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ABSTRACT

Discrete flow matching, a recent framework for modeling categorical data, has
shown competitive performance with autoregressive models. However, unlike
continuous flow matching, the rectification strategy cannot be applied due to the
stochasticity of discrete paths, necessitating alternative methods to minimize state
transitions. We propose a dynamic-optimal-transport-like minimization objective
and derive its Kantorovich formulation for discrete flows with convex interpolants,
where transport cost depends solely on inter-state similarity and can be optimized
via minibatch strategies. In the case of bag-of-words (BoW) sourced flows, we
show that such methods can reduce the number of transitions up to 8 times (1024
to 128) to reach the same generative perplexity without compromising diversity.
Additionally, path nondeterminism in discrete flows precludes an instantaneous
change-of-variables analogue, preventing precise probability estimation available to
continuous flows. We therefore propose two upper bounds on perplexity, enabling
principled training, evaluation and model comparison. Finally, we introduce
Multimask Flow which outperforms masked flows in generative perplexity without
sacrificing diversity, particularly when utilizing minibatch Optimal Transport.

1 INTRODUCTION

Modeling data distributions is central to machine learning. For continuous data, diffusion and flow
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b; Lipman et al., 2023) have
shown impressive results in generation and density estimation (Song et al., 2021a;c; Chen et al.,
2018). Rectified flows particularly excel by enabling high-quality generation with few integration
steps. However, these continuous models lag behind autoregressive models on categorical data (Chen
et al., 2023; Gulrajani & Hashimoto, 2024; Li et al., 2022; Dieleman et al., 2022; Strudel et al., 2022).

To address this, recent work has developed discrete diffusion (Austin et al., 2021; Campbell et al.,
2022; Meng et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Ou et al., 2024; Shi et al., 2024) and
discrete flow models (Campbell et al., 2024; Gat et al., 2024), better suited for categorical data. These
models can accelerate generation and, unlike autoregressive models, naturally enable infilling. We
focus on discrete flow matching (DFM), which expands the design space beyond discrete diffusion
by allowing arbitrary couplings and inner dynamics. While discrete and continuous flows share
similarities that facilitate adapting continuous flow matching results, fundamental differences remain.
These arise primarily from the nonexistence of a DFM formulation with deterministic sample paths.

A major implication of non-deterministic sample paths is that we cannot use the rectification strategy
from Liu et al. (2022). Since paths in discrete flows are sequences of states, we explore minimizing
the number of jumps between states, which can be interpreted as the discrete analogue of path
length minimization. Using similarity measures between states, we minimize jumps weighted by
dissimilarity, yielding a weighted path-length-oriented dynamic formulation of optimal transport
(OT) for discrete flow matching. We derive its Kantorovich formulation, where the cost function
depends only on the similarity measure and can be optimized using minibatch strategies (Tong et al.,
2024; Fatras et al., 2021). This gives a categorical Benamou-Brenier-type theorem when conditional
flows are convex interpolants, i.e., the categorical equivalent of shortest-path continuous flows. When
the similarity measure in the dynamic formulation is the discrete metric, the cost function in the
Kantorovich formulation becomes the Hamming distance. When the similarity measure is the L2

norm, the cost function is also L2, mirroring the continuous case.
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An additional implication of stochastic crossing paths in DFM is that we cannot use an equivalent of
the instantaneous change of variable formula (Chen et al., 2018) for probability estimation. Thus,
other approaches are needed for estimating the perplexity. Inspired by bounds in Lou et al. (2024);
Haxholli et al. (2025), we derive two upper bounds on perplexity for discrete flow matching. These
bounds enable theoretically grounded training, model evaluation and comparison with other methods.

Experiments show that minibatch-OT significantly reduces jumps in small-scale experiments and,
in realistic settings (GPT2-sized model on OWT), reduces inference steps up to 8-fold (from 1024
to 128) to achieve the same generative perplexity. We also introduce multimask flow (DFM-MM),
which outperforms masked DFM in terms of generative perplexity without sacrificing diversity, in
particular when combined with minibatch-OT. Finally, we demonstrate that our derived bounds enable
comparisons with autoregressive and discrete diffusion models.

In summary, the main contributions of this paper include:

• We formulate a weighted path-length-oriented dynamic OT objective that minimizes
dissimilarity-weighted jumps between states. We derive its Kantorovich formulation for
convex interpolant flows, establishing a categorical Benamou-Brenier-type theorem.

• We extend two discrete diffusion bounds to DFM, providing principled training objectives
and enabling comparisons with autoregressive and discrete diffusion models.

• We show minibatch OT reduces inference steps up to 8-fold (1024 to 128) while maintaining
generative perplexity on GPT2-scale models. Finally, we introduce multimask flow (DFM-
MM), which surpasses masked DFM models in generative perplexity without compromising
diversity, with further gains achieved when applying OT.

2 PRELIMINARIES AND NOTATION

A summary of Discrete Flow Matching is provided below. While the following preliminary is
self-contained, we also provide an introduction to the discrete diffusion framework in Appendix D.

2.1 DISCRETE FLOW MATCHING

To expand the design space of discrete diffusion models, Campbell et al. (2024); Gat et al. (2024)
introduce discrete flow matching. We follow the approach and notation of Gat et al. (2024). In
discrete sequence modeling, a sequence (state) x consists of L elements (x1, x2, . . . , xL). Each
position i contains an element xi from a vocabulary V = [V ] = {1, . . . , V } of size V . Thus, the set
of possible sequences is D = VL. Two sequences are neighbors if they differ in only one position.

We denote with pi(xi) the marginal of p at position i, i.e., pi(xi) =
∑

x−i p(x), where
x−i = (x1 . . . , xi−1, xi+1, . . . xL). The following delta function notation will be particularly useful,

δy(x) =

N∏
i=1

δyi(xi), where δyi(xi) =

{
1 if xi = yi

0 if xi ̸= yi
. (1)

2.1.1 PROBABILITY FLOWS AND VELOCITIES

In discrete flow matching (Gat et al., 2024), the goal is to acquire a flow pt(z) : [0, 1]× [V ]L → [0, 1]
constrained by

∑
z∈[V ]L pt(z) = 1 that transforms source (reference) distributions X0 ∼ p to

target (data) distributions X1 ∼ q. The flow is completely defined by the choice of a probability
velocity ut(x) : [0, 1] × [V ]L → RL×V , such that ut(z) = (u1

t (z), . . . , u
i
t(z), . . . , u

L
t (z)) and

ui
t : [0, 1] × [V ]L → RV , where ui

t(z)[x
i ̸= zi] ≥ 0 and

∑
xi∈[V ] u

i
t(z)[x

i] = 0, for each i. The
update rule of the probability over states when going from time t to t+ ϵ is defined independently
for each position in the sequence as follows pit+ϵ|t(x

i|xt) = δxi
t
(xi) + ϵui

t(x
i, xt), where we used

ui
t(x

i, z) := ui
t(z)[x

i]. Therefore, we can see that as in the framework of Markov chains, the
probability over the states in the next step depends solely on the current state, and that ut plays
a similar role to a transition-rate matrix Qt, completely determining the flow. As such, if we
approximate the probability velocity ut(z) using a neural network ut(z; θ) : [0, 1]× [V ]L → RL×V ,
we can sample from p and generate data from q, using the previous update rule. Before modeling the
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probability velocity ut(z) however, one must first design an appropriate flow pt(z) that has a suitable,
practically learnable corresponding ut(z).

2.1.2 CONDITIONAL PROBABILITY FLOWS

Since at time t = 0 and t = 1 we must have p0 = p and p1 = q respectively, we are already restricted
regarding the endpoints of the flow. A trivial way to satisfy such constraints is to define

pt(x) =
∑

x0,x1∈D
pt(x|x0, x1)π(x0, x1), (2)

where p0(x|x0, x1) = δx0(x), p1(x|x0, x1) = δx1(x) and π(X0, X1) is an arbitrary joint distribution
of X0, X1 satisfying the marginals constraints p(x) =

∑
y∈D π(x, y), q(y) =

∑
x∈D π(x, y). Since

the probability velocities update the probability independently for each position, it is natural to define
pt(x|x0, x1) independently for each dimension as in Gat et al. (2024):

pt(x|x0, x1) =

N∏
i=1

pit(x
i|x0, x1), (3)

where pit(x
i|x0, x1) = (1− kt)δxi

0
(xi) + ktδxi

1
(xi),with k0 = 0, k1 = 1 and increasing kt. (4)

It is clear that this definition of pt(x|x0, x1) satisfies the conditions p0(x|x0, x1) = δx0(x) and
p1(x|x0, x1) = δx1

(x). In addition, Gat et al. (2024) show that component i of the conditional
probability velocity ut(x, z|x0, x1) corresponding to the flow defined in Equations (3) and (4) is

ui
t(x

i, z|x0, x1) =
k̇t

1− kt

[
δxi

1
(xi)− δzi(xi)

]
. (5)

Furthermore, they show that the probability velocity corresponding to the unconditional flow pt(z)
can be written as

ui
t(x

i, z) =
∑

x0,x1∈D
ui
t(x

i, z|x0, x1)p(x0, x1|z)dx0dx1, (6)

which in the case of Equations (4) and (5) implies, ui
t(x

i, z) = k̇t

1−kt

[
pi1|t(x

i|z)− δz(x
i)
]
. One

then approximates ui
t(x

i, z) by simply modeling pi1|t(x
i|z) with a neural network pi1|t(x

i|z; θ) using
the cross entropy loss L,

−Et∼U(0,1)Ex0,x1∼π(x0,x1)Ext∼pt|0(·|x0,x1)

L∑
i=1

log pi1|t(x
i
1|xt; θ). (7)

It should be mentioned that in Gat et al. (2024), the definition of pit(x
i|x0, x1) is given in a more

general form, but here we focus on this specific case for the sake of simplicity and since this
formulation corresponds to shortest path conditional flows in the continuous framework, that is
Xt = (1− t)X0 + tX1.

2.1.3 SOURCE AND TARGET DISTRIBUTIONS

As mentioned, points X0 and X1 are sampled from a joint distribution π(x, y), i.e. (X0, X1) ∼
π(X0, X1), satisfying the marginals constraints p(x) =

∑
y∈D π(x, y), q(y) =

∑
x∈D π(x, y). As a

special case, the training pairs X0 and X1 can be sampled independently, (X0, X1) ∼ p(X0)q(X1).
Common instantiations of source distribution p are:
(i) adding a special token value often referred to as a mask token, denoted here by m, and setting the
source distribution to contain only the fully masked sequence, i.e., (X0, X1) = ((m, . . . ,m), X1).
(ii) using uniform distribution over D, which is equivalent to drawing each xi independently to be
some value in [V ] with equal probability, denoted pu(x

i).
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3 TRANSITION REDUCTION OBJECTIVES IN DISCRETE FLOW MATCHING

A central aim in flow-matching research is to cut the number of steps needed for high-quality
generation, that is, to simplify the trajectories from the source to the target distribution. Such
simplified paths are easier for neural networks to model and, empirically, yield higher-quality
models. One principled way to simplify these paths is to minimize kinetic energy, as in the dynamic
formulation of optimal transport: ∫ 1

0

∫
1

2
p(xt)∥vt(xt)∥2dxtdt, (8)

with endpoints fixed at the source and target distributions. This objective is closely related to
minimizing expected path length, but the squared speed penalizes large velocities more strongly.
Moreover, by the Benamou–Brenier theorem (Benamou & Brenier, 2000; Tong et al., 2024), the
infimum of Equation (8) equals the infimum of the Kantorovich transport with quadratic cost,∫

c(x0, x1)π(x0, x1)dx0dx1, where c(x0, x1) = ∥x0 − x1∥2, (9)

taken over all couplings π with marginals p0 and p1. We observe that minimizing ∥vt(xt)∥2 =
v21,t+ ...+ v2d,t corresponds to minimizing the instantaneous movement of particles from their current
positions. In the discrete flow setting, there is a natural analogue: we seek to minimize the expected
outflowing mass ui

t(x
i, xt) for transitions where xi ̸= xi

t. Equivalently, this amounts to maximizing
ui
t(x

i
t, xt), favoring trajectories where the mass predominantly stays in place rather than flowing

between states.
Therefore, the dynamic formulation for DFM minimizes:∫ 1

0

∑
xt

1

2
p(xt)

 L∑
i=1

 ∑
xi ̸=xi

t

ui
t(x

i, xt)− ui
t(x

i
t, xt)

 dt =

∫ 1

0

∑
xt

p(xt)

L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt)dt,

(10)
where xi ̸= xi

t denotes xi ∈ V \ xi
t and xt ∈ D. We prove this equals the Kantorovich formulation

in Equation (9) when c(x0, x1) is the Hamming distance (dH ) between sequences (Corollary 1).
The categorical dynamic formulation above treats all tokens equally, yet in practice tokens have
varying similarities reflected in their embeddings. We should weight the outflow by token similarity,
penalizing transitions to dissimilar states more heavily. Moreover, for large vocabularies, sequences
sampled from the source distribution p(x0) and the target data distribution q(x1) likely share few
matching positions. Consequently, optimizing this expression using OT-minibatches as in Tong et al.
(2024), should not offer substantial improvements in realistic DFM settings.
For these reasons, we define the categorical dynamic objective more generally as follows:∫ 1

0

∑
xt

p(xt)

[
L∑

i=1

∑
xi

ui
t(x

i, xt)s(x
i, xi

t)

]
dt =

∫ 1

0

∑
xt

p(xt)

 L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt)s(x
i, xi

t)

 dt,

(11)
where s(xi, xi

t) ≥ 0 is a similarity measure between two tokens xi and xi
t that is symmetric

and satisfies s(a, a) = 0. Our previous formulation in Equation (10) used the discrete metric
s(xi, xi

t) = 1−δxi
t
(xi). Another natural choice is the squared L2 distance between token embeddings:

s(xi, xi
t) = ∥em(xi) − em(xi

t)∥2. For any choice of similarity measure (typically a metric), there
exists a corresponding Kantorovich formulation with a cost function determined by that measure.

Theorem 3.1. Let π(x0, x1) be the joint distribution of x0 and x1, and let pt be a flow defined as in
Equations (2, 3, 4) that transforms p =

∫
π(x0, x1)dx1 into q =

∫
π(x0, x1)dx0. In this setting, the

dynamic formulation given in Equation (11) equals the Kantorovich formulation:∫ 1

0

∑
xt

p(xt)

L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt)s(x
i, xi

t)dt =
∑
x0,x1

c(x0, x1)π(x0, x1), (12)

where the cost function is c(x0, x1) =
∑L

i=1 s(x
i
0, x

i
1).
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We provide a proof in Appendix A.1. The theorem trivially extends to position-specific schedulers:
pit(x

i|x0, x1) = (1 − kit)δxi
0
(xi) + kitδxi

1
(xi). Algorithm 1 describes training with minibatch OT

for optimizing the Kantorovich formulation. For the categorical dynamic formulation (10), the
corresponding Kantorovich cost function is the Hamming distance dH :
Corollary 3.2. If in Theorem 3.1 we choose s(xi, xi

t) = 1 − δxi
t
(xi) then c(x0, x1) =∑L

i=1 s(x
i
0, x

i
1) =

∑L
i=1(1− δxi

0
(xi

1)) =
∑L

i=1 δxi
0 ̸=xi

1
= dH(x0, x1).

Interestingly, if s(xi, xi
t) = ∥em(xi)− em(xi

t)∥2, the cost function becomes the L2 norm between
sequence embeddings, mirroring continuous flow matching:
Corollary 3.3. If in Theorem 3.1 we choose s(xi, xi

t) = ∥em(xi) − em(xi
t)∥2 then c(x0, x1) =∑L

i=1 ∥em(xi
1)− em(xi

0)∥2 that is c(x0, x1) = ∥em(x1)− em(x0)∥2.

4 UPPER BOUNDS ON THE PERPLEXITY IN DISCRETE FLOW MATCHING

Perplexity is a key metric for language models, making it essential to calculate or bound it in the
DFM framework. While Appendix A.5 provides a precise but computationally intractable formula,
the next two subsections present practical bounds. These bounds serve as both principled training
objectives and effective evaluation metrics, offering intrinsic and objective assessment.

4.1 AN UPPER BOUND ON THE PERPLEXITY

To derive the first upper bound, we first provide an expression for the KL divergence between the end
distributions p̄1 and q̄1 of two flows p̄t and q̄t. To derive this expression, we extend the approaches of
Opper & Sanguinetti (2007, Equation 3) and Haxholli et al. (2025) to DFM models.
Theorem 4.1. For two discrete flows p̄t and q̄t with corresponding probability velocities vt(xi, xt)
and wt(x

i, xt), the following equality holds

DKL(q̄1∥p̄1) =
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt

−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)−w̃i

t(x
i, xt)

)
dt+DKL(q̄0∥p̄0),

where ṽt(x
i, xt), w̃t(x

i, xt) are the respective reverse probability velocities, which generate the
identical distributions of paths as the forward ones.

A proof is provided in Appendix A.1. The key idea of the extension is to see the space as a grid,
wherein the flow between non-neighbor states becomes negligible for small step sizes.
By Proposition A.1 in Appendix A, DKL(q̄1∥p̄1) depends only on the forward probability velocities
and the learned probability ratios between neighbor states. Unfortunately, we lack access to these
probability ratios. However, the following statement provides a computable upper bound,
Theorem 4.2. Under the conditions of Theorem 4.1. DKL(q̄1∥p̄1) is bounded from above by

DKL(q̄0∥p̄0) +
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt.

A proof is provided in Appendix A.1. Motivated by the last result and Lou et al. (2024), we
choose p̄t(x) to be the learned approximation of flow pt in Equation (2) with the coupling π(x0, x1),
i.e., p̄t(x) = pt(x; θ) and vt = ut(x

i, xt; θ) . On the other hand, we choose q̄t(x) to have the
dynamics of pt, but with the coupling π̄(x, y) = p0(x)δx1(y) =

∫
π(x, z)dzδx1(y). Clearly, q̄0(x) =

p0(x), q̄1(x) = δx1(x) and q̄t(x) = pt|1(x|x1). We notice that since q̄0(x) = p0(x) and p̄0(x) =
p0(x), then DKL(q̄0∥p̄0) = 0. Furthermore DKL(q̄1(x)∥p̄1(x)) = DKL(δx1

(x)∥p1(x; θ)) =
− log p1(x1; θ). Thus, for such choices, − log pt(x1; θ) is bounded from above by∫ 1

0

∑
xt

pt|1(xt|x1)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

ui
t(x

i, xt; θ)
+ ui

t(x
i, xt; θ)− wi

t(x
i, xt)

)
dt. (13)

5
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This bounds the negative-log-likelihood (NLL) for general DFM models. Shaul et al. (2025) concur-
rently obtained a similar result via an ELBO-based derivation. Taking expectations over p1(x1) on
both sides gives a general bound on cross entropy H(p1, p1(θ)). For the dynamics from Equation (4),

H(p1, p1(θ)) ≤ B :=

∫ 1

0

k̇t
1− kt

∑
x1,x0

π(x1, x0)
∑
xt

pt|1,0(xt|x1, x0)

L∑
i=1(

− δxi
1 ̸=xi

t
log pi1|t(x

i
1|xt; θ) + 1− pi1|t(x

i
t|xt; θ)− δxi

1 ̸=xi
t

)
dt. (14)

A detailed derivation is provided in Appendix A.2. Hence e
B
L is a computable upper bound of the

perplexity that can be used for training and evaluation (Algorithm 2 in Appendix B). Additionally, we
provide an expression for the exact perplexity in Appendix A.5, but this cannot be used in practice as
it requires knowing the learned probability ratios between neighbor states.

4.2 AN ALTERNATIVE UPPER BOUND ON THE PERPLEXITY

Analogous to Haxholli et al. (2025)’s findings for discrete diffusion models, using the continuity
equation, we show that the distribution entropy at the flow’s endpoint can be expressed as follows:
Proposition 4.3. Given a discrete flow q̄t with a corresponding forward velocity field wt, the entropy
of distribution q̄1 can be written as

H(q̄1) = H(q̄0) +

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi

wi
t(x

i
t, x)

q̄t(x)

q̄t(xt)

(
log

q̄t(x)

q̄t(xt)
− 1

)
dt, (15)

where x is such that x−i = x−i
t and xi varies in the third sum. Combining this with Theorem 4.2

yields a direct upper bound on the cross-entropy between the terminal distributions of two flows.
Proposition 4.4. Under the conditions of Theorem 4.1, the following inequality holds

H(q̄1, p̄1) ≤ H(q̄0)−
∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt) +DKL(q̄0∥p̄0) +
∫ 1

0

∑
x0,x1

π(x0, x1)

∑
xt

q̄t(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

(
q̄it(x|x0, x1)

q̄it(xt|x0, x1)
w̃i

t(x
i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt, (16)

where x is defined as in Proposition 4.3. This provides another upper bound on perplexity. Indeed, by
setting q̄t as pt from Equation (2) with coupling π(x0, x1), and p̄t(x) = pt(θ), so that H(q̄1, p̄1) =
H(p1, p1(θ)), we obtain the DFM extension of the discrete diffusion bound of Haxholli et al. (2025).
See Appendix A.3 for details. As shown in Gat et al. (2024), the backward probability velocity
w̃t can be computed explicitly in important cases: when the coupling is independent π(x0, x1) =

p0(x0)q1(x1), and when the source is either masked or has i.i.d. dimensions p0(x0) =
∏N

i=1 p0(x
i
0).

In these cases,

w̃t(x
i, xt) = −

ǩt
kt

[
δxi

t
(xi)− pi0(x

i)
]
. (17)

Since we can compute all terms on the RHS of Inequality (16), it provides an alternative practical
upper bound of the perplexity, as described in Algorithm 3, Appendix B. For the special masked
dynamics, pi0(x

i) = δm(xi), the two bounds coincide. A derivation can be found in Appendix A.3.1.
These bounds provide principled training objectives and serve as effective evaluation metrics.

5 EXPERIMENTS

This section empirically validates our results. As proof of concept, we first show on small-vocabulary
datasets that applying Theorem 3.1 effectively reduces jumps. We then confirm our bounds em-
pirically, and in simple settings, estimate their tightness. More importantly, we demonstrate that
in realistic scenarios, applying Theorem 3.1 can reduce generation steps up to 8-fold to reach the
same generative perplexity for BoW source distributions. Additionally, we introduce a new flow type
(multimask-flow) and show it outperforms masked flows, especially when combined with OT. Finally,
we calculate OT overhead, showing minibatch OT is practical.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 PROOF OF CONCEPT EXPERIMENTS

We trained a time-conditioned GPT-2 transformer with full attention on the Morse-code converted
Shakespeare dataset, where non-convertible characters were left unchanged. The source sequence
used was Bag-of-Words (BoW). A sample sequence from the BoW is constructed by sampling
independently per position from the token frequencies in the training set. Training consisted of
100k iterations, character-level tokenization, sequence length 128, and batch size 64. We compared
standard training with minibatch-OT. Minibatch OT increased training time by 0.3% without affecting
inference. We used Hamming distance and the Sinkhorn algorithm with entropy regularization
parameter ϵ. During inference with 1024 Euclidean steps, we counted token changes at each position
across 3,000 generated sequences. Results appear in Table 1.
Since unstructured source sequences require modifying most tokens to generate structured data,
there is a natural lower bound on required modifications. In Shakespeare Morse, the vocabulary
contains three main tokens, each with probability ∼1/3. Thus, any given token has probability
2/3 of needing change, yielding an expected minimum of 128 × 2

3 = 85.33 jumps for sequence
length 128. The standard method’s 85.47 jumps nearly matches this theoretical minimum, suggesting
near-optimal performance. That OT reduces this to 74.84 is significant, demonstrating that OT-trained
models generate samples closer to the source sequence while maintaining unbiased sampling when
marginalizing across source sequences.
We also performed the same experiments on Shakespeare using a character-level tokenizer (see
Appendix C.1). As discussed in Section 3, the increased vocabulary size makes Hamming distance
less effective, necessitating the usage of the L2 metric (Section 5.3) or other specialized measures.

Table 1: Using minibatch OT reduces the number of jumps by ∼ 14%. We notice that by increasing
the entropy regularization we get closer to the results of training without OT.

Model (L=128) Jumps Relative Jumps
Normal 85.47± 0.1 1.14
With OT ϵ = 0.1 82.86± 0.1 1.1
With OT ϵ = 0.01 74.87± 0.1 1

5.2 UTILIZING THE BOUNDS AND ESTIMATING THEIR TIGHTNESS

We test in practice the utility of our bounds as optimization targets and evaluation metrics.
In Section 4.2, we mentioned that for masked DFM, both bounds coincide and simplify to∫ 1

0
1

1−t

∑
x1,x0

π(x1, x0)
∑

xt
pt|1,0(xt|x1, x0)

∑L
i=1−δm(xi

t) log p
i
1|t(x

i
1|xt; θ)dt. This matches

the MD4 bound of Shi et al. (2024) for masked discrete diffusion (Appendix A.4). We denote models
trained with this loss as DFM-S, those trained with the loss multiplied by (1− t) as DFM-N, and
those trained with cross-entropy as DFM-O. Using the architecture from Section 5.1 with GPT2
tokenization, we trained on OpenWebText (OWT) (Gokaslan & Cohen, 2019) for 400K steps (batch
size 512, sequence length 128). Testing on datasets from Lou et al. (2024), DFM-N performed best
(Appendix C.2), so we compared DFM-N against SEDD and GPT-2 for longer sequences (L=1024).
Table 2 shows that our bounds enable comparisons with autoregressive models.

Table 2: Results comparing SEDD, DFM-N, and GPT2.

Model (L=1024) Lambada Wikitext2 PTB Wikitext103 LM1B
SEDD 52.18 42.02 117.00 41.83 80.79
DFM-N 53.19 42.00 111.58 41.64 77.87
GPT2 49.02 37.68 134.13 37.55 58.92

A natural question is how tight our bounds are and their implications for the GPT-2/DFM-N per-
formance gap. In small-scale masked flow settings, the bound exceeds the ground-truth value by
roughly 11%. The NLL differences are similar to those reported by Song et al. (2021b) in the case of
continuous diffusion models. See Appendix C.5 for full details.
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5.3 MULTI-MASKED FLOWS AND MINIBATCH-OT ON OPENWEBTEXT

To test minibatch-OT in practice, we trained a time-conditioned GPT-2-sized model with full attention
for 400k iterations on OWT, using batch size 512 and sequence length 128. We compared: (1) a
baseline (DFM-B) without OT, and (2) DFM-B-OT, that is, DFM-B trained using minibatch-OT with
L2 metric (Corollary 3.3). Both used the GPT-2 tokenizer (vocabulary size 50,257). The source
distribution was BoW as in Section 5.1, but with OWT as the training set. The cross-entropy loss
was used in both cases. After training, we generated 10,240 samples and evaluated quality using
GPT2-large and Llama3.1 8B. OT significantly improved generative perplexity, reducing by 8-fold
the generation steps (1024 to 128) needed to match the non-OT model’s score. Additionally, we
measured the total transport cost in both dynamic and Kantorovich formulations for models trained
with and without OT. The two formulations yielded similar values, and models trained with OT show
lower transport costs as expected. See Appendix C.6 for details.

Table 3: Result differences between SOTA masked-flows, DFM-B, and DFM-MMLM with/without
minibatch OT. GPT-2 Large was used as a judge. Asterisks denote the best results across all categories.

Generation Steps: 8 16 32 64 128 1024
DFM-B 345.94 241.16 211.99 197.48 192.75 185.12
DFM-B-OT 331.88* 233.24* 203.08 191.17 185.06 178.53
DFM-S (MD4 loss) 587.80 316.25 222.46 188.62 169.81 156.81
DFM-N 556.73 296.25 210.11 176.34 160.17 147.07
DFM-O 560.67 300.06 208.06 175.59 159.03 146.54
DFM-MMLM 536.50 288.38 204.77 170.61 155.45 143.48
DFM-MMLM-OT 525.83 283.10 199.55* 167.86* 153.51* 141.92*

Unfortunately, masked DFM uses a Dirac distribution at the fully masked sequence as its source,
admitting only the trivial coupling. To address this, we introduce multimask flow (DFM-MMLM),
where the source vocabulary comprises 50,257 special mask tokens, all distinct from data tokens.
Source sequences are uniformly sampled combinations of these masks, unlike classical uniform/BoW
sources, where the source and data distribution share the same vocabulary. This design offers two
advantages: denoising probabilities remain time-independent as in masked diffusion, and mask
embeddings are completely unrestricted, being untied from data-token embeddings. This construction
creates a "fictitious grid" where each L-length sequence carries mass 1

50257L
. The flow transports this

mass to the data grid, enabling minibatch OT. All other experimental settings follow DFM-B.
Table 3 presents all generative perplexity results using GPT2 for evaluation, and the perplexity bound
results are provided in Appendix C.3. In Appendix C.4, we provide the standard deviations, Llama
evaluation results, and demonstrate through entropy scores that OT preserves the diversity.

5.4 SCALING PROPERTIES OF MINIBATCH-OT.

We examine the computational overhead introduced by minibatch OT during training. While OT
computation is vocabulary-size independent, its requirements increase with batch size under Sinkhorn
and each parameter update requires computing a minibatch OT coupling. Table 4 compares the time
for 1000 couplings (CPU or GPU) against 1000 diffusion updates without OT. OT adds only 3.4%
overhead in our experiments. Larger batch sizes require GPU acceleration, maintaining the overhead
between 10-15%. All experiments use fixed sequence length L = 128.

Table 4: Timing (seconds) for 1000 batches with sequence length 128. The symbol ’E’ indicates
extrapolated values due to memory constraints (Nvidia GH200 reaches its maximum capacity).

Batch size: 32 64 128 256 512 1024 2048 4096
POT (CPU) 1.94 2.23 2.99 4.91 12.57 78.90 275.91 834.77
POT (GPU) 8.93 43.26 93.11 156.64 149.30 150.31 179.13 265.34
Pure diffusion 54.7 63.6 104.9 173.0 367.8 634.4 1129E 2010E
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Sequence length does not have a negative impact on computational scaling. Normally, the primary
overhead stems from the Sinkhorn operation, which processes pre-computed pairwise sequence
distances. Consequently, sequence length does not affect Sinkhorn’s computational cost. We tested
the overall role of the length empirically by increasing the sequence length 8 times (from L = 128 to
L = 1024), which yielded only a 4.6x increase in OT computation time (from 12,57 to 57,99 seconds
per thousand minibatches). This scaling behavior has important implications for training efficiency:
At L = 128, OT adds 3.4% to the total training time. At L = 1024, this overhead should drop below
1.9% because diffusion-only training time scales at best roughly linearly (and up to quadratically
if attention dominates) with sequence length, whereas OT in our experiments scaled more slowly.
Consequently, the relative cost of mini-batch OT is not expected to increase with sequence length.

6 RELATED WORK

Diffusion-based models have proven highly effective in capturing the structure of continuous data
distributions, leading to significant advancements in generative modeling (Song et al., 2020a; 2021c;
Kingma et al., 2021; Nichol & Dhariwal, 2021; Saharia et al., 2022; Ramesh et al., 2022). Given
their success in image, video and audio synthesis, researchers have explored their applicability to
language modeling (Chen et al., 2023; Gulrajani & Hashimoto, 2024; Li et al., 2022; Dieleman et al.,
2022; Strudel et al., 2022; Gong et al., 2022; Mahabadi et al., 2023).

An alternative paradigm for discrete data, particularly in NLP, is discrete diffusion. Introduced by
Hoogeboom et al. (2021); Austin et al. (2021) and extended to continuous-time settings (Campbell
et al., 2022; Lou et al., 2024), these models offer a structured approach to learning categorical
distributions. Training typically uses the variational lower bound or cross-entropy loss, similar to
continuous diffusion (Dieleman et al., 2022).

To expand the design space of discrete diffusion, Campbell et al. (2024); Gat et al. (2024) introduce
discrete flow matching, notably avoiding conditional score ratio calculations during training and thus
bypassing matrix exponential computation. Instead of focusing on a path-length-oriented objective,
Shaul et al. (2025) define a kinetic energy OT objective, derive the optimum for specific DFM classes,
and independently obtain a bound similar to ours from an ELBO perspective. While in this work we
focus on pure DFM models, Arriola et al. (2025) introduce block diffusion language models that
interpolate between discrete denoising diffusion and autoregressive models. Regarding scaling, Nie
et al. (2025) train masked diffusion models up to 1.1B parameters to systematically evaluate against
comparable or larger ARMs. Their 1.1B MDM outperforms the 1.1B TinyLlama trained on the same
data across four of eight zero-shot benchmarks.

7 LIMITATIONS AND FUTURE WORK

Flow matching with minibatch OT involves two interacting optimization procedures: choosing
optimal minibatch coupling and training the flow model. The coupling affects flow dynamics,
while embedding updates during training alter the optimal coupling when using embedding-based
similarities. Though the model’s local view of the flow at each step provides stability, we can enhance
it by decoupling network embeddings from those used in minibatch coupling, for instance, using
moving-average embeddings for OT. In addition, future work could explore connections between
the fictitious grid in DFM-MMLM and VQ-VAEs, potentially defining source distributions using the
fictitious grid state closest to the encoding of each data point in L2 distance.

8 CONCLUSION

We developed a weighted path-length dynamic OT objective for DFM that minimizes dissimilarity-
weighted jumps between states, derived its Kantorovich formulation establishing a categorical
Benamou-Brenier-type theorem. We extended two discrete diffusion bounds to DFM, enabling
comparisons with autoregressive and discrete diffusion models. Experiments show minibatch OT
reduces inference steps up to 8-fold (1024 to 128) while maintaining generative perplexity on GPT2-
scale models. Our multimask flow (DFM-MM) surpasses masked DFM in generative perplexity
without sacrificing diversity, with further gains under OT.
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LLM USAGE STATEMENT

Large Language Models were used in this paper to improve the conciseness and quality of the text at
the sentence level.

REFERENCES

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84:375–393, 2000.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018.

Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In The Eleventh International Conference on Learning
Representations, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv preprint arXiv:2211.15089, 2022.

J.L. Doob. Stochastic Processes. Wiley publications in statistics. Wiley, 1953. ISBN 9780471218135.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792,
2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Advances
in Neural Information Processing Systems, 36, 2024.
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A THEORETICAL RESULTS

A.1 PROOFS

Proof of Theorem 3.1:

We begin with ∫ 1

0

∑
xt

p(xt)

 L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt)s(x
i, xi

t)

 dt (18)

which due to Equation (6) can be rewritten as∫ 1

0

∑
xt

p(xt)

 L∑
i=1

∑
xi ̸=xi

t

∑
x0,x1

ui
t(x

i, xt|x0, x1)p(x0, x1|xt)s(x
i, xi

t)

 dt = (19)

∫ 1

0

∑
xt

L∑
i=1

∑
xi ̸=xi

t

∑
x0,x1

ui
t(x

i, xt|x0, x1)s(x
i, xi

t)p(x0, x1, xt)dt = (20)

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xt

∑
xi ̸=xi

t

ui
t(x

i, xt|x0, x1)s(x
i, xi

t)p(xt|x0, x1)p(x0, x1)dt. (21)

For p(xt|x0, x1) as in Equation (4), by Equation (5) we have that

ui
t(x

i, xt|x0, x1) =
k̇t

1− kt

(
δxi

1
(xi)− δxi

t
(xi)

)
. (22)

Continuing from Equation (21)∫ 1

0

∑
x0,x1

L∑
i=1

∑
xt

∑
xi ̸=xi

t

k̇t
1− kt

(
δxi

1
(xi)− δxi

t
(xi)

)
s(xi, xi

t)p(xt|x0, x1)p(x0, x1)dt = (23)

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t

∑
xi ̸=xi

t

k̇t
1− kt

(
δxi

1
(xi)− δxi

t
(xi)

)
s(xi, xi

t)p
i(xi

t|x0, x1)p(x0, x1)dt = (24)

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

k̇t
1− kt

(
δxi

1
(xi)− δxi

t
(xi)

)
s(xi, xi

t)p
i(xi

t|x0, x1)p(x0, x1)dt = (25)

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

k̇t
1− kt

δxi
1
(xi)s(xi, xi

t)p
i(xi

t|x0, x1)p(x0, x1)dt = (26)

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇t
1− kt

s(xi, xi
t)p

i(xi
t|x0, x1)p(x0, x1)dt (27)

where again due to the choice of Equation (4)∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇t
1− kt

s(xi, xi
t)
(
(1− kt)δxi

0
(xi

t) + ktδxi
1
(xi

t)
)
p(x0, x1)dt = (28)
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∫ 1

0

∑
x0,x1

L∑
i=1


∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇t
1− kt

(1− kt)δxi
0
(xi

t) +
∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇t
1− kt

ktδxi
1
(xi

t)

 s(xi, xi
t)p(x0, x1)dt =

(29)

∫ 1

0

∑
x0,x1

L∑
i=1


∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇tδxi
0
(xi

t) + 0

 s(xi, xi
t)p(x0, x1)dt (30)

where the second expression is zero since in the sum one must have xi
t ̸= xi and xi = xi

1, therefore
xi
t ̸= xi

1 which sets δxi
1
(xi

t) to 0. Hence we only have∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

k̇tδxi
0
(xi

t)s(x
i, xi

t)p(x0, x1)dt =

∫ 1

0

∑
x0,x1

L∑
i=1

∑
xi
t,x

i

xi
t ̸=xi

xi=xi
1

xi
t=xi

0

s(xi, xi
t)k̇tp(x0, x1)dt

(31)
Expression ∑

xi
t,x

i

xi
t ̸=xi

xi=xi
1

xi
t=xi

0

s(xi, xi
t) (32)

is clearly s(xi
1, x

i
0) when xi

0 ̸= xi
1 and zero otherwise. Thus, we have∫ 1

0

∑
xt

p(xt)

 L∑
i=1

∑
xi ̸=xi

t

s(xi, xi
t)u

i
t(x

i, xt)

 dt =

∫ 1

0

∑
x0,x1

L∑
i=1

s(xi
1, x

i
0)k̇tp(x0, x1)dt = (33)

∑
x0,x1

L∑
i=1

s(xi
1, x

i
0)(k1 − k0)p(x0, x1) =

∑
x0,x1

L∑
i=1

s(xi
1, x

i
0)(1− 0)p(x0, x1) (34)

We conclude that∫ 1

0

∑
xt

p(xt)

 L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt)s(x
i, xi

t)

 dt =
∑
x0,x1

c(x0, x1)p(x0, x1), (35)

where c(x0, x1) =
∑L

i=1 s(x
i
1, x

i
0).

Proof of Theorem 4.1:

We begin by defining two discrete time Markov chains p̂t and q̂t whose timestep sizes are ϵ and the
total number of steps is K = ⌊1ϵ ⌋, such that when ϵ → 0, their marginal distributions converge to
those of the flows p̄t and q̄t. The KL divergence between the paths of such Markov chains can be
written as below:

DKL(q̂, p̂) =
∑
x0:Kϵ

q̂(x0:Kϵ) log
q̂(x0:Kϵ)

p̂(x0:Kϵ)
=
∑
x0:Kϵ

q̂(x0:Kϵ) log

K∏
k=1

q̂(xkϵ|x(k−1)ϵ, ..., x0)

p̂(xkϵ|x(k−1)ϵ, ..., x0)

q̂(x0)

p̂(x0)

(36)
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=
∑
x0:Kϵ

q̂(x0:Kϵ)

(
K∑

k=1

log
q̂(xkϵ|x(k−1)ϵ)

p̂(xkϵ|x(k−1)ϵ)
+ log

q̂(x0)

p̂(x0)

)
(37)

=

K∑
k=1

∑
xkϵ

x(k−1)ϵ

q̂(xkϵ, x(k−1)ϵ) log
q̂(xkϵ|x(k−1)ϵ)

p̂(xkϵ|x(k−1)ϵ)
+
∑
x0

q̂(x0) log
q̂(x0)

p̂(x0)
(38)

=

K∑
k=1

∑
x(k−1)ϵ

q̂(x(k−1)ϵ)
∑
xkϵ

q̂(xkϵ|x(k−1)ϵ) log
q̂(xkϵ|x(k−1)ϵ)

p̂(xkϵ|x(k−1)ϵ)
+
∑
x0

q̂(x0) log
q̂(x0)

p̂(x0)
(39)

= I +DKL(q̂(x0)∥p̂(x0)), (40)

where

I =

K∑
k=1

∑
x(k−1)ϵ

q̂(x(k−1)ϵ)
∑
xkϵ

q̂(xkϵ|x(k−1)ϵ) log
q̂(xkϵ|x(k−1)ϵ)

p̂(xkϵ|x(k−1)ϵ)
(41)

is a weighted sum of KL divergences with non-negative weights, that is

I =

K∑
k=1

∑
x(k−1)ϵ

q̂(x(k−1)ϵ)DKL(q̂(xkϵ|x(k−1)ϵ)∥p̂(xkϵ|x(k−1)ϵ)). (42)

First we will simplify notation and write tk = (k − 1)ϵ, as well as q̂(xkϵ = x|x(k−1)ϵ = z) =
q̂tk+ϵ|tk(x|z), where z and x are states. Therefore the previous Expression (41) becomes

I =

K∑
k=1

∑
z

q̂tk(z)
∑
x

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

. (43)

Now, we focus on computing expression DKL(q̂tk+ϵ|tk(x|z)∥p̂tk+ϵ|tk(x|z)). The sum∑
x

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

. (44)

can be separated into three sums:∑
x

dH(x,z)=0

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

+
∑
x

dH(x,z)=1

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

(45)

+
∑
x

dH(x,z)>1

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

(46)

We first analyze the second sum. Since x and z differ at exactly one neighbor (say position j), from
the flow matching update rule pitk+ϵ|tk(y

i|z) = δzi(yi) + ϵui
tk
(yi, z) applied independently to each

position, we can infer that

ptk+ϵ|tk(x|z) = ϵuj
tk
(xj , z)

L∏
i=1
i̸=j

(
1 + ui

tk
(xi, z)ϵ

)
= ϵuj

tk
(xj , z) +O(ϵ2) (47)

therefore ∑
x

dH(x,z)=1

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

(48)

=

L∑
j=1

∑
xj ̸=zj

ϵwj
tk
(xj , z) log

wj
tk
(xj , z) +O(ϵ)

vjtk(x
j , z) +O(ϵ)

+O(ϵ2). (49)
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For the third sum, since

ptk+ϵ|tk(x|z) = ϵ2uj
tk
(xj , z)ul

tk
(xj , z)

L∏
i=1
i̸=j,l

(
1 + ui

tk
(xi, z)ϵ

)
= O(ϵ2) +O(ϵ3) = O(ϵ2) (50)

we conclude that ∑
x

dH(x,z)>1

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

= O(ϵ2). (51)

Therefore the only sum left is the first one∑
x

dH(x,z)=0

q̂tk+ϵ|tk(x|z) log
q̂tk+ϵ|tk(x|z)
p̂tk+ϵ|tk(x|z)

= q̂tk+ϵ|tk(z|z) log
q̂tk+ϵ|tk(z|z)
p̂tk+ϵ|tk(z|z)

. (52)

In this special case (x = z),

ptk+ϵ|tk(z|z) =
L∏

i=1

(
1 + ui

tk
(zi, z)ϵ

)
= 1 + ϵ

L∑
i=1

ui
tk
(zi, z) +O(ϵ2), (53)

thus

q̂tk+ϵ|tk(z, z) = 1 + ϵ

L∑
i=1

wi
tk
(zi, z) +O(ϵ2), (54)

log q̂tk+ϵ|tk(z, z) = ϵ

L∑
i=1

wi
tk
(zi, z) +O(ϵ2), (55)

log p̂tk+ϵ|tk(z, z) = ϵ

L∑
i=1

vitk(z
i, z) +O(ϵ2), (56)

implying

q̂tk+ϵ|tk(z|z) log
q̂tk+ϵ|tk(z|z)
p̂tk+ϵ|tk(z|z)

= q̂tk+ϵ|tk(z|z)
(
log q̂tk+ϵ|tk(z|z)− log p̂tk+ϵ|tk(z|z)

)
(57)

= ϵ

L∑
i=1

wi
tk
(zi, z)− ϵ

L∑
i=1

vitk(z
i, z) +O(ϵ2). (58)

When accounting for the fact that ui
tk
(zi, z) = −

∑
xi ̸=zi ui

tk
(xi, z), we finally have

q̂tk+ϵ|tk(z|z) log
q̂tk+ϵ|tk(z|z)
p̂tk+ϵ|tk(z|z)

= ϵ

L∑
i=1

∑
xi ̸=zi

(
vitk(x

i, z)− wi
tk
(xi, z)

)
+O(ϵ2). (59)

We get the expression for DKL(q̂tk+ϵ|tk(x|z)∥p̂tk+ϵ|tk(x|z))) by adding all three sums,

ϵ

L∑
i=1

∑
xi ̸=zi

(
wi

tk
(xi, z) log

wi
tk
(xi, z) +O(ϵ)

vitk(x
i, z) +O(ϵ)

+ vitk(x
i, z)− wi

tk
(xi, z)

)
+O(ϵ2). (60)

Plugging this last expression in I , one gets

I =

K−1∑
k=0

ϵ
∑
z

q̂tk(z)

L∑
i=1

∑
xi ̸=zi

(
wi

tk
(xi, z) log

wi
tk
(xi, z) +O(ϵ)

vitk(x
i, z) +O(ϵ)

+ vitk(x
i, z)− wi

tk
(xi, z)

)
+O(ϵ).

(61)
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Finally taking the limit ϵ→ 0∫ 1

0

∑
z

q̄t(z)

L∑
i=1

∑
xi ̸=zi

(
wi

t(x
i, z) log

wi
t(x

i, z)

vit(x
i, z)

+ vit(x
i, z)− wi

t(x
i, z)

)
dt. (62)

Based on the last formula, and by replacing z with xt, we can write,

DKL(q̄, p̄) = DKL(q̄0∥p̄0)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt+ . (63)

Applying this result when considering flow paths p̄ and q̄ to have been generated in the opposite
direction by the reverse probability velocities ṽit(x

i, xt) and w̃i
t(x

i, xt),

DKL(q̄, p̄) = DKL(q̄1∥p̄1)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)− w̃i

t(x
i, xt)

)
dt (64)

Finally, by combining Equations (63) and (64),∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)− w̃i

t(x
i, xt)

)
dt+DKL(q̄1∥p̄1) =

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt+DKL(q̄0∥p̄0)

(65)
therefore,

DKL(q̄1∥p̄1) =
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt

−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)− w̃i

t(x
i, xt)

)
dt+DKL(q̄0∥p̄0).

(66)

Proposition A.1. For two discrete flows p̄t and q̄t with corresponding probability velocities vt(xi, xt)
and wt(x

i, xt), the following equality holds

DKL(q̄1∥p̄1) = DKL(q̄0∥p̄0)+∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt−

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw

i
t(x

i
t, x) log

rq̄tw
i
t(x

i
t, x)

rp̄t
vit(x

i
t, x)

+ rp̄t
vit(x

i
t, x)− rq̄tw

i
t(x

i
t, x)

)
dt, (67)

where rp̄t
= rp̄t

(x, xt) =
p̄t(x)
p̄t(xt)

, rq̄t = rq̄t(x, xt) =
q̄t(x)
q̄t(xt)

, and where x is a state identical to the
current position xt, except for position (dimension) i.

Proof of Proposition A.1: Similarly to the proof of Theorem 4.1 above, one can write

DKL(q̃, p̃) = J +DKL(q̃1∥p̃1), (68)

where

J =

K∑
k=1

∑
z

q̃τk(z)
∑
x

q̃τk+1|τk(x|z) log
q̃τk+1|τk(x|z)
p̃τk+1|τk(x|z)

, (69)
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for τk = 1− (k − 1)ϵ = 1− tk. As before, we can break this expression into three sums and then
focus on the ones that concern states x, z that do not differ on more than one dimension. In case that
x and z differ in exactly one dimension (j) then as previously we have

pτk+1|τk(x|z) =
pτk+1

(x)

pτk(z)
pτk|τk+1

(z|x) = p1−tk−ϵ(x)

p1−tk(z)
p1−tk|1−tk−ϵ(z|x)

= ϵ
p1−tk−ϵ(x)

p1−tk(z)
uj
1−tk−ϵ(z

j , x)

L∏
i=1
i̸=j

(
1 + ui

1−tk−ϵ(z
i, x)ϵ

)
= ϵ

p1−tk−ϵ(x)

p1−tk(z)
uj
1−tk−ϵ(z

j , x) +O(ϵ2).

(70)
Similarly as before, we can develop the expression for the case when the Hamming distance between
x and z is 0. By combining these cases as in the previous theorem and taking ϵ→ 0, we derive an
expression for J :

DKL(q̄, p̄) =∫ 1

0

∑
z

q̄1−t(z)

L∑
i=1

∑
xi ̸=zi

(
rq̄1−t

wi
1−t(z

i, x) log
rq̄1−tw

i
1−t(z

i, x)

rp̄1−t
vi1−t(z

i, x)

+rp̄1−t
vi1−t(z

i, x)− rq̄1−t
wi

1−t(z
i, x)

)
dt

+DKL(q̄1, p̄1). (71)
We conclude the proof by setting τ = 1− t,

DKL(q̄, p̄) = DKL(q̄1, p̄1)

+

∫ 1

0

∑
z

q̄τ (z)

L∑
i=1

∑
xi ̸=zi

(
rq̄τw

i
τ (z

i, x) log
rq̄τw

i
τ (z

i, x)

rp̄τ
viτ (z

i, x)
+ rp̄τ

viτ (z
i, x)− rq̄τw

i
τ (z

i, x)

)
dτ

(72)
followed by z = xτ , where rp̄τ

= rp̄τ
(x, z) = p̄τ (x)

p̄τ (z)
and rq̄τ = rq̄τ (x, z) =

q̄τ (x)
q̄τ (z)

.

Proof of Theorem 4.2:

We now set to prove that DKL(q̄(x1)∥p̄(x1)) ≤ DKL(q̄, p̄). Since in Equation (66), the term∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)− w̃i

t(x
i, xt)

)
dt (73)

is a positively weighted sum of KL divergences this immediately implies that

DKL(q̄1∥p̄1) ≤ DKL(q̄0∥p̄0)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt (74)

We can also show this result to be an immediate consequence of the Jensen inequality. Indeed,

−DKL(q̂∥p̂) =
∑
x0:Kϵ

q̂(x0:Kϵ) log
p̂(x0:Kϵ)

q̂(x0:Kϵ)
=
∑
x0:Kϵ

q̂(x0)q̂(xϵ:Kϵ|x0) log
p̂(x0:Kϵ)

q̂(x0:Kϵ)
(75)

=
∑
x0

q̂(x0)
∑
xϵ:Kϵ

q̂(xϵ:Kϵ|x0) log
p̂(x0:Kϵ)

q̂(x0:Kϵ)
≤
∑
x0

q̂(x0) log
∑
xϵ:Kϵ

q̂(xϵ:Kϵ|x0)
p̂(x0:Kϵ)

q̂(x0:Kϵ)
(76)

∑
x0

q̂(x0) log
∑
xϵ:Kϵ

p̂(x0:Kϵ)

q̂(x0)
= −DKL(q̂(x0)∥p̂(x0)) (77)

Therefore, DKL(q̂0∥p̂0) ≤ DKL(q̂∥p̂), and taking the limit ϵ → 0 we get DKL(q̄0∥p̄0) ≤
DKL(q̄∥p̄). Applying this result to the reverse processes that generate the marginals p̄ and q̄ gives
DKL(q̄1∥p̄1) ≤ DKL(q̄, p̄).
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In total we have proved that
DKL(q̄1∥p̄1) ≤ DKL(q̄0∥p̄0)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
i, xt)− wi

t(x
i, xt)

)
dt (78)

Proof of Proposition 4.3:

First we define
δx(y

−i) =
∏

j∈{1,2,...,i−1,i+1,...L}

δxj (yj). (79)

From the definition of entropy,

∂H(q̄t)

∂t
= − ∂

∂t

∑
xt

q̄t(xt) log q̄t(xt) = −
∑
xt

∂q̄t(xt)

∂t
(log q̄t(xt) + 1) (80)

=
∑
xt

∂q̄t(xt)

∂t

(
log

q̄t(x)

q̄t(xt)
− 1

)
−
∑
xt

∂q̄t(xt)

∂t
log q̄t(x). (81)

We prove the last term
∑

xt

∂q̄t(xt)
∂t log q̄t(x)dxt is 0. From the Continuity Equation (Gat et al.,

2024),
∂q̄t(xt)

∂t
=
∑
x

q̄t(x)

L∑
i=1

δx(x
−i
t )wi

t(x
i
t, x), (82)

we get that ∑
xt

∂q̄t(xt)

∂t
log q̄t(x) =

∑
x

q̄t(x)

L∑
i=1

∑
xt

(
δx(x

−i
t )wi

t(x
i
t, x)

)
log q̄t(x) =

∑
x

q̄t(x)

L∑
i=1

0 log q̄t(x) = 0. (83)

This implies that

∂H(q̄t)

∂t
=
∑
xt

∂q̄t(xt)

∂t

(
log

q̄t(x)

q̄t(xt)
− 1

)
=
∑
xt

∑
x

q̄t(x)

L∑
i=1

δx(x
−i
t )wi

t(x
i
t, x)

(
log

q̄t(x)

q̄t(xt)
− 1

)
(84)

=
∑
xt

q̄t(xt)

L∑
i=1

∑
xi

wi
t(x

i
t, x)

q̄t(x)

q̄t(xt)

(
log

q̄t(x)

q̄t(xt)
− 1

)
. (85)

Integrating from time 0 to 1 on both sides, we get

H(q̄1) = H(q̄0) +

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi

wi
t(x

i
t, x)

q̄t(x)

q̄t(xt)

(
log

q̄t(x)

q̄t(xt)
− 1

)
dt. (86)

Proof of Proposition 4.4:

Using the same strategy as in Proposition A.1, we can rewrite the inequality in Theorem 4.2, as

DKL(q̄1∥p̄1) ≤ DKL(q̄0∥p̄0)+ (87)∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log

rq̄tw̃
i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)− rq̄tw̃

i
t(x

i
t, x)

)
dt. (88)

where rq̄t = rq̄t(x, xt) =
q̄t(x)
q̄t(xt)

. Expression∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log

rq̄tw̃
i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)− rq̄tw̃

i
t(x

i
t, x)

)
dt (89)
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can be rewritten as∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log rq̄t − rq̄tw̃

i
t(x

i
t, x)

)
dt (90)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt (91)

and therefore as∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi

(
rq̄tw̃

i
t(x

i
t, x) log rq̄t − rq̄tw̃

i
t(x

i
t, x)

)
dt+

∫ 1

0

∑
xt

L∑
i=1

q̄t(xt)w̃
i
t(x

i
t, xt)dt

(92)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt. (93)

Therefore, the initial Inequality (88), can be rewritten as

H(q̄1, p̄1)−H(q̄1) ≤ (94)∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi

(
rq̄tw̃

i
t(x

i
t, x) log rq̄t − rq̄tw̃

i
t(x

i
t, x)

)
dt+

∫ 1

0

∑
xt

L∑
i=1

q̄t(xt)w̃
i
t(x

i
t, xt)dt

(95)

+

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw̃

i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt+DKL(q̄0∥p̄0). (96)

and since w̃i
t(x

i
t, x) denotes the reverse probability velocity, then

H(q̄0) = H(q̄1) +

∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi

(
rq̄tw̃

i
t(x

i
t, x) log rq̄t − rq̄tw̃

i
t(x

i
t, x)

)
dt, (97)

and therefore we can calculate the cross entropy as follows

H(q̄1, p̄1) ≤ H(q̄0)−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt)dt+DKL(q̄0∥p̄0) +
∫ 1

0

∑
x0,x1

π(x0, x1)

(98)∑
xt

q̄t(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

(
q̄t(x|x0, x1)

q̄t(xt|x0, x1)
w̃i

t(x
i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt. (99)

A.2 FIRST UPPER BOUND DERIVATION DETAILS

From
− log pt(x1; θ) ≤∫ 1

0

∑
xt

pt|1(xt|x1)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

ui
t(x

i, xt; θ)
+ ui

t(x
i, xt; θ)−wi

t(x
i, xt)

)
dt, (100)

in the case of the special discrete flow matching dynamics from Equation (4), the probabil-
ity velocity for p̄t(x) = pt(x; θ) is given in Equation (5), with the learned velocity being
ui
t(x

i, xt; θ) = k̇t

1−kt

[
p1|t(x

i|xt; θ)− δxt(x
i)
]
. The probability velocity for q̄t(x) = pt|1(x|x1)

can be calculated by first calculating pit|1(x|x1) using pit|1,0(x|x1, x0) in Equation (4), and finding its
probability velocity. However this is not necessary because we notice that for pit|1,0(x

i|x1, x0) = (1−
kt)δxi

0
(xi)+ktδxi

1
(xi) the corresponding probability velocity is ui

t(x
i, xt, |x0, x1) =

k̇t

1−kt
[δxi

1
(xi)−
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δxi
t
(xi)] which does not depend on x0, thus wi

t(x
i, xt) = ui

t(x
i, xt, |x1) = ui

t(x
i, xt, |x0, x1) =

k̇t

1−kt
[δxi

1
(xi)− δxi

t
(xi)]. Plugging everything into Expression (13), we get that

− log pt(x1; θ) ≤∫ 1

0

k̇t
1− kt

∑
xt

pt|1(xt|x1)

L∑
i=1

(
−δxi

1 ̸=xi
t
log pi1|t(x

i
1|xt; θ)+1−pi1|t(x

i
t|xt; θ)−δxi

1 ̸=xi
t

)
dt. (101)

Therefore, taking the expectation with respect to p1(x1), we find that

H(p1, p1(θ)) ≤∫ 1

0

k̇t
1− kt

∑
xt,x1

pt,1(xt, x1)

L∑
i=1

(
− δxi

1 ̸=xi
t
log pi1|t(x

i
1|xt; θ) + 1− pi1|t(x

i
t|xt; θ)− δxi

1 ̸=xi
t

)
dt.

(102)
Finally, since the part inside the large brackets is not dependent on x0, we can write

H(p1, p1(θ)) ≤ B =

∫ 1

0

k̇t
1− kt

∑
x1,x0

π(x1, x0)
∑
xt

pt|1,0(xt|x1, x0)

L∑
i=1

(

−δxi
1 ̸=xi

t
log pi1|t(x

i
1|xt; θ) + 1− pi1|t(x

i
t|xt; θ)− δxi

1 ̸=xi
t

)
dt, (103)

hence e
B
L is a computable upper bound of the perplexity in practice, as described in Algorithm 2.

A.3 ALTERNATIVE UPPER BOUND DERIVATION DETAILS

From

H(q̄1, p̄1) ≤ H(q̄0)−
∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt) +DKL(q̄0∥p̄0) +
∫ 1

0

∑
x0,x1

π(x0, x1)

∑
xt

q̄t(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

(
q̄it(x

i|x0, x1)

q̄it(x
i
t|x0, x1)

w̃i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

vit(x
i, xt)

+ vit(x
i, xt)

)
dt (104)

by choosing q̄t(x) to be the flow pt defined in Equation (2) with the coupling distribution π(x0, x1),
and defining p̄t(x) to be the learned approximation of this flow p̄t(θ) we have

H(p1, p1(θ)) ≤ H(p0)−
∫ 1

0

∑
xt

pt(xt)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt)dt+

∫ 1

0

∑
x0,x1

π(x0, x1)

∑
xt

pt(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

(
pit(x

i|x0, x1)

pit(x
i
t|x0, x1)

w̃i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

ui
t(x

i, xt; θ)
+ ui

t(x
i, xt; θ)

)
dt. (105)

which can be interpreted as the discrete flow counterpart of the bound established for discrete diffusion
models in Haxholli et al. (2025).

A.3.1 MASKED SOURCE SPECIAL CASE

As shown in Gat et al. (2024), the backward probability velocity w̃t, can be explicitly computed
in some important special cases. For example, if coupling distribution is independent π(x0, x1) =
p0(x0)q1(x1), and if the source distribution is either the masked distribution, or its dimensions are
i.i.d. p0(x0) =

∏N
i=1 p0(x

i
0). In these cases,

w̃t(x
i, xt) = −

k̇t
kt

[
δxi

t
(xi)− pi0(x

i)
]
. (106)
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For the special masked dynamics corresponding to the backward probability velocity w̃t in Equation
17, we have the following inequality:

H(p1, p1(θ)) ≤ B :=

∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
k̇t

1− kt
(1− pi1|t(x

i
t, xt; θ))

− k̇t
kt
(1− δm(xi

t))− δm(xi
t)

k̇t
1− kt

log (
kt

1− kt
(1− pi1|t(x

i
1, xt; θ))

)
dt. (107)

Indeed, the entropy of the source distribution H(p0) is 0, as all the mass is concentrated in the masked
state. The term ∑

xi ̸=xi
t

w̃i
t(x

i, xt) (108)

on the other hand can be written as ∑
xi ̸=xi

t

k̇t
kt

[
pi0(x

i)− δxi
t
(xi)

]
(109)

and since p0(x
i) = δm(xi) we can discern two cases:

1) xi
t ̸= m implying ∑

xi ̸=xi
t

k̇t
kt

[
δm(xi)− δxi

t
(xi)

]
=

k̇t
kt

(110)

2) xi
t = m implying xi ̸= m and thus∑

xi ̸=xi
t

k̇t
kt

[
δm(xi)− δxi

t
(xi)

]
= 0. (111)

Therefore

−
∫ 1

0

∑
xt

pt(xt)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt)dt = −
∫ 1

0

∑
xt

pt(xt)

L∑
i=1

k̇t
kt
(1− δm(xi

t))dt. (112)

The following two terms remain:∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)
L∑

i=1

∑
xi ̸=xi

t

(
pit(x

i|x0, x1)

pit(x
i
t|x0, x1)

w̃i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

ui
t(x

i, xt; θ)

)
dt

(113)
and ∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt; θ)dt. (114)

The last part of the first one∑
xi ̸=xi

t

(
pit(x

i|x0, x1)

pit(x
i
t|x0, x1)

w̃i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

ui
t(x

i, xt; θ)

)
dt (115)

can be rewritten as follows:∑
xi ̸=xi

t

(1− kt)δxi
0
(xi) + ktδxi

1
(xi)

(1− kt)δxi
0
(xi

t) + ktδxi
1
(xi

t)

k̇t
kt

[
δm(xi

t)− δxi(xi
t)
]
log

k̇t

kt

[
δm(xi

t)− δxi(xi
t)
]

k̇t

1−kt

[
pi1|t(x

i, xt; θ)− δxi
t
(xi)

] .
(116)

As before we can distinguish two cases:
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1) xi
t ̸= m, which combined with xi

0 = m and xi
1 ̸= m gives

∑
xi ̸=xi

t

(1− kt)δxi
0
(xi) + ktδxi

1
(xi)

(1− kt)δxi
0
(xi

t) + ktδxi
1
(xi

t)

k̇t
kt

[
δm(xi

t)− δxi(xi
t)
]
log

k̇t

kt

[
δm(xi

t)− δxi(xi
t)
]

k̇t

1−kt

[
pi1|t(x

i, xt; θ)− δxi
t
(xi)

] =

∑
xi ̸=xi

t

( (1− kt)δxi
0
(xi

t)

ktδxi
1
(xi

t)
+ 1
) k̇t
kt

[0− 0] log
k̇t

kt

[
δm(xi

t)− δxi(xi
t)
]

k̇t

1−kt

[
pi1|t(x

i, xt; θ)− δxi
t
(xi)

] = 0. (117)

2) xi
t = m implying xi ̸= m, which combined with xi

0 = m and xi
1 ̸= m gives

∑
xi ̸=xi

t

(1− kt)δxi
0
(xi) + ktδxi

1
(xi)

(1− kt)δxi
0
(xi

t) + ktδxi
1
(xi

t)

k̇t
kt

[
δm(xi

t)− δxi(xi
t)
]
log

k̇t

kt

[
δm(xi

t)− δxi(xi
t)
]

k̇t

1−kt

[
pi1|t(x

i, xt; θ)− δxi
t
(xi)

] =

∑
xi ̸=xi

t

ktδxi
1
(xi)

1− kt

k̇t
kt

log
k̇t

kt

k̇t

1−kt
p1|t(xi|xt)

=
∑

xi ̸=xi
t

k̇t
1− kt

δxi
1
(xi) log

1− kt
ktpi1|t(x

i, xt; θ)
=

− k̇t
1− kt

log
kt

1− kt
pi1|t(x

i
1, xt; θ). (118)

Combining these two cases, one concludes that∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

(
pit(x

i|x0, x1)

pit(x
i
t|x0, x1)

w̃i
t(x

i
t, x) log

w̃i
t(x

i
t, x)

ui
t(x

i, xt; θ)

)
dt =

−
∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

δm(xi
t)

k̇t
1− kt

log
kt

1− kt
pi1|t(x

i
1, xt; θ). (119)

Finally, we derive the last term∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

∑
xi ̸=xi

t

ui
t(x

i, xt; θ). (120)

As before ∑
xi ̸=xi

t

ui
t(x

i, xt; θ) =
k̇t

1− kt

∑
xi ̸=xi

t

[
pi1|t(x

i, xt; θ)− δxi
t
(xi)

]
k̇t

1− kt

∑
xi ̸=xi

t

pi1|t(x
i, xt; θ) =

k̇t
1− kt

(
1− pi1|t(x

i
t, xt; θ)

)
.

Putting everything together we conclude that

H(p1, p1(θ)) ≤

B =

∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− k̇t

kt
(1− δm(xi

t))− δm(xi
t)

k̇t
1− kt

log
kt

1− kt

+
k̇t

1− kt
(1− pi1|t(x

i
t, xt; θ))− δm(xi

t)
k̇t

1− kt
log pi1|t(x

i
1, xt; θ)dt

)
. (121)

We can go a step further and calculate the expression∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− k̇t

kt
(1− δm(xi

t))− δm(xi
t)

k̇t
1− kt

log
kt

1− kt

)
dt =

=

∫ 1

0

∑
x0,x1

π(x0, x1)

L∑
i=1

∑
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pt(xt|x0, x1)

(
− k̇t

kt
(1− δm(xi

t))− δm(xi
t)

k̇t
1− kt

log
kt

1− kt

)
dt =
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= L

∫ 1

0

(
− k̇t − k̇t log

kt
1− kt

)
dt = −L

∫ 1

0

k̇tdt =

−
∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

k̇t
1− kt

δm(xi
t).

Plugging this into B, we get:

B =

∫ 1

0

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− k̇t

1− kt
δm(xi

t)+

k̇t
1− kt

(1− pi1|t(x
i
t, xt; θ))− δm(xi

t)
k̇t

1− kt
log pi1|t(x

i
1, xt; θ)dt

)
. (122)

In this special dynamic of the masked flow, xi
t = m is equivalent to xi

t ̸= xi, therefore the bound
above matches the first bound:

B =

∫ 1

0

k̇t
1− kt

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− δxi

t ̸=xi+

(1− pi1|t(x
i
t, xt; θ))− δxi

t ̸=xi log pi1|t(x
i
1, xt; θ)dt

)
. (123)

A.4 MD4 SPECIAL CASE

We can define our model p1|t(xi, xt; θ) in the previous subsection to be such that if a given position
has been unmasked we always predict that unmasked token. This implies that p1|t(xi

t, xt; θ) = 1

when xi
t ̸= m. This implies that Equation (122) becomes

B =

∫ 1

0

k̇t
1− kt

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− δm(xi

t)+

δm(xi
t)(1− pi1|t(x

i
t, xt; θ))− δm(xi

t) log p
i
1|t(x

i
1, xt; θ)dt

)
, (124)

that is

B =

∫ 1

0

k̇t
1− kt

∑
x0,x1

π(x0, x1)
∑
xt

pit(xt|x0, x1)

L∑
i=1

(
− δm(xi

t)p
i
1|t(x

i
t, xt; θ)+

−δm(xi
t) log p

i
1|t(x

i
1, xt; θ)dt

)
. (125)

However, we can set the probability of p1|t(m,xt; θ) to zero, as we know that there are no masked
tokens in the data distribution, which implies,

B =

∫ 1

0

k̇t
1− kt

∑
x0,x1

π(x0, x1)
∑
xt

pt(xt|x0, x1)

L∑
i=1

(
− δm(xi

t) log p
i
1|t(x

i
1, xt; θ)dt

)
. (126)

The final bound was originally derived in Shaul et al. (2025) and is simply MD4 from Shi et al.
(2024).

A.5 THE PRECISE PERPLEXITY

Given the equation in Proposition A.1,

DKL(q̄1∥p̄1) = DKL(q̄0∥p̄0)+
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∫ 1

0

∑
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q̄t(xt)

L∑
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∑
xi ̸=xi

t

(
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t(x
i, xt) log

wi
t(x

i, xt)

vit(x
i, xt)

+ vit(x
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t(x
i, xt)

)
dt−

∫ 1
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∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi
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(
rq̄tw

i
t(x

i
t, x) log

rq̄tw
i
t(x

i
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vit(x

i
t, x)

+ rp̄tv
i
t(x

i
t, x)− rq̄tw

i
t(x

i
t, x)

)
dt, (127)

as in the main text, we choose q̄t(x) to have the dynamics of the flow pt, but with the coupling
distribution π̄(x, y) = p0(x)δx1

(y) =
∫
π(x, z)dzδx1

(y). Clearly, we have q̄0(x) = p0(x), q̄1(x) =
δx1

(x) and q̄t(x) = pt|1(x|x1).

We notice that since q̄0(x) = p0(x) and p̄0(x) = p0(x), then DKL(q̄0∥p̄0) = 0. Furthermore
DKL(q̄1(x)∥p̄1(x)) = DKL(δx1

(x)∥p1(x; θ)) = − log p1(x1; θ). Thus for such particular choices
one gets that

− log pt(x1; θ) =∫ 1

0

∑
xt

pt|1(xt|x1)

L∑
i=1

∑
xi ̸=xi

t

(
wi

t(x
i, xt) log

wi
t(x

i, xt)

ui
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i
t, x) log
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+ rpθ
t
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i
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i
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(128)

where rpθ
t
= rpθ

t
(x, xt) =

pθ
t (x)

pθ
t (xt)

, rpt|1 = rpt|1(x, xt) =
pt|1(x|x1)

pt|1(xt|x1)
.

By using the same strategy as in the proof of Proposition 4.4, we get that

− log pt(x1; θ) =∫ 1

0

∑
xt

pt|1(xt|x1)

L∑
i=1

∑
xi ̸=xi

t

(
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i, xt) log
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t(x

i, xt; θ)
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t(x
i, xt; θ)− wi

t(x
i, xt)

)
dt

−H(p0) +

∫ 1

0

∑
xt

pt|1(xt|x1)

L∑
i=1

∑
xi ̸=xi

t

w̃i
t(x

i, xt)dt− (129)

∫ 1
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i
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(130)

Taking the expectation with respect to the data distribution

H(p1, p1(θ)) = −H(p0)+∫ 1

0

∑
x0,x1

π(x0, x1)pt|1,0(xt|x1, x0)

L∑
i=1

∑
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)
(131)

−

(
pit|1(x

i|x1, x0)

pit|1(x
i
t|x1, x0)
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t(x

i
t, x) log
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t(x

i
t, x)

rpθ
t
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t(x

i, xt; θ)
+ rpθ

t
ui
t(x

i, xt; θ)

)]
dt. (132)

The only terms above that we do not have an explicit form of are the learned-probability ratios
between neighbor states. These are the terms missing if we tried to directly calculate the loglikelihood
at a point using the continuity equation,

∂ log pθt (x1)

∂t
=

1

pθt (x1)

∂pθt (x1)

∂t
=
∑
x

pθt (x)

pθt (x1)

L∑
i=1

δx(x
−i
1 )ui

t(x
i
1, x; θ). (133)
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B ALGORITHMS

Algorithm 1 Discrete Flow Matching with OT Minibatches
Input: Set of samples D from π(x0, x1), model pi1|t(x

i|xt; θ)
repeat

1) Sample minibatch Dj from D.
2) π̄(x, y)← OT(Dj), s.t. p(x) =

∑
y∈Dj

π̄(x, y) = 1
|Dj | , q(y) =

∑
x∈Dj

π̄(x, y) = 1
|Dj | .

3) Sample t form U(0, 1).
4) Sample x0, x1 from π̄(x0, x1).
5) Sample xt using Equation (4).
6) Calculate the gradient of the loss L (e.g. Expression (7))
7) Update parameters θ

until Convergence or stopping criterion

Algorithm 2 Computing the perplexity upper bound
Input: samples from π(x0, x1), model pi1|t(x

i|xt; θ)

Initialize an empty array: A = []
repeat

1) Sample t form U(0, 1).
2) Sample x0, x1 from π(x0, x1).
3) Sample xt using Equation (4).

4) Append k̇t

1−kt

∑L
i=1

(
− δxi

1 ̸=xi
t
log pi1|t(x

i
1|xt; θ)+ 1− pi1|t(x

i
t|xt; θ)− δxi

1 ̸=xi
t

)
to arrayA.

until Test set is exhausted
Return exp( average(A)

L )

Algorithm 3 Computing the alternative perplexity bound
Input: samples from π(x0, x1), modeled ui

t(x
i, xt; θ), backward probability velocity w̃t

Initialize an empty array: A = []
repeat

1) Sample t form U(0, 1).
2) Sample x0, x1 from π(x0, x1).
3) Sample xt using Equation (4).

4) Append
∑L

i=1

∑
xi ̸=xi

t

(
ui
t(x

i, xt; θ) − w̃i
t(x

i, xt) +
pi
t(x

i|xi
0,x

i
1)

pi
t(x

i
t|xi

0,x
i
1)
w̃i

t(x
i
t, x) log

w̃i
t(x

i
t,x)

ui
t(x

i,xt;θ)

)
to array A.

until Test set is exhausted
Return exp(H(p0)+average(A)

L )
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C ADDITIONAL EXPERIMENTAL RESULTS

The foundational architecture of the model we use is based on the diffusion transformer paradigm
outlined by Peebles & Xie (2023), which adapts the classic encoder-only transformer structure,
such as that introduced in Vaswani et al. (2017); Devlin et al. (2019), by incorporating time-based
conditioning. This approach introduces slight architectural modifications, notably the use of rotary
positional embeddings as described in Su et al. (2024). Due to the addition of time conditioning, the
model’s parameter count is approximately 5% higher than that of a typical transformer (e.g., GPT-2).
Tokenization and dataset splits are kept consistent with previous work to maintain comparability and
minimize confounding variables.

The architecture comprises 12 transformer layers, each equipped with 12 attention heads and a hidden
dimensionality of 768, matching the configuration commonly referred to as GPT-2. A dedicated
conditioning dimension of 128 is used to capture temporal features essential to the diffusion process.
It utilizes conventional scaled dot-product attention and applies a dropout rate of 0.1 to counter
overfitting.

Regarding the training setup for OWT experiments, each model was trained with sequence lengths of
128 using a single H200 GPU. The vocabulary includes 50,257 tokens, and the training batch size is
fixed at 512. The training schedule encompasses 400,000 steps, and takes 44 hours in the standards
case, which increases to 45 when using OT.

The OpenWebText dataset serves as the primary training corpus with local data storage employed
to reduce latency. In all cases, we use the schedule kt = ϵ + (1 − ϵ)t with parameter ϵ = 0.001,
consistent with settings from Lou et al. (2024). Evaluation samples are generated using 128 or 1024
steps.

Optimization is handled via the AdamW algorithm, set with a learning rate of 3e-4, beta values of
(0.9, 0.999), and an epsilon of 1e-8. No weight decay is used, favoring pure learning rate dynamics.
A warm-up phase of 2,500 steps is included to enhance training stability, and gradient clipping is
applied at a value of 1.

C.1 CHARACTER LEVEL SHAKESPEARE EXPERIMENT

Table 5 presents the results of the experiment described in Section 5.1, with the sole modification that
the training set consists of the original Shakespeare text, without conversion to Morse code.

Table 5: Using minibatch OT reduces the number of jumps by ∼ 5%.
Model (L=128) Jumps Relative Jumps

Normal 113.23± 0.002 1.05
With OT 107.41± 0.002 1

C.2 TRAINING BOUND COMPARISONS

We train flows wherein the source distribution is chosen to be the Dirac delta at the sequence of all
masked tokens. We choose kt = t in all cases. We tried 3 settings:

a) DFM-O uses cross entropy as the optimization objective as in Gat et al. (2024):∫ 1

0

∑
x1,x0

π(x1, x0)
∑

xt
pt|1,0(xt|x1, x0)

∑L
i=1[− log pi1|t(x

i
1|xt; θ)]dt.

b) DFM-S is the flow matching approach which uses the bound in Equation 16 (as simplified in Ap-
pendix A.4):

∫ 1

0
1

1−t

∑
x1,x0

π(x1, x0)
∑

xt
pt|1,0(xt|x1, x0)

∑L
i=1−δm(xi

t) log p
i
1|t(x

i
1|xt; θ)dt.

c) DFM-N is the same as DFM-S but multiplied by (1 − t):∫ 1

0

∑
x1,x0

π(x1, x0)
∑

xt
pt|1,0(xt|x1, x0)

∑L
i=1−δm(xi

t) log p
i
1|t(x

i
1|xt; θ)dt.

The model architecture in all cases is identical in design as the one in Section 5.1, but here we use the
GPT2 tokenizer and to match related work, we train on OWT (Gokaslan & Cohen, 2019) for 400K
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steps with batch size of 512, sequence length of 128. For ‘DFM-S’, our bound becomes the MD4 of
Shi et al. (2024) (see Appendix A.4). The bound is tested on the test sets found in Lou et al. (2024),
more precisely: 1BW, LAMBADA, PTB, Wikitext2 and Wikitext103 (Chelba et al., 2013; Paperno
et al., 2016; Marcus et al., 1993; Merity et al., 2016). In addition, we compare against SEDD of Lou
et al. (2024). The results can be below in Table 6.

Table 6: Perplexity bound results.

Model (L=128) Lambada Wikitext2 PTB Wikitext103 LM1B
SEDD Absorb 67.06 69.39 208.67 69.18 83.86
DFM-O 71.90 71.23 221.62 70.80 82.60
DFM-N 67.50 67.00 204.80 66.65 80.29
DFM-S 66.61 68.48 208.37 68.04 81.46

C.3 SECTION 5.3 PERPLEXITY BOUND RESULTS

In Table 7 and 8, we provide the perplexity bound results on the five test sets for the models described
in Section 5.3.

Table 7: DFM-B perplexity bound results comparing normal training vs OT.

Dataset Lambada Wiki2 PTB Wiki3 LM1B
DFM-B 184.81 211.66 723.15 207.73 230.87
DFM-B-OT 190.21 204.16 654.88 204.22 222.42

Note that bound estimation for OT-trained models is problematic, as minibatch OT defines an implicit
coupling we cannot access. Since sampling from this coupling during the calculation of the bound is
impossible, we approximate it by sampling minibatches and performing OT on them. This heuristic
approach makes the such values only approximations.

Table 8: DFM-MMLM perplexity bound results comparing normal training vs OT.

Dataset Lambada Wiki2 PTB Wiki3 LM1B
DFM-MMLM 68.65 68.38 204.17 68.68 85.09
DFM-MMLM-OT 68.63 69.33 204.06 69.21 83.45

C.4 SECTION 5.3 LLAMA-JUDGED GENERATIVE PERPLEXITY, ENTROPY AND STANDARD
DEVIATIONS

In what follows we present the full generative perplexity results of the experiments described in
Section 5.3. That is, we show show resutls when Llama is used as a judge, the entropy values and
standard deviations. Such resulrs can be found in tables 9, 10 and 11.
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Table 9: Results with and without minibatch OT. GPT-2 Large was used as a judge.

Generation Steps: 8 16 32 64 128 1024
DFM-B 345.94 241.16 211.99 197.48 191.48 185.83
Standard deviation ±1.71 ±1.32 ±1.12 ±1.10 ±1.04 ±1.04
DFM-B-OT 331.88 233.24 203.08 191.17 185.54 178.24
Standard deviation ±1.67 ±1.26 ±1.06 ±1.00 ±1.01 ±0.96
DFM-S 587.80 316.25 222.46 188.62 169.81 156.81
Standard deviation ±3.35 ±1.85 ±1.39 ±1.23 ±1.04 ±0.97
DFM-N 556.73 296.25 210.11 176.34 160.17 147.07
Standard deviation ±3.17 ±1.73 ±1.21 ±1.08 ±1.01 ±0.91
DFM-O 560.67 300.06 208.06 175.59 159.03 146.54
Standard deviation ±3.17 ±1.78 ±1.20 ±1.08 ±1.01 ±0.89
DFM-MMLM 536.50 288.38 204.77 170.61 155.45 143.48
Standard deviation ±2.92 ±1.65 ±1.16 ±1.02 ±0.85 ±0.95
DFM-MMLM-OT 525.83 283.10 199.55 167.86 153.51 141.92
Standard deviation ±2.87 ±2.09 ±1.31 ±1.02 ±0.95 ±0.88

Table 10: Results with and without minibatch OT. LLama 3.1 8B was used as a judge.

Generation Steps: 8 16 32 64 128 1024
DFM-B 394.67 283.71 252.04 235.98 231.61 223.77
Standard deviation ±1.96 ±1.66 ±1.54 ±1.50 ±1.43 ±1.41
DFM-B-OT 380.29 274.68 243.92 230.36 225.36 216.48
Standard deviation ±1.96 ±1.51 ±1.51 ±1.42 ±1.48 ±1.41
DFM-S 681.89 378.98 271.73 231.96 212.22 198.35
Standard deviation ±3.97 ±2.34 ±1.83 ±1.68 ±1.60 ±1.57
DFM-N 645.79 359.97 256.33 218.68 197.46 184.23
Standard deviation ±3.71 ±2.15 ±1.61 ±1.63 ±1.37 ±1.40
DFM-O 652.05 361.53 253.53 217.16 198.60 184.14
Standard deviation ±3.76 ±2.29 ±1.59 ±1.50 ±1.54 ±1.44
DFM-MMLM 621.39 345.53 249.95 210.75 195.65 179.49
Standard deviation ±3.10 ±2.07 ±1.55 ±1.30 ±1.65 ±1.31
DFM-MMLM-OT 620.84 348.39 243.31 210.87 191.42 178.62
Standard deviation ±3.37 ±1.96 ±2.08 ±1.33 ±1.17 ±1.45

Finally we show that entropy remains unchanged, unlike in the case of improper sampling of SEDD,
in which the entropy was shown to drop up to 20% (Zheng et al., 2025).
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Table 11: Entropy results with and without minibatch OT.

Generation Steps: 8 16 32 64 128 1024
DFM-B 6.30 6.27 6.26 6.25 6.25 6.25
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001
DFM-B-OT 6.30 6.27 6.26 6.26 6.25 6.25
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001
DFM-S 6.36 6.32 6.29 6.27 6.26 6.25
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001
DFM-N 6.35 6.31 6.28 6.26 6.25 6.24
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002
DFM-O 6.35 6.32 6.29 6.27 6.25 6.24
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002
DFM-MMLM 6.35 6.31 6.28 6.26 6.25 6.24
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002
DFM-MMLM-OT 6.35 6.31 6.28 6.26 6.25 6.24
Standard deviation ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002

C.5 TIGHTNESS OF BOUNDS

The expressions of the perplexity bounds are derived by initially dropping the term

−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
w̃i

t(x
i, xt) log

w̃i
t(x

i, xt)

ṽit(x
i, xt)

+ ṽit(x
i, xt)− w̃i

t(x
i, xt)

)
dt (134)

from the full expression of the KL divergence between the data and the learned distribution in
Theorem 4.1. This term can be rewritten as

−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw

i
t(x

i
t, x) log

rq̄tw
i
t(x

i
t, x)

rp̄t
vit(x

i
t, x)

+rp̄t
vit(x

i
t, x)−rq̄twi

t(x
i
t, x)

)
dt, (135)

which shows that it depends on the ratios of induced pathwise probabilities under the model, which
are intractable. Unfortunately, this makes this term difficult ot estimate in practice, as computing
these ratios would require summing over all possible trajectories that reach a given state at time t,
which is infeasible due to the uncountably infinite number of such paths.

However, it should be pointed out that when the model learns the flow perfectly, this term becomes
zero. Indeed, if wt matches vt, then the induced probabilities, and therefore the induced ratios match
so rq̄t = rp̄t

implying

−
∫ 1

0

∑
xt

q̄t(xt)

L∑
i=1

∑
xi ̸=xi

t

(
rq̄tw

i
t(x

i
t, x) log 1 + rp̄tv

i
t(x

i
t, x)− rp̄tv

i
t(x

i
t, x)

)
dt = 0. (136)

Therefore, we expect this term to decrease as the model improves and more closely approximates the
target flow. Even though we cannot estimate the tightness of the bound in real settings, we evaluate it
in simplified settings, by conducting the following two analyses.

Our first analysis is empirical. The vocabulary consists of three tokens: M,A,B where M is the
masked state. The sequence length is two, and the ground truth probabilities over each states are:
P (A,A) = 0.15, P (A,B) = 0.5, P (B,A) = 0.05, P (B,B) = 0.3.

We assume our model has learned the following imperfect flow:

p11|t(z
1, (M,M); θ) = [0.9, 0.1], (so: p11|t(A, (M,M); θ) = 0.9 and p11|t(B, (M,M); θ) = 0.1),
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p21|t(z
2, (M,M); θ) = [0.1, 0.9], p21|t(z

2, (A,M); θ) = [0.2, 0.8],

p21|t(z
2, (B,M); θ) = [0.3, 0.7], p11|t(z

1, (M,A); θ) = [0.8, 0.2],

p11|t(z
1, (M,B); θ) =: [0.5, 0.5],

and as in the case of DFM-S and DFM-N, once the flow unmasks a token, it always predicts that same
token in that position, with a probability of 100% . We run a Monte-Carlo simulation to calculate the
probability assigned by this flow to each of the four states (A,A), (A,B), (B,A) and (B,B), which
returns the following values:

P̃ (A,A) = 0.12953, P̃ (A,B) = 0.58568, P̃ (B,A) = 0.02529, P̃ (B,B) = 0.2595

Calculating the cross-entropy between the data and the modelled distribution using the ground truth
probabilities and the probabilities above, we get H(P, P̃ ) = 1.1626. Then we use our bound in
Equation (14) which in this case becomes the MD4 of Shi et al. The value of the bound is 1.2998
(that is, H(P, P̃ ) ≤ 1.2998), which is about 11% higher then the true value.

The difference between the precise NLL (1.90) and the NLL bound (with value 2.02) from Equation
(101) is similar to the differences between the true likelihood and the bound reported in the case of
continuous diffusion Song et al. (2021b, Thms. 1 and 3; Table 2).

The second analysis is theoretical. As before, the vocabulary consists of three tokens: M,A,B where
M is the masked state, and we define a flow that is independent of the current state. The sequence
length, as previously, is selected to be two. We choose a ’learned’ flow such that the probabilities
pi1|t(x

i
t) of jumping to A are a for the first position, and b for the second one. Once a position is

unmasked, it never changes just as in DFM-S and DFM-N.

We write the ground truth distribution over states (A,A), (A,B), (B,A) and (B,B) as
p(A,A), p(A,B), p(B,A) and p(B,B). The true cross entropy is clearly: −(p(A,A) log ab +
p(A,B) log a(1− b) + p(B,A) log (1− a)b+ p(B,B) log (1− a)(1− b)).

Regarding the bound, for x1 = (A,A), we get
∫ 1

0
1

1−tp(A,A)[(1 − t)2(− log a − log b) − (1 −
t)t log a−t(1−t) log b]dt =−

∫ 1

0
p(A,A)[(1−t)(log ab)+t log ab]dt = −p(A,A) log ab. Similarly,

when calculating the rest, we get −(p(A,A) log ab+ p(A,B) log a(1− b) + p(B,A) log (1− a)b+
p(B,B) log (1− a)(1− b)) which is the true cross-entropy, i.e., the bound is tight for this setting.
However, this example studies a simple case of a chain whose dynamics are independent of the
current state.

C.6 DYNAMIC AND KANTOROVICH TOTAL COSTS

We generated 3200 samples for each (OT and non-OT), and measured the L2 distance between the
changed embeddings at each time steps across all positions, during generation. That is, if some
positions change at time t during generation, we add the L2 distance between the embeddings of
the changed tokens. We do this for all time points t across all positions, and report the total sum of
changes. Based on our first theorem, we expect OT to reduce this quantity, which it does as seen in
Table 12.

Table 12: Transport costs for models trained with and without OT

Dynamic Kantorovich
No OT 6574.68 6507.24
OT 6328.71 6357.15

Similarly, for both, the model trained with OT and the one without, we calculate the coupling cost
by computing the average of 1200 batches of size 512. This provides the estimated cost of the
Kantorovich formulation. Results are shown in Table 12.
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D INTRODUCTION TO DISCRETE DIFFUSION MODELS

D.1 DISCRETE-TIME MARKOV CHAINS OVER FINITE-STATE SPACES

A stochastic process X1, X2, . . . , XT , where each state Xt depends solely on the preceding Xt−1

is called a discrete-time Markov Chain (DTMC). If the states Xt can take any value from the set
{1, 2, . . . , S}, where S denotes the total number of possible states, and T represents the number of
time steps, then we say that this process is a finite-state space DTMC. The probability that at time t
we are at x is

pt(Xt = x) =

S∑
y=1

p(Xt = x,Xt−1 = y) =

S∑
y=1

pt|t−1(Xt = x|Xt−1 = y)pt−1(Xt−1 = y).

(137)
If we place all such probabilities pt(Xt = x) in a vector st of shape S × 1, such that st(x) =
pt(Xt = x), then from above we can deduce that

st = Pst−1, (138)

where P (x, y) = pt|t−1(Xt = x|Xt−1 = y). Given an initial probability distribution s0 over states,
the equation above fully determines the evolution of the probability over states with respect to time.

D.2 CONTINUOUS-TIME MARKOV CHAINS OVER FINITE-STATE SPACES (DISCRETE
DIFFUSION)

It is possible to define a stochastic process with the Markov property in finite-state spaces, for
t ∈ [0, T ], (Doob, 1953). As previously, we can define a discrete-time process, on time points
{0, ϵ, ..., T − ϵ, T}, such that there is ϵ probability of activating the previous transition mechanism
when progressing from time t − ϵ to t, otherwise we stay where we are with probability (1 − ϵ).
Removing the random variables to simplify notation, we have

pt(x) = (1− ϵ)pt−ϵ(x) + ϵ

S∑
y=1

pt|t−ϵ(x|y)pt−ϵ(y). (139)

We notice that when ϵ = 1 the equation above coincides with Equation (137), and in addition as
before we can write Equation (139) in matrix form

st = (1− ϵ)st−ϵ + ϵPst−ϵ = (I + ϵ(P − I)) st−ϵ = (I + ϵQ) st−ϵ , where Q = P − I. (140)

From Equation (140), we see that st−st−ϵ

ϵ = Qst−ϵ, which when taking the limit ϵ → 0 becomes
dst
dt = Qst. Given an initial probability distribution s0 over states, the equation above fully determines

the evolution (flow) of the probability pt over states with respect to time. Indeed, the distribution
over states at time t is st = etQs0. This formulation can be generalized, such that Q is allowed to
evolve with time,

dst
dt

= Qtst. (141)

For the choice Qt = σ
′
(t)Q, where σ is monotonically increasing, σ(0) = 0 and limt→1 σ(t) = T ,

we have st = eσ(t)Qs0. Matrices Q must satisfy the properties of transition-rate matrices (Suhov &
Kelbert, 2008), that is, they have non-negative non-diagonal entries, and the elements in each column
add to 0. The choice for Q is made such that: s1 is an easy reference distribution to sample from
and the matrix exponential eσ(t)Q is easy to calculate (Austin et al., 2021; Campbell et al., 2022).
Unfortunately, these conditions greatly restrict the design space in this framework.
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E GENERATED SAMPLES

The following are non-cherrypicked text samples generated from GPT-2–sized models trained under
various experimental setups. Outputs may contain hallucinations, inaccuracies, or culturally sensitive
content. They are presented solely to illustrate qualitative differences in generation behavior, such as
coherence, topical relevance, fluency, and do not reflect the views or endorsements of the authors.

Listing 1: Generated text from DFM-O, with sequence length L=128.
Take a good look at running on ice volleyball ball from the sidelines

. Do a party crunch once and get bored from another game away.
Then mess something with a determined and pleasing smoke summon.
Might not change.

It would have happened if I were busy much less myself.

When your fictional boss feels threatened these dark mysteries are no
warning to ignore.

Instead ignore what you’re working for and watch then acteduate what
you’re doing on view, move around the screen and how your boss
detected Kung Fu as around you. They are not throwing a police
officer at your feet. They are just accepting

==================================================================
on Blue Bird" in the Night. Considered a regular occurrence in

contemporary daytime arts circles, as well as the soundtrack to
The Breakfast Club (1979), The Heavens Door, Russian-inspired duo
’s nature, Ooboh (and Zoeppo In Peace), and even a German-wave
song Not To Olmy (1977 album). The highlight of the album’s
Elephant A Ring is the song’s Kiss Of Saint John (December 1950),
in which the island inhabitants embrace a beautiful Viking.

gluk188b - Now the more authentic Azgothic’s complex,
==================================================================
folk culture to the masses. In 1900, Dash organized the New

Draveenjoci Friends Dinah festival, brought together with 50
local folk groups, including canoeclub, and First Father Township
.

I spoke with other Dile Dash guardians listening to the show. She’s
the eighth person to stand near church faces. Getting some of the
staff to volunteer, there were lots of screaming in hopes of
hearing someone who feels the right to join a church member or
perform the go-to edition Untitled. To calm their spirits, winners
brought up the fact that "Polynesicans respect God’s

==================================================================
sessions for a down. Even after that, it’s all over the board as the

V&L must-ens. They’re also sure to add the other survivors:
wildcat goal catchers. -Ben Harper, punter reporter (HL)

But it’s still challenging to be able to gain a reaction, especially
with the tack dropping far further down. Instead of matching up
with position experts, I started to assess how they would perform
and I started to track nightly games against ’80 first-team
coaches.

The fielders had to look past Dumervil, with Gibbs being
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Listing 2: Generated text from DFM-N, with sequence length L=128.
the migrant galeslam in Calais.

The Telegraph reported that Lord Dacre’s Wembley address included an
additional briefing on the complaints.

The EU referendum, on which he was asked to vote, said:

’But I am profoundly disappointed with this piece of inquiry that was
appointed to breach the rules and EU rules and it is unlikely that
his Labour Government will be affected.

’The Government has lost sight of this blatant interference and has
attempted to ignore it.’ -Ojes

To the Daily Mail, Jimmy once commented: ’Scared to say the verid
==================================================================
s commit investment by defer to the SEC.

The Governor raised serious concerns about stopping the proposed
measure by arriving to New York City on the day of the pact’s July
31 deadline - if legal - though it would probably do little to

cut any gains for his state’s most successful investors.

Brown administration officials have ruled out complying with short-
term hedge funds trading rules. That still appears to be only a
possibility as any OIRP deals seem to crash or soon come into
force.<|endoftext|>There is "no chance we either profit from the #
LossLiveup." - the MMQB

==================================================================
good.

30 Cole Springfield 2016

Springfield alone averaged a superb .667 in his junior season with a
6-inch pitcher, 6-foot hoop, a 14-curry well and a close
connection.

As close as any player can have in a baseball academy (the last time
he had a game) is Gavin Bentley. Less former WSU defensive lineman
. But Mayau had his playing style over someone else.

31 James Wood, 1925-2002

As well known Oxford export, the Tigers "There Were None" for his
fellow topronouncement of Juneau, who was the

==================================================================
, and did choke off the second one to show the new media coverage. I’m

just going to do the rest of our work and ask the city of
Montreal to discontinue the multi-year tradition of photography.
That’s my last piece. Here in Montreal, we’re excited to try to
work our cities way our working-class citizens.

The The Tonge Room, Le Grand Le Collective is a celebration of various
global libertarian and anarchist events. Read more on live music

from our first event. Read more about our team. We spoke with the
Chanesque Art Project director about the theme we set out for
Rockavaloon
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Listing 3: Generated text from DFM-S, with sequence length L=128.
motion of a catcher in which the mechanical properties of the cooling

fluid’s electrical discharge are sure to be overcome of depth"
says Benfeldt, half year undergraduate in medical tics, in the
2005 semester, "where we needed to develop a more comprehensive
model of the precipitation of motion and equality of motion
general to animal dimensions, there has been a discussion about
deluge, Form, spin and Motion".[3]

Field motion has played a natural role that mimics parallel movements
in the laying and loading of a field-dependency container, and
therefore change the accepted realism of motion. Intuitively, when
one can demonstrate non

==================================================================
the help of Indian FA Dr. Natalia Sekuni to help NYC full backs

Lilian Balfour and Remis Elijah Mahrez.

Maryab Kardy also had three league games throughout his career with
Toronto FC.

Korian scored 4.5 goals and 2 assists in 24 Bundesliga appearances
last season, first for FC Nordsbank Leiburg and has 10.4 goals, 5
assists in 7 starts this season. He collected a 1-0 assist for
MacLilleux in 1914-19.

Korian scored one goal against FC Seattle minutes into the game and
led the Reds to a 21-

==================================================================
DeVos delivered various policy and campaign announcements for him.

Cuomo later claimed that he had seen "thousands" of potential voters
in the state.

Sanders, who spoke in the city in November, charged whether Trump
would boost the economy, saying, "This is the way I use something
I know because everybody in America has a great choice and both
parties today. He had said that the system worked for some but
that there were a better solutions for the voters."

Trump may present himself as he most likely to have a marquee issue.

Still, Trump did not just hear thunder from his previous candidate
Trump,

==================================================================
in the countryside. Even though the government’s actions were however

far out to be heartening the protesters so deeply, many peasants
who were intending to give the poor the title instead had asked
why they should choose to be a representative citizen and
therefore stand up to defend the peasant family as well as
society. Immediately, after we saw the working class and even the
middle-level intellectuals in one segment, they had little doubt
that the class that raised them was all or part by them of
resisting the situation, showing why working classes can be an
irritable about the bourgeois who participated irresponsible
actions and drove the country up to chaos.
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Listing 4: Generated text from the DFM-B model with BoW source distribution and normal training,
with sequence length L=128.

but it certainly doesn’t exclude modules for employees from sand
Reels resorts," said Ziefen. Those boutique area stores will also
draw the attention out of local rushers and American area
brokers.

"This office doesn’t see it as a part of proving that a profitable
stand-up representative, clean, independent business."<|endoftext
|>Keith Young’s secret of the worms’ DNA may come from the
Cparagon Green while studying the region’s biodiverse flora.
Draggio early cartilaginian creatures, from one of their native
heights to the earth to corn and barley leaves, stirred their

==================================================================
’s program was broken down into monopoly vehicle lending. Wells Fargo

and The New York Times are the largest auto lenders seeking
infinite certainty on loans. And despite the design principles
they must comply with the law Wisconsin auto lenders are requiring
Wells Fargo because no one denies compliance.

Last year, the federal government closed its loan to college and micro
-urch, said the group of governors. Families across the state also
have concerns that while the costs of the loans are "viable,

federal lenders were allowed to prevent borrowers from using
acceptable financing policies because federal loans, including
seeking credit default, are denied."

Even if
==================================================================
and I’m good at learning a few more stuff, I bet that he’s the second

roaster supreme in authority in school that doesn’t do any
arithmetic at all."Christopher Goldstein and Marc Cruz

A friend Jonathan has done quite a little art, and I am sure you’ve
heard of English Roles, Almor and Sacnegramald.

It’s obvious that we have found guilty of a terrible English plot at
this time and so are 22-year-olds. It might be instructive to get
on blowing the sand and doing masters-levels without getting

==================================================================
I call itself a farmland: "hot habitat garden enticiest that our

civic/boxing advantage won’t have to dismantle overnight;

Mayer that life is simply being ecologically ec

Note: That sets me out to it: stupidly conscious beautiful plants
versus stupidly conscious living beings. If we leave Human space
then it will feel much less secure.

And grafts down over solutions down on imperfect.

Which is terrible in my research, & which is why we have a political
ecologic.

A key inner dilemma in thinking of ecological phenomena is aging.
Their vitality involves increasing drastically
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Listing 5: Generated text from the DFM-B-OT model with BoW source distribution and minibatch-OT
training, with sequence length L=128.
fuel festivals should serve as their short-term goals.

Only one of many Charity & Human Advocates have been written in the
past to promote free free markets. They can give invitations and
help repute any who describe the offer and apply their own
informational refinements. The resistance to or even being that
the FairMormon group will have to come to educational causes and
careers and thinkers from not only in Millionaires Web Groups,
educational and family activities. These groups can also donate by
mailing lists to kiosks by Comeback and drive by the same

publisher Samples from that advocacy group by Oxfam. For many
birthday auctions, groups

==================================================================
Queen City Building in Albine, Romania, the United House said.

Agrini’s Airport-blocking congested Charles Avenue area was Baldini’s
first free kick when his 10-yard header gave the Italian side the
league first of the World Cup, and won them two World Championship
and trophies.

The Italian native, aged just 20, won his first World Cup title, West
Club Athletes Player of the Year, and received the Interim Di’Solo
from the Udinese club’s run of P2.5 million, a deal that will be

considered a move in a Napoli bid.

Speaking
==================================================================
in a way.) Excellent, by e-mails me (good) Shihuan - and its reader -

for this question, I have already translated this piece into
fantasy literary thriller. This book is phenomenally interesting
and amusing and is not really even in writing. The explanation is
particularly fascinating to add to the fan community and this
book contains lots of spoilers.

I started writing earnest Vegan Essentials. That book was attached to
the Rules of My Feast! My first reviews were seven years ago and
is still a category ninth. This is due to ongoing vegan activism
and loyalty to other affected readers.

Vegan everyone at the
==================================================================
book entry based on Midnight Symphony. It’s an addictive decision,

and it’s going to become what’s deciding actions it is going to
take to mirror what I said to people to Love Your Experience-a
kind of confluence.

Here’s the first theatrical teaser trailer, high-speed footage from
Rex Arena Theatre with Howard Aller and Marshall Carter at the New
Sound Day Festival this summer.

But with all the scenes in actual driving mode without going in front
of a production vehicle, I think there’s a huge difference where
you’re essentially in cycling mode; I
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Listing 6: Generated text from the DFM-MMLM model with multi-mask source distribution and
normal training, with sequence length L=128.

laws were part of the way to keep everybody related to one type of
plants in their social roles."

Mr. Zhou shushed, saying, "My vocals won’t show up for weeks, but we’
ll be showing civil expressions. We wanted to call for community
involvement."

At 26, Noonan was really pushing for contentious statements.

To prove the point, Tonelli participated in a group meeting in
Hannamkel, Georgia (you won’t find room between sour’’ and
screwhead.k spoke toward all of these dairy farmers). The four
always told each

==================================================================
is through lots of reporting and reerforming ways on the realised

check.

In essence, a simple move gives the developer a rescall of mutable and
push limits for wethers which is typical in code. To start and

alleviate checksums and other exceptions. I find this technique is
especially actually interesting, when times are changing and a

design change for push limits a degree away from mutable and
wethers:

Implementation

The code explicitly gives the right to namespace crash if the dynamic
codebase’s changing anything, and nothing that does change
triggers entryulating. On the other hand, providing

==================================================================
somewhat), and police encryption systems discussed in detail don’t

with this approach have very high level security.

The most significant hole would be close between the fake Syed GED
listing and the bogus public AR-15 in restriction that they were
unaware of NSA activity in the past. Instead, they enlisted
isardars like Shin Intel’s George Singleton TP Program to gain
access to a small subset of unknowns Syed before April 2002.

Borse and spoofing is never wise enough, however. There was a whole
site beside that old swatch and telly when it first was instigated
by the feds. While a

==================================================================

behaviour changes, resulting in a some degree of glacial DNA
diversity in the signaling system. The research results suggest
similar variations in the system evolved, at least since
2004.[48]

and the initial development of military radio networks began. In
January 2008, to fund his experiments, the US founded Jo Kutus, a
micro-channel engineer and orthopedic surgeon near Ulisz, south-
west to decodel dynamic television imagery and dropped it rain.
The total cost would be US$135 million for the I-3 plan and 10%
before TV broke.

Except an ideal early model, most countries
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Listing 7: Generated text from the DFM-MMLM-OT model with multi-mask source distribution and
minibatch-OT training, with sequence length L=128.

" came out earlier this year.

Absent Films begins production in partnership with the Entertainment
Agency Europe (MEGO), the Italian news agency Gazeta and Spain’s
Forza National Investigation Agency (ASIO. It is said to be
producing about 21 films worldwide, titled "Nobody Loves Worries."

Absency Films’ CEO, Michael Agiloh, offers an explanation of why many
of his characters appear on screen -- "In these many shows, each
of us are in the center of our heads, filled with energy to do
that go outside our cells to stimulate, stimulate, and recreate
love

==================================================================
Dudley on the brink of a Joakier contract, the Knicks could be more

optimistic this summer, not on any physical trade for Thomas.

[An MLB free trade period. Here’s what we have here.]

They are also no longer in the trade market for center Raymond Felton,
which was traded to Andrea Bargnani and was busy signing out a

2021 deal. Ono, who has been a productive player on the roster,
would get significant financial relief with a new deal. Thomass
agent signing would mean he leaves an expiring contract after the
NBA season in 2017.

For longer, they

==================================================================
random two Anthrax databases, when marked cases are cleaned up, and

one still has access to records from within the center of a case.

Researchers say they have concocted an elaborate system of polygraphs
that process documentions, original polygraphs, which can then be
used to sort and review on file case in a bid to preserve the
files.

Public Citizen, which organized the document,, learned of the
recording of phone conversations between President George H. W.
Bush of Odessa, Conn., during a February 2005 trip to New York
City.

The FBI is using its investigative techniques to shut down a

==================================================================
Repeat this after under Run as menu and under Advanced. Now we’ve

obtained the empty Zone_X file so application requires synchronous
and Authentication to search for those within Zone. After doing

so, the field name for the Zone_X and the abbreviation the Zone_X
field are activated.

The first and second column or column change Zone’s current property.
Bring it back from the new view to complete the Forms.

Above will show some settings generated in the previous view that was
enabled by bot-originator . Here they appear in a Parameters
screen :

Siren Bot Name Screen Off-screen Name Dimensions
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