} \mid \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right]\right] \tag{18}\\
& =\underset{\phi, \vartheta}{\arg \min } \mathbb{E}_{p(\boldsymbol{\theta}, \boldsymbol{X})}\left[-\log q_{\phi}\left(\boldsymbol{\theta} \mid \boldsymbol{z}_{\vartheta}^{(\psi)}, H(\boldsymbol{X})\right)\right] \tag{19}
\end{align*}
$$

corresponding to conditional maximum likelihood training over the simulator outputs $\{\boldsymbol{\theta}, \boldsymbol{X}\}$. Assuming idealized optimal convergence, Ardizzone et al. (2021) have shown that summary networks
learn maximally informative statistics with respect to the target variable. Since the same reasoning extends to our doubly conditional maximum likelihood training, we have, under idealized optimal convergence:

$$
\begin{equation*}
I\left(\boldsymbol{\theta}, \boldsymbol{z}_{\vartheta^{*}}^{(\psi)} \mid H(\boldsymbol{X})\right)=\max _{\vartheta} I\left(\boldsymbol{\theta}, \boldsymbol{z}_{\vartheta}^{(\psi)} \mid H(\boldsymbol{X})\right) \tag{20}
\end{equation*}
$$

Keeping $L_{\vartheta}(\boldsymbol{X})$ fixed, the second objective (Eq. 15) follows from a similar perspective

$$
\begin{align*}
\psi^{*} & =\underset{\psi}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[D_{\mathrm{KL}}\left(p\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right) \| q_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)\right)\right] \tag{21}\\
& =\underset{\psi}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[\log p\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)-\log q_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)\right] \tag{22}\\
& =\underset{\psi}{\arg \min } \mathbb{E}_{p(\boldsymbol{X})}\left[-\log q_{\psi}\left(L_{\vartheta}(\boldsymbol{X}) \mid H(\boldsymbol{X})\right)\right] \tag{23}
\end{align*}
$$

Here, we can utilize the knowledge that the Kullback-Leibler (KL) divergence is invariant to diffeomorphisms, which means that, assuming perfect convergence under Eq. 21, we have

$$
\begin{equation*}
D_{\mathrm{KL}}\left[q_{\psi^{*}}\left(\boldsymbol{z}_{\vartheta}^{\left(\psi^{*}\right)} \mid H(\boldsymbol{X})\right) \| p\left(\boldsymbol{z}_{\vartheta}^{\left(\psi^{*}\right)}\right)\right]=0 \tag{24}
\end{equation*}
$$

where $p\left(\boldsymbol{z}_{\vartheta}^{\left(\psi^{*}\right)}\right)$ corresponds to the base distribution prescribed through maximum likelihood training. In other words, under perfect convergence, the base distribution becomes independent of $E(\boldsymbol{X})$ and so we have:

$$
\begin{equation*}
\boldsymbol{z}_{\vartheta^{*}}^{\left(\psi^{*}\right)} \Perp H(\boldsymbol{X}) \tag{25}
\end{equation*}
$$

In other words, during training, the first objective (Eq. 14, encourages the summary network L_{ϑ} to maximize the information context of the learned summaries with respect to $\boldsymbol{\theta}$. At the same time, the second objective (Eq. 14) encourages the generative network F_{ψ} to make the latent summary vectors maximally independent of the expert's outputs. As a consequence of using a base distribution with independent dimensions, each latent summary dimension will also attempt to encode different information. In practice, since $L_{\vartheta}(\boldsymbol{X})$ in Eq. 15 will change at each iteration, training may become unstable, especially towards the early epochs where $L_{\vartheta}(\boldsymbol{X})$ is still hardly informative for $\boldsymbol{\theta}$ and thus changes substantially from iteration to iteration. Thus, we find it essential to use a Student-T density as a base distribution for robust maximum likelihood training (Alexanderson \& Henter, 2020).

C IMPLEMENTATION DETAILS AND ADDITIONAL RESULTS

All experiments are implemented in TensorFlow (Abadi et al. 2016). Throughout, we use an Adam optimizer Kingma \& Ba, 2014) with an initial learning rate between 0.0005 and 0.001 , default hyperparameters, weight decay of 0.0001 , and a cosine learning rate decay schedule. All networks are trained on a single desktop computer equipped with an NVIDIA ${ }^{\circledR}$ A2000 graphics card with 12 GB of GPU memory.

C. 1 EXPERIMENT 1: PROOF OF CONCEPT

C.1.1 MODEL

We use the following toy conjugate Gaussian model as a simulator:

$$
\begin{align*}
\boldsymbol{\theta} & \sim \mathcal{N}(\mathbf{0}, \mathbb{I}) \tag{26}\\
\boldsymbol{x}_{n} & \sim \mathcal{N}(\boldsymbol{\theta}, \mathbb{I}) \quad \text { for } \quad n=1, \ldots, N, \tag{27}
\end{align*}
$$

where $N=50$ and $\boldsymbol{\theta}, \boldsymbol{x} \in \mathbb{R}^{4}$. The model has an analytic posterior and trivial summary statistics (i.e., the empirical mean vector $\overline{\boldsymbol{x}}$). However, it may prove slippery to learn directly in an amortized manner and limited budget settings due to the fact that not only the \boldsymbol{x}_{n} are independent among each other, but also the dimensions of each individual \boldsymbol{x}_{n} are independent. Thus, there is very little structure that the end-to-end learners can extract apart from learning to compute averages.

C.1.2 SUMMARY NETWORKS

The set transformer summary network (Lee et al. 2019) features a stack of 2 multi-head attention encoders with 4 attention heads (key, query, and value dimensions of 32).

C.1.3 Inference networks

The inference network is a conditional normalizing flows consisting of 6 affine coupling layers (Ardizzone et al., 2019), each having two hidden layer with 128 units, ReLU non-linearities, fixed permutations between the coupling layers, and a Gaussian base distribution.
C.1.4 Simulation-BASED TRAINING

We train all configurations (Expert, Learner, Hybrid (D), Hybrid (J), and Hybrid (C)) for 50 epochs in both the $B=1000$ and $B=10000$ settings, using a batch size of 32 simulations.

C.1.5 AdDITIONAL RESULTS

The main text reports results obtained in the low budget scenario $(B=1000)$. Figure 5 depicts the results obtained from the additional experiment with a simulation budget of $B=10000$.

Figure 5: Gaussian toy example with sufficient statistics. Results from the medium simulation budget $(B=10000)$ are shown. Panel a) depicts the trajectory of the average log posterior term (Eq. 7) for all methods. All Hybrid methods quickly converge to the baseline sufficient Expert, except the transformer-based Learner which still fails to separate the independent parameter dimensions. The upper row of panel \bar{b} depicts the learned summaries for each Hybrid method. The bottom row of panel blots one of the ground-truth sufficient expert statistics vs. its projection obtained from linear regression on the learned summaries.

In addition, Figure 6 and Figure 7illustrate the estimation performance of each configuration without any hyperparameter tuning.

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 6: Gaussian toy model. Detailed parameter estimation results obtained using a set transformer summary network with a low simulation budget of $B=1000$. Failure mode of the Learner is clearly illustrated.

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 7: Gaussian toy model. Detailed parameter estimation results obtained using a set transformer summary network with a medium simulation budget of $B=10000$. The Learner-only approach improves but still exhibits a failure mode. Some hyperparameter tuning resolves the issue, but the scenario still illustrate a setting where domain expert information can mitigate potential underperformance of the summary network.

C. 2 EXPERIMENT 2: COMPREHENSIVE STUDY

C.2.1 Models

The 15 different neurocognitive joint models used in this study aim to predict human behavioral and neural data obtained from simulated two-alternative decision-making tasks (Ghaderi-Kangavari et al., 2023). The multi-source data encompasses single-trial response times and choices as behavioral data, and EEG potentials as neural data.

For the expert summary statistic, we computed quantiles $(0.025,0.2625,0.5,0.7375,0.975)$ as well as the mean and standard deviation of the empirical response time and EEG data distributions, alongside the mean accuracy, resulting in 19 hand-crafted summary statistics. For the purpose of offline training, we generate data sets consisting of $N=200$ simulated trials of the generative process implemented by the respective joint model.

C.2.2 Summary Networks

The summary network is a set transformer (Lee et al. 2019) implementing multi-head attention with 4 attention heads (key, query, and value dimensions of 32) and no layer normalization, as the latter was found to hurt performance in the case of set transformers.

C.2.3 Inference Networks

The inference network is a conditional normalizing flows consisting of 6 affine coupling layers (Ardizzone et al., 2019), each having two hidden layer with 128 units, ReLU non-linearities, fixed permutations between the coupling layers, and a Gaussian base distribution. Each hidden layers is followed by a dropout layer with a dropout probability of 0.05 .

C.2.4 Simulation-BaSEd training

We train all configurations (Expert, Learner, Hybrid (D), Hybrid (J), and Hybrid (C)) for 100 epochs using a batch size of 32 simulations and 500 validation simulations for monitoring overfitting.

C.2.5 MODEL-SPECIFIC ESTIMATION PERFORMANCE

Complementing the evaluation presented in Table 1 of the main text, we conducted a detailed assessment of the performance of the five summary approaches within each of the two settings with different simulation budgets. This involved analyzing uncertainty reduction (posterior contraction) and explained variance (point recovery) for every parameter of each model separately (refer to the subsequent tables). By delving into this more fine-grained analysis, we reaffirm the conclusions drawn in the main text. For nearly every parameter across all models, the Hybrid approaches, particularly the simplest direct variant, outperforms both the Learner and the Expert in terms of our two key evaluation metrics.

Table 2: Posterior contraction and explained variance across 1000 test simulations from each parameter of model $\mathcal{M}_{1 a}$ separate for each summary type, and two training simulation budgets.

	v	a	β	μ_{τ}	τ_{m}	σ	$\sigma_{v a r}$	Mean	v	a	β	μ_{τ}	τ_{m}	σ	$\sigma_{v a r}$	Mean
	Posterior contraction (uncertainty reduction)								Explained variance (R^{2} score, point recovery)							
1000 Simulations																
Hybrid (D)	0.83	0.82	0.45	0.99	0.91	0.82	0.90	0.82	0.75	0.81	0.41	0.99	0.89	0.80	0.88	0.79
Hybrid (J)	0.85	0.83	0.48	0.98	0.90	0.66	0.81	0.79	0.74	0.78	0.29	0.99	0.88	0.55	0.74	0.71
Hybrid (C)	0.75	0.73	0.23	0.98	0.87	0.63	0.74	0.71	0.76	0.74	0.35	0.99	0.86	0.56	0.71	0.71
Learner	0.75	0.40	0.40	0.99	0.72	0.05	0.03	0.48	0.69	0.32	0.34	0.99	0.71	0.00	0.00	0.43
Expert	0.80	0.79	0.39	0.99	0.89	0.82	0.90	0.80	0.74	0.77	0.30	0.99	0.87	0.78	0.87	0.76
10000 Simulations																
Hybrid (D)	0.97	0.97	0.95	0.99	0.98	0.98	0.98	0.98	0.95	0.94	0.93	0.99	0.98	0.97	0.97	0.96
Hybrid (J)	0.98	0.97	0.96	0.99	0.99	0.97	0.97	0.98	0.95	0.94	0.92	0.99	0.98	0.96	0.97	0.96
Hybrid (C)	0.96	0.95	0.91	0.99	0.97	0.95	0.96	0.96	0.94	0.93	0.91	0.99	0.97	0.94	0.96	0.95
Learner	0.97	0.97	0.95	0.99	0.99	0.98	0.98	0.98	0.95	0.94	0.92	0.99	0.98	0.97	0.97	0.96
Expert	0.85	0.88	0.42	0.99	0.92	0.89	0.93	0.84	0.76	0.86	0.40	0.99	0.91	0.85	0.92	0.81

Table 3: Posterior contraction and explained variance across 1000 test simulations from each parameter of model $\mathcal{M}_{1 b}$ separate for each summary type, and two training simulation budgets.

Table 4: Posterior contraction and explained variance across 1000 test simulations from each parameter of model $\mathcal{M}_{1 c}$ separate for each summary type, and two training simulation budgets.

	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	Mean	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	Mean
	Posterior contraction (uncertainty reduction)								Explained variance (R^{2} score, point recovery)							
1000 Simulations																
Hybrid (D)	0.85	0.93	0.45	0.99	0.91	0.53	0.57	0.75	0.79	0.91	0.44	0.99	0.91	0.47	0.46	0.71
Hybrid (J)	0.86	0.93	0.57	0.98	0.94	0.49	0.59	0.77	0.77	0.90	0.48	0.98	0.91	0.36	0.44	0.69
Hybrid (C)	0.71	0.80	0.13	0.97	0.85	0.47	0.48	0.63	0.76	0.85	0.34	0.98	0.88	0.41	0.41	0.66
Learner	0.70	0.51	0.33	0.96	0.58	0.10	0.08	0.47	0.67	0.41	0.27	0.98	0.51	0.00	-0.01	0.40
Expert	0.79	0.90	0.40	0.99	0.92	0.53	0.56	0.73	0.75	0.86	0.34	0.99	0.91	0.49	0.49	0.69
10000 Simulations																
Hybrid (D)	0.98	0.98	0.98	0.99	0.99	0.94	0.94	0.97	0.98	0.96	0.97	0.99	0.99	0.92	0.91	0.96
Hybrid (J)	0.98	0.98	0.98	0.99	0.99	0.93	0.93	0.97	0.97	0.96	0.96	0.99	0.99	0.90	0.89	0.95
Hybrid (C)	0.96	0.96	0.94	0.99	0.97	0.65	0.71	0.88	0.96	0.94	0.94	0.99	0.97	0.65	0.68	0.88
Learner	0.98	0.98	0.97	0.99	0.98	0.18	0.89	0.85	0.97	0.95	0.96	0.98	0.98	0.13	0.87	0.84
Expert	0.90	0.96	0.68	0.99	0.96	0.80	0.83	0.87	0.80	0.93	0.59	0.99	0.96	0.79	0.77	0.83

Table 5: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{2} separate for each summary type, and two training simulation budgets.

	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	γ	Mean	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	γ	Mean
	Posterior contraction (uncertainty reduction)									Explained variance (R^{2} score, point recovery)								
1000 Simulations																		
Hybrid (D)	0.93	0.85	0.74	0.70	0.83	0.51	0.84	0.84	0.78	0.90	0.84	0.79	0.56	0.76	0.39	0.83	0.79	0.73
Hybrid (J)	0.85	0.79	0.53	0.69	0.83	0.48	0.79	0.84	0.73	0.74	0.76	0.44	0.56	0.76	0.32	0.69	0.77	0.63
Hybrid (C)	0.74	0.67	0.28	0.62	0.74	0.43	0.69	0.75	0.62	0.73	0.71	0.27	0.50	0.71	0.34	0.68	0.75	0.59
Learner	0.73	0.39	0.37	0.59	0.62	0.22	0.52	0.78	0.53	0.67	0.33	0.31	0.53	0.59	0.05	0.53	0.74	0.47
Expert	0.83	0.75	0.37	0.68	0.77	0.47	0.86	0.82	0.69	0.71	0.73	0.27	0.57	0.74	0.41	0.84	0.79	0.63
10000 Simulations																		
Hybrid (D)	0.97	0.97	0.95	0.90	0.96	0.95	0.97	0.95	0.95	0.95	0.94	0.93	0.76	0.89	0.90	0.96	0.89	0.90
Hybrid (J)	0.97	0.96	0.95	0.84	0.94	0.90	0.96	0.93	0.93	0.95	0.92	0.92	0.72	0.88	0.78	0.94	0.86	0.87
Hybrid (C)	0.96	0.93	0.92	0.72	0.84	0.53	0.93	0.86	0.84	0.95	0.91	0.91	0.63	0.81	0.48	0.92	0.82	0.80
Learner	0.96	0.95	0.94	0.80	0.94	0.86	0.96	0.91	0.91	0.95	0.91	0.91	0.66	0.87	0.72	0.93	0.84	0.85
Expert	0.85	0.87	0.42	0.71	0.82	0.53	0.93	0.87	0.75	0.73	0.83	0.35	0.63	0.78	0.47	0.90	0.82	0.69

Table 6: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{3} separate for each summary type, and two training simulation budgets.

	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	θ	Mean	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	θ	Mean
	Posterior contraction (uncertainty reduction)									Explained variance (R^{2} score, point recovery)								
1000 Simulations																		
Hybrid (D)	0.63	0.35	0.28	0.99	0.74	0.48	0.51	0.96	0.62	0.59	0.25	0.25	0.98	0.68	0.46	0.48	0.96	0.58
Hybrid (J)	0.70	0.47	0.43	0.98	0.76	0.54	0.62	0.97	0.68	0.56	0.29	0.16	0.98	0.61	0.45	0.46	0.96	0.56
Hybrid (C)	0.53	0.21	0.17	0.98	0.66	0.44	0.54	0.95	0.56	0.55	0.21	0.15	0.98	0.61	0.46	0.47	0.96	0.55
Learner	0.11	0.21	0.09	0.99	0.77	0.09	0.05	0.96	0.41	0.04	0.13	-0.01	0.98	0.66	-0.01	-0.02	0.96	0.34
Expert	0.61	0.30	0.24	0.99	0.74	0.48	0.50	0.96	0.60	0.59	0.24	0.17	0.98	0.67	0.45	0.48	0.96	0.57
10000 Simulations																		
Hybrid (D)	0.89	0.80	0.81	0.99	0.95	0.93	0.92	0.98	0.91	0.78	0.66	0.70	0.98	0.85	0.81	0.82	0.97	0.82
Hybrid (J)	0.89	0.77	0.81	0.99	0.94	0.87	0.86	0.98	0.89	0.79	0.63	0.68	0.98	0.83	0.75	0.75	0.97	0.80
Hybrid (C)	0.76	0.52	0.57	0.99	0.81	0.82	0.81	0.97	0.78	0.69	0.53	0.50	0.98	0.75	0.74	0.74	0.97	0.74
Learner	0.78	0.76	0.55	0.99	0.92	0.94	0.93	0.98	0.86	0.71	0.64	0.54	0.99	0.83	0.83	0.83	0.97	0.79
Expert	0.70	0.51	0.28	0.99	0.81	0.64	0.67	0.97	0.70	0.60	0.48	0.22	0.98	0.72	0.59	0.61	0.97	0.65

Table 7: Posterior contraction and explained variance across 1000 test simulations from each parameter of model $\mathcal{M}_{4 a}$ separate for each summary type, and two training simulation budgets.

Table 8: Posterior contraction and explained variance across 1000 test simulations from each parameter of model $\mathcal{M}_{4 b}$ separate for each summary type, and two training simulation budgets.

	v	a	β	$\mu_{\tau e}$	τ_{m}	σ_{e}	$\sigma_{v a r}$	θ	Mean	v	a	β	$\mu_{\text {Te }}$	τ_{m}	σ_{e}	$\sigma_{v a r}$	θ	Mean
	Posterior contraction (uncertainty reduction)							Explained variance (R^{2} score, point recovery)										
1000 Simulations																		
Hybrid (D)	0.82	0.87	0.41	0.99	0.92	0.58	0.69	0.34	0.70	0.74	0.82	0.39	0.99	0.90	0.58	0.60	0.22	0.65
Hybrid (J)	0.87	0.88	0.54	0.98	0.92	0.52	0.63	0.23	0.70	0.76	0.80	0.37	0.98	0.89	0.48	0.54	0.03	0.61
Hybrid (C)	0.72	0.77	0.20	0.98	0.87	0.59	0.64	0.16	0.61	0.74	0.74	0.26	0.99	0.86	0.51	0.57	0.15	0.60
Learner	0.74	0.39	0.36	0.99	0.72	0.07	0.07	0.01	0.42	0.68	0.37	0.31	0.99	0.71	0.01	0.03	0.00	0.39
Expert	0.81	0.83	0.38	0.99	0.91	0.61	0.69	0.31	0.69	0.74	0.77	0.28	0.99	0.89	0.60	0.62	0.23	0.64
10000 Simulations																		
Hybrid (D)	0.98	0.97	0.96	0.99	0.99	0.78	0.85	0.50	0.88	0.97	0.95	0.95	0.99	0.98	0.73	0.73	0.40	0.84
Hybrid (J)	0.97	0.97	0.95	0.99	0.98	0.70	0.81	0.40	0.85	0.96	0.93	0.93	0.99	0.97	0.66	0.69	0.28	0.80
Hybrid (C)	0.96	0.95	0.93	0.99	0.97	0.66	0.81	0.35	0.83	0.96	0.93	0.92	0.99	0.97	0.67	0.69	0.27	0.80
Learner	0.97	0.97	0.96	0.99	0.99	0.75	0.82	0.40	0.86	0.96	0.94	0.93	0.99	0.98	0.69	0.73	0.30	0.82
Expert	0.87	0.92	0.50	0.99	0.95	0.67	0.81	0.35	0.76	0.76	0.86	0.44	0.99	0.93	0.66	0.67	0.25	0.70

Table 9: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{5} separate for each summary type, and two training simulation budgets.

	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	$a_{\text {slope }}$	Mean	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	$a_{\text {slope }}$	Mean
	Posterior contraction (uncertainty reduction)									Explained variance (R^{2} score, point recovery)								
1000 Simulations																		
Hybrid (D)	0.52	0.80	0.89	0.99	0.85	0.79	0.84	0.32	0.75	0.47	0.77	0.90	0.99	0.85	0.76	0.82	0.34	0.74
Hybrid (J)	0.41	0.79	0.80	0.98	0.84	0.68	0.78	0.31	0.70	0.27	0.70	0.78	0.98	0.80	0.58	0.66	0.23	0.63
Hybrid (C)	0.26	0.70	0.70	0.98	0.74	0.59	0.64	0.21	0.60	0.27	0.70	0.76	0.98	0.76	0.58	0.63	0.24	0.62
Learner	0.25	0.54	0.77	0.99	0.53	0.42	0.55	0.07	0.51	0.18	0.47	0.79	0.98	0.52	0.37	0.50	0.03	0.48
Expert	0.26	0.72	0.76	0.98	0.80	0.72	0.76	0.31	0.67	0.25	0.69	0.78	0.99	0.81	0.70	0.74	0.32	0.66
10000 Simulations																		
Hybrid (D)	0.84	0.93	0.97	0.99	0.97	0.98	0.98	0.52	0.90	0.73	0.89	0.96	0.99	0.96	0.97	0.96	0.49	0.87
Hybrid (J)	0.83	0.93	0.97	0.99	0.97	0.97	0.97	0.49	0.89	0.71	0.89	0.95	0.99	0.95	0.95	0.96	0.45	0.86
Hybrid (C)	0.83	0.93	0.97	0.99	0.97	0.97	0.97	0.49	0.89	0.71	0.89	0.95	0.99	0.95	0.95	0.96	0.45	0.86
Learner	0.83	0.90	0.97	0.99	0.97	0.97	0.97	0.32	0.87	0.72	0.87	0.95	0.99	0.95	0.97	0.96	0.34	0.84
Expert	0.35	0.82	0.80	0.99	0.88	0.86	0.90	0.35	0.74	0.30	0.80	0.80	0.99	0.86	0.81	0.85	0.39	0.72

Table 10: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{6} separate for each summary type, and two training simulation budgets.

	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	λ	Mean	v	a	β	τ_{e}	τ_{m}	σ	$\sigma_{v a r}$	λ	Mean
	Posterior contraction (uncertainty reduction)									Explained variance (R^{2} score, point recovery)								
1000 Simulations																		
Hybrid (D)	0.82	0.74	0.87	0.99	0.82	0.74	0.79	0.37	0.77	0.78	0.68	0.87	0.99	0.77	0.69	0.76	0.28	0.73
Hybrid (J)	0.68	0.80	0.71	0.98	0.83	0.73	0.81	0.33	0.73	0.52	0.69	0.67	0.98	0.77	0.64	0.74	0.15	0.64
Hybrid (C)	0.54	0.69	0.55	0.98	0.72	0.64	0.65	0.14	0.61	0.47	0.66	0.59	0.99	0.70	0.60	0.72	0.16	0.61
Learner	0.43	0.56	0.64	0.99	0.58	0.03	0.06	0.10	0.42	0.42	0.51	0.65	0.99	0.47	0.01	0.01	0.01	0.38
Expert	0.49	0.63	0.60	0.98	0.78	0.74	0.78	0.30	0.66	0.48	0.59	0.59	0.99	0.74	0.67	0.74	0.17	0.62
10000 Simulations																		
Hybrid (D)	0.92	0.96	0.96	0.99	0.97	0.98	0.97	0.49	0.90	0.88	0.88	0.93	0.99	0.95	0.96	0.97	0.39	0.87
Hybrid (J)	0.92	0.94	0.96	0.99	0.97	0.97	0.97	0.46	0.90	0.87	0.86	0.92	0.99	0.94	0.95	0.96	0.34	0.86
Hybrid (C)	0.87	0.91	0.92	0.99	0.93	0.94	0.95	0.38	0.86	0.85	0.85	0.92	0.99	0.93	0.94	0.95	0.33	0.84
Learner	0.91	0.87	0.95	0.99	0.95	0.98	0.97	0.26	0.86	0.87	0.80	0.93	0.99	0.93	0.96	0.96	0.23	0.83
Expert	0.68	0.84	0.67	0.99	0.84	0.84	0.89	0.34	0.76	0.57	0.75	0.67	0.99	0.81	0.79	0.85	0.19	0.70

Table 11: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{7} separate for each summary type, and two training simulation budgets.

	μ_{v}	a	β	τ	σ	η	Mean	μ_{v}	a	β	τ	σ	η	Mean
	Posterior contraction (uncertainty reduction)							Explained variance (R^{2} score, point recovery)						
1000 Simulations														
Hybrid (D)	0.99	0.96	0.98	0.99	0.89	0.90	0.95	0.98	0.94	0.97	0.99	0.85	0.85	0.93
Hybrid (J)	0.99	0.95	0.97	0.98	0.51	0.52	0.82	0.98	0.92	0.94	0.99	0.45	0.42	0.78
Hybrid (C)	0.98	0.94	0.94	0.98	0.83	0.86	0.92	0.98	0.94	0.95	0.99	0.85	0.84	0.92
Learner	0.98	0.20	0.14	0.80	0.36	0.50	0.50	0.97	0.19	0.09	0.80	0.42	0.43	0.48
Expert	0.98	0.93	0.93	0.99	0.41	0.47	0.78	0.98	0.89	0.93	0.99	0.46	0.42	0.78
10000 Simulations														
Hybrid (D)	0.99	0.98	0.99	1.00	0.94	0.94	0.97	0.98	0.97	0.99	1.00	0.92	0.91	0.96
Hybrid (J)	0.99	0.98	0.99	1.00	0.95	0.95	0.97	0.98	0.96	0.99	1.00	0.91	0.91	0.96
Hybrid (C)	0.98	0.96	0.96	1.00	0.86	0.87	0.94	0.98	0.95	0.97	0.99	0.87	0.88	0.94
Learner	0.99	0.98	0.99	1.00	0.94	0.94	0.97	0.98	0.96	0.99	1.00	0.91	0.91	0.96
Expert	0.98	0.96	0.97	1.00	0.50	0.54	0.83	0.98	0.94	0.97	1.00	0.47	0.48	0.81

Table 12: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{8} separate for each summary type, and two training simulation budgets.

	v	a	τ	σ	γ	η	Mean	v	a	τ	σ	γ	η	Mean
	Posterior contraction (uncertainty reduction)							Explained variance (R^{2} score, point recovery)						
1000 Simulations														
Hybrid (D)	0.89	0.97	0.99	0.33	0.97	0.61	0.80	0.86	0.96	0.99	0.31	0.95	0.48	0.76
Hybrid (J)	0.79	0.95	0.98	0.32	0.95	0.57	0.76	0.74	0.94	0.98	0.26	0.92	0.44	0.71
Hybrid (C)	0.84	0.95	0.98	0.37	0.96	0.56	0.78	0.85	0.96	0.99	0.33	0.94	0.47	0.76
Learner	0.67	0.29	0.69	0.24	0.93	0.48	0.55	0.54	0.25	0.65	0.24	0.91	0.37	0.49
Expert	0.78	0.95	0.99	0.23	0.94	0.54	0.74	0.76	0.95	0.99	0.29	0.92	0.44	0.73
10000 Simulations														
Hybrid (D)	0.95	0.99	1.00	0.79	0.99	0.89	0.93	0.93	0.98	1.00	0.65	0.97	0.78	0.89
Hybrid (J)	0.95	0.99	1.00	0.76	0.99	0.87	0.92	0.93	0.98	1.00	0.63	0.97	0.78	0.88
Hybrid (C)	0.93	0.98	1.00	0.69	0.98	0.83	0.90	0.92	0.98	0.99	0.63	0.97	0.76	0.87
Learner	0.95	0.99	1.00	0.79	0.99	0.89	0.93	0.93	0.98	1.00	0.66	0.97	0.79	0.89
Expert	0.92	0.98	1.00	0.36	0.98	0.64	0.81	0.91	0.98	0.99	0.37	0.96	0.57	0.80

Table 13: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{9} separate for each summary type, and two training simulation budgets.

	v	a	β	t_{e}	t_{m}	σ_{e}	Mean	v	a	β	t_{e}	t_{m}	σ_{e}	Mean
	Posterior contraction (uncertainty reduction)							Explained variance (R^{2} score, point recovery)						
1000 Simulations														
Hybrid (D)	0.82	0.93	0.39	0.99	0.97	0.99	0.85	0.71	0.89	0.32	0.99	0.96	0.99	0.81
Hybrid (J)	0.82	0.91	0.46	0.99	0.97	0.98	0.85	0.70	0.88	0.35	0.99	0.95	0.98	0.81
Hybrid (C)	0.76	0.82	0.15	0.98	0.93	0.98	0.77	0.70	0.88	0.27	0.99	0.95	0.98	0.80
Learner	0.68	0.39	0.44	0.98	0.77	-0.02	0.54	0.66	0.37	0.47	0.99	0.79	-0.03	0.54
Expert	0.78	0.89	0.39	0.99	0.97	0.99	0.84	0.69	0.85	0.31	0.99	0.96	0.99	0.80
10000 Simulations														
Hybrid (D)	0.99	0.98	0.99	0.99	0.99	0.99	0.99	0.98	0.96	0.98	0.99	0.99	0.99	0.98
Hybrid (J)	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.98	0.96	0.98	0.99	0.99	0.99	0.98
Hybrid (C)	0.97	0.97	0.96	0.99	0.99	0.99	0.98	0.98	0.96	0.97	0.99	0.99	0.99	0.98
Learner	0.98	0.98	0.98	1.00	0.99	0.99	0.99	0.97	0.96	0.96	0.99	0.99	0.99	0.98
Expert	0.94	0.96	0.86	0.99	0.99	0.99	0.96	0.84	0.94	0.72	0.99	0.99	0.99	0.91

Table 14: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{10} separate for each summary type, and two training simulation budgets.

	v	a	β	t_{e}	t_{m}	σ_{e}	γ	Mean	v	a	β	t_{e}	t_{m}	σ_{e}	γ	Mean
	Posterior contraction (uncertainty reduction)								Explained variance (R^{2} score, point recovery)							
1000 Simulations																
Hybrid (D)	0.83	0.92	0.40	0.65	0.78	0.99	0.69	0.75	0.71	0.88	0.35	0.55	0.74	0.99	0.67	0.70
Hybrid (J)	0.86	0.92	0.54	0.69	0.82	0.97	0.73	0.79	0.72	0.86	0.35	0.54	0.72	0.98	0.67	0.69
Hybrid (C)	0.76	0.84	0.21	0.58	0.77	0.97	0.62	0.68	0.74	0.85	0.37	0.54	0.73	0.98	0.66	0.70
Learner	0.72	0.32	0.39	0.61	0.66	0.07	0.66	0.49	0.68	0.24	0.39	0.53	0.60	0.00	0.66	0.44
Expert	0.75	0.86	0.35	0.66	0.78	0.98	0.66	0.72	0.69	0.81	0.31	0.56	0.75	0.99	0.67	0.68
10000 Simulations																
Hybrid (D)	0.98	0.98	0.98	0.67	0.81	0.99	0.71	0.88	0.98	0.96	0.98	0.58	0.77	0.99	0.68	0.85
Hybrid (J)	0.98	0.98	0.98	0.68	0.82	0.99	0.72	0.88	0.97	0.95	0.97	0.58	0.76	0.99	0.68	0.85
Hybrid (C)	0.97	0.97	0.95	0.63	0.79	0.99	0.66	0.85	0.97	0.95	0.96	0.57	0.77	0.99	0.67	0.84
Learner	0.98	0.98	0.97	0.66	0.81	0.98	0.70	0.87	0.97	0.95	0.96	0.58	0.77	0.98	0.68	0.84
Expert	0.93	0.96	0.83	0.61	0.77	0.99	0.68	0.82	0.85	0.93	0.76	0.58	0.77	0.99	0.68	0.79

Table 15: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{11} separate for each summary type, and two training simulation budgets.

	v	a	β	$n d t$	η	Mean	v	a	β	$n d t$	η	Mean
	Posterior contraction (uncertainty reduction)		Explained variance $\left(R^{2}\right.$	score, point recovery)								

Table 16: Posterior contraction and explained variance across 1000 test simulations from each parameter of model \mathcal{M}_{12} separate for each summary type, and two training simulation budgets.

	v	a	β	$n d t$	σ_{e}	γ	Mean	v	a	β	$n d t$	σ_{e}	γ	Mean
	Posterior contraction (uncertainty reduction)							Explained variance (R^{2} score, point recovery)						
1000 Simulations														
Hybrid (D)	0.84	0.95	0.80	0.93	0.99	0.73	0.87	0.78	0.86	0.80	0.92	0.99	0.62	0.83
Hybrid (J)	0.84	0.92	0.80	0.89	0.99	0.71	0.86	0.75	0.81	0.74	0.84	0.99	0.59	0.79
Hybrid (C)	0.81	0.90	0.71	0.87	0.99	0.66	0.82	0.78	0.85	0.78	0.90	0.99	0.60	0.82
Learner	0.68	0.67	0.64	0.34	0.99	0.41	0.62	0.62	0.60	0.61	0.37	0.98	0.47	0.61
Expert	0.79	0.72	0.76	0.89	0.99	0.63	0.80	0.73	0.67	0.79	0.90	0.99	0.55	0.77
10000 Simulations														
Hybrid (D)	0.96	0.98	0.98	0.99	0.99	0.93	0.97	0.95	0.92	0.96	0.99	0.99	0.86	0.94
Hybrid (J)	0.96	0.99	0.98	0.99	0.99	0.93	0.97	0.94	0.92	0.96	0.98	0.99	0.84	0.94
Hybrid (C)	0.93	0.98	0.95	0.99	0.99	0.88	0.95	0.93	0.91	0.95	0.98	0.99	0.83	0.93
Learner	0.94	0.98	0.96	0.99	0.99	0.88	0.96	0.93	0.91	0.95	0.98	0.99	0.82	0.93
Expert	0.92	0.96	0.92	0.99	0.99	0.85	0.94	0.89	0.85	0.92	0.97	0.98	0.75	0.89

C.2.6 2D-POSTERIOR EVALUATION

In the following, we present the bivariate posterior distributions of two parameters obtained from the remaining 14 neurocognitive joint model, which were not included in the main text. These findings reaffirm the conclusions drawn in the main text: the direct Hybrid approach consistently outperforms both the Expert and Learner models, particularly in scenarios with limited data. Notably, under certain circumstances, the Learner is capable to catch up with the Hybrid, as more simulations become accessible for training. Conversely, the Expert model tends to show diminishing returns in performance gains with increased training data.

Figure 8: Example bivariate posteriors for two parameters obtained from model $\mathcal{M}_{1 a}$. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 9: Example bivariate posteriors for two parameters obtained from model $\mathcal{M}_{1 b}$. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 10: Example bivariate posteriors for two parameters obtained from model $\mathcal{M}_{1 c}$. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 11: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{2}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 12: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{3}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 13: Example bivariate posteriors for two parameters obtained from model $\mathcal{M}_{4 a}$. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 14: Example bivariate posteriors for two parameters obtained from model $\mathcal{M}_{4 b}$. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 15: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{5}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 16: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{6}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 17: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{7}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 18: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{8}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 19: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{9}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 20: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{10}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 21: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{11}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

Figure 22: Example bivariate posteriors for two parameters obtained from model \mathcal{M}_{12}. Additionally, the corresponding prior distributions are depicted in cyan. The true data generating parameters indicated by black dotted lines.

C.2.7 AMORTIZED BAYESIAN MODEL COMPARISON

As an additional assessment of the performance of the different summary configurations(Expert, Learner, Hybrid), we also performed amortized Bayesian model comparison (Radev et al., 2021a). This involves training a posterior model probability network using these different approaches and then assessing their performance in comparing the 15 joint models based on simulated data. We employed the following set of 4 key metrics for assessing the comparison quality: i) accuracy of model detection, ii) a combination of precision and recall measured by the F1-Score, iii) calibration evaluated using the expected calibration error (ECE), and iv) mean absolute error (MAE) between true and predicted model. The neural networks were trained on a total of 50000 synthetic data sets generated from the 15 joint models.

Upon reviewing the results presented in Table 17, it is evident that the Hybrid approximator demonstrates superior performance in 3 out of 4 metrics. In the fourth metric, the ECE, it performs nearly as well as the Expert approach.

Table 17: Amortized Bayesian model comparison performance of the there amortizer types measured with 4 metrics: the accuracy of model detection, a combination of precision and recall (F1Score), expected calibration error (ECE), and mean absolute error (MAE).

	Accuracy	F1-Score	ECE	MAE
Hybrid	$\mathbf{0 . 7 1 6}$	$\mathbf{0 . 7 1 4}$	0.013	$\mathbf{0 . 0 4 6}$
Learner	0.686	0.687	0.020	0.048
Expert	0.612	0.608	$\mathbf{0 . 0 1 2}$	0.061

C. 3 EXPERIMENT 3: LOTKA-VOLTERRA DYNAMIC MODEL

The implementation of the stochastic Lotka-Volterra (LV) simulator follows the formulation in Lueckmann et al. (2021). The LV model describes the non-linear dynamics of ecological systems in which a population of predators interacts with a population of prey, resulting in bivariate time series $\boldsymbol{X} \in \mathbb{R}^{T \times 2}$. Four rate parameters $\boldsymbol{\theta} \in \mathbb{R}^{4}$ govern the deterministic latent dynamics

$$
\begin{align*}
& \frac{d x_{1}}{d t}=\theta_{1} x_{1}-\theta_{2} x_{1} x_{2} \tag{28}\\
& \frac{d x_{2}}{d t}=-\theta_{3} x_{2}+\theta_{4} x_{1} x_{2} \tag{29}
\end{align*}
$$

which are subsequently corrupted through a Log-Normal observation model (Lueckmann et al. 2021) to arrive at the observed time series $\boldsymbol{X} \in \mathbb{R}^{T \times 2}$. Here, we use the original setting with $T=30$ and initial conditions $\left(x_{1}(0), x_{2}(0)\right)=(30,1)$.

C. 4 Expert Statistics

The artificial expert is a pre-trained heteroskedastic regression neural network extending the approach of (Jiang et al. 2017) by learning the posterior variances alongside the posterior means (Kendall \& Gal, 2017). The expert network is pre-trained on $B=1000$ simulations and thus represents a noisy, but still knowledgeable expert capable of extracting some useful information from the observed time series.

C. 5 Summary Networks

C.5.1 TRANSFORMER-BASED NETWORKS

The transformer summary network features a stack of 2 multi-head attention encoders with 4 attention heads (key, query, and value dimensions of 32) and standard positional encoding. In addition, it borrows ideas from temporal fusion architectures (Lim et al. 2021) by including an LSTM network for dynamically learning temporal information. The LSTM network processes the multivariate
time series and returns a template vector which is combined with the encoded time series via crossattention.

C.5.2 SEQUENTIAL NETWORKS

The sequential summary network represents a combination of a recurrent and a 1D convolutional network, an architecture that has successfully been used in the context of simulation-based inference for dynamic time series models (Radev et al., 2021b).

C. 6 Inference networks

The inference network for inferring the hidden parameters is a normalizing flow parameterized by 4 spline coupling layers (Durkan et al. 2018), 2 hidden layers containing 128 units each, ReLU activations, and a spherical Gaussian as a base (latent) distribution. The generative summary network for the conditional hybrid is a normalizing flow parameterized by 6 affine coupling layers (Ardizzone et al. 2019) with 2 hidden layers containing 128 units each, ReLU activations, and a diagonal multivariate Student-T latent distribution with $d f=100$.

C. 7 Additional results

Figure 23: Validation loss trajectories obtained by training all network configurations for 200 epochs with a low simulation budget $B=1000$.

Figure 24: Validation loss trajectories obtained by training all network configurations for 100 epochs with a medium simulation budget $B=5000$.

Figure 25: Lotka-Volterra model with artificial expert ($B=1000$ setting). Estimation error of all methods on the same 1000 test simulations. The estimation error is measured as the median absolute deviation (MAE) between posterior medians and ground-truth values aggregated across all four model parameters.

(a) Expert

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 26: Detailed parameter estimation results obtained using a recurrent-convolutional summary network with a low simulation budget of $B=1000$.

Figure 27: Detailed simulation-based calibration (Talts et al. 2018) results obtained using a recurrent-convolutional summary network with a low simulation budget of $B=1000$.

(a) Expert

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 28: Detailed parameter estimation results obtained using a transformer summary network with a low simulation budget of $B=1000$.

Figure 29: Detailed simulation-based calibration (Talts et al. 2018) results obtained using a temporal fusion transformer summary network with a low simulation budget of $B=1000$.

(a) Expert

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 30: Detailed parameter estimation results obtained using a recurrent-convolutional summary network with a medium simulation budget of $B=5000$.

(b) Learner

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 31: Detailed simulation-based calibration (Talts et al. 2018) results obtained using a recurrent-convolutional summary network with a medium simulation budget of $B=5000$.

(a) Expert

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 32: Detailed parameter estimation results obtained using a transformer summary network with a medium simulation budget of $B=5000$.

(b) Learner

(c) Direct Hybrid

(d) Joint Hybrid

(e) Conditional Hybrid

Figure 33: Detailed simulation-based calibration (Talts et al. 2018) results obtained using a temporal fusion transformer summary network with a medium simulation budget of $B=5000$.

[^0]: ${ }^{1}$ Maximally informative statistics merely minimize some distance between $p(\boldsymbol{\theta} \mid \boldsymbol{X})$ and $p(\boldsymbol{\theta} \mid S(\boldsymbol{X}))$ and are thus "locally optimal" under the constraints imposed by the nature of the optimization task.

[^1]: ${ }^{2}$ Code for all methods and experiments will be released upon acceptance.

