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Abstract

Integrating the understanding and reasoning capabilities of Large Language Models
(LLM) with the self-learning capabilities of Reinforcement Learning (RL) enables
more reliable driving performance under complex driving conditions. There has
been a lot of work exploring LLM-Dominated RL methods in the field of au-
tonomous driving motion planning. These methods, which utilize LLM to directly
generate policies or provide decisive instructions during policy learning of RL
agent, are centrally characterized by an over-reliance on LLM outputs. However,
LLM outputs are susceptible to hallucinations. Evaluations show that state-of-the-
art LLM indicates a non-hallucination rate of only approximately 57.95% when
assessed on essential driving-related tasks. Thus, in these methods, hallucinations
from the LLM can directly jeopardize the performance of driving policies. This
paper argues that maintaining relative independence between the LLM and the RL
is vital for solving the hallucinations problem. Consequently, this paper is devoted
to propose a novel LLM-Hinted RL paradigm. The LLM is used to generate
semantic hints for state augmentation and policy optimization to assist RL agent in
motion planning, while the RL agent counteracts potential erroneous semantic indi-
cations through policy learning to achieve excellent driving performance. Based
on this paradigm, we propose the HCRMP (LLM-Hinted Contextual Reinforce-
ment Learning Motion Planner) architecture, which is designed that includes @
Augmented Semantic Representation Module to extend state space. @ Contextual
Stability Anchor Module enhances the reliability of multi-critic weight hints by
utilizing information from the knowledge base. @ Semantic Cache Module is
employed to seamlessly integrate LLM low-frequency guidance with RL high-
frequency control. Extensive experiments in CARLA validate its strong overall
driving performance. HCRMP achieves a task success rate of up to 80.3% under
diverse driving conditions with different traffic densities. Under safety-critical driv-
ing conditions, HCRMP significantly reduces the collision rate by 11.4%, which
effectively improves the driving performance in complex scenarios.
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1 Introduction

Reinforcement learning (RL) is a method for learning optimal policies by maximizing expected
returns through interactions with the environment. It has proven to be effective for solving complex
decision-making problems and has attracted significant attention in various fields [1} 2 [3]. For
the motion planning task in autonomous driving (AD), the RL agent can dynamically generate
trajectories or control commands that follow the learned driving policy, based on the fused multimodal
traffic features[4, 15, 6]. However, RL has limited understanding and reasoning in complex driving
conditions and often fails to identify critical traffic features[[7}|8], which can result in unreliable driving
actions. In contrast, large language models (LLM) poss strong semantic understanding and common-
sense reasoning abilities[9} |10], and have achieved significant advances in multitasking in recent
years[L1}, 12} [13]]. AD systems require the extensive common sense and high-level decision-making
capabilities, which are exactly what large language models can provide[l14} (15,116, [17,[18]]. Therefore,
integrating LLM and RL within a unified AD system leverages the strengths of both approaches[19].
This integration enhances policy understanding and reasoning during self-learning[20]], leading to
more reliable and safer driving actions in complex driving conditions[21].

Despite the significant potential benefits of integrating LLM and RL for AD, effective integration
remains a critical and unresolved challenge. Current methods primarily use RL agent to assist in
the policy optimization of LLM [22, 23| 24] or employ LLM to directly instruct RL agent policy
generation [25, 126,127,128, 129,130,131, 132]. In the former approach, the LLM outputs directly generate
the driving policy, while in the latter, the LLM strongly provides decisive instructions during the
policy learning process of the RL agent. Because both methods demonstrate strong reliance on the
LLM, we refer to such methods as LLM-Dominated RL Methods.

However, LLM outputs are known to be susceptible to hallucinations [33], 34} [35, 36, 137]], which
can distort decision-making and compromise policy stability. The Gemini-2.5-Pro model, a state-
of-the-art (SOTA) LLM [38], is evaluated on five key dimensions related to two essential driving
capabilities: scenario understanding and action response, as illustrated in Figure[I] (a). The result
shows a non-hallucination rate of only 57.95%, implying that over 40% of its outputs are prone to
hallucinations. Further details are provided in the Appendix A.
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Figure 1: LLM performance evaluation and hallucination impact on LLM-RL methods. Figure
(a) shows the SOTA LLM’s non-hallucination rates across five driving tasks. Figure (b) illustrates
the LLM-Dominated RL methods. LLM hallucinations directly distort the RL agent’s Q-value
estimation and degrade policy efficiency, leading to unfeasible driving actions. Figure (c) presents the
LLM-Hinted RL method. LLM provides semantic hints to the RL agent instead of directly dictating
decisions. The RL agent, through its own policy learning process, effectively buffers the negative
impact of these hallucinations, thereby preventing unfeasible actions.

To clarify how these capabilities interface with RL, LLMs are typically integrated in two primary
modes. In LLM-Instructed RL Policy Generation, the LLM primarily acts as an instructor,
leveraging its scenario understanding capability. It interprets complex traffic environments (e.g.,
Hazard Identification, Road sign comprehension) and translates this high-level understanding into
dynamically shaped reward functions for the RL agent. Conversely, in RL-Assisted LLM Policy
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Optimization, the LLM is the core decision-maker, leveraging its action response capability to
directly generate high-level driving policies (e.g., Longitudinal Driving Decisions or Lateral Driving
Decisions), which the RL agent then assists in optimizing through environmental feedback. In both
modes, the LLM’s output is tightly coupled with the final driving decision. As shown in Figure|[T] (b),
when LLM hallucinations occur, these incorrect signals are directly propagated to the downstream
decision-making process. This distorts the Q-value evaluation and compromises the safety and
stability of the policy. The direct result is a significant degradation in overall driving performance. It
is thus imperative for AD systems combining LLM and RL to mitigate the policy instability caused
by LLM hallucinations.

This paper argues that maintaining relative independence between the LLM and the RL is an essential
way to solve the hallucinations problem. The fundamental reason is that such separation preserves
the RL agent’s autonomy in decision-making and adaptation, while allowing the LLM to provide
semantic hints as auxiliary inputs and intrinsic modulation. Accordingly, We propose an LLM-Hinted
RL motion planning paradigm, as illustrated in Figure[I](c). Even if the LLM outputs are unstable,
the RL agent is able to counteract potential erroneous semantic indications through policy learning,
avoiding the direct generation of unreasonable actions. At the same time, this separated structure
preserves the utilization of LLM strengths in driving conditions comprehension and common-sense
reasoning, enabling context-aware guidance for the RL agent in a way that maintains its fundamental
self-optimization capabilities.

Based on the LLM-Hinted RL paradigm, we develop an architecture called HCRMP (LLM-Hinted
Contextual Reinforcement Learning Motion Planner). The architecture comprises three key com-
ponents: @ the Augmented Semantic Representation Module, which utilizes semantic hints from
the LLLM to extend the state space; @ the Contextual Stability Anchor Module, which leverages
information from the structured knowledge base to improve the reliability of the weight hints that the
LLM generates for each critic network; and ® the Semantic Cache Module, which enables efficient
and stable training through fixed-frequency hierarchical outputs and the historical context cache
matching strategy. The LLM provides state-augmenting and policy-optimizing semantic hints as
auxiliary inputs and intrinsic modulation to the RL agent, rather than directly controlling policy
generation. Meanwhile, the RL agent autonomously executes motion planning, and the LLM and
RL modules collaborate asynchronously at different temporal scales, ensuring training stability. In
addition, extensive experiments in the CARLA simulator validate the effectiveness of our proposed
HCRMP framework, highlighting its superior overall performance, particularly in demanding driving
conditions. HCRMP achieves a task success rate of up to 80.3% across diverse conditions with
varied traffic densities. Critically, in safety-critical driving conditions, HCRMP achieves a significant
11.4%reduction in the collision rate. The contributions of this study can be summarized as follows:

* We classify existing LLM-Dominated RL methods, clarify their strong reliance on LLM outputs,
and highlight the problem that hallucinations from the LLM can degrade driving performance. To
address these challenges, we propose the LLM-Hinted RL paradigm.

* We propose a novel motion planning architecture named HCRMP. By combining the semantic
hints for state augmentation and policy optimization provided by LLM with the self-learning
capabilities of RL, it significantly improves driving performance in diverse driving conditions.

* Extensive experiments in CARLA validate HCRMP’s strong overall driving performance.
HCRMP achieves a task success rate of up to 80.3% under diverse driving conditions and,
critically, reduces the collision rate by 11.4% in safety-critical driving conditions.

2 Related Works

LLM-Dominated RL methods for AD motion planning fall into two main categories: RL-assisted
LLM policy optimization and LLM-instructed RL policy generation. Additional related work is
provided in Appendix B.

2.1 RL-Assisted LLM Policy Optimization

This type of methods typically convert conditions information into linguistic inputs to generate action
instructions or probabilities distributions [39, 40, |41} 142 43| 44]]. RL agent enables the fine-tuning
of LLM parameters using reward signals from the environment, optimizing its policy to maximize



cumulative rewards [45] 46]. Recently, the integrated paradigm of LLM and RL has demonstrated
considerable potential for motion planning in AD. Existing studies primarily use LLM to generate
trajectories or control commands, with RL submodules integrated for action suggestion generation
or policy optimization. HighwayLLM [22] drives an LLM agent using meta-actions output by a
pre-trained RL model, combining the current state and similar trajectories to generate specific actions.
AlphaDrive [23]], in contrast, leverages GRPO-based RL reward function to enhance the driving policy
of its vision-language models (VLM). This enhancement enables the VLM to better adapt to dynamic
driving conditions. While these methods can leverage the LLM strengths in complex scenario
understanding and decision-making, their core risk is that any erroneous instructions generated by
LLM can be directly mapped to unreasonable driving actions, which fundamentally threaten the
driving safety.

2.2 LLM-Instructed RL Policy Generation

For the other type of method, RL agent is used to generate control commands. LLM serves as a
sub-module to support the policy optimization. Specifically, LLM is utilized to provide intrinsic
rewards, which is proven to improve the learning efficiency of RL [47, 48] 49,50, 51]. For AD motion
planning, LearningFlow [28]] and Autoreward [29] utilize a closed-loop framework in which the LLM
automatically generates reward signals to guide RL agent training. Similarly, Clip-RLdrive [30],
LORD [31]}, and REvolve directly rely on the LLM to generate reward values for policy learning.
However, these methods are highly sensitive to the quality of LLM outputs and are therefore quite
susceptible to the adverse effects of hallucinations. In contrast, our proposed method utilizes a weakly
coupled integration of the LLM and RL. This significantly diminishes the system’s vulnerability to
fluctuations in the LLM outputs, preserving the LLM inherent semantic and reasoning advantages
while ensuring RL maintains its fundamental self-optimization capabilities.

4 Augmented Semantic Representation N [ R
n n ((
Multi-Level Hints State Space Actor
s raw
B Road Vehlcle Navn t
.E > y g(at | St)
Ex
ngprzle::::lv &l LLM-Augmented s llm Taa (0t | 5¢)
Global scenario-level  Fine-grained object- Representations t ;‘ ‘_/
Abstraction level Analysis
N 3 Y ) L (e)c].ip
(] o -
LLM ) | Specific Prompts ' Seman‘l‘lc Cache Module Multi
4 s:mulurlfy i+i Q
- Pt et X Wl
Environment -l sal L
v A
. - N |
Contextual Stability Anchor i 4
Driving 0,7 "', b
Task Prompt j Attributes Advantage Function
A (s,a) =
t
. _D:Jf_as_et o \Dafa chunking ~ Embedding . . B "'ﬁm ’E ’ )
| National Standard q P —p ici - ( 9
|aanul Regulations .I.m _]_.*_. . - Q = © E I)‘HAdr (S, a)
| Industry Standards ) KWMS - = " i
[ Top-k omfort . i=1
[ \ )
\_ /NS J

Figure 2: The framework of our proposed HCRMP. LLM acts in the Augmented Semantic Represen-
tation module to fetch information at the scenario level and object level, extending the state space.
Meanwhile, LLM acts in the Contextual Stability Anchor module to generate reliable weights between
multi critics, utilizing the knowledge base to mitigate the output fluctuations. When LLM fails to
provide timely guidance, the Semantic Cache module replaces the missing weights by retrieving the
most similar historical driving conditions. Hints from LLM are ultimately input to the RL agent’s
actor and multi-critic networks for optimal policy learning.



3 Methodology

This section outlines the proposed HCRMP framework. As illustrated in Figure 2] HCRMP comprises
three key components: the Augmented Semantic Representation Module (Section 3.2), the Contextual
Stability Anchor (Section 3.3), and the Semantic Cache Module (Section 3.4).

The Augmented Semantic Representation (ASR) module employs LLM for hierarchical scenario
reasoning, from global abstraction to object-level analysis. The resulting multi-level semantic hints
are encoded into compact vectors and integrated into the RL agent’s state space to enhance driving
condition awareness. The Contextual Stability Anchor (CSA) Module utilizes external knowledge
sources, including traffic regulations and fundamental priors, to generate more reliable semantic
hints. These hints then dynamically influence Q-value evaluation by modulating the impact of various
driving attributes, thereby guiding the RL agent toward more effective decision-making. Furthermore,
the Semantic Cache Module(SCM) addresses the temporal mismatch between the low-frequency
semantic guidance from the LLM and the high-frequency control commands of the RL.

3.1 Problem Formulation

We formulate the AD task as a Markov Decision Process (MDP), represented by the tuple
(S, A, P, R,~). Here, the action space A consists of two continuous control variables: throttle/brake
control commands and steering angle, each constrained within the normalized range [—1, +1]. The
state space S is composed of two components: the raw state characteristics s;*¥ and the LLM-
augmented semantic state characteristics si™. The transition function P(s’ | s,a) defines the
probability distribution over next states, the reward function R provides feedback signals reflecting
the quality of actions, and «y € [0, 1] is a discount factor that trades off between immediate and future
rewards. The agent employs a deep neural network (DNN) policy, denoted by 7y, where 6 represents
the learnable parameters. At each time step ¢, given the current state s; € .S, formed by concatenating
the raw sensory inputs s.,,, and the LLM-enhanced semantic embeddings s},,,, the policy samples
a bounded continuous action a; ~ 7y (- | s¢) from a Beta distribution, ensuring constrained control
commands. Then, the agent executes action a; € A, receives an immediate reward r; € R, and
transitions to the next state s;; according to the probability P. The agent’s objective is to discover an
optimal policy 7* through interaction with the environment that maximizes the expected discounted

cumulative return in Eg|[I]

7 = argmax E
™

thv'(st,at)] )

3.2 Augmented Semantic Representation

The LLM-based ASR module is designed to provide the RL agent with multi-level semantic encodings,
which in turn augments its state space. The LLM performs hierarchical situational reasoning,
transitioning from a global scenario-level abstraction to a fine-grained object-level analysis. Based on
the scenario’s topological configuration and traffic dynamics, the LLM executes semantic parsing
to categorize road situations. Then, this categorized understanding is encoded into a 4-dimensional
scenario-level vector. Concurrently, by analyzing the semantic characteristics of surrounding traffic
participants, the LLM pinpoints critical agents. Following this identification, it quantifies their relative
spatial configurations and maps them to discrete directional categories. These are then encoded as a
9-dimensional object-level vector. To ensure consistent representation, particularly in low-density
traffic conditions, a semantic compensation mechanism can be implemented to preserve integrity.

At each time step ¢, the state space of the agent S; is constructed by combing heterogeneous
feature sets, including raw sensory inputs s*¥ and LLM-enhanced semantic embeddings si™ -
where s = (f1, f2,..., /), and each feature frame f/ = (I}, T}, E],N}) comprises multi-
view RGB image features I, road topology features 77, ego-vehicle dynamics E7, and navigation
path embeddings ;. The RL agent processes incoming multimodal inputs via a lightweight yet
effective visual backbone (ShuffleNetV2 [52]) for spatial encoding and Gated Recurrent Units (GRU)
for temporal semantic modeling. In this pipeline, the semantic representation si™ functions as an
auxiliary information source, serving as semantic guidance to enhance situational awareness.



3.3 Contextual Stability Anchor

To satisfy the demands for adaptive trade-offs among driving attributes (e.g., safety, comfort, effi-
ciency), we design a multi-critic framework based on Proximal Policy Optimization (PPO) [53]]. The
framework decouples the Q-value evaluation of multiple driving attributes and enable independent
representation learning for distinct objectives. By formulating prompts, the LLM performs contextual
analysis of dynamic traffic conditions and dynamically generates a set of adaptive weights {\;};,

where N is the number of attributes, \; € [0, 1], and Zivzl A; = 1, which are then used as part of an
integrated advantage function Ajy estimated via Generalized Advantage Estimation (GAE) in Eq

N
Ain(s,0) =D NAT(s,a) )
i=1

The clipping objective is defined in Eq 3} where the clip(-) function constrains the update range
to stabilize training. ratio;(f) denotes the probability ratio between the current policy 7y and the

previous policy 7y,

Leip(0) = E, [min (ratz’ot(ﬁ)flim, clip(ratio (0),1 —e,1 + E)Aimﬂ 3)

To further enhance the stability of the LLM output dynamic weights, we propose a semantic anchoring
module that utilizes Retrieval-Augmented Generation (RAG [54]]) for stability optimization. The
proposed module utilizes a semantic reference corpus. This corpus is compiled from authoritative
sources such as national standards, local regulations, industry guidelines, and technical specifications
[55, 56l]. This module performs a text-to-text alignment: using a pretrained embedding model
(text-embedding-ada-002), we embed both the real-time driving conditions query (Query) and
the reference corpus (Knowledge) into high-dimensional vector representations. Semantic relevance
between the query and corpus vectors is subsequently assessed using a FAISS-based similarity
search [57]. A Top-3 selection strategy is employed to retrieve the most semantically aligned
textual fragments. The retrieved passages are aggregated into a semantic context set, which is then
provided as auxiliary input to the LLM. By anchoring weight generation to a knowledge base of
traffic regulations and safety norms through RAG, this module mitigates weight drift, cutting LLM
weight variance by 54.67% in complex driving (e.g., road construction) as detailed in Appendix C,
and enhancing multi-attribute coordination. Importantly, the LLM-generated attribute weighting
mechanism is implemented in a weakly coupled manner. This design leverages the LLM’s strength in
context-aware weighting while mitigating the potential adverse effects of hallucinated outputs on
Q-value evaluation, thereby suppressing policy misguidance caused by hallucinations.

3.4 Semantic Cache Module

The inference latency of LLMs inherently limits the control frequency of existing LLM-Dominated
RL methods. To address this problem, we propose a cooperative asynchronous training framework
that coordinates low-frequency semantic planning by the LLM with the high-frequency control
execution handled by the RL. However, this decoupling introduces a new challenge: the LLM can
fail to deliver timely semantic outputs since unexpected system delays or interruptions.

To mitigate this, SCM compensates for such missing outputs by retrieving pertinent historical
semantic representations. The SCM maintains a dedicated memory bank. This bank stores structured
representations of past driving conditions, which encompass both scenario-level and object-level
information. To manage this memory bank, the SCM employs a Least Recently Used (LRU) eviction
policy to retain data from rare, critical scenarios. Crucially, it also includes the corresponding multi-
critic weight vectors that are generated in previously similar conditions. When the LLM fails to return
a valid semantic signal within a predefined time window, the SCM performs a rapid nearest-neighbor
search over the memory bank using semantic embedding vectors. The module then identifies the
historical entry most semantically aligned with the current driving context. It extracts the associated
weight vector from this entry to serve as a temporary guidance signal for the LLM.



4 Experiments and Results

4.1 Experiment Setting
4.1.1 Driving Conditions

All experiments are conducted in Town 2 of the CARLA simulator [58]. Driving conditions include
conventional conditions, such as overtaking and merging, as well as safety-critical conditions, such
as trilemma and occluded pedestrian. To further assess the performance of the AD system, the traffic
flow densities across three levels are established: low, medium, and high, as detailed in Appendix D.

4.1.2 Evaluation Metrics

We evaluate the driving policy using quantitative metrics for safety, efficiency, and comfort.

Safety is evaluated using two primary metrics: Success Rate (SR)—the percentage of episodes
completed without major violations and Collision Rate (CR)—the proportion of episodes involving
collisions.

Efficiency is evaluated by Average Speed (AS), Total Distance (TD) and Time Steps (TS), reflecting
travel speed, distance covered, and task completion time, respectively.

Comfort is evaluated via Speed Variance (SV) and Acceleration Variance (AV), which reflects the
smoothness and stability of driving behavior.

4.1.3 Baselines

We systematically compare the proposed method with the following methods:

* Vanilla PPO [53]: Directly train the policy using PPO in tasks as a basic RL baseline.

* E2ECLA [59]: Combine curriculum learning and RL, which learns end-to-end AD policies in
CARLA by gradually increasing task difficulty without prior knowledge.

* AutoReward [29]: An RL method that iteratively refines LLM-generated rewards post-training.

* VLM-RL [25]: A method that integrates pre-trained VLM with RL. It generates semantic rewards
through language objective comparison, replacing manually designed reward function.

4.2 Main Results

Table 1: Performance Comparison in Conventional Conditions under Different Traffic Densities

Low Density Medium Density High Density

Methods Category Condition SR (%) CR (%) SR (%) CR (%) SR (%) CR (%)

Vanilla PPO RL Overtaking  80.0 20.0 69.0 31.0 62.0 38.0
Merging 89.0 11.0 75.0 25.0 68.0 32.0

E2ECLA RL Overtaking  60.0 40.0 56.0 44.0 38.0 62.0
Merging 56.0 44.0 54.0 46.0 42.0 58.0

AutoReward (iter=0) LLM-Dominated RL Overtaking 73.0 27.0 60.0 40.0 48.0 52.0
Merging 82.0 18.0 71.0 29.0 51.0 49.0

AutoReward (iter=5) LLM-Dominated RL Overtaking 85.0 15.0 76.0 24.0 70.0 30.0
Merging 94.0 6.0 85.0 15.0 71.0 29.0

VLM-RL LLM-Dominated RL Overtaking 54.0 45.0 52.0 48.0 50.0 50.0
Merging 56.0 44.0 53.0 47.0 50.0 50.0

HCRMP LLM-Hinted RL Overtaking  99.0 1.0 93.0 7.0 87.0 13.0
Merging 97.0 3.0 92.0 8.0 86.0 14.0




As illustrated in Table [T} SR and CR of various methods are compared in conventional conditions
under different traffic densities. Results indicate that HCRMP matches or outperforms other baselines
in different driving conditions, particularly in medium- and high-density conditions, where it achieves
an average SR of 89.5%. By optimizing the multi-critic coordination strategy, the agent is able to
adopt safer actions, significantly reducing the collision risk.

Additionally, HCRMP shows a relatively minor advantage over the baselines in low-density driving
conditions, which is due to limited vehicle interactions. It reduces the difficulty of the driving task
and restrict the full exploitation of the CSA’s dynamic adjustment capabilities. We further conduct a
systematic evaluation of HCRMP and three baselines-E2ECLA, VLM-RL, and Autoreward—under
safety-critical scenarios, with the latter two being representative LLM-Dominated RL methods. The
corresponding results are presented in Table [2]

Table 2: Performance Comparison in Safety-Critical Driving Conditions
Traffic SR CR AS TD TS MY AV
Density (%) (%) (m/s) (m) (s) (m/s) (m/s?)

Occluded Low 36.0 640 822 3699 47.04 429 149
Pedestrian Medium 37.0 63.0 7.19 31.53 39.72 3.02 2.62
E2ECLA High 31.0 69.0 7.87 33.86 37.04 325 152

Low 360 64.0 699 52.82 4838 3.01 289
Trilemma Medium 34.0 66.0 6.99 40.64 5028 2.18 2.70
High 38.0 62.0 8.68 4896 4644 459 289

Occluded LOW 700 300 630 2807 3505 140 296
Pedestrian Medium 31.0 69.0 7.79 2742 5578 134 3.16
Autoreward(iter=5) High 240 760 737 3126 5365 215 321

Methods Condition

Low 60.0 400 5.60 2491 343 245 268
Trilemma Medium 58.0 42.0 6.16 31.22 339 3.05 3.33
High 320 680 7.05 2584 5527 190 295

Occluded Low 65.0 350 5.02 139.20 45.04 843 1.72
Pedestrian Medium 53.0 47.0 634 17045 4230 7.69 1.78
VLM-RL High 41.0 59.0 598 172.87 4023 7.06 1.61

Low 67.0 33.0 8.89 283.13 5001 9.87 1.75
Trilemma  Medium 58.0 420 7.76 278.82 48.13 7.75 1.69
High 540 460 7.79 176.06 4698 7.72 2.70

Occluded LOW 730 270 998 8606 50.07 10.04 169
Pedestrian Medium 67.0 33.0 996 8209 51.17 997 1.74
HCRMP High  61.0 390 897 7795 4859 9.69 1.72

Low 75.0 28.0 1024 8820 51.58 957 144
Trilemma  Medium 69.0 31.0 10.08 79.91 49.72 10.14 1.23
High 64.0 360 994 7734 4713 996 1.72

E2ECLA exhibits an AV exceeding 2.5 m/s? under certain conditions, which can cause discomfort
to the passenger [60]]. This phenomenon can be primarily attributed to E2ZECLA’s failure to ade-
quately consider vehicle acceleration. Consequently, the system prioritizes rapid maneuvers over
comfort. AutoReward utilizes LLM to construct the reward function based on the analysis of the
scenario. Similarly, unreasonable values of acceleration changes occur due to the LLM’s emphasis
on maneuverability at the expense of comfort considerations in safety-critical scenarios. VLM-RL,
leveraging efficient navigation approaches, achieves a notably high TD; however, its average CR in
safety-critical conditions reaches 43.7%, indicating a significant safety concern.

The proposed HCRMP demonstrates a well-balanced performance across all metrics, particularly
in high-density conditions, where it achieves a SR of 62.5%, a CR of 37.5%, and an AV of 1.72
m/s2. This comprehensive performance is mainly due to the integration of ASR and CSA. The former



pursues efficiency and comfort in low-density traffic flows, while prioritizing safety in medium-
and high-density traffic conditions. The latter enhances the system’s ability to understand complex
environments by extending the state space.

HCRMP prioritizes ensuring safety in immediate driving tasks. This focus, however, means its global
adaptation to the map’s inherent static path features may be less developed, which consequently
results in a lower traveled distance compared to VLM-RL. Through the synergistic effect of CSA
and ASR, HCRMP achieves an effective balance of safety, efficiency, and comfort in safety-critical
conditions, with particularly outstanding performance in medium- and high-density conditions.

4.3 Ablation Study

Table [3|presents the results of the ablation study in the medium-density trilemma, evaluating the
performance of the HCRMP with the removal of different modules: HCRMP without ASR, HCRMP
without CSA, and HCRMP with ASR. In the HCRMP w/o CSA configuration, the multi-critic weights
are set to fixed equal values to create a clear baseline against the dynamic weighting provided by
CSA, thus isolating and highlighting the CSA module’s contribution.

Table 3: Ablation Study Results

Model SR(%) CR(%) AS(m/s) TD(m) TS(s) SV (m/s) AV (m/s?) Collision per Mile
HCRMP w/o ASR 40 60 752 4434 4774 694 2.95 21.65
HCRMP w/o CSA 48 52 601 2982 5444 289 2.63 27.90
HCRMP w/ ASR 54 46 727 2904 3464  5.89 2.26 25.34

The SR of HCRMP without ASR drops to a mere 40.0%, indicating that the absence of ASR
significantly diminishes the system’s ability to comprehend complex environments, resulting in
information deficits that increase collision risks. In contrast, HCRMP with ASR, achieves an SR
of 54.0%, underscoring the critical role of ASR in enhancing situational awareness. By leveraging
the LLM to interpret the current driving conditions, ASR expands the state space, strengthening the
system’s awareness of surrounding driving risks and thereby improving the safety of its decision-
making tasks.

Furthermore, HCRMP without CSA exhibits an SR of 48.0%, which is even lower than that of
HCRMP with ASR. Specifically, CSA enhances contextual stability through a knowledge base by
dynamically constraining the priority weights within the multi-critic framework, effectively mitigating
excessive fluctuations during the training process. Without CSA, the multi-critic system experiences
pronounced instability in weight adjustments, hindering convergence toward an optimal policy.
This instability directly undermines the system’s decision-making consistency and safety in the
medium-density trilemma, consequently leading to a substantial decline in SR.

Figure [3illustrates the performance differences between HCRMP variants through dynamic reward
trends. The reward curve for HCRMP without CSA exhibits pronounced fluctuations, indicating that,
in the absence of CSA constraints, the system struggles to stabilize reward values during evaluating,
reflecting inherent instability in policy optimization. In contrast, the HCRMP variant equipped with
CSA demonstrates a smoother upward trend in its reward curve.

5 Conclusion

Current LLM-Dominated RL approaches for AD motion planning heavily depend on LLM outputs,
making them vulnerable to hallucinations that can compromise policy reliability and lead to unsafe
behavior. We propose a LLM-Hinted RL motion planning paradigm and the corresponding HCRMP
framework, aiming to preserve the relative independence between LLM and RL. The framework
mitigates the impact of LLM hallucinations, while still preserving the strengths of LLM in semantic
understanding and high-level decision-making while ensuring RL maintains its fundamental self-
optimization capabilities. The HCRMP architecture comprises three key components. First, the
@® Augmented Semantic Representation Module refines the state space via semantic guidance.
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Figure 3: HCRMP variants rewards: dynamic trends and statistical distributions. Figure (a) visualizes
that the dynamic reward curve for HCRMP without CSA exhibits significant fluctuations, indicative
of performance instability, while the curve for HCRMP with CSA shows smaller fluctuations and
more stable performance. Figure (b) illustrates that the overall reward distribution for the variant
without CSA is wider and more pronounced in lower reward regions, whereas the CSA variant’s
rewards are more concentrated in higher value ranges with a more prominent peak.

Second, the @ Contextual Stability Anchor Module enhances the reliability of LLM-provided
multi-critic weight hints through retrieval-augmented semantic anchoring based on information
from the structured knowledge base. Finally, the @ Semantic Cache Module primarily improves
training efficiency by asynchronous decoupling low-frequency LLM reasoning from high-frequency
RL execution. To handle delayed LLM outputs, it employs a historical semantic cache matching
strategy as a fallback. Extensive experiments in CARLA validate HCRMP’s strong overall driving
performance. HCRMP has a high task success rate of 80.3% under diverse driving conditions with
different traffic densities. Especially, it achieves a 11.4% reduction in collision rate across a range of
complex driving conditions. HCRMP provides a promising framework for RL motion planning for
AD with integrated LLM.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the problem of LLM hallucinations
in autonomous driving, the proposed HCRMP framework with its LLM-Hinted RL paradigm,
and its key contributions in improving driving performance and safety. These claims are
substantiated by the experimental results presented in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper’s appendix discusses "Limitations and Broader Impacts," where po-
tential issues such as inter-module information transfer loss and the gap between simulation
and real-world complexity are discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper primarily focuses on an empirical framework and experimental
validation of the HCRMP architecture for autonomous driving. It does not introduce new
theoretical results requiring formal proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the experimental setup in Section 4.1, including the CARLA
simulator environment (Town 2), driving conditions, traffic densities (with Appendix D
for details), evaluation metrics, and baselines. Key architectural components and their
interactions are described in Section 3. While specific hyperparameters for baselines might
rely on their original papers, the HCRMP methodology is laid out.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the code for HCRMP and relevant experimental configura-
tions upon publication to facilitate reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 outlines the experimental setup, including the CARLA environ-
ment, specific driving conditions, traffic density levels, and evaluation metrics. Section 3
describes the HCRMP architecture, including the PPO-based multi-critic framework and
LLM integration. Appendix C mentions prompt formulation and weight distribution, and
Appendix D details traffic densities.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Figure 3 in the paper presents information regarding the variability and
distribution of rewards for different HCRMP variants. Specifically, Figure 3(a) shows
reward curves over training steps with shaded regions indicating the variability (e.g., standard
deviation or range over multiple runs) around the mean reward. Figure 3(b) uses violin plots
combined with box plots to illustrate the distribution of rewards, showing the mean, median,
interquartile range (25%-75%), and overall spread for HCRMP w/ CSA and HCRMP w/o
CSA. This provides insights into the stability and performance consistency of the models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details regarding the computational resources used for the experiments, in-
cluding hardware specifications and approximate training times for the HCRMP framework
and baselines, are provided in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aims to improve autonomous driving safety and reliability,
adhering to ethical considerations in Al development. No human subjects were directly
involved in experiments, and the work focuses on simulated environments.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 6, "Limitations and Broader Impacts," discusses the positive potential
of improving AD systems and intelligent transportation. While not extensively detailing
negative impacts, it acknowledges the gap with real-world complexity, which implicitly
relates to safety if deployed prematurely.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper proposes a new framework (HCRMP) and conducts experiments in
a simulator. While it utilizes LLMs, it does not release new pre-trained LLMs or large-scale
datasets scraped from the internet that would pose a direct high risk for misuse in the sense
outlined. The focus is on the interaction methodology.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites CARLA [58], PPO [52], ShuffleNetV2 [53], RAG [54], FAISS
[57], and the Gemini-2.5-Pro model [38] which is a SOTA LLM. It is assumed that the use

of these assets conforms to their respective licenses and terms of use, common in academic
research.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a new framework, HCRMP, which is described in detail
in Section 3. No new datasets or standalone software packages are released as primary
contributions that would require separate documentation beyond the paper itself at this stage.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing or
direct experiments with human subjects. All experiments are conducted using the CARLA
simulator.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, as all experiments are
simulation-based. Therefore, IRB approval was not required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of LLM is a core and original component of the proposed HCRMP
framework. Section 3 details how LLM-generated semantic hints are used for policy
optimization (Contextual Stability Anchor Module) and state augmentation (Augmented
Semantic Representation module), and how the Contextual Stability Anchor module uses
LLM with RAG.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A LLM Evaluation: Driving Scenario Understanding and Response

A.1 Evaluation Setup

A.1.1 Driving Conditions Specification

Driving conditions encompass both conventional scenarios—such as overtaking and merging—and
safety-critical situations [[I]], as illustrated in Figure[T]

\ |:| Ego Vehic
|

(a) Trilemma (b) Occluded Pedestrian

Figure 1: Safety-Critical Driving Conditions: Trilemma and Occluded Pedestrian

The Trilemma driving condition refers to a situation where the ego vehicle (indicated by the red box)
is surrounded by other vehicles on all sides. In this case, the ego vehicle must balance among three
competing objectives: speed optimization, safe distance maintenance, and the need to change lanes.
The Occluded Pedestrian driving condition is defined as a pedestrian suddenly stepping out from a
blind spot and intersecting the path of the ego vehicle.

The driving conditions used in this part of the experiment are consistent with those used in the
other experiments in this paper.

A.1.2 Task Definition

Each task systematically evaluates different capabilities of LLM in the context of autonomous
driving(AD). We categorize these tasks into two main groups: Scenario Understanding and Action
Response. The former focuses on the recognition and interpretation of driving conditions, while the
latter assesses the model’s ability to respond and make decisions in various driving situations.

Scenario Understanding:
* Hazard Identification: the ability to accurately identify potential hazards in diverse driving
conditions.

* Road Type Comprehension: the ability to correctly interpret and respond to different road
types.
* Road Sign Comprehension: the ability to correctly interpret and respond to traffic signs.

Action Response:

* Longitudinal Driving Decisions: The ability to make appropriate decisions related to
ego-vehicle speed.



* Lateral Driving Decisions: The ability to make appropriate decisions related to lane
changes and steering.

A.1.3 Evaluation Dimensions

The primary metric used is the non-hallucination rate, which quantifies the accuracy and factual
correctness of the LLM outputs.

Non-Hallucination Rate

For each dimension, the LLM output is evaluated for the presence of hallucinations. A hallucination
is defined as any generated content that is factually incorrect, inconsistent with the driving condition,
or irrelevant to the query. The non-hallucination rate is calculated as:

Number of Non-Hallucinated Outputs
Total Number of Outputs

Non-Hallucination Rate =

x 100%

A.2 Test Question Examples

We design a set of test questions to evaluate different LLM across the five defined tasks. Each
test problem consists of a textual description of a driving condition, along with a specific query or
instruction. The example problems are shown in Fig. [2]and aims to comprehensively evaluate the
various capabilities of LLM in driving scenario understanding and response generation .

Hazard Identification Example :
You're a self-driving car, What do you think is the biggest influence on you in your

@

neighborhood right now?

=
—

oad Type Comprehension Example :

You're a self-driving car, where do you think you're traveling right now?

@

Road Sign Comprehension Example :

You're a self-driving car, what do you think are the traffic signs ahead?

@

-

ongitudinal Driving Decisions Example :

You're a self-driving car, What should your current longitudinal driving behavior look like?

@

Lateral Driving Decisions Example :

You're a self-driving car, What should your current lateral driving behavior look like?

@

Figure 2: Sample test question for each task

A.3 Comparison Methods

* Gemini-2.5-Pro [2]: On March 21, 2025, Google DeepMind officially launched Gemini-
2.5-Pro , its latest flagship model. Hailed as Google’s *most intelligent AI model’ to date, it
marks revolutionary breakthroughs in reasoning, context understanding, and multimodal
processing.



Gpt-do [3]: A language model released for ChatGPT, offers real-time reasoning across
audio, visual, and text inputs. It supports 50 different languages with improved speed and
quality.

Deepseek-r1 [4]: An Al model developed by Chinese artificial intelligence startup DeepSeek.
Post-trained with reinforcement learning, it’s designed to enhance reasoning capabilities,
particularly excelling at complex tasks such as mathematics, code, and natural language
reasoning.

Qwen-Turbo [5]: Alibaba has launched a Qwen model on its Alibaba Cloud Bailian
platform, featuring a significantly increased context length from 128k tokens to 1M tokens.
This is equivalent to approximately one million English words or one and a half million
Chinese characters.

Llama-3.3-70B-Instruct [6]: Developed by Meta, it is the LLM with 70 billion parameters.
It’s specifically designed for multilingual dialogue scenarios and has been optimized through
Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF),
enabling it to excel at natural language processing tasks such as text generation.

A.4 Conclusions

Hazard Identification

78.92%
Lateral Driving
Decisions
61.35% Road Type
Compre-
2 hension
14.59%
3.51%
Road Sign
80.54% .
comprehension
Longitudinal

Driving Decisions

(a) GPT-40

Hazard Identification

62.82%
Lateral Driving o\
Decisions Road Type
5.98% o . Compre-
/ 19.66%  hension
70.94%

Road Sign

Longitudinal
comprehension

Driving Decisions
85.04%

(c) Deepseek-rl

Hazard Identification

81.94%
Road Type

Lateral Driving H ComPre-

Decisions hension

6.50% 63.75%
/ Road Sign

80.28% .

comprehension
Longitudinal 55.56%

Driving Decisions

(b) Llama-3.3-70B-Instruct

Hazard Identification

71.95%
L | Drivi Road Type
ate'ra? Driving Compre-
Decisions ' ension
17.29% -\
4 / 79.37%
21.95%
Road Sign
90.24% comprehension
Longitudinal

Driving Decisions

(d) Qwen-Turbo

Figure 3: Non-Hallucination Rates of Different LLM Across Driving Tasks



Regarding the performance evaluation of LLM in autonomous driving tasks, results indicate that their
performance is relatively strong in Longitudinal Driving Decisions and Hazard Identification, exhibit-
ing higher non-hallucination rates. However, for tasks involving complex and precise operations such
as Lateral Driving Decisions, the non-hallucination rates across all evaluated models are generally
low, suggesting a significant hallucination rate in this area. Furthermore, apart from Deepseek-r1
which demonstrates prominent performance in Road Sign Comprehension, other models generally
show deficiencies in this dimension. This highlights the inherent limitations of LLMs in accurate
physical world perception and dynamic decision-making, which remain crucial challenges for their
application in autonomous driving.

B Addition Related Work

B.1 Taxonomy of LLM-RL Integration Paradigms for Autonomous Driving
To ensure the focus of our discussion in the main paper, we concentrate on studying the methods
most relevant to our work based on the core mechanism of "how an LLM’s output influences and

integrates into the RL decision loop." This section provides a comprehensive taxonomy of LLM-RL
integration paradigms to address the broader landscape of existing methods.

B.1.1 Overview of LLM-RL Integration Paradigms

Table|[T] presents a taxonomy of mainstream paradigms for LLM-instructed RL in autonomous driving,
categorized by the LLM’s primary role and key characteristics.

Table 1: Taxonomy of LLM-RL Integration Paradigms for Autonomous Driving

Papers & Venues Policy Optimization Common-Sense Reasoning High-level Policy Scenario Generation Human-in-Loop
LLM as Reward Designer

LearningFlow (arXiv 2025) v v

LORD (WACYV 2025) v v

AutoReward (used in main) v v

LLM as Decision Provider
TeLL-Drive (arXiv 2025) v v v
LaViPlan (arXiv 2025) v v v

LLM as Language Translator
DriveGPT4 (ICLR 2024) v v
Human-Centric AD (arXiv 2025) v v

LLM as Scenario Generator
ChatScene (CVPR 2024) v v
CRITICAL (arXiv 2024) v v

LLM as Hinter
HCRMP (Ours) v v

B.1.2 Rationale for Inclusion and Exclusion in Main Paper Discussion

We clarify our reasoning for including or excluding these paradigms from our core discussion in the
main paper:

B.1.2.1 LLM as a Reward Designer

This paradigm fully leverages the LLM’s powerful common-sense reasoning capabilities for col-
laborative policy optimization. The LLM analyzes driving scenarios and generates reward signals
to guide RL agent training. Methods such as LearningFlow, LORD, and AutoReward fall into this
category. As this direction directly aligns with our research focus on how LLM outputs influence RL
policy learning, it is a key focus of our discussion in Section 2 (Related Work) of the main paper.

Key Characteristic: LLM outputs (reward functions or reward values) have a decisive influence on
the RL agent’s optimization objective, making these methods highly sensitive to LLM hallucinations.



B.1.2.2 LLM as a Decision Provider

This paradigm positions the LLM as a high-level decision-maker that outputs semantic policies
(e.g., "turn left," "slow down"), which are then translated into specific vehicle control signals by an
RL module or rule-based planner. Examples include TeLL-Drive and LaViPlan. This approach is
fundamentally different from our end-to-end RL decision mechanism, where the RL agent directly
generates low-level control commands (throttle, steering). Therefore, this paradigm is not a core
topic of our main paper discussion.

Key Difference: The RL component acts as an executor rather than a learner, which represents a
different technical direction from our work.

B.1.2.3 LLM as a Scenario Generator

This paradigm uses the LLLM to enhance the training environment by generating diverse or safety-
critical scenarios (e.g., ChatScene, CRITICAL). The LLM does not participate in policy optimization
during training or inference. As this is focused on data augmentation rather than policy learning, it
represents a different technical direction and is outside the scope of our related work.

Key Difference: LLM contributes to training data diversity rather than policy optimization guidance.

B.1.2.4 LLM as a Language Translator

This paradigm focuses on parsing human language commands (e.g., "drive faster," "turn right at
the next intersection") and translating them into actionable instructions for the AD system, often in
human-in-the-loop settings (e.g., DriveGPT4). Since our work does not process such natural language
commands and focuses on autonomous policy learning without human intervention, we consider its
relevance to be limited.

non

Key Difference: This paradigm addresses human-vehicle interaction rather than autonomous policy
optimization.

B.1.3 Positioning of Our LLM-Hinted RL Paradigm

Our proposed LLM-Hinted RL paradigm introduces a novel integration mechanism that differs from
the LLM as Reward Designer category in a fundamental way:

* LLM as Reward Designer (LLM-Dominated): The LLM’s outputs (reward functions or reward
values) dominate the RL optimization objective. Any hallucination directly corrupts the training
signal, leading to unsafe policies.

* LLM as Hinter (LLM-Hinted, Ours): The LLM provides semantic hints (state augmentation
and multi-critic weight modulation) that assist but do not dominate the RL agent’s policy learning.
The RL agent retains its self-optimization capability and can buffer LLM hallucinations through
policy learning and environmental feedback.

This weakly coupled integration mechanism is the core contribution of our work, distinguishing it
from existing LLM-Dominated RL methods.

B.2 Motion Planning in Autonomous Driving

The core task of motion planning in autonomous driving is to rapidly generate safe and robust local
trajectories or motion commands that guide the vehicle to effectively avoid obstacles and operate
smoothly in complex dynamic environments [7]]. As a key component for achieving safe and efficient
autonomous mobility, it has long been a highly active and closely studied area of research.

Current motion planning methods are mainly divided into two categories: pipeline planning and
end-to-end planning. The traditional pipeline planning method, also known as the rule-based planning
method, is composed of multiple interrelated modules. These modules—such as perception, local-
ization, planning, and control—are designed and developed independently. Graph search planning
algorithms determine a path between a start point and a goal point by performing iterative searches
based on the environmental map and obstacle information. Common graph search algorithms include
Dijkstra’s algorithm, the A* algorithm, and the Hybrid A* algorithm. While Dijkstra’s algorithm [8]]
can find the shortest path between two points, it lacks goal-directed efficiency and becomes computa-
tionally expensive in long-range searches. To address this limitation, Stanford University developed



the A* algorithm [9] in 1968, which significantly improves efficiency through the use of well-designed
heuristic functions. However, A* is mainly suited for static environments and does not adequately
account for the motion constraints of moving vehicles. In 2008, Stanford University introduced
the Hybrid A* algorithm [[10], which incorporates kinematic constraints, thereby enhancing the
practicality and applicability of path planning in real-world driving scenarios. Esposto et al. [[11]
combined the Hybrid A* and classical A* algorithms to propose a path planning method based on
Reeds-Shepp curves, which not only accommodates the kinematic characteristics of vehicles but also
improves planning speed.

However, end-to-end planning methods have become a focal point of current research due to their
superior adaptability and efficiency, leveraging artificial intelligence to directly map raw perception
data to control commands. Representative approaches include: Behavior Cloning, which uses
supervised learning to mimic expert trajectories and quickly generate reliable driving policies.
Reinforcement Learning, which optimizes dynamic decision-making through interaction with the
environment, enabling adaptation to complex scenarios.

Behavioral Cloning (BC) is a primary imitation learning approach in autonomous driving, where
the agent learns to replicate expert behavior by training a classifier or regressor on demonstration
trajectories. As a passive method, it assumes that state-action pairs in the demonstrations are
independent and learns the target policy purely through observation of complete expert executions.
Early BC applications in driving [12H14]], used end-to-end neural networks to map camera inputs
directly to control commands. To improve performance in complex urban settings, later work
introduced enhancements such as multi-sensor inputs [[15,/16]], auxiliary learning tasks [[17}/18]], and
more sophisticated expert demonstrations [[19].

To reduce reliance on labeled data, some researchers have turned to reinforcement learning (RL) for
autonomous decision-making. Unlike imitation learning, RL agents learn policies by interacting
with the environment and maximizing cumulative rewards through trial and error. Over time, the
agent refines its policy to achieve optimal performance based on feedback from the environment. RL
has demonstrated success in learning lane following on a real vehicle in low-traffic conditions [20]].
Saxena et al. [21] use the Proximal Policy Optimization (PPO) algorithm to learn a control policy
in continuous motion planning. Their model implicitly accounts for interactions with surrounding
vehicles to prevent collisions and improve ride comfort.

C Methodology Details

C.1 Augmented Semantic Representation Prompts

ASR Module Prompt: Global Scenario-Level Abstraction

You are an advanced Al assistant for an autonomous driving system. Your task is to analyze

the provided driving condition data and extract key scenario-level semantic information.

Given Scene Data:

* Road topology features: {road_topology_description}

e Current traffic dynamics (overall flow, presence of traffic signals/signs):
{traffic_dynamics_description}

* Ego-vehicle state (position, speed): {ego_vehicle_state}

Instructions: Based on the provided driving condition data, please provide a concise answer
for each of the following aspects. This information will be used to generate a 4-dimensional
semantic vector representing the global driving context.

1. Road Category: Classify the current road type. (Examples: Highway, Rural Lane, Urban
Road)

2. Traffic Density: Describe the prevailing traffic density. (Examples: Low, Medium, High)

Output Format: For each numbered point above, provide a short descriptive phrase. Example:
1. Road Category: Urban Road 2. Traffic Density: Medium




ASR Module Prompt: Fine-Grained Object-Level Analysis

You are an advanced Al assistant for an autonomous driving system. Your task is to analyze

the provided driving condition data, focusing on surrounding traffic participants and obstacles,

to extract critical object-level semantic information.

Given Scene Data:

e Detected surrounding traffic participants (vehicles, pedestrians, cyclists):
{list_of_detected_participants_with_type_position_velocity}

¢ Detected static obstacles (roadblocks, debris): {detected_static_obstacles}

» Ego-vehicle state (position, speed, current lane, heading): {ego_vehicle_state}

Instructions: Based on the provided scene data, identify up to 3 of the most critical (highest
risk or most influential on ego-vehicle’s decisions) traffic participants or obstacles. For each
identified critical entity, provide the following:

 Entity Type: (e.g., Car, Truck, Bus, Motorcycle, Pedestrian, Cyclist)

* Relative Direction: Its primary direction relative to the ego vehicle. Choose from: Front,
Front-Left, Front-Right, Left, Right, Rear-Left, Rear, Rear-Right.

This information will be used to generate a 9-dimensional semantic vector representing the

object-level context. Focus on conciseness and relevance for immediate driving decisions.

Output Format: List each critical entity as a separate item. Example: - Entity 1: Type: Car,

Direction: Front-Left - Entity 2: Type: Pedestrian, Direction: Right - Entity 3: Type: Truck,

Direction: Front

C.2 Contextual Stability Anchor

C.2.1 Prompts

Prompt for Autonomous Driving Attribute Weights Generation

Background: I need to use a three-element vector to represent the weighting charac-
teristics of safety, comfort, and efficiency in autonomous driving. Please analyze the
current driving scene based on the data read from the JSON file. The ego vehicle’s
coordinates are: ({ego_position_x2}, {ego_position_y}) The ego vehicle’s velocity
is: ({ego_velocity_x}, {ego_velocity_y}) Surrounding environment information is:
{surrounding_info}, {scene_flag}

The question is: {question}. Based on my requirements and {rag_output}, please
generate a three-element vector for me. The three elements have the following requirements:
* The three elements represent: Safety, Comfort, Efficiency.

* The sum of the three elements is 1.
* All three elements should be retained to 2 decimal places.

Please determine the specific values based on my requirements and only output this vector
without any other redundant content.

C.2.2 Overview of Weight Distributions

By anchoring the weight generation process to a norm-constrained semantic source, this module
significantly mitigates the risk of weight drift. To empirically validate this, we conducted experiments
within the same complex driving condition, specifically a road construction environment, comparing
the LLM-generated critics weights with and without the integration of the Contextual Stability
Anchor (CSA) module. As illustrated in Figure d] this module successfully reduces the variance of
LLM-generated critics weights by approximately 54.67 % within the same driving condition, thereby
enhancing the consistency of multi-attribute coordination.
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Figure 4: Comparison of LLM-Generated Weight Distributions With and Without CSA

Building upon the previous findings that demonstrated CSA’s ability to stabilize LLM-generated
weights within a single driving condition, we further investigated its impact across diverse driving
conditions. Figure [5] presents the Kernel Density Estimation (KDE) of the LLM’s output safety
weights across various scenarios. In the left panel, representing the system without the CSA module,
the boundary between safety weights for safe and dangerous scenarios is indistinct, indicating that the
LLM struggles to consistently differentiate risk levels. Conversely, the right panel, which incorporates
the CSA module, clearly illustrates a distinct separation in safety-critic weight distributions between
safe and dangerous driving conditions. This evident demarcation highlights CSA’s critical role in
guiding the LLM to generate more context-aware and robust safety weight assignments, thereby
enabling a clearer distinction between varying levels of risk and enhancing the reliability of safety-
critical decision-making.
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Figure 5: Kernel Density Estimation of LLM-Generated Safety-Critic Weights Across Diverse
Driving Scenarios

C.2.3 Comparison with Learnable Alternatives

To justify the design choice of using the LLM-based CSA module over a purely learnable alternative,
we conducted a supplementary experiment comparing our approach with an end-to-end learnable
network for critic weight generation.



C.2.3.1 Experimental Setup

We replaced the CSA module with an end-to-end network that employs a 4-head self-attention
mechanism followed by a multi-layer perceptron (MLP) to generate critic weights. This attention-
based network is trained jointly with the PPO algorithm to learn the weight generation directly from
driving data. The comparison was conducted in the challenging medium-density "Trilemma" scenario,
which requires balancing speed optimization, safe distance maintenance, and lane change decisions.

C.2.3.2 Results
Table 2| presents the performance comparison between the two approaches.

Table 2: Performance Comparison: CSA vs. Attention-Based Weight Generation

Model SR (%) CR (%)
HCRMP with Attention Network 57.0 43.0
HCRMP with CSA (Ours) 69.0 31.0

C.2.3.3 Analysis

The experimental results indicate that the attention mechanism alone struggles to learn robust weight
dynamics in the complex feature space of autonomous driving, which requires understanding multi-
source inputs and dynamically adapting to diverse scenarios. We attribute this performance gap to the
following fundamental differences:

* Nature of the Task: Determining appropriate safety weights is fundamentally a reasoning
problem involving traffic regulations, risk assessment, and causal understanding, rather than
a simple pattern recognition or correlation task. For instance, deciding that safety should be
prioritized in a construction zone requires understanding traffic rules and consequences, not just
recognizing visual patterns.

Knowledge Grounding: Our CSA module leverages the LLM’s pre-trained common-sense
reasoning capabilities and explicitly anchors weight generation to a structured knowledge base
(via RAG). This grounding ensures that the generated weights are consistent with safe driving
regulations and established safety principles. In contrast, the attention-based network must
learn these complex reasoning patterns from scratch using only driving trajectories, which is
substantially more challenging and data-inefficient.

Stability and Interpretability: The knowledge-anchored approach provides inherent stability
(54.67% variance reduction as shown in Section C.2.2) and interpretability - the weights are
grounded in retrievable knowledge sources. The end-to-end learned weights, while adaptive,
lack this explicit grounding and exhibit higher variance across similar scenarios, leading to less
consistent safety prioritization.

This comparison validates our design choice: for the safety-critical task of weight generation in
autonomous driving, leveraging LLM reasoning with knowledge anchoring (the "hinting" mechanism)
is more effective than relying solely on end-to-end learning from driving data.

C.3 System Flexibility and Prompt Robustness

A critical concern for LLM-based systems is their flexibility and adaptability to scenarios not
explicitly covered by predefined prompts. To address this, we conducted a comprehensive evaluation
of HCRMP’s robustness to prompt variations, testing whether the system maintains stable performance
across different prompt formulations.

C.3.1 Experimental Setup

We selected three representative driving scenarios under medium traffic density: "Overtaking,"
"Merging," and "Trilemma." For each scenario, we designed three prompt sets with different levels of
detail and wording:

* Prompt A (Detailed Version): An expanded version of the original prompt with more elaborate
instructions and contextual descriptions.
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* Prompt B (Concise Version): A simplified version with condensed wording and minimal
instructions.

* Prompt C (Original Version): The baseline prompt used in the main experiments (as shown in
Sections C.1 and C.2.1).

The full text of all three prompt versions is provided in Section C.3.3 below. We evaluated performance
across three key metrics: Success Rate (SR), Collision Rate (CR), and the frequency of Semantic
Cache Module (SCM) calls, which indicates when the LLM fails to provide timely guidance.

C.3.2 Results and Analysis

Table [3| presents the experimental results across all three scenarios and prompt variations.

Table 3: System Performance Across Different Prompt Formulations (Medium Traffic Density)

Driving Conditions Prompt Sets SR (%) CR (%) SCM Calls (%)
Prompt A (Detailed) 91.0 9.0 19.0
Overtaking Prompt B (Concise) 88.0 12.0 4.0
Prompt C (Original) 93.0 7.0 4.0
Prompt A (Detailed) 92.0 8.0 21.0
Merging Prompt B (Concise) 90.0 10.0 4.0
Prompt C (Original) 92.0 8.0 6.0
Prompt A (Detailed) 62.0 38.0 27.0
Trilemma Prompt B (Concise) 61.0 39.0 5.0
Prompt C (Original) 69.0 31.0 7.0

Overall Robustness: The experimental results indicate that the HCRMP framework exhibits a degree
of robustness to prompts with different styles. While performance varied across prompts—most
notably in the challenging "Trilemma" scenario—the framework maintained reasonable safety perfor-
mance across all tests, with SR ranging from 61% to 93% and CR from 7% to 39%.

Counterintuitive Effect of Detailed Prompts: Notably, the detailed prompt (Prompt A), despite
providing more information, failed to improve and in some cases even degraded performance
compared to the original prompt (Prompt C). For instance, in the Trilemma scenario, Prompt A
achieved only 62% SR compared to 69% for Prompt C. Simultaneously, it dramatically increased the
frequency of Semantic Cache Module (SCM) calls—reaching 27% in Trilemma compared to just 7%
for Prompt C. This indicates that overly complex prompts may introduce counterproductive noise or
constraints, leading to a clear trade-off where both safety performance and timeliness are negatively
impacted.

Balance Between Conciseness and Detail: The concise prompt (Prompt B) exhibited moderate
performance, generally falling between the detailed and original versions. While it reduced SCM
call frequency compared to Prompt A, it did not achieve the optimal balance of safety and efficiency
provided by Prompt C.

Implications for Prompt Design: These findings suggest that prompt engineering for safety-critical
systems requires careful consideration. Excessive detail can overload the LLM’s reasoning process
and increase inference latency (reflected in higher SCM calls), while overly concise prompts may
lack sufficient context for optimal decision-making. The original prompt (Prompt C) achieves the
best overall effectiveness by ensuring lower inference latency without sacrificing core safety metrics,
making it the optimal choice within the HCRMP framework.

System Adaptability: Importantly, even with suboptimal prompts, the system maintained functional
performance due to the LLM-Hinted paradigm’s inherent safety mechanisms: (1) the RL agent
retains self-optimization capability to buffer poor LLM guidance, and (2) the Semantic Cache Module
provides fallback when LLM outputs are delayed, ensuring continuous operation.
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C.3.3 Prompt Versions

Below we present the three prompt versions used in the robustness evaluation. These prompts are
designed for the Contextual Stability Anchor (CSA) module to generate multi-critic weights.

Prompt A: Detailed Version

Objective: You are an expert autonomous driving system analyst. Your task is to carefully
analyze the current driving scenario and generate a three-element weight vector that represents
the relative importance of three critical driving attributes: Safety, Comfort, and Efficiency.

Input Information:

* Ego vehicle position: ({ego_position_x}, {ego_position_y})
* Ego vehicle velocity: ({ego_velocity_x}, {ego_velocity_yl})
* Surrounding environment: {surrounding_info}

* Scenario type: {scene_flag}

» Reference knowledge: {rag_output}

Detailed Instructions:

Please perform a comprehensive analysis of the driving scenario considering traffic density,

road conditions, nearby obstacles, and potential risks. Based on this analysis and the provided

reference knowledge from traffic regulations, determine how to balance the three driving

attributes.

The three elements of the output vector represent:

1. Safety: Prioritize collision avoidance, maintaining safe distances, and responding to
hazards.

2. Comfort: Ensure smooth acceleration/deceleration and gentle steering to enhance passen-
ger experience.

3. Efficiency: Optimize travel time and maintain appropriate speed while respecting traffic
flow.

Requirements:

* The sum of the three elements must equal 1.0

» Each element must be a positive decimal value between 0 and 1

* Round each value to 2 decimal places

* In high-risk scenarios (e.g., dense traffic, pedestrians nearby), prioritize Safety

* In low-risk scenarios, balance all three attributes more evenly

Output Format: Provide only the three-element vector in the format: [Safety, Comfort,
Efficiency]
Example: [0.65, 0.20, 0.15]

Prompt B: Concise Version

Generate a weight vector for autonomous driving attributes.

Input:

* Ego position: ({ego_position_x}, {ego_position_yl})

* Ego velocity: ({ego_velocity_x}, {ego_velocity_y})

* Environment: {surrounding_info}

Output: Three-element vector [Safety, Comfort, Efficiency] where elements sum to 1.0.
Requirements: 2 decimal places, prioritize safety in high-risk scenarios.
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Prompt C: Original Version (Baseline)

Background: I need to use a three-element vector to represent the weighting characteristics
of safety, comfort, and efficiency in autonomous driving.

Please analyze the current driving scene based on the data read from the JSON file.

The ego vehicle’s coordinates are: ({ego_position_x}, {ego_position_yl})

The ego vehicle’s velocity is: ({ego_velocity_x}, {ego_velocity_y})

Surrounding environment information is: {surrounding_info}, {scene_flag}

The question is: {question}. Based on my requirements and {rag_output}, please
generate a three-element vector for me.

The three elements have the following requirements:

* The three elements represent: Safety, Comfort, Efficiency.

e The sum of the three elements is 1.

* All three elements should be retained to 2 decimal places.

Please determine the specific values based on my requirements and only output this vector
without any other redundant content.

D Experiments and Results

D.1 Computational Resources

The model training experiments in this study are accomplished relying on the following computational
resources: a total of four NVIDIA A100-PCIE GPUs (40GB of graphics memory on a single card)
are used. Each GPU is configured with 10 virtual CPU cores (Intel Xeon Gold 6248R) and 72GB
of system memory. For each model, 200 epochs are performed, with each epoch consisting of 5
episodes.

D.2 Experiments setup

Town02 provides a variety of challenging driving conditions for evaluating basic driving ability and
complex decision-making actions, as it encompasses circular road networks, regular neighborhoods,
and multi-level interchanges. We introduce varying traffic density settings as follows: in the on-ramp
merging scenario, low, medium, and high densities correspond to 2, 4, and 8 surrounding vehicles,
respectively, located on the two lanes adjacent to the merging lane on the main road. In the multi-lane
overtaking scenario, these levels represent 1, 2, or 3 surrounding vehicles ahead of the ego vehicle.

For safety-critical trilemma and occluded pedestrian scenarios, the definitions for low, medium, and
high traffic flow densities are unified. These are determined by counting the number of surrounding
vehicles in the "borrowed lane" (i.e., the adjacent/oncoming lane that the autonomous vehicle
temporarily occupies or interacts with for specific maneuvers). Specifically, low, medium, and
high densities correspond to the presence of 2, 3, and 4 surrounding vehicles, respectively, in the
aforementioned "borrowed lane".

These traffic density levels are designed to create diverse traffic environments and interaction sit-
uations, thereby increasing task complexity and enabling a more comprehensive evaluation of the
algorithm’s decision-making ability and adaptability under different traffic conditions.

D.3 HCRMP with Varied LLM

Our study primarily conducts experimental validation based on the Gemini-2.5-Pro model. To
comprehensively assess the generalization capability and performance of the HCRMP architecture
across different LLMs, we further evaluated its effectiveness using four mainstream LL.Ms: GPT-4o,
Llama-3.3-70B-Instruct, Deepseek-r1l, and Qwen-Turbo in trilemma’s high-density driving condition.

Experimental results show that, as shown in figure[6]and table ] the overall performance of HCRMP
remains consistent across different LLM. Although these LLM exhibit some variation in hallucination-
free rate evaluations, their differences have minimal impact when serving as semantic prompt sources
for HCRMP. This demonstrates that HCRMP, as an LLM-Hinted RL paradigm, can effectively
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leverage the semantic prompting capabilities of various LLM. Through the self-learning mechanism
of the RL agent, it compensates for disparities in LLM performance, thereby achieving similarly
strong driving performance regardless of the underlying LLM backend.

Table 4: HCRMP with Varied LLM

SR(%) CR(%) AS(m/s) TD(m) TS(s) SV(m/s) AV(m/s?)

HCRMP-Gemini-2.5-Pro 64 36 9.94 7734  47.13 9.96 1.72
HCRMP-GPT-40 61 39 6.85 53.09  52.88 2.40 1.84
HCRMP-Deepseek-r1 61 39 8.26 87.35 5144 8.46 1.97
HCRMP-Qwen-Turbo 59 41 7.02 65.04  56.84 2.17 1.79
HCRMP-Llama-3.3-70B-Instruct 63 37 6.84 47.68  51.70 2.26 1.79

Success Rate(SR) Comparison of Different Methods

E2ECLA 38.0
VLM-RL 54.0
HCRMP-Qwen-Turbo 59.0
HCRMP-GPT-40 61.0
HCRMP-Deepseek-r1 61.0

HCRMP-Llama-3.3-70B-Ins 63.0

0 10 20 30 40 50 60

Success Rate(%)

Figure 6: Success Rate (SR) Comparison of Different Methods

D.4 Impact of LLM Hallucinations on Q-value Estimation

A critical challenge for LLM-integrated RL systems is understanding how incorrect LLM outputs
lead to incorrect Q-value estimates or rewards. To address this, we conducted a controlled experiment
to establish a quantitative link from an erroneous LLM prompt, to a distorted Q-value estimation, and
ultimately to degraded driving performance.

D.4.1 Experimental Setup

D.4.1.1 Scenario

The experiment was conducted in a high-density overtaking scenario (as described in Section 4.1
of the main paper), which requires careful judgment of when it is safe to accelerate and overtake
surrounding vehicles.

D.4.1.2 Control and Experimental Groups

* Control Group: Instances where HCRMP receives correct LLM outputs. For example, the LLM
correctly identifies a construction site ahead and outputs appropriate semantic hints (e.g., elevated
safety weight, recognition of hazard in state representation).

* Experimental Group: Instances specifically selected where the LLM produces hallucinated
outputs. For example, the LLM fails to recognize a construction site ahead, providing incorrect
semantic hints that do not reflect the true risk level.
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D.4.1.3 Measurement
We focus on the Q-value estimation for the critical action "accelerate to overtake" (Goyertake) and
measure:

¢ Q-value Estimation Error: The relative difference between Q-values estimated under correct vs.
incorrect LLM outputs, calculated as:

| Qincorrect (57 aovenake) - Qcorrect ( S, Qovertake ) |

Q-value Error =
| Qcorrect ( S, aovertake) |

where Qcorrect 18 the Q-value estimated with correct LLM output, and Qincorrect 1 the Q-value with
hallucinated LLLM output.

 Task Success Rate: The percentage of successful task completions (collision-free overtaking) in
each group.

D.4.2 Results

Table [5|presents the quantitative impact of LLM hallucinations on Q-value estimation and driving
performance.

Table 5: Impact of LLM Hallucinations on Q-value Estimation and Task Performance

Method Estimated Q-value Error (%) Success Rate (%)
HCRMP (Correct LLM Output) - 85.0
HCRMP (Incorrect LLM Output) 23.0 67.0
Performance Degradation +23.0% error -18.0% SR

D.4.3 Analysis and Implications

D.4.3.1 Quantitative Evidence of Hallucination Impact
The experimental results provide concrete empirical numbers demonstrating how LLM hallucinations
propagate through the system:

* Q-value Distortion: When the LLM produces hallucinated outputs (e.g., failing to recognize a
construction hazard), the estimated Q-value for the "accelerate to overtake" action exhibits a 23%
error compared to the correct estimation. This distortion occurs because:

— The incorrect semantic state representation from ASR module fails to capture the true risk
level.

— The CSA module, misled by the incorrect scenario understanding, assigns inappropriate critic
weights (e.g., underweighting safety).

— The resulting integrated advantage function flim(s, a) (Eq. 2 in main paper) becomes biased,
leading to overoptimistic Q-value estimates for dangerous actions.

* Performance Degradation: The 23% Q-value estimation error directly translates to an 18
percentage point drop in task success rate (from 85% to 67%). This demonstrates the causal
chain: hallucinated prompt — distorted Q-value — dangerous behavior (collision).

* Why HCRMP Still Maintains 67 % Success: Importantly, even with hallucinated LLM outputs,
HCRMP maintains a 67% success rate rather than complete failure. This robustness is attributed
to the LLM-Hinted paradigm’s design:

— The RL agent retains self-optimization capability based on environmental feedback, allowing
it to partially correct for LLM errors through policy learning.

— The Semantic Cache Module (SCM) can replace extremely poor LLM outputs with more
reliable cached weights from similar historical scenarios.

— The weakly coupled design prevents LLM hallucinations from completely dominating the
decision-making process.
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E Limitations and Broader Impacts

While HCRMP demonstrates promising motion planning capabilities, its current limitations primarily
involve potential inter-module information loss and the sim-to-real gap inherent in simulator-based
evaluations, defining clear avenues for future work. Future work will enhance data fusion and
module integration to reduce information loss, and validate HCRMP in real-world tests. This will
strengthen HCRMP, an LLM-hinted RL paradigm that promises to significantly advance intelligent
transportation.
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