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Abstract

We establish new generalisation bounds for multiclass classification by abstracting1

to a more general setting of discretised error types. Extending the PAC-Bayes2

theory, we are hence able to provide fine-grained bounds on performance for multi-3

class classification, as well as applications to other learning problems including4

discretisation of regression losses. Tractable training objectives are derived from5

the bounds. The bounds are uniform over all weightings of the discretised error6

types and thus can be used to bound weightings not foreseen at training, including7

the full confusion matrix in the multiclass classification case.8

1 Introduction9

Generalisation bounds are a core component of the theoretical understanding of machine learning10

algorithms. For over two decades now, the PAC-Bayesian theory has been at the core of studies11

on generalisation abilities of machine learning algorithms. PAC-Bayes originates in the seminal12

work of [24, 25] and was further developed by citepcatoni2003pac,catoni2004statistical,catoni2007,13

among other authors—we refer to the recent surveys [16] and [1] for an introduction to the field. The14

outstanding empirical successes of deep neural networks in the past decade call for better theoretical15

understanding of deep learning, and PAC-Bayes emerged as one of the few frameworks allowing16

the derivation of meaningful (and non-vacuous) generalisation bounds for neural networks: the17

pioneering work of [13] has been followed by a number of contributions, including [28], [35], [19],18

[30, 31] and [4, 6, 5], to name but a few.19

Much of the PAC-Bayes literature focuses on the case of binary classification, or of multiclass20

classification where one only distinguishes whether each classification is correct or incorrect. This is21

in stark contrast to the complexity of contemporary real-world learning problems. This work aims to22

bridge this gap via generalisation bounds that provide information rich measures of performance at test23

time by controlling the probabilities of errors of any finite number of types, bounding combinations24

of these probabilities uniformly over all weightings.25

Previous results. We believe our framework of discretised error types to be novel. In the particular26

case of multiclass classification, little is known from a theoretical perspective and, to the best of our27

knowledge, only a handful of relevant strategies or generalisation bounds can be compared to the28

present paper. The closest is the work of [27] on a PAC-Bayes generalisation bound on the operator29

norm of the confusion matrix, to train a Gibbs classifier. We focus on a different performance metric,30

in the broader setting of discretised error types. [17] suggest to minimise the confusion matrix norm31

with a focus on the imbalance between classes; their treatment is not done through PAC-Bayes. [18]32

extend the celebrated C-bound in PAC-Bayes to weighted majority votes of classifiers, to perform33

multiclass classification. [3] present a streamlined version of some of the results from [27] in the34

case where some examples are voluntarily not classified (e.g., in the case of too large uncertainty).35

More recently, [15] derive bounds for a majority vote classifier where the confusion matrix serves as36

an error indicator: they conduct a study of the Bayes classifier.37
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From binary to multiclass classification. A number of PAC-Bayesian bounds have been unified by a38

single general bound, found in [7]. Stated as Theorem 1 below, it applies to binary classification. We39

use it as a basis to prove our Theorem 3, a more general bound that can be applied to, amongst other40

things, multiclass classification and discretised regression. While the proof of Theorem 3 follows41

similar lines to that given in [7], our generalisation to ‘soft’ hypotheses incurring any finite number of42

error types requires a non-trivial extension of a result found in [22]. This extension (Lemma 5), along43

with its corollary (Corollary 6) may be of independent interest. The generalisation bound in [22],44

stated below as Corollary 2, is shown in [7] to be a corollary of their bound. In a similar manner, we45

derive Corollary 7 from Theorem 3. Obtaining this corollary is significantly more involved than the46

analogous derivation in [7] or the original proof in [22], requiring a number of technical results found47

in Appendix B.48

Briefly, the results in [7] and [22] consider an arbitrary input set X , output set Y = {−1, 1},49

hypothesis space H ⊆ YX and i.i.d. sample S ∈ (X × Y)m. They then establish high probability50

bounds on the discrepancy between the risk (probability of error an a new datapoint) of any stochastic51

classifier Q (namely, a distribution onH) and its empirical counterpart (the fraction of the sample Q52

misclassifies). The bounds hold uniformly over all Q and contain a complexity term involving the53

Kullback-Leibler (KL) divergence between Q and a reference distribution P onH (often referred to54

as a prior by analogy with Bayesian inference—see the discussion in 16).55

There are two ways in which the results in [7] and [22] can be described as binary. First, as Y56

contains two elements, this is obviously an instance of binary classification. But a more interesting57

and subtle way to look at this is that only two cases are distinguished—correct classification and58

incorrect classification. Specifically, since the two different directions in which misclassification can59

be made are counted together, the bound gives no information on which direction is more likely.60

More generally, the aforementioned bounds can be applied in the context of multiclass classification61

provided one maintains the second binary characteristic by only distinguishing correct and incorrect62

classifications rather than considering the entire confusion matrix. However, note that these bounds63

will not give information on the relative likelihood of the different errors. In contrast, our new64

results can consider the entire confusion matrix, bounding how far the true (read “expected over the65

data-generating distribution”) confusion matrix differs from the empirical one, according to some66

metric. In fact, our results extend to the case of arbitrary label set Y , provided the number of different67

errors one distinguishes is finite.68

Formally, we let
⋃M

j=1 Ej be a user-specified disjoint partition of Y2 into a finite number of M69

error types, where we say that a hypothesis h ∈ H makes an error of type j on datapoint (x, y)70

if (h(x), y) ∈ Ej (by convention, every pair (ŷ, y) ∈ Y2 is interpreted as a predicted value ŷ71

followed by a true value y, in that order). It should be stressed that some Ej need not correspond72

to mislabellings—indeed, some of the Ej may distinguish different correct labellings. We then73

count up the number of errors of each type that a hypothesis makes on a sample, and bound how74

far this empirical distribution of errors is from the expected distribution under the data-generating75

distribution (Theorem 3). Thus, in our generalisation, the (scalar) risk and empirical risk (RD(Q) and76

RS(Q), defined in the next section) are replaced by M -dimensional vectors (RD(Q) and RS(Q)),77

and our discrepancy measure d is a divergence between discrete distributions on M elements. Our78

generalisation therefore allows us to bound how far the true distribution of errors can be from the79

observed distribution of errors. If we then associate a loss value ℓj ∈ [0,∞) to each Ej we can derive80

a bound on the total risk, defined as the sum of the true error probabilities weighted by the loss values.81

In fact, the total risk is bounded with high probability uniformly over all such weightings. The loss82

values need not be distinct; we may wish to understand the distribution of error types even across83

error types that incur the same loss.84

For example, in the case of binary classification with Y = {−1, 1}, we can take the usual partition85

into E1 = {(−1,−1), (1, 1)} and E2 = {(−1, 1), (1,−1)} and loss values ℓ1 = 0, ℓ2 = 1, or the86

fine-grained partition Y2 = {(0, 0)} ∪ {(1, 1)} ∪ {(0, 1)} ∪ {(1, 0)} and the loss values ℓ1 = ℓ2 =87

0, ℓ3 = 1, ℓ4 = 2. More generally, for multiclass classification with N classes and Y = [N ], one may88

take the usual coarse partition into E1 = {(ŷ, y) ∈ Y2 : ŷ = y} and E2 = {(ŷ, y) ∈ Y2 : ŷ ̸= y}89

(with ℓ1 = 0 and ℓ2 = 1), or the fully refined partition into Ei,j = {(i, j)} for i, j ∈ [N ] (with90

correspondingly greater choice of the associated loss values), or something in-between. Note that we91

still refer to Ej as an “error type” even if it contains elements that correspond to correct classification,92

namely if there exists y ∈ Y such that (y, y) ∈ Ej . As we will see later, a more fine-grained93
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partition will allow more error types to be distinguished and bounded, at the expense of a looser94

bound. As a final example, for regression with Y = R, we may fix M strictly increasing thresholds95

0 = λ1 < λ2 < · · · < λM and partition Y2 into Ej = {(y1, y2) ∈ Y2 : λj ≤ |y1 − y2| < λj+1} for96

j ∈ [M − 1], and EM = {(y1, y2) ∈ Y2 : |y1 − y2| ≥ λM}.97

Outline. We set our notation in Section 2. In Section 3 we state and prove generalisation bounds in98

the setting of discretised error types: this significantly expands the previously known results from [7]99

by allowing for generic output sets Y . Our main results are Theorem 3 and Corollary 7. To make100

our findings profitable to the broader machine learning community we then discuss how these new101

bounds can be turned into tractable training objectives in Section 4 (with a general recipe described102

in greater detail in Appendix A). The paper closes with perspectives for follow-up work in Section 5103

and we defer to Appendix B the proofs of technical results.104

2 Notation105

For any set A, let M(A) be the set of probability measures on A. For any M ∈ Z>0, define106

[M ] := {1, 2, . . . ,M}, the M -dimensional simplex △M := {u ∈ [0, 1]M : u1 + · · · + uM = 1}107

and its interior△>0
M := △M ∩ (0, 1)M . For m,M ∈ Z>0, define the integer counterparts Sm,M :=108 {

(k1, . . . , kM ) ∈ ZM
≥0 : k1 + · · ·+ kM = m

}
and S>0

m,M := Sm,M ∩ ZM
>0. The set Sm,M is the109

domain of the multinomial distribution with parameters m,M and some r ∈ △M , which is denoted110

Mult(m,M, r) and has probability mass function for k ∈ Sm,M given by111

Mult(k;m,M, r) :=

(
m

k1 k2 · · · kM

) M∏
j=1

r
kj

j , where
(

m

k1 k2 · · · kM

)
:=

m!∏M
j=1 kj !

.

For q,p ∈ △M , let kl(q∥p) denote the KL-divergence of Mult(1,M, q) from Mult(1,M,p), namely112

kl(q∥p) :=
∑M

j=1 qj ln
qj
pj

, with the convention that 0 ln 0
x = 0 for x ≥ 0 and x ln x

0 =∞ for x > 0.113

For M = 2 we abuse notation and abbreviate kl((q, 1− q)∥(p, 1− p)) to kl(q∥p), which is then the114

conventional definition of kl(·∥·) : [0, 1]2 → [0,∞] found in the PAC-Bayes literature [as in 33, for115

example].116

Let X and Y be arbitrary input (e.g., feature) and output (e.g., label) sets respectively. Let
⋃M

j=1 Ej117

be a partition of Y2 into a finite sequence of M error types, and to each Ej associate a loss value118

ℓj ∈ [0,∞). The only restriction we place on the loss values ℓj is that they are not all equal. This is119

not a strong assumption, since if they were all equal then all hypotheses would incur equal loss and120

there would be no learning problem: we are effectively ruling out trivial cases.121

Let H ⊆ YX denote a hypothesis class, D ∈ M(X × Y) a data-generating distribution and122

S ∼ Dm an i.i.d. sample of size m drawn from D. For h ∈ H and j ∈ [M ] we define the123

empirical j-risk and true j-risk of h to be Rj
S(h) :=

1
m

∑
(x,y)∈S 1[(h(x), y) ∈ Ej ] and Rj

D(h) :=124

E(x,y)∼D[1[(h(x), y) ∈ Ej ]], respectively, namely, the proportion of the sample S on which h makes125

an error of type Ej and the probability that h makes an error of type Ej on a new (x, y) ∼ D.126

More generally, suppose H ⊆M(Y)X is a class of soft hypotheses of the form H : X →M(Y),127

where, for any A ⊆ Y , H(x)[A] is interpreted as the probability according to H that the label of128

x is in A. It is worth stressing that a soft hypothesis is still deterministic since a prediction is not129

drawn from the distribution it returns. We then define the empirical j-risk of H to be Rj
S(H) :=130

1
m

∑
(x,y)∈S H(x)

[
{ŷ ∈ Y : (ŷ, y) ∈ Ej}

]
, namely the mean—over the elements (x, y) of S—131

probability mass H assigns to predictions ŷ ∈ Y incurring an error of type Ej when labelling each x.132

Further, we define the true j-risk of H to be Rj
D(H) := E(x,y)∼D

[
H(x)

[
{ŷ ∈ Y : (ŷ, y) ∈ Ej}

]]
,133

namely the mean—over (x, y) ∼ D—probability mass H assigns to predictions ŷ ∈ Y incurring an134

error of type Ej when labelling each x. We will see in Section 4 that the more general hypothesis135

classH ⊆M(Y)X is necessary for constructing a differentiable training objective.136

To each ordinary hypothesis h ∈ YX there corresponds a soft hypothesis H ∈M(Y)X that, for each137

x ∈ X , returns a point mass on h(x). In this case, it is straightforward to show that Rj
S(h) = Rj

S(H)138

and Rj
D(h) = Rj

D(H) for all j ∈ [M ], where we have used the corresponding definitions above for139

ordinary and soft hypotheses. Since, in addition, our results hold identically for both ordinary and140
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soft hypotheses, we henceforth use the same notation h for both ordinary and soft hypotheses and141

their associated values Rj
S(h) and Rj

D(h). It will always be clear from the context whether we are142

dealing with ordinary or soft hypotheses and thus which of the above definitions of the empirical and143

true j-risks is being used.144

We define the empirical risk and true risk of a (ordinary or soft) hypothesis h to be RS(h) :=145

(R1
S(h), . . . , R

M
S (h)) and RD(h) := (R1

D(h), . . . , RM
D (h)), respectively. It is straightforward to146

show that RS(h) and RD(h) are elements of△M . Since S is drawn i.i.d. from D, the expectation147

of the empirical risk is equal to the true risk, namely ES [R
j
S(h)] = Rj

D(h) for all j and thus148

ES [RS(h)] = RD(h). Finally, we generalise to stochastic hypotheses Q ∈ M(H), which predict149

by first drawing a deterministic hypothesis h ∼ Q and then predicting according to h, where a new150

h is drawn for each prediction. Thus, we define the empirical j-risk and true j-risk of Q to be151

the scalars Rj
S(Q) := Eh∼Q[R

j
S(h)] and Rj

D(Q) := Eh∼Q[R
j
D(h)], for j ∈ [M ], and simply the152

empirical risk and true risk of Q to be the elements of △M defined by RS(Q) := Eh∼Q[RS(h)]153

and RD(Q) := Eh∼Q[RD(h)]. As before, since S is i.i.d., we have (using Fubini this time) that154

ES [RS(Q)] = RD(Q). Finally, given a loss vector ℓ ∈ [0,∞)M , we define the total risk of Q by155

the scalar RT
D(Q) :=

∑M
j=1 ℓjR

j
D(Q). As is conventional in the PAC-Bayes literature, we refer to156

sample independent and dependent distributions onM(H) (i.e. stochastic hypotheses) as priors157

(denoted P ) and posteriors (denoted Q) respectively, even if they are not related by Bayes’ theorem.158

3 Inspiration and Main Results159

We first state the existing results in [7] and [22] that we will generalise from just two error types160

(correct and incorrect) to any finite number of error types. These results are stated in terms of161

the scalars RS(Q) := 1
m

∑
(x,y)∈S 1[h(x) ̸= y] and RD(Q) := E(x,y)∼D1[h(x) ̸= y] and, as we162

demonstrate, correspond to the case M = 2 of our generalisations.163

Theorem 1. (7, Theorem 4) Let X be an arbitrary set and Y = {−1, 1}. Let D ∈ M(X × Y)164

be a data-generating distribution and H ⊆ YX be a hypothesis class. For any prior P ∈ M(H),165

δ ∈ (0, 1], convex function d : [0, 1]2 → R, sample size m and β ∈ (0,∞), with probability at least166

1− δ over the random draw S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)167

d
(
RS(Q), RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln

Id(m,β)

δ

]
,

with Id(m,β) := supr∈[0,1]

[∑m
k=0 Bin(k;m, r) exp

(
βd
(

k
m , r

) )]
, where Bin(k;m, r) is the bi-168

nomial probability mass function Bin(k;m, r) :=
(
m
k

)
rk(1− r)m−k.169

Note the original statement in [7] is for a positive integer m′, but the proof trivially generalises to any170

β ∈ (0,∞). One of the bounds that Theorem 1 unifies—which we also generalise—is that of [33],171

later tightened in [22], which we now state. It can be recovered from Theorem 1 by setting β = m172

and d(q, p) = kl(q∥p) := q ln q
p + (1− q) ln 1−q

1−p .173

Corollary 2. (22, Theorem 5) Let X be an arbitrary set and Y = {−1, 1}. Let D ∈ M(X × Y)174

be a data-generating distribution and H ⊆ YX be a hypothesis class. For any prior P ∈ M(H),175

δ ∈ (0, 1] and sample size m, with probability at least 1 − δ over the random draw S ∼ Dm, we176

have that simultaneously for all posteriors Q ∈M(H)177

kl
(
RS(Q), RD(Q)

)
≤ 1

m

[
KL(Q∥P ) + ln

2
√
m

δ

]
.

We wish to bound the deviation of the empirical vector RS(Q) from the unknown vector RD(Q).178

Since in general the stochastic hypothesis Q we learn will depend on the sample S, it is useful179

to obtain bounds on the deviation of RS(Q) from RD(Q) that are uniform over Q, just as in180

Theorem 1 and Corollary 2. In Theorem 1, the deviation d(RS(Q), RD(Q)) between the scalars181

RS(Q), RD(Q) ∈ [0, 1] is measured by some convex function d : [0, 1]2 → R. In our case, the182

deviation d(RS(Q),RD(Q)) between the vectors RS(Q),RD(Q) ∈ △M is measured by some183

convex function d : △2
M → R. In Section 3.2 we will derive Corollary 7 from Theorem 3 by selecting184

β = m and d(q,p) := kl(q∥p), analogous to how Corollary 2 is obtained from Theorem 1.185
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3.1 Statement and proof of the generalised bound186

We now state and prove our generalisation of Theorem 1. The proof follows identical lines to that187

of Theorem 1 given in [7], but with additional non-trivial steps to account for the greater number of188

error types and the possibility of soft hypotheses.189

Theorem 3. Let X and Y be arbitrary sets and
⋃M

j=1 Ej be a disjoint partition of Y2. Let D ∈190

M(X × Y) be a data-generating distribution and H ⊆ M(Y)X be a hypothesis class. For any191

prior P ∈M(H), δ ∈ (0, 1], jointly convex function d : △2
M → R, sample size m and β ∈ (0,∞),192

with probability at least 1− δ over the random draw S ∼ Dm, we have that simultaneously for all193

posteriors Q ∈M(H)194

d
(
RS(Q),RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln

Id(m,β)

δ

]
, (1)

where Id(m,β) := supr∈△M

[∑
k∈Sm,M

Mult(k;m,M, r) exp
(
βd
(
k
m , r

))]
. Further, the bounds195

are unchanged if one restricts to an ordinary hypothesis class, namely ifH ⊆ YX .196

The proof begins on the following page after a discussion and some auxiliary results. One can197

derive multiple bounds from this theorem, all of which then hold simultaneously with probability198

at least 1− δ. For example, one can derive bounds on the individual error probabilities Rj
D(Q) or199

combinations thereof. It is this flexibility that allows Theorem 3 to provide far richer information200

on the performance of the posterior Q on unseen data. For a more in depth discussion of how such201

bounds can be derived, including a recipe for transforming the bound into a differentiable training202

objective, see Section 4 and Appendix A.203

To see that Theorem 3 is a generalisation of Theorem 1, note that we can recover it by setting204

Y = {−1, 1}, M = 2, E1 = {(−y, y) : y ∈ Y} and E2 = {(y, y) : y ∈ Y}. Then, for any205

convex function d : [0, 1]2 → R, apply Theorem 3 with the convex function d′ : △2
M → R206

defined by d′((u1, u2), (v1, v2)) := d(u1, v1) so that Theorem 3 bounds d′
(
RS(Q),RD(Q)

)
=207

d
(
R1

S(Q), R1
D(Q)

)
which equals d(RS(Q), RD(Q)) in the notation of Theorem 1. Further,208 ∑

k∈Sm,2

Mult(k;m, 2, r) exp
(
βd′
(
k
m , r

) )
=

m∑
k=0

Bin(k;m, r1) exp
(
βd
(

k
m , r1

) )
,

so that the supremum over r1 ∈ [0, 1] of the right hand side equals the supremum over r ∈ △2 of the209

left hand side, which, when substituted into (1), yields the bound given in Theorem 1.210

Our proof of Theorem 3 follows the lines of the proof of Theorem 1 in [7], making use of the change211

of measure inequality Lemma 4. However, a complication arises from the use of soft classifiers212

h ∈ M(Y)X . A similar problem is dealt with in [22] when proving Corollary 2 by means of a213

Lemma permitting the replacement of [0, 1]-valued random variables by corresponding {0, 1}-valued214

random variables with the same mean. We use a generalisation of this, stated as Lemma 5 (Lemma215

3 in 22 corresponds to the case M = 2), the proof of which is not insightful for our purposes and216

thus deferred to Appendix B.1. An immediate consequence of Lemma 5 is Corollary 6, which is a217

generalisation of the first half of Theorem 1 in [22]. While we only use it implicitly in the remainder218

of the paper, we state it as it may be of broader interest.219

The consequence of Lemma 5 is that the worst case (in terms of bounding d(RS(Q),RD(Q))) occurs220

when R{(x,y)}(h) is a one-hot vector for all (x, y) ∈ S and h ∈ H, namely whenH ⊆M(Y)X only221

contains hypotheses that, when labelling S, put all their mass on elements ŷ ∈ Y that incur the same222

error type1. In particular, this is the case for hypotheses that put all their mass on a single element of223

Y , equivalent to the simpler caseH ⊆ YX as discussed in Section 2. Thus, Lemma 5 shows that the224

bound given in Theorem 3 cannot be made tighter only by restricting to such hypotheses.225

Lemma 4. (Change of measure, 10, 11) For any set H, any P,Q ∈ M(H) and any measurable226

function ϕ : H → R, E
h∼Q

ϕ(h) ≤ KL(Q∥P ) + ln E
h∼P

exp(ϕ(h)).227

Lemma 5. (Generalisation of Lemma 3 in 22) Let X1, . . . ,Xm be i.i.d△M -valued random vectors228

with mean µ and suppose that f : △m
M → R is convex. If X ′

1, . . . ,X
′
m are i.i.d. Mult(1,M,µ)229

random vectors, then E[f(X1, . . . ,Xm)] ≤ E[f(X ′
1, . . . ,X

′
m)].230

1More precisely, when ∀h ∈ H ∀(x, y) ∈ S ∃j ∈ [M ] such that h(x)[{ŷ ∈ Y : (ŷ, y) ∈ Ej)}] = 1.
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Corollary 6. (Generalisation of Theorem 1 in 22) Let X1, . . . ,Xm be i.i.d △M -valued random231

vectors with mean µ, and X ′
1, . . . ,X

′
m be i.i.d. Mult(1,M,µ). Define X̄ := 1

m

∑m
i=1 Xi and232

X̄ ′ := 1
m

∑m
i=1 X

′
i . Then E[exp(mkl(X̄∥µ)] ≤ E[exp(mkl(X̄ ′∥µ)].233

Proof. (of Corollary 6) This is immediate from Lemma 5 since the average is linear, the kl-divergence234

is convex and the exponential is non-decreasing and convex.235

Proof. (of Theorem 3) The case H ⊆ YX follows directly from the more general case by taking236

H′ := {h′ ∈M(Y)X : ∃h ∈ H such that ∀x ∈ X h′(x) = δh(x)}, where δh(x) ∈M(Y) denotes a237

point mass on h(x). For the general caseH ⊆M(Y)X , using Jensen’s inequality with the convex238

function d(·, ·) and Lemma 4 with ϕ(h) = βd(RS(h),RD(h)), we see that for all Q ∈M(H)239

βd
(
RS(Q),RD(Q)

)
= βd

(
E

h∼Q
RS(h), E

h∼Q
RD(h)

)
≤ E

h∼Q
βd
(
RS(h),RD(h)

)
≤ KL(Q∥P ) + ln

(
E

h∼P
exp

(
βd
(
RS(h),RD(h)

)))
= KL(Q∥P ) + ln(ZP (S)),

where ZP (S) := Eh∼P exp
(
βd(RS(h),RD(h))

)
. Note that ZP (S) is a non-negative random240

variable, so that by Markov’s inequality P
S∼Dm

(
ZP (S) ≤ ES′∼DmZP (S′)

δ

)
≥ 1− δ. Thus, since ln(·)241

is strictly increasing, with probability at least 1− δ over S ∼ Dm, we have that simultaneously for242

all Q ∈M(H)243

βd
(
RS(Q),RD(Q)

)
≤ KL(Q∥P ) + ln

E
S′∼Dm

ZP (S
′)

δ
. (2)

To bound ES′∼DmZP (S
′), let Xi := R{(xi,yi)′}(h) ∈ △M for i ∈ [m], where (xi, yi)

′ is the244

i’th element of the dummy sample S′. Noting that each Xi has mean RD(h), define the random245

vectors X ′
i ∼ Mult(1,M,RD(h)) and Y :=

∑m
i=1 X

′
i ∼ Mult(m,M,RD(h)). Finally let f :246

△m
M → R be defined by f(x1, . . . , xm) := exp

(
βd
(

1
m

∑m
i=1 xi,RD(h)

))
, which is convex since247

the average is linear, d is convex and the exponential is non-decreasing and convex. Then, by248

swapping expectations (which is permitted by Fubini’s theorem since the argument is non-negative)249

and applying Lemma 5, we have that ES′∼DmZP (S
′) can be written as250

ES′∼DmZP (S
′) = E

S′∼Dm
E

h∼P
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

S′∼Dm
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

X1,...,Xm

exp

(
βd

(
1

m

m∑
i=1

Xi,RD(h)

))

≤ E
h∼P

E
X′

1,...,X
′
m

exp

(
βd

(
1

m

m∑
i=1

X ′
i,RD(h)

))

= E
h∼P

E
Y
exp

(
βd

(
1

m
Y ,RD(h)

))
= E

h∼P

∑
k∈Sm,M

Mult
(
k;m,M,RD(h)

)
exp

(
βd
(
k
m ,RD(h)

))

≤ sup
r∈△M

 ∑
k∈Sm,M

Mult
(
k;m,M, r

)
exp

(
βd
(
k
m , r

)) .

Which is the definition of Id(m,β). Inequality (1) then follows by substituting this bound on251

ES′∼DmZP (S
′) into (2) and dividing by β.252
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3.2 Statement and proof of the generalised corollary253

We now apply our generalised theorem with β = m and d(q,p) = kl(q∥p). This results in the254

following corollary, analogous to Corollary 2 (although the multi-dimensionality makes the proof255

much more involved, requiring multiple lemmas and extra arguments to make the main idea go256

through). We give two forms of the bound since, while the second is looser, the first is not practical257

to calculate except when m is very small.258

Corollary 7. Let X and Y be arbitrary sets and
⋃M

j=1 Ej be a disjoint partition of Y2. Let259

D ∈M(X ×Y) be a data-generating distribution andH ⊆M(Y)X be a hypothesis class. For any260

prior P ∈ M(H), δ ∈ (0, 1] and sample size m, with probability at least 1 − δ over the random261

draw S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)262

kl
(
RS(Q)∥RD(Q)

)
≤ 1

m

KL(Q∥P ) + ln

 m!

δmm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj !

 (3)

≤ 1

m

[
KL(Q∥P ) + ln

(
1

δ

√
πe1/(12m)

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)
z/2

Γ
(
M−z

2

))] , (4)

where the second inequality holds provided m ≥ M . Further, the bounds are unchanged if one263

restricts to an ordinary hypothesis class, namely ifH ⊆ YX .264

While analogous corollaries can be obtained from Theorem 3 by other choices of convex function d,265

the kl-divergence leads to convenient cancellations that remove the dependence of Ikl(m,β, r) on266

r, making Ikl(m,β) := supr∈△M
Ikl(m,β, r) simple to evaluate. Note (4) is logarithmic in 1/δ267

(typical of PAC-Bayes bounds) and thus the confidence can be increased very cheaply. Ignoring268

logarithmic terms, (4) isO(1/m), also as expected. As for M , a simple analysis shows that (4) grows269

only sublinearly in M , meaning M can be made quite large provided one has a reasonable amount of270

data. To prove Corollary 7 we require Lemma 8, the proof of which is deferred to Appendix B.2.271

Lemma 8. For integers M ≥ 1 and m ≥M ,
∑

k∈S>0
m,M

1∏M
j=1

√
kj

≤ π
M
2 m

M−2
2

Γ(M
2 )

.272

Proof. (of Corollary 7) Applying Theorem 3 with d(q,p) = kl(q∥p) (defined in Section 2) and273

β = m gives that with probability at least 1 − δ over S ∼ Dm, simultaneously for all pos-274

teriors Q ∈ M(H), kl
(
RS(Q)∥RD(Q)

)
≤ 1

m [KL(Q∥P ) + ln Ikl(m,m)
δ ], where Ikl(m,m) :=275

supr∈△M
[
∑

k∈Sm,M
Mult(k;m,M, r) exp

(
mkl( k

m , r
)
)]. Thus, to establish the first inequality of276

the corollary, it suffices to show that277

Ikl(m,m) ≤ m!

mm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj !
. (5)

To see this, for each fixed r = (r1, . . . , rM ) ∈ △M let Jr = {j ∈ [M ] : rj = 0}. Then278

Mult(k;m,M, r) = 0 for any k ∈ Sm,M such that kj ̸= 0 for some j ∈ Jr. For the other279

k ∈ Sm,M , namely those such that kj = 0 for all j ∈ Jr, the probability term can be written as280

Mult(k;m,M, r) = m!∏M
j=1 kj !

∏M
j=1 r

kj

j = m!∏
j ̸∈Jr

kj !

∏
j ̸∈Jr

r
kj

j , and (recalling the convention that281

0 ln 0
0 = 0) the term exp(mkl( k

m , r)) can be written as282

exp

m

M∑
j=1

kj

m ln
kj

m

rj

 = exp

∑
j ̸∈Jr

kj ln
kj
mrj

 =
∏
j ̸∈Jr

(
kj
mrj

)kj

=
1

mm

∏
j ̸∈Jr

(
kj
rj

)kj

,

where the last equality is obtained by recalling that the kj sum to m. Substituting these two283

expressions into the definition of Ikl(m,m) and only summing over those k ∈ Sm,M with non-zero284

probability, we obtain285 ∑
k∈Sm,M

Mult(k;m,M, r) exp
(
mkl

(
k
m , r

))
=

∑
k∈Sm,M :

∀j∈Jr kj=0

Mult(k;m,M, r) exp
(
mkl

(
k
m , r

))
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=
∑

k∈Sm,M :

∀j∈Jr kj=0

m!∏
j ̸∈Jr

kj !

∏
j ̸∈Jr

r
kj

j

1

mm

∏
j ̸∈Jr

(
kj
rj

)kj

=
m!

mm

∑
k∈Sm,M :

∀j∈Jr kj=0

∏
j ̸∈Jr

k
kj

j

kj !

=
m!

mm

∑
k∈Sm,M :

∀j∈Jr kj=0

M∏
j=1

k
kj

j

kj !
(because 00

0! = 1)

≤ m!

mm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj !
.

Since this is independent of r, it also holds after taking the supremum over r ∈ △M of the left286

hand side. We have thus established (5) and hence (3). Now, defining f :
⋃∞

M=2 Sm,M → R by287

f(k) =
∏|k|

j=1 k
kj

j /kj !, we see that to establish inequality (4) it suffices to show that288

m!

mm

∑
k∈Sm,M

f(k) ≤
√
πe1/12m

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)
z/2

Γ
(
M−z

2

) . (6)

We show this by upper bounding each f(k) individually using Stirling’s formula: ∀n ≥ 1289 √
2πn

(
n
e

)n
< n! <

√
2πn

(
n
e

)n
e

1
12n . Since we cannot use this to upper bound 1/kj ! when290

kj = 0, we partition the sum above according to the number of coordinates of k at which kj = 0. Let291

z index the number of such coordinates. Since f is symmetric under permutations of its arguments,292 ∑
k∈Sm,M

f(k) =

M−1∑
z=0

(
M

z

) ∑
k∈S>0

m,M−z

f(k). (7)

For k ∈ S>0
m,M Stirling’s formula yields f(k) ≤

∏M
j=1

k
kj
j√

2πkj

(
kj
e

)kj
=
∏M

j=1
ekj√
2πkj

=293

em

(2π)M/2

∏M
j=1

1√
kj

. An application of Lemma 8 now gives294

∑
k∈S>0

m,M−z

f(k) ≤ em

(2π)M/2

∑
k∈S>0

m,M−z

M∏
j=1

1√
kj
≤ em

(2π)
M
2

π
M−z

2 m
M−z−2

2

Γ
(
M−z

2

) =
emm

M−2
2

2
M
2 (πm)

z/2
Γ
(
M−z

2

) .
Substituting this into equation (7) and bounding m! using Stirling’s formula, we have295

m!

mm

∑
k∈Sm,M

f(k) ≤
√
2πme1/12m

em

M−1∑
z=0

(
M

z

)
emm

M−2
2

2M/2 (πm)
z/2

Γ
(
M−z

2

)
=
√
πe1/12m

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)
z/2

Γ
(
M−z

2

)
which is (6), establishing (4) and therefore completing the proof.296

4 Implied Bounds and Construction of a Differentiable Training Objective297

As already discussed, a multitude of bounds can be derived from Theorem 3 and Corollary 7, all of298

which then hold simultaneously with high probability. For example, suppose after a use of Corollary299

7 we have a bound of the form kl(RS(Q)||RD(Q)) ≤ B. The following proposition then yields the300

bounds Lj ≤ Rj
D(Q) ≤ Uj , where Lj := inf{p ∈ [0, 1] : kl(Rj

S(Q)∥p) ≤ B} and Uj := sup{p ∈301

[0, 1] : kl(Rj
S(Q)∥p) ≤ B}. Moreover, since in the worst case we have kl(RS(Q)||RD(Q)) = B,302
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the proposition shows that the lower and upper bounds Lj and Uj are the tightest possible, since if303

Rj
D(Q) ̸∈ [Lj , Uj ] then kl(Rj

S(Q)∥Rj
D(Q)) > B implying kl(RS(Q)||RD(Q)) > B. For a more304

precise version of this argument and a proof of Proposition 9, see Appendix B.3.305

Proposition 9. Let q,p ∈ △M . Then kl(qj∥pj) ≤ kl(q∥p) for all j ∈ [M ], with equality when306

pi =
1−pj

1−qj
qi. for all i ̸= j.307

As a second much more interesting example, suppose we can quantify how bad an error of each type308

is by means of a loss vector ℓ ∈ [0,∞)M , where ℓj is the loss we attribute to an error of type Ej . We309

may then be interested in bounding the total risk RT
D(Q) ∈ [0,∞) of Q which, recall, is defined by310

RT
D(Q) :=

∑M
j=1 ℓjR

j
D(Q). Indeed, given a bound of the form kl(RS(Q)||RD(Q)) ≤ B, we can311

derive RT
D(Q) ≤ sup{

∑M
j=1 ℓjrj : r ∈ △M , kl(RS(Q)||r) ≤ B}. This motivates the following312

definition of kl−1
ℓ (u|c). To see that this is indeed well-defined (at least when u ∈ △>0

M ), see the313

discussion at the beginning of Appendix B.4.314

Definition 10. For u ∈ △M , c ∈ [0,∞) and ℓ ∈ [0,∞)M , define kl−1
ℓ (u|c) = sup{

∑M
j=1 ℓjvj :315

v ∈ △M , kl(u∥v) ≤ c}.316

Can we calculate kl−1
ℓ (u|c) and hence fℓ(kl−1

ℓ (u|c)) in order to evaluate the bound on the total risk?317

Additionally, if we wish to use the bound on the total risk as a training objective, can we calculate318

the partial derivatives of f∗
ℓ (u, c) := fℓ(kl−1

ℓ (u|c)) with respect to the uj and c so that we can use319

gradient descent? Our Proposition 11 answers both of these questions in the affirmative, at least in320

the sense that it provides a speedy method for approximating these quantities to arbitrary precision321

provided uj > 0 for all j ∈ [M ] and c > 0. Indeed, the only approximation step required is that of322

approximating the unique root of a continuous and strictly increasing scalar function. Thus, provided323

the uj themselves are differentiable, Corollary 7 combined with Proposition 11 yields a tractable324

and fully differentiable objective that can be used for training. More details on how this can be325

done, including an algorithm written in pseudocode, can be found in Appendix A. While somewhat326

analogous to the technique used in [9] to obtain derivatives of the one-dimensional kl-inverse, our327

proposition directly yields derivatives on the total risk by (implicitly) employing the envelope theorem328

(see for example 34). Since the proof of Proposition 11 is rather long and technical, we defer it to329

Appendix B.4.330

Proposition 11. Fix ℓ ∈ [0,∞)M such that not all ℓj are equal, and define fℓ : △M → [0,∞) by331

fℓ(v) :=
∑M

j=1 ℓjvj . For all ũ = (u, c) ∈ △>0
M ×(0,∞), define v∗(ũ) := kl−1

ℓ (u|c) ∈ △M and let332

µ∗(ũ) ∈ (−∞,−maxj ℓj) be the unique solution to c = ϕℓ(µ), where ϕℓ : (−∞,−maxj ℓj)→ R333

is given by ϕℓ(µ) := ln(−
∑M

j=1
uj

µ+ℓj
) +

∑M
j=1 uj ln(−(µ+ ℓj)), which is continuous and strictly334

increasing. Then v∗(ũ) = kl−1
ℓ (u|c) is given by335

v∗(ũ)j =
λ∗(ũ)uj

µ∗(ũ) + ℓj
for j ∈ [M ], where λ∗(ũ) =

 M∑
j=1

uj

µ∗(ũ) + ℓj

−1

.

Further, defining f∗
ℓ : △>0

M × (0,∞)→ [0,∞) by f∗
ℓ (ũ) := fℓ(v

∗(ũ)), we have that336

∂f∗
ℓ

∂uj
(ũ) = λ∗(ũ)

(
1 + ln

uj

v∗(ũ)j

)
and

∂f∗
ℓ

∂c
(ũ) = −λ∗(ũ).

5 Perspectives337

By abstracting to a general setting of discretised error types, we established a novel type of generalisa-338

tion bound (Theorem 3) providing far richer information than existing PAC-Bayes bounds. Through339

our Corollary 7 and Proposition 11, our bound inspires a training algorithm (see Appendix A) suitable340

for many different learning problems, including structured output prediction [as investigated by 8, in341

the PAC-Bayes setting], multi-task learning and learning-to-learn [see e.g. 23]. We will demonstrate342

these applications and our bound’s utility for real-world learning problems in an empirical follow-up343

study. Note we require i.i.d. data, which in practice is frequently not the case or is hard to verify.344

Further, the number of error types M must be finite. While in continuous scenarios it would be345

preferable to be able to quantify the entire distribution of loss values without having to discretise into346

finitely many error types, in the multiclass setting our framework is entirely suitable.347
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(b) Did you describe the limitations of your work? [Yes] We touch upon limitations in448

Section 5.449
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these algorithms, and eventually benefit the many people impacted by the deployment454

of these methods, ultimately leading to a positive societal impact.455

(d) Have you read the ethics review guidelines and ensured that your paper conforms to456

them? [Yes]457
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(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions459

are present in the statements of the theoretical results.460

(b) Did you include complete proofs of all theoretical results? [Yes] As follows:461

i. Theorem 1 is not proved here as it is due to 7, where it appears as Theorem 4.462

ii. Corollary 2 is not proved here as it is due to 22, where it appears as Theorem 5.463

iii. Theorem 3 is proved in Section 3.1 after the statement of the necessary Lemmas 4464
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