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Abstract

In myriad statistical applications, data are collected from related but heterogeneous sources.
These sources share some commonalities while containing idiosyncratic characteristics. One
of the most fundamental challenges in such scenarios is to recover the shared and source-
specific factors at scale. Despite the existence of a few heuristic approaches, a scalable
algorithm with theoretical guarantees has yet to be established.

In this paper, we tackle the problem by proposing a method called Heterogeneous Matrix
Factorization to separate the shared and unique factors for a class of problems. HMF main-
tains the orthogonality between the shared and unique factors by leveraging an invariance
property in the objective. The algorithm is easy to implement and intrinsically distributed.
On the theoretic side, we show that for the square error loss, HMF will converge into the
optimal solutions, which are close to the ground truth.

HMF can be integrated auto-encoders to learn nonlinear feature mappings. Through a
variety of case studies, we showcase HMF’s benefits and applicability in video segmentation,
time-series feature extraction, and recommender systems.

1 Introduction

In the Internet of Things (IoT), data are frequently gathered at the edge devices such as mobile phones or
sensors, which often operate under different conditions such as temperature, pressure, or vibration (Kontar
et al., 2021).This is an example of data collection from a diverse range of related sources. Resultingly,
data exhibit both shared features, which represent common knowledge, and unique features, associated with
source-specific individual characteristics.

A central challenge in analyzing the data patterns among heterogeneous sources is to decouple the shared
and unique features from the observations. A natural approach to handle it is to use mutually orthogonal
vectors to model the shared and unique features (Lock et al., [2013} [Yang & Michailidis| 2016; Zhou et al.,
2015} [Sagonas et al.l 2017} |Gaynanova & Lil 2019; [Park & Lock, [2020; [Liang et al., |2023)). Along this line,
JIVE (Lock et al., [2013) uses an alternative minimization algorithm to optimize the joint and individual
factors. While JIVE can find meaningful patterns in some genetic applications, the orthogonality is not
well-respected in the algorithm. Resultingly, the separation is not ideal, and the estimates of the shared
components have limited fidelities (Zhou et al., 2015)). Several works attempt to improve JIVE by analyzing
the singular vectors of observation matrices (Zhou et al.l |2015), considering more complicated structures
(Park & Lockl [2020), and many more. However, many of these algorithms focus on specific statistical
problems and employ heuristic algorithms that do not have a strong convergence guarantee. Distributing
these algorithms is also an arduous task.

Very recently, personalized PCA (perPCA) (Shi & Kontar) [2024) has emerged as a promising method for
distributedly recovering shared and unique features with strong convergence guarantees. Despite its eminent
performance on an array of applications, perPCA is limited to handling symmetric covariance matrices and
cannot be readily extended to asymmetric and incomplete observation settings, where only a small subset
of data is available.
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Hence, there is a need for an extensible algorithm to separate shared and unique factors with a provable
convergence guarantee. In this paper, we propose a framework called Heterogeneous Matrix Factorization
(HMF) to capture the shared and unique factors under the orthogonality constraint. Our formulation is based
on nonconvex Matrix Factorization (MF), a widely used technique in data analytics for identifying low-
rank structures within high-dimensional matrices. Such low-rank structures can capture underlying physical
processes or latent features that are highly informative for understanding patterns in high-dimensional ob-
servations (Wright & May, 2022), thus are extremely suitable to represent the shared and unique features
among data. Also, the matrix factorization formulation can be extended to an auto-encoder model, which
employs the representation power of neural networks.

More specifically, we consider a group of N observation matrices {M; M| from N related but heterogeneous
sources. We model the common information in these matrices as low-rank components whose columns span
the same subspace. Accordingly, the unique signals are modeled by low-rank components with source-specific
column subspaces. The common and unique subspaces are orthogonal to represent the inductive bias that the
shared and unique features are independent. In nonlinear models, we similarly use shared and source-specific
nonlinear embeddings to model common and unique data patterns.

To learn the shared and unique features, HMF exploits an invariance property of the objective to handle the
constraints by introducing two correction steps. The application of the invariance property is one of the key
distinctions between HMF and previous works, as it allows HMF to maintain orthogonality between shared and
unique factors without changing the objective. With the correction step, HMF is proved to converge linearly
to an optimal solution under the SE loss with suitable stepsize and initial optimality gap. We also provide
an upper bound on the statistical error between the updates and the ground truths.

We use a wide range of numerical experiments to demonstrate the effectiveness of the proposed HMF. The case
studies on video segmentation, temporal signal analysis, and movie recommendation showcase the benefits
of extracting shared and unique factors.

2 Related Work

Matrix Factorization MF has been applied to a diverse range of fields, including image processing (Lee
& Seung), 1999), time series analysis (Yu et al 2016]), and many others, making it one of the most popular
methods in data analytics. Numerous works analyze the theoretical properties of first-order algorithms that
solve the (asymmetric) matrix factorization problem miny v HM — UVTH; or its variants (Li et al., |[2018a;
Ye & Duj 2021; [Sun & Luo, [2016; [Park et al., [2017; 'Tu et al., [2016)). Among them, [Sun & Luo| (2016)
analyzes the local landscape of the optimization problem and establishes the local linear convergence of
a series of first-order algorithms. [Park et al. (2017); |Ge et al| (2017) study the global geometry of the
optimization problem. |Tu et al.| (2016) propose the Rectangular Procrustes Flow algorithm that is proved
to converge linearly into the ground truth under proper initialization and a balancing regularization of the
form HUTU — VTV||2F. Despite the abundance of literature on standard matrix factorization and matrix
completion, these works do not consider the case where data contain heterogeneous trends.

Distributed matrix factorization Recent development of edge computation has fueled a trend to move
matrix factorization to the edge. Distributed matrix factorization (DMF) (Gemulla et al., 2011) exploits
the distributed gradient descent to factorize large matrices. |Chai et al. (2021)) proposes a cryptographic
framework where multiple clients use their local data to collaboratively factorize a matrix without leaking
private information to the server. These works use one set of feature matrices U and V to fit data from all
clients, and hence, they do not account for source-by-source feature differences either.

Personalized modeling As discussed, there are a few methods attempting to find the joint and individual
components by heuristic algorithms. Besides the works discussed in the introduction section, some works
leverage additional structural assumptions in data. Among them, SLIDE (Gaynanova & Li, [2019) analyzes
the group sparsity structure. iNMF (Yang & Michailidis|, 2016|) adds nonnegativity constraints to the recov-
ered matrices. RJIVE (Sagonas et al,[2017)) aims to cope with the gross noise in the observations. However,
to our best knowledge, none of these algorithms can guarantee that the iterates will converge into the op-
timal solutions. Our work improves upon the previous work by providing a flexible formulation for matrix
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factorization and proposing a first-order algorithm equipped with a convergence guarantee. A comprehensive
comparison between HMF and exemplary previous works is outlined in Table

Table 1: Comparison of different methods. d stands for whether a method can be distributed, o stands
for whether the method ensures the orthogonality between the shared and unique components, ¢ stands for
whether it has a convegence guarantee, i stands for whether it can handle incomplete observations.

Algorithm d o ¢ i
DMF (Gemulla et al. [2011)) X X
JIVE (Lock et al., 12013) X X x X
COBE (Zhou et al., [2015) X X X X
RJIVE (Sagonas et al., [2017) X X X
perPCA (Shi & Kontar, [2024) X
perDL (Liang et al., [2023) X X
HMF (ours)
3 Model
We consider the setting where N € NT noisy observation matrices M), M2y, -+, M(y) are collected from

N different but related sources. These matrices M(;) € R"*"2.() are assumed to have the same number of
TOWS 1.

3.1 Linear model

The natural way to model the commonality and uniqueness among the matrices is assuming that each matrix
is driven by r; shared factors and ry (;) unique factors and also contaminated by noise. More specifically, we
consider the generation model for matrix M; is defined as

M(Z-) = U*gv*g;)“q + U*(i),lV*g)J + E*(i) (1)

where U*, € R™" >, V*(i),g € R"2.@m >, U*(i),l € R™M %726, V*(i),l € R"2,()%X72,4) E*(i) € R™M*Xn2,6), 'We
use * to denote the ground truth. In the above model, r; is the rank of the global (shared) feature matrices,
while 75 (; is the rank of local (unique) feature matrices from source i. The matrix U*gV*Z‘),g models the
shared low-rank components of the observation matrix, as the column space is the same across different
sources. The matrix U*(Z-)JV*%;)J models the unique low-rank part. The rationale of the low-rank matrix
factorization is to use a small number of latent vectors to explain the observations. Thus the ranks r; and
79,y are often much smaller than matrix dimensions. E* ;) models the noise from source i.

In matrix factorization problems, the representations U*, and U* ;) ; often correspond to latent data features.
For better interpretability, it is often desirable to have the underlying features disentangled so that each
feature can vary independently of others (Higgins et al., |2017). Under this rationale, we consider the model
where shared and unique factors are orthogonal,

U lU* ), =0, Vie [N] (2)

We use [N] to denote the set {1,2,---, N}. The orthogonality of features implies that the shared and unique
features span different subspaces, thus describing different patterns in the observation. The orthogonality
condition is consistent with literature (Lock et al., [2013; [Zhou et al., [2015)).

Under the data generation model equation [I] and equation [2} our goal is to find Uy, {V ;) 4. Ug)t, Vit
from observations {M;)}. To achieve this goal, we propose a generic constrained optimization problem.

N
mxinz fi(Ug, V). Uy, Vi) such that UI'U ;= 0, Vi € [N] (3)
=1
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where x = (Ug7 {U(i)J, Vii).gs V(i)yl}fvzl) collects the decision variables and ﬁ is a regularized empirical risk
consisting of two parts.

JiUgs V(i) Uiyis Vi)
— T T B 2 Bl 2 (4)
= (M) Ug Vi + U Vi) + 5 10U = 1| + 5 |[UG Ui — ||

fi gi

We will explain them respectively. Term f; is the empirical risk between the sum of shared and unique
signals and the observation matrix M;). £ is a loss metric that can incorporate a wide range of applications.

. 2

‘M(l) — M(l) , i.e., the
F

square error between the observed and reconstructed matrices. In matrix completion, only a limited number

of entries are observed. We use ()(;) to denote the set of indices of the observed entries, Pq, (-) to denote
the projection

For example, in matrix factorization, the squared error loss is £°¢ (M(i), M(i)> = %

[M];x if entry (4,k) € Q)
0 otherwise.

[PQ(i) (M)]Lk = {

for a general matrix M. Then the projected square error loss ¢P°¢ is defined as (Ps¢ (M(i),M(i)) =

R 2
% HPQM (M(i) — M(i)) HF There are also numerous other loss metrics ¢, such as Huber loss used in ro-

bust matrix factorization (Wang & Fan| [2022)) or cross-entropy loss used in community detection (Yang &
Leskovec, [2013)).

The constraints UgTU(i)J = 0 reflect our prior belief about the data generation process. Since we consider
the model where the true shared and unique features are orthogonal equation [2} it is natural to encode
the orthogonality into constraints. Explicitly enforcing the orthogonality constraints is one of the major
differences between our work and the previous works including JIVE. As we will see in numerical examples,
such constraints can encourage shared and unique features to capture more distinct patterns.

Term g; is a regularization term that pushes the U matrices to be orthonormal. A well-known theoretical
issue in matrix factorization is that objectives like the term f; are homogeneous with respect to the variables,
which in turn leads to the non-smoothness of the loss function. Regularization terms are added to ensure the
smoothness of the loss. Several works on matrix completion (e.g. (Park et al., 2017 [Tu et al.| |2016} [Fattahi

2
& Sojoudil, 2020)) consider balancing regularization terms of the form ‘UZ;Ug — V%;) g V(i) HF to encourage

column factors U, and row factors V; , to have similar singular values. Under a similar rationale, we
leverage the regularization terms in g; to prevent too radical U, and Uy ,;’s, as such regularizations are
easier to work with in the presence of the constraints Ung(l-)yl = 0. Here, the parameter § controls the
strength of the regularization.

Since term f; and g; are both nonconvex, and the feasible set corresponding to the constraint UgTU(i)J =0is
also nonconvex, the problem equation [3]is nonconvex. In the next section, we will propose a gradient-based
and distributed algorithm to solve the nonconvex problem.

3.2 Extension to auto-encoders

The model equation [I] is based on linear embeddings of U and V. As a natural extension, we use auto-
encoders (Goodfellow et all 2016) to find the nonlinear embeddings in data. If some entries of a matrix M
are missing, we use M to denote the padded matrix M whose unobserved entries are simply replaced with
0. For auto-encoders, the feature matrix U is replaced by an encoder network Nety : R? — R” that maps a

column of matrix M?f)s into an embedding vector with dimension r, and the coefficient matrix V is replaced

by a decoder neural network Nety : R” — R? that maps an embedding vector with dimension r to the
reconstructed observation vector in R?. We use U and V to denote trainable weights that parametrize the

neural networks. To accommodate the heterogeneity of features from N different M?f)s, we also introduce

a shared encoder Nety, and N unique encoders {Nety,, ,} to generate the embeddings. All encoders have
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the same architecture but are parametrized by different weights. In analogy to equation [3] we thus propose
the following objective for the nonlinear version of HMF,

v 8, Vi [£(Mo Nty (Netu, (M) + Nevuq,, (ME) )) + R (Us, Ui, V)|

such that, F(Nety, (M. ;))" F(Nety,, (M) =0, Vj€ [ngl, i€ [N]

(5)

In equation [5, we use a compact notation Nety, (M‘(’Zb)s) to denote the application of Nety, on each column
of M?f’)s. { is still a loss metric. R (Ug,U(i),l,V) is a regularization term that prevents the over-fitting of

the neural network. In the constraint, F (-) is the folding operator that folds an r-dimensional vector into
k vectors, each with dimension r/k. The constraint f(NetUg([M?lb)s]_, ))T}"(Netum l([M‘(’gs]:’j)) =0is a

“group orthogonalization condition” that requires the k folded vectors generated by the shared encoders to

be orthogonal to k folded vectors generated by the unique encoders for each column of M‘(’bs Such group

orthogonalization constraint is a natural extension of the linear constraint in equation [3] and encourages
Nety, and Nety,, , to encode different embeddings.

We call this formulation heterogeneous auto-encoders (HAE).

4 Algorithm

This section will develop the heterogeneous matrix factorization (HMF) algorithm and its extenstion to opti-
mize the heterogeneous auto-encoder equation [f

4.1 Heterogeneous Matrix Factorization

We use f to denote the summation of f;’s over different sources i,
~ N ~
f(UgAViiy.g: Uiy Vi at) = Zfi (6)
i=1

The objective f is differentiable. Thus to optimize equation 3| one can calculate the gradient of ﬁ with
respect to its variables as,

Vu,fi =0V, + 28U, (UFU, - 1)

Vv fi=0TU,

Vuefi =V +28Uxu, (Ug;),zU(i),z - I)
va,,,fi = E/TU(Z')J

where ¢/ denotes the gradient of the empirical loss ¢, ¢/ = VM“)E(M(Z-), l\A/I(i)).

The constraint U:;,FU(i),l = 0 poses challenges to the optimization. One naive idea is to use projected gradient
descent to handle this constraint. However, the projection can not be easily implemented as the feasible
region is nonconvex. A few works also introduce infeasible updates when the constraint is complicated,
including ADMM (Hong & Luol [2017) or SQP (Curtis & Overtonl, 2012)). Such approaches often introduce
additional tuning parameters to balance the objective and the constraint.

We take a different route by exploiting a special invariance property in equation [3] More specifically, for any
R € R"*"™.® we can apply the transform ¢r on U, and Uy,

R (Ug, Vi) Ugiyas Vi) = (Ugs Vi g + ViR, Ugy s — UgR, Vi) )

without changing f;: fi(Ug, V(5).0- Uiy, Vi) = fi (er (Ug, Vg Uiy Vi) -
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The invariance property is a result of the special bi-linear structure in equation [4l One can use such
invariance to ensure the feasibility of the iterations. By choosing R = (UgUg)_l U;U(i)yl, the transform
R automatically corrects V ;) , and Uy ;, such that Uy;) ; is orthogonal to U, without changing f;. Based
on this fact, we can propose an iterative algorithm. In each epoch, we use ¢r to correct the variables to
ensure feasibility. Then we use gradient descent on (Ug, V() 4, Uy, Viy,) to decrease the regularized
objective. A pseudo-code is shown in Algorithm [I}

Algorithm 1 HMF
1: Input matrices {M(i)}fil, stepsize 7
2: Initialize Uy 1, V(i)’g’%,U(i)’l,%,V(iMl to be small random matrices.
3: for Iteration 7 =1,...,R do
4: fori=1,---,N do

5: Correct Uy r = Uy -1 — Ugr (U;{.,—Uw)_l Uy UGy iy

6 Correct V() gr = V(i) gr—1 + V(i),lfrUé)_l.T,;Ug,r (Uff};TUU,T)il
7 Update Uy g,7+1 = Uy r —nVu, fi.

8 Update V<,;)_g_7+% =Viygr —nVv,fi-

9: Update U(,,).,.’TJF% =Uu,r —nVug,, fi-

10: Update V(i).l,7+l = V(j’)"l_’T — 7]VV(I)_If7;.

11: end for ,

12: Calculates Uy 41 = % Z}\,x Uiy, r+1

13: end for

14: Return Ug g, {V(i),0.8}: {Uw) .0} {V@).,r}

In Algorithm [I] we use 7 to denote the iteration index, where a half-integer denotes that the update of the
variable is half complete: it is updated by gradient descent but is not feasible yet.

One salient feature of algorithm [Iis that it is distributed in nature. Suppose there are N computation nodes,
each holding one observation matrix M(;y. Then, Algorithm |I| can be run on these computation nodes with
the help of a central server. In such a scenario, node ¢ carries out all computation from line 5 to line 10 in
Algorithm |I| (colored in teal) and sends the updated copies of U(;) , to the central server. The server then
takes the average in line 12 (colored in brown) and broadcasts the averaged Uy to all nodes.

The matrix inversion in algorithm [1| takes O(r$ + rg (i)) operations, all other matrix productions take
O(nina(r1 + 72,;))) operations. Therefore if 1 and ry (;) is dominated by n; and ng, the computational
complexity of one single iteration is O(nina(r1 + r2,;)))-

Algorithm [I] can be readily extended to train the autoencoder in equation [5} The specifics of the training
algorithm is presented in Appendix.

5 Convergence Analysis

In spite of its simplicity, Algorithm [I] has provable convergence guarantees. In this section, we first show
that if £ is the square error (SE), HMF can converge into the optimal solutions, which also has a statistical
error upper bound. Furthermore, when ¢ takes generic forms, HMF will converge into KKT points.

In this section we use B(Bj, Bz) to denote the set of variables with bounded norms, B(Bi,B;) =
(x; U], |U(i)7l|| < B1,||Vig V(i),lH < Bj). We relegate the proof of all theorems in this section
to the supplementary materials.

)

5.1 Square Error

2

, measures the sum of the square of the
F

element-wise difference between M(;) and M(i). Setting ¢ to ¢°¢ naturally generates the formulation of

The square error, denoted as £SE(M(Z-),1\A/I(¢)) = HM(Z») — M(i)
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matrix factorization. Consequently, we thoroughly investigate the convergence behavior of HMF with respect
to the SE.

Before presenting the convergence results, we briefly review the concept of misalignment proposed in [Shi &
Kontar| (2024)). Intuitively speaking, misalignment characterizes the avarage “minimal difference” among the
subspace spanned by a series of vectors. More formally,

Definition 5.1 (0-misalignment) We say {U* )}, are O-misaligned if there exists a positive constant
0 € (0,1) such that, Amax (% vazl PU*(W) <1-86.

where we define the projection matrix Py € R?*? for a matrix U € R¥*" as Py = U (UTU)f1 U7,

With the definition of misalignment, we are able to show the following upper bound on the statistical error.

Theorem 1 (Statlstlcal error) Consider the data generation model equatzonl Suppose that (i) the signal
part U* V (i1, T U ), lV ) has 1 + 1o nonzero singular values upper bounded by Omax and lower bounded

by omin, (i) unique factors U*(l)J are O-misaligned, (i) Ug, {V l)7g,U(l) LV )l} Y, is one set of optimal
solutions to equation[3 with square error loss £°¢, then, the following holds

>

i=1

2
ST * * - T * *T
0,90, = 0Vl + [B0 - 00w

N
=0(3 (I8 ol +IE W) + (1B ol + 1B 6l2))

i=1

Theorem [1| provides an upper bound on the distance between the optimal solution to equation [3| and the
ground truth. To the best of our knowledge, we are the first to prove such statistical error bound in the
context of heterogeneous matrix factorization. Interestingly, when the misalignment parameter 6 is larger,
the statistical error upper bound in equation [§]is smaller, which means the features are easier to identify. In
the following, we will continue to discuss the convergence into the optimal solutions.

We use qb(i)’T to denote the optimality gap at iteration 7 of HMF for client 4, ¢,
fz( g, Ta (i),9,7> U(i),l,‘m V (2),1, 'r) fz( g, Ta (i),9,7> U(i),l,‘m V(i),l.,‘r)' ACCOI‘dngly, the total Optlmahty gap
is defined as ¢ = > ;" ¢(;),r- The following theorem establishes HMF’s linear convergence.

Theorem 2 (Convergence of HMF) If the assumptions in Theorem (1| are satisfied, and additionally, the
following conditions hold: (i) M;) = U* V*%;) + U*(i),lv*ﬁ),l + E*(;), where HE*(i)HF = O(00min), (%)

the initial optimality gap satisfies ¢p1 = (91 = Iznm) (#ii) the stepsize satisfies n = O (021

Then, there exists a constant C' > 0 such that the iterations of HMF satisfy
¢r < (1-Cn) "' (9)

The first condition in Theorem [2/imposes an upper bound on the noise matrix so that the benign optimization
landscape is not destroyed by the gross noise. The second condition in Theorem [2requires an upper bound on
the initial optimality gap. Roughly speaking, this condition ensures that the iterates do not become trapped
at a sub-optimal local solution and lie within a basin of attraction of the global solution. We note that
recent results have relaxed this condition for other variants of nonconvex matrix factorization by resorting
to small, random, or spectral initialization techniques (Li et al [2018b; [Stoger & Soltanolkotabi, 2021} Ma,
& Fattahil, 2022; [Ma et al., [2022; Tu et al 2016; [Ma et al., [2018). We believe such techniques can be used
in HMF to relax the aforementioned initial condition. In fact, in our simulations, we observed that HMF with
a small Gaussian random initial point converges to a global solution in almost all instances.

We leave the rigorous analysis of this observation as an enticing challenge for future research. Finally, the
last condition in Theorem [2| imposes an upper bound on the stepsize of our algorithm to guarantee its
convergence.
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5.2 General Loss

Under a generic Lipschitz continuous loss function ¢, less geometric information is known for the loss land-
scape. Still, we are able to prove that Algorithm [I] will converge into a KKT point to problem equation [3]
In this section, we assume 75 (;) = 72, without loss of generality.

Theorem 3 (Convergence of HMF under general loss) Suppose that the following conditions are sat-
isfied for HMF: (i) there exist constants Bi,Bs > 0 that can upper bound the norm of all iterates
(Ug,{V(i)7g,U(i)7l,V(i)7l}) € B(B1,Bs2), (i) ¢ is L-Lipschitz continuous, (iii) the stepsize satisfies
n=0 (ﬁ) Then

. 7 2 _ -1
epin (V[ =0(T7).

It is worth noting that at KKT points of problem equation the gradient norm is zero ||V f H =0
Hence, Theorem [3] essentially characterizes the rate for Algorithm [I] to converge into KKT solutions. Such
convergence guarantees are not attainable for the previous heuristic algorithms, including JIVE (Lock et al.)
2013), COBE (Zhou et al.| [2015)), BIDIFAC (Park & Lock, [2020), and many more, while HMF is guaranteed
to converge. The improvement results from the introduced correction steps in Algorithm

6 Experimental Results

In this section, we present the results of the numerical simulations. We use a synthetic example and
three real-life case studies. Code for all numerical studies is available in the following repository:
https://github.com/UMDataSciencelLab/hmfl|

6.1 Synthetic Data

We use synthetic data to examine the numerical

convergence of HMF. We generate data according to Shared factor error Unique factor error

the model equation E where U*y, U*5y1, V45,4, ,

V*), are randomly sampled from Gaussian dis- 10

tributions. Then we deflate U*(;); to satisfy the 10-1]

requirement U*ZU*@)J = 0. The noise E*(; is

set to 0 to examine the convergence behavior of 1024

our algorithm better. We fix no = 100 and select

ny € {30,60, 120} to see the effect of different obser- 1073

vation matrix sizes. The ranks of the global and lo-

cal components are set to r; = r5 = 3, and the num- 1o~

ber of clients is NV = 100. We run HMF on the gen- ‘ ‘ ‘ ‘ ‘ ‘

0 200 400 0 200 400

erated data with the decision variables Uy, U,

Vi),g V), initialized as small Gaussian matri- g igure 1: Shared factor error and unique factor error
ces. The errors Zf\il HUgvTVZ)’g,T - U*gV*a%g R (log-scale) in each iteration.

N *
and 3, HU('L-),Z,TV’(I;)J_’T -U (i),lV*,(l;)’l . are cal-

culated in each iteration and plotted as shared fea-
ture error and unique feature error in Figure 1| It can be observed that after a few iteration&ﬂ the errors
decrease linearly, which is consistent with our theoretical guarantee in Theorem [2]

We also compare HMF with three representative baseline algorithms on the synthetic dataset. To simulate
the effects of missing entries, we uniformly randomly remove a subset of entries in each M(;). Then we run
HMF with £°¢, JIVE, RJIVE, and perPCA on the partially observed {M;)} and calculate the subspace error

IThe initial sublinear convergence of the algorithm is due to the fact that our initial point does not satisfy the condition of
Theorem @ However, once the iterations reach the basin of attraction of the global solution, the iterations converge linearly.


https://github.com/UMDataScienceLab/hmf
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Table 2: Subspace error under different ratios of missing entries.

Algorithm 50% 10% 5% 1%
RJIVE 7.9+0.1 5.9+0.1 5.9+0.1 5.9+0.1
JIVE 0.52 & 0.01 (5.440.1) x 1072 (2.6 £0.1) x 1072 (5.240.2) x 1073
perPCA 0.51 4 0.01 (5.4 +0.1) x 1072 (2.6 £0.1) x 1072 (5.2+£0.2) x 1073
HMF (4.54+0.7) x 1072 (2.04+0.2) x 10~¢ (7.3+0.4) x10~7 (3.4+0.3) x 1078
defined as ||Py, — Pus, |? +% 5V [Py, — Pu,, ||i The missing entries are treated as zero in JIVE,

RJIVE, and perPCA. We run the experiments from 3 different random seeds and calculate the mean and
standard deviation of the subspace error. Results are reported in Table. [2 In Table. [2] HMF has consistently
low subspace error, even when the ratio of missing elements is as high as 50%. The result highlights HMF’s
superior ability to recover shared and unique features from incomplete data.

6.2 Case study: video segmentation from incomplete entries

We use an illustrative example in video segmentation to demonstrate the application of HMF. The video comes
from a simulated surveillance dataset (Vacavant et al., 2013). In the video, multiple vehicles drive through a
roundabout. We uniformly randomly remove 40% pixels to simulate the effects of missing observations. We
divide each video frame ¢ into multiple 7 x 7 patches and flatten these patches into row vectors to construct
observation matrix M;). Then, we apply HVMF to identify the shared and unique signals from the observation
matrices with 71 = 20 and 75 ;) = ro = 30. Naturally, the shared signals will correspond to the stationary
components in the video, and unique signals correspond to the changing parts. We reconstruct the frames
from the shared and unique signals and plot the results in Figure

Figure 2: Video Segmentation. 5 frames from the video are plotted.

The first row of Figure [2] shows 5 sample frames from the video. They are corrupted as many pixels

are missing. The second row plots the reconstructed UgVii) one can see that HMF clearly identifies the

g’
fine details on the background. The third row of Figure [2| are the reconstructed U(i),lvg),l, which also

conspicuously show the moving cars.

As comparisons, we also run benchmark algorithms JIVE, RJIVE, and perPCA on the same dataset with
the same data preprocessing procedures. To evaluate the segmentation performance, we calculate the mean
squared error (MSE) and the peak signal-to-noise ratio (PSNR) for the recovered foreground and back-
grounds. Results are shown in Table [3]
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A higher level of quality in the reconstructed background

and foreground is typically associated with a lower MSE Table 3: Separation performance for different al-
and a higher PSNR. As indicated in Table [3} it is evi- gorithms. BMSE represents MSE for background
dent that HMF consistently achieves lower MSE and higher reconstruction, FSME represents MSE for fore-
PSNR values for both foreground and background recon- ground reconstruction, similar for BPSNR and
structions in comparison to benchmark algorithms, thus FPSNR.

confirming its superior performance. perPCA JIVE RJIVE  HMF
BMSE 0.021 0.024 0.027 0.001
BPSNR 16.7 16.3 15.8 29.8
FMSE 93.7 93.4 94.8 69.4
FPSNR 31.0 31.0 31.0 31.6

6.3 Case Study: Stocks Market Data

HMF can also be applied to data from the financial market.
As a proof-of-concept, we analyze the daily stock prices of
214 stocks from January 2, 1990 to November 9, 2017. The goal is to understand the time-specific patterns
in stock prices. These patterns are often related to abnormal market behaviors and provide insightful
information for subsequent trading decisions.

Similar to [Fattahi & Gomez| (2021), we use a time window
of 30 days to group the stock prices into different batches, =
and analyze the common and unique features among these o D

batches. Each batched data matrix M(; has dimension
214 x 30. The unique features represent structural differ-

107 I 1600

8
r 1400

|
ences in the stock prices in each batch, thus signaling sudden ]
changes in the market. To find the unique features, we apply (A \ | 1200
HMF on the batched data to extract U ;’s and V(;),;’s. To 1 l | 1000
measure the “heterogeneity index” in each batch, we calcu- ] ‘ } ’ H
late the column-wise £1; norm of the signal matrix U(i),lvg;” i [ 800
O

for each i. The heterogeneity indices are plotted as the blue  °
curve in Figure To provide better insight, we also plot v
the SP500 closing prices in the same figure.
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From Figure [3] one can observe that almost every significant
historical market crash (shown as sudden drops in the orange
curve) corresponds to a peak in the heterogeneity index. We i >
also identify 4 major periods when the heterogeneity index 2014 The orange curve is the SP500 closing
has several large peaks. By comparing these periods with Prices at the corresponding dates. We label
the history of the global financial market (Wikipedial 2023), 4 periods where the heterogeneity index has
one can see that A corresponds to the “dot-com bubble”, large peaks

B corresponds to the “September 11 attack”, C corresponds to “stock market downturn of 2002”, and D
corresponds to the “2007-2008 financial crisis and the aftermath”.

Figure 3: The blue curve denotes the hetero-
geneity index of 214 stock returns from 1998 to

6.4 Case study: rating prediction on MovielLens

The ability to effectively distinguish between shared and unique features is also beneficial in recommender
systems. This is exemplified in the MovieLens-100k dataset (Harper & Konstan| 2015). The dataset contains
10° ratings (1-5) on 1682 movies from 943 users. Additionally, each movie is labeled with genre labels, such
as action, adventure, or animation. There are 19 genres in total. Notice that each movie can have more than
one genre label. For example, the movie Titanic belongs to both the romance and drama genre.

To characterize the genre information, we first cluster movies into different groups according to the genre
labels. Different groups represent different sources. More specifically, for movie m, we use multi-hot encoding
to create its genre information vector g,, € R, whose j-th element is 1 if movie m belongs to genre j. Next,
we normalize g, and use K-means clustering to cluster the normalized g,,s into 10 groups. For each group,
we construct user-movie rating matrices M(;). Each M(;) has 943 rows, and its number of columns is equal
to the number of movies in cluster 7. Thus M, is highly sparse. Then we randomly split each ;) into 90%

training set Q’Ef)‘”" and 10% test set fo)st and apply HMF with £P%¢ on the Q’E:)‘”"

10
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We use two methods to predict the user ratings on unseen movies: (i) collaborative filtering, which is based
on linear model equation |3 and (ii) auto-encoders, which is based on the nonlinear model equation

Collaborative filtering The standard collaborative filtering method pools ratings for movies from all genres

and exploits matrix completion to extract the low-rank movie features and user features on UZQE:)M” Koren

. These features can then be leveraged for new rating predictions on unseen movies. Though
achieving decent performance, the standard collaborative filtering only finds generic movie features and
neglects the genre information. To incorporate the genre information, we apply HMF to the genre-clustered
ratings M(;) to identify both generic features and genre-specific features. The new predictions are given as

the entries of ﬂgv(i),g + ﬂ(i),lv(i),r

Auto-encoder As discussed in Section [3.2] auto-encoders are nonlinear extensions to matrix factorization
models and can potentially encode richer information. The auto-encoders have been employed in the rating
prediction tasks and have been shown to outperform collaborative filtering based on linear features (Muller|
. The standard auto-encoder approach for rating prediction minimizes the following reconstruc-

tion loss,

. 2
i [P, (M — Nty ety (MP)))|12+ R (U,V) (10
, where M is the observed rating matrix M padded with zero in all entries outside the training set Qyyqin.
R (U, V) is the regularization term dependent on the architecture of the neural network.

There are numerous works focusing on
the architecture of the encoder and de- LSNE Visualization of Movie Features LSNE Visualization of Movie Features

coder network (Zhang et al., 2017; Dar-| o« L8 s R R

0 . o, $0 %P
ban Valipour, [2022; Rashed et al. N e : -'..if:'} }i‘:-;;;::‘

» s ol XA
2019). Among them, sparsely sup- s . .:ﬁ:}g{,: .}* ... "“
ported fully connected neural network , Aot “v” ] % -:,,;-z?;_ PSRt Tt
(SparseFC) (Muller et al., [2018)) achieves RS .-.,.gf': wood C i o :- "-"é’_'r
decent performance. We briefly intro- . N ! ’5 00 4&‘ '; 8 . f_."::;'
duce the main idea of sparse FC for e *?0 N ".:E,;'::’ ’J’s,-‘:‘!‘lrl
consistency. A standard full-connected ~ .y :",;;.,'.-: VR

st : et e S o S

neural network consists of multiple lay- 33 0 RS 530
ers. Layer [ will transform the input ., {'{{::‘ . “zg“z" it
=Y to the output 2 via a linear map- " FARNCA
ping W(l) fOllOWed by a nonlinea’r acti_ -1.5 -5.0 -2.5 0.0 25 5.0 75 10.0 -6 -4 -2 o 2 4 6 8

vation ¢, ie., () = ¢ (WO g0-1)),

A sparse kernel layer chooses a differ- Figure 4: t-SNE plots of movie embeddings. Each dot represents
ent parametrization of the linear map- a movie. Its color denotes one genre of the movie. Left: t-SNE of
ping W® . More specifically, the j-th embeddings from HAE. Right: t-SNE of embeddings from standard
element out the output () is given by, auto-encoders

l ! l l -1
2 = o0 (Lol K@ u)al V),

M, 0

where a;, u; 7, and u;” are trainable parameters. K is a kernel function that can be defined as Gaussian

kernel K (z,y) = exp (—7 |z — y||2> Intuitively, such parametrization would make the weights K(ul(»l), uﬁl))

sparse. Sparse FC networks are constructed by sequentially applying sparse kernel layers. Because of their
superior generalization performance, we use sparse neural networks as the backbones for the encoder and
decoder networks Nety and Nety in equation We implement the architecture and pool M(;) to build
M, then solve equation [L0| with AdamW (Loshchilov & Hutter| [2019)).

As introduced in Section [3:2] we can also employ a heterogeneous version of auto-encoders HAE. More specif-
ically, we use a shared encoder network Nety, and 10 genre-specific encoders Nety,, , to learn both shared
and unique nonlinear embeddings of movies. Then, we use a decoder Nety to predict user ratings. We still
use the sparse FC network as the backbones of the encoders and decoders.

To visualize the embeddings from standard auto-encoders and heterogeneous auto-encoders, we show t-SNE
plots of different movie embeddings in Figure [4]

11
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In Figure it is clear that the embeddings from HAE form clusters dependent on the genre, while the
embeddings from standard auto-encoders do not have a clear structure. These observations are consistent
with our intuition that movies with similar genres should have similar embeddings.

With the fitted models from HMF or HAE, we can predict user ratings on unseen movies. To evaluate the
predictive performance, we calculate the predicted ratings on the test set QS and compare it with the
ground truth. As the movielens 100k dataset is extensively analyzed in the literature, we also report the
RMSE of a few representative benchmark methods detailed as follows,

o Matrix completion (Koren et al. [2009): We implement the standard matrix completion on the
pooled rating matrix M to extract linear features.

e AutoSVD++ (Zhang et al.l |2017): AutoSVD++ is a hybrid model combining a variant of biased
SVD and a 1-layer fully connected neural network.

e GHRS (Darban & Valipour, |2022)): Graph-based Hybrid Recommendation System builds user simi-
larity graph based on user ratings and side information, including age and occupation, then clusters
users into different groups and uses group features to make predictions on the unseen ratings.

o GraphRec (Rashed et al.,|2019)): GraphRec is a nonlinear model that uses a neural network to create
user and movie embeddings. It also considers the graph-based features from the user similarity graph.

The root mean square error (RMSE) of the prediction on the test set is shown in Table For matrix
completion, HMF, Sparse FC, and HAE, we run each experiment from 80 different random seeds and report
the mean and standard deviation. For other methods, we report the performance from the literature.

Table 4: Prediction root mean square error (RMSE) on movielens 100K (10% randomly selected test set).

Method Source RMSE
Matrix completion Koren et al.| (2009) 0.981 £+ 0.001
HMF Ours 0.977 £ 0.001
AutoSVD++ Zhang et al.| (2017) 0.901
GHRS Darban & Valipour] (2022) 0.887
GraphRec Rashed et al.| (2019) 0.883
Sparse FC Muller et al.| (2018]) 0.8838 £ 0.0006
HAE Ours 0.8800 £ 0.0006

In Table [ it is clear that HAE has the lowest test error, suggesting that the heterogeneous features learned
by HAE are more accurate in terms of predicting the users’ preferences. Therefore, the genre features bring
useful information to the movie ratings prediction.

7 Conclusion and Discussion of Limitations

This work proposes HMF that solves a constrained matrix factorization problem to extract shared and unique
features from heterogeneous data, and extends the model to auto-encoders. One avenue for future research
is to consider scenarios where the rank of feature matrices 7y and ro are unknown and must be over-
estimated instead (Ma & Fattahil [2022; [Stoger & Soltanolkotabi, 2021)). Such a setting (also known as
overparameterization) has been extensively studied for the classical matrix factorization literature. Another
promising direction is to improve the initialization condition for the guaranteed convergence of our proposed
algorithm. Although the theoretical guarantee of our algorithm (Theorem [2) relies on the availability of
a good initial point, we hypothesize that this requirement can be relaxed, as the algorithm works well in
practice with a small and random initialization.

12
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A Appendix

This supplementary material presents the proofs of Theorems 1, 2, and 3 from the main paper.

B Proof of Theorem 1

For a matrix A € R™*", we use ||A|| or ||A||, to denote A’s operator norm and ||A|| to denote its Frobenius
norm.

The proof mainly consists of a perturbation analysis of the objective (4) in the main paper. We assume

that the loss metric is the square loss ¢°¢ throughout this section. We firstly estimate the subspace error of
HPI} - Pu-, ’ and HPﬁ  — Py . Then we estimate the reconstruction errors.
g F (i),1

|| g

The KKT conditions for the optimal \Af(i),g and V(i)’l are,
1 X T 2 or oy
(M@ = OV, = UaVE,) 0, =0
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Considering the constraint ﬂgﬂ(i)’l = 0, we can solve \Af(i),l and V(i),l as,
N e\
Vg =Myl (Ug Ug)
. . . . -1
Vioe =Mu U, (0F) 06,
Then the objective becomes,

N P Nt TN N N N -1
fi(Ug {T )1} = HM -0, (070,)  O7Mg - Uga (07),000)  UaM)

b UTU, -1 p Uzl U I2
+§ gUYg — F+§ (@)1 © (i)l —

1 /3 - ﬁ
e O it | L e T

Notice that if Uy and {U;;} are optimal, we must have UZU, = I and IAJ(Ti) Uiy = 1, since we can always
use Schmidt-Gram procedure to orthonormalize the columns of U, and {ﬂ(i))l} without changing Py; and
{Pﬂ(‘) l}. Therefore without loss of generality, we consider the problem

N
* min HMZ-—PAMZ»—P
UMU@,L}; ()~ Po, Mg

such that ﬂgﬂﬁ(i)’l =0, Viel[N]

2
v, Mo,

By our assumption on the data generation process, U*, and {U*(;);}’s are also feasible. Thus the objective
evaluated at U*y and {U*(;);}’s cannot be smaller than the optimal objective,

ZHM() Py, M@ — Py, M)

=1

2 N
=2 Me ~Pu M~ Poe M
=1

This is equivalent to

N N
Z:Tr ((P +Py,, l) M(i)M%;O > ZTr ((PU*Q +Pu-,,,) M(i)M5)> (11)

i=1
On the other hand, we can expand M(i)ME";) as
T
T * *T' * *T' * *T * *T
MM = (U, VT, + U0V 0) (U5 V'l + U0 Vi)

* *«T * *T * *T
+(U dV (g T U @V (i) )E o +Ew (U V(g U@V (>l> +E'HE)

For simplicity, we use F*(;) to denote

T
* * T *T * * T * T * «T
F* @) = (U V* (1 +U (i)’lV*(i),l> E (i) +E*(2) (U Vv (i).g + U (i)’lv*(i),l) +E ()E )
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Then the following holds,
Tr (M(i)Ma) ((PU*Q +Pus,,) - (PUq n Pﬁm,l)))
— (0, v v ) (U, v e v ) (P P —(Py + Py
= gV (g T U@V ()0 oVie + U@V 0a) ((Pur, +Pue) U, T E 00,
+ T (F*) ((Pus, + Pus,) = (Po, + Poy,,))) (12)
The first term in equation [12]is equal to
T
* *T * *T' * *T' * *T
Tr <(U Vs T U0V ha) (UaVil, + U vl) (1 (P, +PU(W>))
From assumption (i) in Theorem 1, we know
T
+T +T +T «T 2
(U V'l + U 0a V) (U VT, + U0V l) = (Pus, +Purg,,) ok,

Since (I — (Pﬁg + Pﬁ(f) l)) is symmetric positive semidefinite, we have,

* *T * *T' * *T * *T T
Tr (U gV (i),9 + U@V (i),l) (U gV (i),9 +U )V (i)7l> (If (PUg +Pﬂ(m))
Z 01211inTr ((PU*Q + PU*(i)J) (I - (Pﬁg + PGUN)))
By Cauchy-Schwartz inequality, the second term in equation [12]is lower bounded by,
Tr (F*(i) ((PU*H + PU*(t‘)J) - (Pﬁg + Pﬁ(i),l)))
> = [Pl || ((Por, + Pu ) = (Po, + Puy, )|,
= V2 T (P, + P, ) (1 (P, + P, )
Combing them, we can derive a lower bound on equation [12] as
Tr (MM, ((Pus, +Pus,,) = (Py, + Py, )
T min IY ((PU*g +Pu, ) (I - (Pij + Pﬁ(w,l)))
-2 ”F*(i)|’F \/Tr ((PU*g + PU*(i),z) (I - (Pﬂg + Pfj(i),l)))

Summing up both sides for ¢ from 1 to N, and considering equation we have,

0>o2i iTr ((PU*g +Pus,,) (I - (Pﬁg + PU(i)J)))
i=1

N
VIR T (P, +Pos) (1 (P, + P, )

N
> 0tin ZTr ((PU*g + PU*(i)J) (I - (Pﬁg + Pﬁ(i),z)>)

i=1
N N
— V2 Zl HF*(Z’)Hi«“ ;ﬁ ((PU*g + PU*(i),z) <I - (Pﬁg + Pfj(i),l)))

17



Under review as submission to TMLR

where we applied Cauchy-Schwartz inequality in the second inequality.
Therefore, one can deduce,

i=1 Umin

As {U*(;),} are f-misaligned, from Lemma 2 in [Shi & Kontar| (2024), we have

N
ZTI" ((PU*g + PU*(i),l) (I - (Pflg + Pﬁu),z)))

i=1

N
0
> 2 <NTr (PU*g - PU*QPGQ) +3 T (PU*(W _ PU*(i),lei),l))

=1

We can thus conclude,

L2
’2 _ w (13)

F Oot

min

N
2
N||Pu-, - Py, HF +>|Pui. ~ Py,
i=1
Finally, we prove an upper bound on the reconstruction error of the local and global signals. Notice that
7 7T * *T' _ N 1T *T
[0 =0V E] = [Po,Me - 070V,

* *T * *T * * *T
= HPOg (U gV (i).g +U (i)JV (i)vi) +PﬁgE ) -U gV (i),g’

F
« 3T T P .
= ‘)Pﬁg (U gVig t U*(i)’lv*(i)ﬂ‘) B U*QV*“)’QHF + HPﬁgE ®

F
<[ro. -

| O+ B | (14)
We have,
U VT v v | =l M v v |
9V (@~ 5 9Y Dyl T || OO T 9 (||,

2
<2||Pg, —Pu-, || o2+ 2B

Similarly we can prove
U V7~ o VI | =Py My —U e v
@Y @) T @Y @ p T T Oy @ T @Y )|
max

2 N )
<2|[Py,,, ~Poeo |, B 2 (B

Combining the two inequalities with equation and considering the fact that ||F*(,L-) || < 20max HE*(,-) || Ft

||E*(i) Hi, we can prove (7) in the main paper.

C Proof of Theorem 2

In this section we will present the proof of Theorem 2 in the main paper. The proof of Theorem 2 consists
of 2 stages. In the first stage, we show Algorithm 1 converges into stationary points. In the second stage, we
analyze the local geometry of objective f and show that Algorithm 1 converges into the optimal solutions

18
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linearly. The major technical difficulties lie in the second stage, where the constraints U;FU(Z-)’Z = 0 make
the local geometry analysis complicated.

We will start with a few lemmas and prove Theorem 2 at the end. More specifically, Lemma connects
1}). Lemma

the assumption on E(;) to a few properties on the optimal solution (fJg, {V(i%g,ﬂw,v(i),

estimates the Lipschitz constant of objective f. Lemma constructs the so called sufficient descent
inequality. Lemmas [CE[CT], and [C.8 are related to the geometry analysis. Finally, Lemma [C.10] shows
the PL inequality of the objective.

Lemma C.1 If M(;) = U*gV*a),g + U*(,-)JV*E)J + E(;), where

» E(;)’s norm are upper bounded

1 2-3 6 2\ 1
. 1.5 Omin - Omax Omin
||E(Z) HF < min § ominf 6\/§ Conon Omin B) (2 + ﬁ <O'mm> > s Umingﬁ p—

o U*(),’s are 0-misaligned

e the singular values of U*gV*%’; + U*(i)JV*a)J are upper bounded by opmax and lower bounded by

):9
Omin

: - _ H_ 6 22 _ 2 .
, we can introduce three new constants Gmax = 20max, 0 = 5, and &3,, = 04, /2 such that:

1. The largest singular values of M;y’s are upper bounded by Gmax-

2. There exists constants 0, &gap > 0 such that H% iVleJ()z

i (O VT, + i VE ) = R [|* 2 62, and R || < ¢

S for every i.

gap’ 86 max

Remark If the condition number Z=2x = (O(1), the upper bound on the norm of E;) can be written as
Bl < O (omind).

Proof. We first prove Claim [l By triangle inequality,
* T * T
Mo | < [0V + U0V Tt + B | < o + O = 20

where we used the condition HE(i) || < ||E(i) HF < Opmind" 56\1/5 Imin < g

Omax
Then we prove the first inequality of Claim [2] Notice that,
1 1
szﬁm,z < NZ (i)
i=1 i=1

N Z H Uy NON:

D Sl LTt

2
< 7 . Therefore,
F 9 min

From equation we know that Zfil HPU*(W — PG(») l)

1 1| 2
N 2 HPU(i>«l ~PU [, < VN 2 HP‘%),L ~Pu|,
i=1 =1

2N [F
= \/ ol N =02

min

19
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where the last inequality comes from the fact that HE(i)

20max [Bo [l o+ [Bo 7 < 30max [[Bo | < 02400™% 575

< omnd! V5 Eme thus |[Fol,

HF 6+/2 Tmax

Next we will show a lower bound on ¢, (U Vg;) + ﬂ(i)ylva)’l). A fact is that

Tmin (69‘75) gt ﬁ(iwvﬁm)
T T * T T
> Omin (U Vg + U0V To1) = [0,V = U VT | =[O0V - U0V
We know from equation [I4] that
7 xr T
[0, =0V o]+ [TV - 0V,

<[P, P

’F Omax T HPI:](Z')J - PU*(i).l F Omax 1 2 ||E (Z)HF

Therefore, by equation [I3] the above is bounded by

2
Jmax\/ﬁ\/HPfj - PU*g

2
mdxf\/ Ez 1” )HF+2HE* ) H

6o max 2_\/3
< B, <2+\/§§un> < Omin = —

where we applied the condition ||[E* ||, < omin? f (2 + f "mx

Umm

2
o 2Bl

+ HPU(U,Z — PU*(:‘),Z

in the last inequality. Thus

)

Also, since R;)’s correspond to the residuals of the optimal solutions, we have,

1 x7T & 7T
Omin (Ugv(i)’g + U(z),lV(Z)’ ) > Omin

N N
IR | < 1Rl < 4| 2o IR < [ DB lI7 < omin/2 (15)
where we applied the condition HE*(i) H S amin964 \F% in the last inequality.

As a result, we have o2, (U V() +U(l) lV(l ) ||R(Z)H > 62,0

Finally, we will prove the third condition in Claim |2l We can do so by using the condition HE*(i)H <
Omind —— G \F Zmin ip equation and considering the fact that 6 ogap 02:./2, 0= 0/2, and 6max = 20max-

This Completes our proof. O

In the following, we will always assume Claims[I]and [2] are true and prove our results under the assumptions
of Lemma

The two claims are intuitively understandable. Claim |1 I 1| upper bounds the singular values of M;)’s. This is
the standard requirement in matrix factorization. Claim I 1mphes U(,) ;’s should be 6- misaligned for some

nonzero 6. Also, Clalm I restricts the norm of R;)’s to be smaller than a factor of the smallest nonzero

smgular value of U V( ye T U( )JV(%) ;- This requirement is satisfied when the norm of the noise in input
M(;) is not too large i.e., M(; is not far from the linear combination of two low-rank matrices.
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As introduced in the main paper, we use B ({1, (2) to denote the set of solutions with bounded norms:
B(¢1,¢2) = {Ug, {Uwu 1 AV o b IV H 0 [0l < 6Ll Vel s [Vl < ¢} (16)
The following lemma gives an upper bound on the Lipschitz constant when all iterates are bounded.

Lemma C.2 (Lipschitz continuity) In region B (B1, Bs) as defined in equatz'on gi and f; are Lipschitz
continuous:

Hng U Uz)l) sz(UgaU(z)l)”

2 (17)
< Lg\/HUlg N UgHi + HU/(i),l - U(i)JHF
and
Hvﬂ'(U;a Vl(i),g? Ul(i),lv V/(i),l) —V£i(Ug, Viiyg. Ugiya, V(i),l)HF

2 2 2
110, OE+ Vios Vol SO+ [Vior Voo [

for {Ul {V/ o {U( b {V(Z AU AV 6)g b AU {V @y} € B(B1, B2), where Ly and L are con-

stants depen ent on B, By, Gmax, and 3,
L, =28(3B% +1)

and,

L= \/(Buax +3B1B)? + BB + 2B + Bi + (B} +26(3B% + 1))2
Proof. We will firstly show the Lipschitz continuity of g;. We know that
VUggi(U U(Z 1) = Vu,9:(Ug, Upy,)
= 28U, ((U,)"U, - 1) - 26U, (UJ U, - 1)
Therefore by some applications of triangle inequalities, we have,

HVUggzU U ) — Vu,9i(Ug, Ugyy HFS‘

(3B7 4+ 1)

This proves inequality equation The Lipschitz continuity of f; can be proved similarly. We will calculate
the gradient of f; over each variable, and bound the norm of the difference of the gradients.

Vu,fi(Uy, Vi Uy Vi) = Vu, fi(Ug Vi g Uy, Vi)
= (U(Viy )T + UiV )T =My ) Vi), + 26U, ((U,) 70, 1)
—(Ug(Viiya) " + Uiy (Vi) = M) Vi g — 28U, (U7 U, — 1)

/

Also by triangle inequalities, when (U;NV/( U(i)’l,V/(i)’l) and (Ug, V)4, U1, Vi) are in B(B1, Ba),

i),9”
we have:

Hngﬂ(U;,V'(M,U'(i)J,V/(i)J) —Vu, iUy Vi g U(i”,V(i)J)HF
< (B3 +20(352 + 1)) [U, = U, |+ Gumax +3B152) |[Visy, — Vi
+B; HUl(i),z - U(z‘),zHF + B1B; HV'(W - V(i)’lHF
Then on the derivative over V(i),g,
Vo Fi(Ugs Vi s Uty s Vi) = Vv, fiUg, Vi 0. Uy i, Vi)

’ ’ ’ ’ T ’ T
= (U3 (Vi) + Ul (Vi )" =Misy) Uy = (Ug(Vi) "+ Ua(Vin)” = M) U,
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Thus by similar calculations, we have,

|9V B0 Vi 0 Ul Vi) = I3, FiUp Vi U Vo),

S (6max + 3BlB2) ‘

2 ’
9| + Bi Hv(i),g - V(i),QHF

+ B1B> HU(Z)’Z - U(z),lHF + B% Hv(z),l - V(Z)JHF

And,
HVUwﬁ(UgvVu) Ul Vi) = Vo JiUg, Vi g U Vi, z)H
2
< By ‘ N r + BBy Hv(i)’g B V(i)’gHF
+ (B2 +28(3B% + 1)) HU’W _ UWHF + (6mmax + 3B1By) HV;Z.)J _ VWHF
Also,

HVV(n,lfi(Ug’V(Z) U()l’V(l) VV()le(UwV(Z)g’U(Z)bV()l)H

< BBy HU;, - UgHF + B} Hv(i),g - V(i),gHF

F

+ (Omax +3B1B2) [ Ul = Ugo|| + B [Vios = Vi,
Combining the 4 inequalities, we have:
HVfi(U;, V,(i),g’ U,(i),l’ V/(i),l) - Vﬁ'(Uga Vg Uiy V(i)vl)Hi
= Hngfi(U;aV/(i),g>U/(i),l7V/(i),l) - VUgfi(UgvV(i)»g’ U(i)»l’V(i)J)Hi
+ HVV<71>,QJFZ'(U.:J’V/(i)yg’U/(i)»l’V/(i)yl) - vvm‘gﬁ(Ug’V(i)wU(i) b Vi) H2
+ HVUwﬁ(U;’VEn,gvUI(z‘),z’V D) = VU, filUg: Vig Uwa, V H
+ HVVU),ZJ‘Z‘(U;;’V/( 0.9 Ulinas Vi) = Vi fiUg, Ve Uy i Vi H

<12 (\

where L is a constant defined as,

2 ’
ol Vi = Vol + [a = Vil + Voo~ Vol

L = \/ (uuae + 3B1B)? + BEB3 + 2B + B + (B} +26(3B% + 1))2

The Lipschitz continuity allows us to prove the following sufficient descent lemma.

Lemma C.3 (Sufficient descent inequality) For {U, -, {V() ¢} {U)r} {1V} € B(B1, B2), if
||UZ;TU9,T — I|| < % and HU%’;)JFFU(O’Z’T - IHF < % for every i, and the stepsize n small enough,

1
n <min { = (2B1B2(2B1Ba + Gax) + 28BH(B} + 1) + (Ba(2B1By + Gmax) + 28B1(B} +1))°)

1
1}
2 (L +2728B% + 400L,B?)
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where L and Ly are defined in Lemma then the iterates of algorithm 1 satisfy the following inequality,

f(Ug T+1, {V(’L ),9,7+1>5 U(i),l,7'+l7 V(i),l,f+l}) - f(Ug,Ta {V(i),g,‘m U(i),l,7'7 V(i),l,‘r})

(HfVU i,

Proof. We first look at the correction step. Notice that the function value f; before and after correction is
the same:

N
=112 =112 <12
D Vv fille + Vo il + Hva,sz'HF)
i=1

Ji(Ug 1, Viiygr+1: Uy ir+1s V)i r+1)

2
T T
= HM(i) - Ug,THV(i),g,TH - U(i),l,r+1v(i),l,r+1HF
N
= M) = Ugra (V(i>,g,7+g + Vi 14100 1743 Ugri1 (Ugr1 U ria) )

—1
- (U(i),l,‘r+% —Ugrn1 (U£T+1UQ7T+1) U;T-&-lU(i),l,TJr%) Va),l,r-ﬁ-lui’

- HM“')J“ U1V ooy = Uoared Vioar Hi
= filUgrt1, Vi gri 1 Uy i1 Vi lr+1)
For g;, we have:
9:(Ug,r+1, Uiy 1r41) = 9i(Ugri1, Uiy 1 1)
= <VU“>*lgi(U-‘7’T+1’U(i)’l’”%)’U%TH (U§T+1Ug7f+1)_l U§T+1U(i),l,7+%>

L T —lysr 2
+ ?g HUg,TH (Ugrt1Ugrs1)  Ug UGy irss »

where L, is the Lipschitz continuity constant of g;. For the first term, we have,

<VU(i),Lgi (Ugﬂ"'rl’ U(i),l,T+%)7 Ug77'+1 (U;T-Q—lUg,T-ﬁ-l) U£T+1U(i)7l,7+% >

T T
=Tr <2BU(1) lr+1 (U(i),l,T-&-%U(i)J,T"F% - I)U(z) l,7+3 UQ»T+1 (U97T+1U977+1)

Ug,f+1U<i>7z,r+%)

Since HU%;)J,TU(Z')JJ — IHF < %, we know,

HUf) s Uaar+d — IHF
= HU(l) I T+1U(‘) Lr+i — I- an(<) lfTU(z A 77U(TZ ZVU(~) z.fi + 772VU<~> lfTVU(i),lﬁ F
|08 Va0r =1 + 0 (1Yo Fill B+ Vo, Fill B+ 0|V o, fil)

1
20

IN

where in the last inequality, we applied the condition that HUa) 12U — IH < % and 7 is not too large,

1
n < —0(23132(23132+amax)+2ﬁB1(Bl+1) (B2(2B1B2+6max)+2ﬂBl(Bf+1))2)

As,
HU T+1U97+1 UT UQTH
ro f fr Fyug
B A DU SRS S {

<n (23132(231132 + Gma) + 2BB2(B2 + 1) + 1 (Ba(2B1 By + Gmax) + 28B1(B2 + 1))2)
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Since 7 is sufficiently small
3
n < 20 (23132(23132 + 6max) + 28B7 (BT + 1) + (B2(2B1Ba + 6max) + 28B1 (B} + 1))2)
we know that HUgT,THUg,TH — U;TUQJH < %. Then, by Lemmawe have,

|0 U)

2
H(U Uyr)” 1H UL 1 Ugr = UL Uy |

< J50
H 97 H HU r+1Ugre1 — UgrUg,TH
Lemmashows that when HU;T IHF < 2, we have H (U;‘;TUQVT)AH < 1+3 =4. Combining these
inequalities, we have H (U£T+1Ug,r+1 H < 10.

Finally, we can look at

T
HUg7T+1U(i),l,T+% P
~ ~ T
=T U v fyry Ul v fi+n*(V / v f
= 11Uy -Ugiy,i,r — n( Ugﬁ) @t — MUy Vug, , fi+n U, N Uy fi

For : N
H (Vu, N) Ugyir F*‘HWUngUm,zfiHF (VU N> Vug.fi B
<emi|[vu, 2|+ vu,, Al

where we bound the second order terms by first order terms considering the fact that
77HVUQNH nVU()z.sz <1

Combining the three, we have,

<VU(i),zgi(Ug,7+17U(i),l,7+l)a U1 (U) 1 Ug 1) U£T+1U(i),z,f+%>
T T
=Tr (QBU('),I,TJF%(U (@)L, 7+% 1 UG T3 I)U(i),z,r+%UgﬁT+1 (UZJHUQ T+1) UgTT+1U(i)7l,r+é)

<28 HU( i), 0T+ (Ua),l,ﬂ-%U(i) T+3 _I)U( )lT+1U9 T+1 (U;F,THUg»TH H HUg r+1U(i),l,T+§ P

—1

2

T T -1
§2BHU(%‘),LT+% HU@),I,T%U@)J,H%—IHFH(Ug,ng,m) HFHUQ,THU@)JJ-%% .

22
2 / 212 3
<n (HVUQN F+ ||VU(i),lfiHF) 272383
Similarly,
L -1 2
= |[Ugyr <U£T+1Ug,7+l) U§T+1U(i)17+% .
2
2
§79||U9,T+1|| H(Ug,THUg,TH H HU U6t ||,
< f i 712 6
= Vu, 3 F+||VU(,i>,lfiHF 400L, B
Therefore,

2

~ 12
9i(Ugr41, Uiy ,r41) = 9i(Ugr1, Ugyy 1 rp1) < (HVU + HVU(WJ‘}HF) (2728B7 + 400L,BY)
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Also, we know

fi(Ug,TH,V( )9+ Ug )71,7—+%av(i),l,r+1) fz( 9. Vii,gr Uyt Vi)
S <ngf~.i7 g, 7+1 — Ug,‘r> + <VV(Z')1gﬁ)V(i)’g,T+% - V(i),g,7'>
+ <VU(1),zfi7 U(i),l,’rJr% - U(i)7l,7'> + <vv(i),l~f7i’ V(i),l,r-‘,—l - V(i)7l,7—>
L 9 2
T3 Ugr41— Uyl + Hv(i),g,”rJr% = Vigr h
f <12 <12 <12
<N Vu, f“vU N + HVU(i),lfiHF + va(i),yfiHF + ||vv(i),zfi’|p

512
L f =2 =2 212
+ 7725 (HVUF’N + ||VU<1:>,LfiHF + ||VV<i>,gfiHF + ||VV(i),lfi||F>
F
Therefore,

+ HU(i),z,T+§ - Uiyur

2 2
oV - V(z’)JwHF)

fTi(Ug,'qul» V(i),g,T—&-l» U(i),l,7'+1» V(i),l,*r+1) - fi(Ug,'r, V(i),g,ra U(i),l,Ta V(i),l,‘r)
=09i(Ug,r4+1, U 1,r+1) = 9i(Ugr+1, Uiy 174 1)
+ fz (Ug,T+17 V(i),g,T«F% ) U(i),l,7'+% ; V(i),l,T—i—l) - fi(Ug,77 V(i),g,'ra U(i),l,'ra V(i),lﬂ')

. i P12 P2 -2

<-n (<vugfi,ngN> Vo fillp Vv fill o + HvVWfiHF)
L A - 2 2

s (5 + 212888 + 4002, 3¢ (HVUQN I Bl 9V A+ v, fi||F)

Summing both side for ¢ from 1 to N, we have:

FUg 1. AV @941 Uy irsts Viyirs1 ) = F(Ugr AV @000 Uiy irs Viyir )

(Ugrs1, Viiy g1, Uy irsts Viyirt1) — Fi(Ugr, Vi g Uty irs Vi)

i
(HfV” d

L
+n? (2 +2728B% + 400L93$>

2

N
~12 ~12 ~ 112
S [Ty I+ Vol + ||vv<i),,fz-||F)
=1

N
=2
(| wed] + Ziwve.

<12 <2
+ HVU(i),lfiHF + va(i),zfiHF>

1
£ 4+2728B2+400L, B’

Therefore, when n < we have:

f(Ug,T-‘rla {V(z ).9, T+17U(i) l TJrl?V(i L, T+1}) - ~( g,Ta {V (i),9,7> U(z) l ‘raV(’ ,l,T})

<3(l7

This completes the proof. |

+Z!|vafz|\ R )

The above analysis suggests that Algorithm 1 will converge to points where the gradients vanish. In other
words, Algorithm 1 converges into stationary points. In the rest of this section, we will analyze the local
geometry around the optimal solutions to (4) and show that such geometric properties essentially allow
Algorithm 1 to converge into the optimal solutions.
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To do so, we will first find one set of optimal solutions that is close to the current iterate. In particular,
given an iterate {Ug -, Vi) g+, Ug)i,r Vi), define:

N

Ug,T = PIAJQU!]’T (UZ—:TPGQUQ’T) (193)
1

~ T -2

Uir = Po,, Utir (U(i)ﬁl)TPﬁ(i))lU(i),h) (19b)

Viigr =MHUu g (19¢)

Vi = MU 1 (19d)

Indeed, the defined solutions are optimal since fJ;TﬁgJ =1, 65)71,76@)’1,7 = I, and 69,7\75)’977 +

ﬁ(i)ylﬁV{i) L = IAJQ\A’E';) 9 + ﬂ(i)7lvz;) ;- Let the difference between iterates and these optimal solutions
be denoted as

AU, ,=U,,-U,,
AViiygr = Vigr = Viar
AU =Ugyir — Ugyar
AViiyair = Vi — Vs

Now we introduce the KKT conditions to (4). The KKT condition relies on the regularity condition that
M(;)’s have rank at least 1 + ro. This assumption is easily satisfied if [|E; || is smaller than oy

Lemma C.4 (KKT conditions for square error) Suppose that {ﬂg, IAJ(i),l, V(i)g, V(i),l} is the optimal
solution to problem (4) in the main paper with square error loss £°¢, and M;y has rank at least r1 +12. We
have

N
> (0¥, + UV~ M) Vi = 0 (21a)
i=1
(0,90, + 0V~ Mey) Vi =0 (21b)
(04T + Owa Vi - M(z‘))T Uy =0 (21c)
UV, + U0V, - Mm)T U, =0 (21d)
U, 04, =1070, =107, , U, =0. (21e)

Proof. The proof is presented in two parts.

LICQ of (4). We will first show the linear independence constraint qualification (LICQ) of the optimal ﬁg,
Vg Uiy, Vit

We begin by proving ﬂg has full column rank. Suppose otherwise, ﬂg has rank rll < r1. Since M;) has
rank at least vy + 7o, the residual M ;) — fJng;)’g - ﬁ(i)J\Afa)J has rank at least 1. Therefore we can find
IAJ;] such t}}at ﬂ;Tﬂ; =TI and fi(fj;, V(i)vg, IAJ(i)J, V(i)_’l) < fi(ﬂg, \A/(i)yg, IAJ(Z‘)J, \A’(i)J). This contradicts the
fact that U, is optimal.

Next we will establish the LICQ of constraints. We define h;;;, as the inner product between the j-th column
of Uy and the k-th column of Uy, hije(x) = [Ug]";[U].x- The constraints in (4) can be rewritten as
hijk(X) = 0,Vi € [r1],Vj € [re],Vk € [N]. LICQ requires Vh;j;(X) to be linearly independent for all ijk
(Bertsekas, (1997, Proposition 3.1.1).
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Suppose we can find constants 1;;; such that Zfil 251:1 ity i Vhije(X) = 0. We consider the partial

derivative of h;;;, over the k'-th column of U(i/)’l. It is easy to derive,

0

mhuk(ﬁ) = 0,003 Uy

where §,;/ is the Kronecker delta function. Then the constants ;;, should satisfy,
T2
Z %—'jk' [Ug}:,j =0
j=1

As the columns of ﬁg are linearly independent, ¢,/ ;- = 0 for each j. This holds for any i" and k. Therefore
Yijr = 0 for all 4, j, k. This implies Vh;;;’s are linearly independent.

Proof of[C]} The Lagrangian of the optimization problem (4) can be written as

2

B 2 B
t3 ||U§U9*IHF+§ HUE)JU(W 7IHF (22)

2
F

N
1
L=5> HUQV%,Q + U@V — Mg
=1
+Tr (Ag,yUg Ugiy,r)

where Ag (;) is the dual variable for the constraint UgU(i),l =0.

Under the LICQ, we know that the optimality of Ijg, {\A/'(im, IAJ(i)J, \A/'(i”} implies the KKT condition.
Setting the gradient of £ with respect to V ;) , and V ;) ; to zero, we can prove equation 2IdJand equation 21d

A N N s \ 1 N
Considering the constraint UZ;U(i)’l = 0, we can solve them as V;) , = Ma)Ug (UZUQ) and Vi, =

MT

. . . -1
(i)U(i),l (UT U(i),l> . Then we examine the gradient of £ with respect to U ;:

(@)1

9 T T X T T
0. (UsVyo +UaVEs = M) Vi + 28U (U7 U —I) + UpAy

. . 1 . . . . -1
Substituting V ;) 4 = M%;)Ug (UgUg) and Vi, = MZ)U(Z-)J (Ua),zU(i),l) in the above gradient and

setting it to zero, we have

(f;g (070,)

+ 25&(1’),1 (ﬁg;),lﬁ(i),l — I) + IAJQA%;))’Z- =0

1 1
vl = 1T = 1T ¥
Uy + U, (U(i),lU(i)J) Uiy, — I> MV,

Left multiplying both sides by ﬁg, we have  Ag s = 0. Left multiplying
both sides by IAJZ)J, we have ﬂa),lﬂ(i),l — 1 = 0. Therefore we also have

N PN -1 . N N N -1 .
(Ug (UZUQ) Ug + Uy, (Ug),lU(i),l) U%;)}l - I) M(;)V i), = 0. This proves equation equationﬁ

Now, setting the derivative of £ with respect to U, to zero, we have

N
=3 (ﬂg%,g + U6V — M(z‘)) Viiy.g +2NBU, (ﬂgﬂg - I) =0

=1

0
oy,

Left multiplying both sides by Ij, we have ﬂgﬂg — I = 0. We have thus proven equation This

completes the proof for equation
O

27



Under review as submission to TMLR

We note that the KKT conditions provide a set of conditions that must be satisfied for
all stationary points of (4). Since Uy,, Vg7 U@ and Vi, introduced in equa-

tion [T9aequation quation quation constitute one set of optimal solutions, and R;y = M;) —
U*gV*(iM — U*(Z-),ZV*E)J, we can rewrite the KKT conditions of the optimal solutions from Lemma as,

N
D R V(g =0
i=1
RV, =0 (23)
R\ U, =0, R} U, =0
Ul Uu, =1, U0, =10 U,=0

From KKT conditions, it is also straightforward to verify that,

Py ZRm Py, R =0

We will use these KKT conditions when analyzing the convergence of Algorithm 1.

We begin by analyzing the subspace spanned by Uy and U;);’s. The following lemma shows that the
difference between the subspace spanned by the columns of Uy and U;); and by the optimal solution
cannot be too large.

Lemma C.5 For any set of optimal solutions to (4), ﬂg,v(im,U( )i V l) 1, and Ry = M) — U V( )o ~

ﬂ(i)yl\?{i)yl, if there exists 62 0 > 0, such that (i) o2, (U Va)g —I-U(l) lV ) HR )|| > Ugap7 (i)

gap’

AA2
||R(i)H < 89;% for each i, and (iii) Mmax (% Zi\; Pﬂ(z‘),l) <1—40, then we have,

Z H(I - Py, . - PU(W r Z HR Z)HF
2

e )
o

Proof. We define M(i)’g = IAJ \Af{) and M(i)J = ﬂ(i)’lvlﬁ)’l, then M(Z) ( W ha M(l) 1+ R(l) We have,

I(T-Pu,, -~ Pug,..) Mo

=Tr ((1- Py, - Pu,.) M(z‘)M?;))
= Tr ((I ~Pu,. ~ Pu,,..) (Maye+May) (M, + M(i),l)T>
+Tr ((T-Pu,. ~Pu,,.) ReR] )

+ 1T ( )

I-Py,. —Pug,. (M()QR(1)+R()M(Z)9))

where we applied the second equation from equation [23| that Ry; )M( ) = R (l),lﬂ'z” =0.
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Summing index i from 1 to N, and considering the KKT condition Zf\il M(i)_gRE";) =0, we have,

We use Oumin to denote the smallest nonzero singular value of M), + M), then
T N
(Mg + M) (Mg +Me),)" = (Pﬁg ‘*‘Pﬁ(i),l) Gmin”. Hence,

T
Tr (1= Pu,. = Pug,..) (Mg + M) (Mg + M)
=>Tr ((I —Puy,, —Pu,,.) (ng + Pgm,l)) Gmin” (M) g + Mi).1)

= (Tl + T2 — <PU9,1— + PU(i),ln-’Pﬂg + Pﬁ(i),l>) 6—min2 (M('L)ag + M('L)vl)

Similarly, since R(i)R(T) = (I - Py

g g

B Pﬁ(i),z) Tmax (R(i)), we have,

Tr ((1 —Pu,. —Pu,,,.) R(i)Ra))
— R [[7 = T ((Pu, . + Pug,,..) Ry R

> R |7 = T (Pu,.. + Pu,..) (T- Py, =Py, ) ok (Rey)
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As a result,

N
ZH(I_PUQ,T_PUM,Z:)M H HR HF

i=1

-

N
I
-

Tr ((Pu,.. + Pug,..) (T- Py, = P, ) (0 (Mo + M) = 02, (Rep))

+
-

~
Il
—

Tr (—PUW,,,,, (Mu),gR(T;) + R<i>Ma>’9))

-

<PU9, +Pug, . 1- PfJg - Pﬁ(i),l>6§ap - Z 2 HPU<i) M QHF HPU( SO HF

s
Il
_
.
Il
—

h52
(7“1 + 7y — <PUq T,PU9> B <PU<i>wlvf’P0u>,z>) %

-

s
I
—

2
e (1)l

062
(e ()~ (Pu ey, )

where the second inequality comes the definition of &2

M-

.
Il
—

>

[

s
Il
-

zap and Cauchy-Schwartz inequality, the third inequal-

ity comes from Lemma 2 in [Shi & Kontar| (2024) and Lemma Then, since r1 — <PU9 T’PU9> =

2 2
% HPU-‘” — Pﬂg HF and ro — <PU<i),z.T’PU(1)7,> = % HPUu),lm — PU(,;),, “F, this completes the proof. O

The next lemma shows that HU g7 IH and HU@ AU — IH s are upper bounded by ¢..

Lemma C.6 Under the same conditions as Lemma[C.5, we have

> (1070, 12 oty 01 ) <2 -

=1

Proof. We decompose f as,

o7 =2 (.4 53 IR

N
T
= Z HUgﬂ'V(Z‘),g’T + U(l);lﬂ'v(l)J _ M(z)
1

2
48 (105 Vg = 1+ 0T Vs~ 1]

i

2

M i

Il
A

H (PUQ,T + PU(z‘),l,r) (Ug TV( ),9,T U(i)Jﬂ'V(i)vl - M(l)) - (I - PUg,r - PU(i),lﬂ') M(l)

(26)

7

2
8 (107 0y 112+ 071, Vs 17

2

2
ZHUQ Vigr + UiV = (Pu,. +Pug, ) Ma||

F =Py, = Poy, ) Mo+ 8 ([07 U0 =11} + Ul U - 1)
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Considering Lemma we know that

20+

ie

2 2
)F—i_ HPU(z‘),z,r _PU()L ) +6HU _IHF (27)

(HPUg T Pﬂg

2 2
T
HU( INRACSIORR IHF + HUQ,TV(i),gm + UiV — (Pu,,. + PU(i),l,T) M) P

This completes the proof as all terms on the right hand side are nonnegative. O

Now we can prove that when the objective f is close to the optimal value, the iterates should also be close
to the set of optimal solutions defined in equation [[9apquation [[9cequation [[9bkquation We will first
examine the norms of AU, - and AU ; - in Lemma then calculate the norms of AV ;) ;- and AV ;) -
in Lemma

Lemma C.7 Under the same conditions of Lemma 5, if we further have ¢, < mln{ 198 gfgé’g”}, we have
the following,

N
2
N ||AU9,T||2F + Z HAU(i),l,THF <Ci¢, (28)
i=1
where
64 4 2
=|—=+32(=-B+B 2
Cl <96+3 (3 1+ 1> 00—3ﬂp> ( 9)

and AU, and AU ;) , are introduced in equation . Also,

/11 .
HUg,‘r” ) HU(i),l,TH < §7 Vi e {17 to aN} (30)

Proof. We begin by calculating an upper bound of the norm of AU, .,

AU~ o

_1
2

- HUW ~ Py, Uy (UL Py U,

F

1
2

< [Oar ~Po, Ui +

HPthUg,r - Py, Ugr (UgrPﬂgUg,r)

F
1

2

< Uyl ||Pu,. =P, |, + [Po, Uar

HI - (UirPﬂg Ug,T)

F

Notice that

1
2

HI - (Ul,Py,U,)

F
—1
2

< HI ~ (1+ (UL, Uy, D) + U], (Py, ~ Py, ) Uy,

F

2

Since ¢, < 128, we know that Zz 1 HU 9.7 IHF + HU( U r —IH ) < % from Lemma
F

Therefore, HU I||F < % And by triangle inequality of Frobenius norm, [|[Uy .|| < [|[Ug || <

/1 + < ,/ Slmllarly, or < 19;;? and Lemma imply that HPUH - Puy,..

31

< % As a result, we
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know H Ug ;= I) + UgTJ (PUg — PUW> U,.- . < %. Thus by Lemma we have,
1
T -2
H (U, Py, U,
F
4
<3|l v, -)+Ul, (Py, ~Pu,. ) U,
4
<3 (1070, 1]+ 8 g, o, | )
Therefore,
2
AU 7|

)

2

4 4
< (331 Uz, u,, — 1| + (33% + Bl> Po, ~ Pu,..

2
< % [UT U,y — 1)) +2 <§B% + Bl) |Po, ~ Pu,.

Similar upper bounds hold for AU;); ;. Summing them up, we have,

N
S IAU, A5 + [AUG 0[5
=1

32
<z (||U ar =1+ 0T Vi -1 ) +
4 2
2( 3B+ B HPﬂg—PUW

|2
F
64+32(4BQ+B>2 ! )
95 Y ober, )T

We applied Lemma Lemma and equation [27)in the last inequality. O

2
F + HP*(i) - PUm,lm

We continue to prove the upper bound of the norm of AV ;) , - and AV ;) ; , introduced in equation

Lemma C.8 Under the same conditions of Lemma[C], we have the following,

N
NAU -5+ 3 | 1AV g+ [AUG 05+ AV e 5 | < Catr (31)

i=1

where

70462

Cy =16+ ﬁmax + 3526 Ci+Cy (32)

de

This lemma presents a full perturbation analysis of f. It shows that if the function value is close to optimal,
all iterates must also be close to one set of the optimal solutions.

Proof.
We use the decomposition equation [26| to derive upper bounds on the norm of AV’s.
By some algebra, we know that,

(Pu,., +Pugy, ) M) = Ug e Vi oo = Ui Vi,

T T 1 ~
=Ugr AV g + U@ 17 AV (i + Ug.r ((Ug,TUg,T) I) VT o

):9,T

—1 —_
+ Uy (U, Uyr) AU, M)+ Ugyy e ((UEZ),Z,TU@)J,T) - I) Vi s

T
+Ugy e (U(i),l,rU(i),l,T) AU, -Mg)
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We will bound each term above. By triangle inequality, we have,
-1 = -1
HUQ7T ((Ug—:TUgﬂ-) - I) V’(T) + Ug’T (Ug—:TUg7T) AUQ)TM(i

< U, | (U2, 0,0) " =1 |[VE .

1. 11
S 4\/;0'max ||U§,TU977 - I||F +4 go—max HAUQ’THF

where we again used Lemma to show that when HU%;),Z,TU(Z')J,T - IHF and HU;T IHF < , we

+ ||U9,TH H(UZ;,TUQ,T)ilu ”AUg,T”F ||M(z)||

have H(U;TUQ,T)_lH <1+3=4.

A similar bound holds that,

- -1
HUwr((U()zTU()zT) —I> (>zT+U<>zr(UmTU(i),z,r) AU(i)JmeF

/11 /1
<4 3 —Omax Ug;)’l’TU(i),l,'r o IH +4 8 Jmax HAU (), lTH

Then by Lemma [E-3] we have,

2
|(Pu, . + Py, ) My = Uya VT = U0V

Y

1 2
B HUg,TAV?;),g,T + U(i),lﬁAv(i%l‘ »

2
11 11
(4\/8%“ (LSRG (A s | +4\/8amax<||AUu>,z,T||F+HAUm,WHm)
2

2 % HUWAVa),g,T + % U0 AV [

— 4462, HUZJUQ,T = ([ HUE)J)TU(Z-)J’T_IHi) 52 (| AU 1r |2+ AU g 1)
= HAV( || + é 1AV a5

—462,,.(JUT U, —1|[; + HUE)J,TU@M—IH?) 62 ([ AU 1 [ + AUy 7)

where we used the condition HU;TUgJ — IH < % and HU%;)J SUr — IH < % in the third inequality.

Summing both sides for ¢ from 1 to N, and considering Lemma [C.5] Lemma [C.7] and inequality equation [27]
we have,

Y 2 2 70462
> Vi 1AVl < (164 T2 520t 00 ) o
i=1

We can complete the proof by adding El L 1AU, THF + HAU (i)l TH on both sides. O

Now we can look at the following lemma which shows the gradient is aligned with the direction pointing
from current iterate to one set of the optimal solution.

Lemma C.9 (Gradient points to an optimal solution) Under the same conditions as Lemma if

"y < o )
additionally ¢, < (QW)QOS , the following inequality would hold,

N
<ngf7 AUgsT> + Z

i=1

+ <Vv<i),lf7 AV(i),l)] > ¢r

<VU<i>,zf7 AU(i),l,7> + <VV<i>,gf7 AV(i)yg,r>

(33)
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This lemma shows that the geometry of the problem is benign.
Proof. Similar to Sun & Luo| (2016]), we define two notations a; -, b; ; as,
T T T

Qi r = UgvTAV(i),gﬂ' + AUgﬂ-V

(1),9,7
N . Y (34)
+ U(i),lwAV(i),z,T + AU(i)JaTV(i),l,T

and
bir = AUWAV@W + AU(Z-),Z,TAV%;)J,T (35)

Then we can calculate the inner product between the derivatives of f; and the difference between iterates
and optimal values,

(Vu, fi, AUy ) + <VV(,;),gfia AV (i) g7

+ (Vuy fi AUG ) + (Vv on fis AV Gy ar)

= <UQ»TV5)7g7T + U(i),z,rva),l,f - M(i), a;r + 2bi,7>

= <ai,'r + bi,'r + R(z)v Qg+ + 2bi,‘r>

- ||ai,7'||i* +2 Hbl,‘r”i‘ +3 <ai,7a bi,‘r> + <R(z)a ai,7'> +2 <R('L)a bi,7'>

2 2
- IRa 7

2fi = [Reo 15 = | Uair Ve + Utrar Ve — My

29,T
= ||@ir +bis + R(z‘)Hi - HRu)Hi
= i |5+ [bir |2+ 2 (air, bir) +2 Ry, air ) + 2 (Reay, bir )

We know that,
(Vu, fi: AUg ) + (Vv  Ji: AV (i) g.r)

+(Vu i AUG 1) + (Vv fis AV ar)
= 2fi + ||bi,r I3 + (@i, bir) + (Rays air) — ||R(i)||:1)v

Similarly, we can calculate the inner product

<nggi7 AU91T>
=287 (U], AU, UL AU, . + U AU, . AUT T, ;)

+28Tr (3AU7 AU, , U AU, ) +28Tx (AUJ, AU, ,AUT AU, )

Since )
[U5-Ugr = 1|15

|

=9 HU;TAUM

~ ~ 2
T T T
Uy AU, + AU Uy, + AUD AU, |

2 ~ ~
T T
L +2T (AU U, AU7 T, )

+ 2T (U], AU, -AUL AU, ) +2Tr (AUL, U, ,AUS AU, )
2
+ [[AUG, AU, -,
We know that
<nggi7 AUg,‘r>

=8| UL, Uy, =1} + 26T (UF, AU, . AUT AU, . ) + 8[|AUL AU, |}

34



Under review as submission to TMLR

As a result,
(Vu,9i,AUg 1) + (Vu,,, 95 AU 1)
= 29+ 28Tr (U] AU, AUT AU, ) + 28T (UF,) AU, AUT) | AU, )
+ 818U I+ 8 | AU 1
> 29 = 28|AU 1} = 28 [ AU [+ BIAU oI5 + 8[| AUG 1|
Therefore, we can sum up the two inequalities and derive,
<ngflia Ug,T - tng,‘r> + <VV(i),gfia V(i),g,T - iV/v(i),g,7'>

+ <VU(i>,,ﬁ,U(i),z,T - ﬁ(i),z,7> + <VV(,;)yl‘,.fiaV(i),l,T - ‘Nf(i),z,f>
> 2fi — [ Rl

+ 1bi, 5 + (@i bir) + (Ray, air )

~ 28| AU 1} = 28 | AU [+ BIAU o3 + 8[| AU 1|
We can sum up both sides for ¢ from 1 to N, considering the KKT condition that Zi\il <R(i), ai77> =0, and
the definition of ¢, that ZZ 12 HR( )HF = 2¢.,, we have,

i {<VU5’J§’U9’T N 69’7> + <vv<i),gfi’v(i)-,9»7 - {[(i),g,'r>

i=1

+ <VU(1->,[JF¢7U(¢),Z,T - 6(1),1,T> + <Vv(i>,l,7ﬁ',V(i),z,T - \7(1‘),1,7”

N
+ 37 [W0ie 3 + (i, bir) = 28 1A 2[5 = 28 [AUGy 1[5 + BIAU 23 + 8 AUy 1[5
i=1

N
3 3
> 2¢; + Z [_ @i,z | g 10ir | o — 28 | AU 7 [ — 288 HAU(Z’),LTHF}
i=1
For the higher order terms,

N
> lairllp 10l e
i=1

N N
<D lair a2 bl
i=1 i=1
N 2
<o 2 Gmax(|AUgrllp + |AU G 1| ) + 1AV g + 1AV 7] )
i=1

=2

i=1

JZ (180 1 1AV Gy .|+ 180Gl 1AV Gyl

\l 218U 5+ [ AU 1 [ + AVl + AV 7)

N
J Z<|AUQT||FHAV )QT’|F+HAU )ZTHFHAV(Z'),LTH;)
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N
2max {6 1}J > (18U 15 + |AU G [+ AV el + AV G0 7)

=1

N
|

\/§J (S0 180, 12) (S Vil ) (S0 ) (Ve

N
< 2v/2max{Z,0 11| 2 (14U 3 + [AUG e[ + AV e 3 + AV e )

i=1

3

< 24/2max{62,.,1} (¢-Cs) 3/2

where we applied Lemma [C.§ in the last inequality.
And

N
263 (IAU - + [ AU - |7)

i=1

3
N
< 4/34 > (18Ul + AU 5 + AV 6 [ + 1AV 1 7)

i=1

< 48 (¢,C)*?

where we also applied Lemma [C-§| in the last inequality.

Thus when ¢, < € \/m)zcg, the higher order O(¢3/ ?) terms in equation [36| are dominated by
the leading order term 2¢,. As a result, we have,

M=

[<VUQJ§" Uy — INJg,T> + <Vv(i),gfi,V(i),g,r - {[(i),g,7>
1

<VU<,3),,fi, Uiyir— U(i),l,7—> + <Vv<i)1l,,fz‘,V(i),z,T - V(i),z,f>]

7_

.
Il

|\/—|—

This completes the proof. ([l

Finally, we are able to prove the PL inequality,

Lemma C.10 (PL inequality) Under the same conditions as Lemma we have the following PL in-
equality,

N

~ 12 <112 <112 1
+ Z HvVu),gfiHF + Hva,lfiHF + Hva,Lfin 2 @d’f (37)
i=1

|7ews
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Proof. The proof is straightforward. We first combine Lemma with Cauchy-Schwartz inequality,

2

VUf

N

<112 <112 <12

H \/7 Jr Z ||vv(i>.gfi||p + ||VU(i),lfiHF + ||VV('i),lfi||F
=1

N
N ||AU977'||2F + Z HAV(i),gfo; + HAU(Z')JJ'Hi“ + vau),zfinfr
i=1

Vu fH ‘fAUgT

H\F +Z[ ’vVqulH [AV (i) g.r |l

1900 Fillp 180Gl + 1990 Fll p AV G0
N

2 Z |:<VUgfi7Ug,T - Ug"r> + <vv(i)7gfi7V(i)’g,T — V(i),g,7‘>
i=1

+ <VU(WJ§» Uiyir — ﬁ(i),l,7> + <Vv<i>,l,ﬁ,v(i),z,7 - ‘7(1‘),1;”

2 ¢r

Dividing both sides by /N AU, (12 + X7, [AV( g |2+ [AUG oo |5 + [ Vv, fil| and applying
Lemma [C.8| will give us the desired result. O

Finally, we will combine the derived results and show the linear convergence of Algorithm 1. Theorem [4] is
a formal statement of the convergence guarantee.

Theorem 4 (Formal version of Theorem 2 in the main paper) Under the following conditions,

1. The largest singular values of M;y’s are upper bounded by Gmax-

; ) ~2 N A
2. There exists constants 0, &g, > 0 such that HN i 1PU(M < 1 -6 ,
Oin (Vo + OVl ) = IR | 2 62, and R | < g2 for every i.

3. There exist constants By > 1 and By > Gmax such that (Ug1,{Up i1} {V@)g1h{Vail}) €
B (B1, Ba) and the constant stepsize 1 is upper bounded by n < min{%o<2BlB2(2BlB2 + Omax) +

2
263%(3% + 1) + (32(23132 + Crmax) + QﬂBl(B% + 1)) ); 2(%+272[ﬁB1%+400L9Bf)’1}'

98 9953, 1 (B1—1)2 (Bz—amaxf}

2
128 71936 ° (2 /—2max{a[2nax,l}+4,8) 3’ Cr

then all iterates reside in B (B, B2) and the following holds,

4. The iterates are initialized properly ¢1 < min{

¢ < (1=nBs) " 1 (38)
where B3 is a constant
g L
5720,

Notice that by combining Theorem [4 with Lemma we can immediately prove Theorem 2.

We shall emphasize that the conditions in Theorem [4 are more general than that in Theorem 2, as we do not
make assumptions on the input noise structure. Most works on nonconvex matrix factorization (e.g.,|Sun &
Luo (2016)); (Chen et al.| (2020)); Ye & Dul (2021))) assume the input data are exactly low-rank, i.e., R¢;) = 0.
Theorem E| relaxes such assumption by allowing R;) to be small nonzero matrices.

Proof. We will prove that the following claims hold for every 7 > 1 by induction.
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LUyl UGy 0 || < Brand [V g+
2 6, < (1- 7760

V|| < B

Base case At initialization 7 = 1, Claim [2]is simply true. Claim([l]is true because we assume at initialization,
the norms of Uy 1, Uy i1’s, Viiyg1's, V(i),i,1's are upper bounded.

Induction step Now we assume Claim [1| and [2| are true for 7 = 1,--- ,¢ and prove that they still hold for
T=t+1.

Since Claimis true for 7 = ¢, we know ¢, = (1 — )t Yo < ¢1. As 91 < TN L

g 24

¢1 < min{ 22 155 gfgg’g‘” }, we know that the result of Lemma |C.10| holds.

Also from Lemma ..C.6 and the fact that ¢, < %, we know HUZ,TII!],T_I”F < 3 and
Uz T 3
H ORRAOR IHF <3

Since Claim |1} is true for 7 = ¢, and the stepsize is upper bounded by n < min{% (281 By(2B1By + 0max) +

2 .
2BB3(B? + 1) + (B2(2B1B; + 0wax) + 28B1(B + 1)) ), SCr s o5y L all the conditions of
Lemma are satisfied. Thus the result of Lemma holds for 7 = t¢.

Therefore we can combine the results of Lemma and Lemma [C.3] to derive,

D41 < Py — = (H\FVU f

((-13)s

1
< (1= 58)

. We thus prove Claim 2] for 7 = ¢ + 1.

2

N
=112 =112 =12
+ D Vv o fill g + Vo il + ||va,zfi||F>
i=1

(3171 , by Lemma we have,

We then show that Claim [1]is true for t + 1. As 1 < ¢1 <

AU 41]lp < V/Cidrsr < VCigo < By — 1

Thus by triangle inequality,
1Ugstll < ||| + 18U 111 < By

Similar bounds hold for Uy ;;41’s. Also, as ¢11 < ¢1 < W, by Lemma we have,

||Av(i),g,t+1||F < \/02¢t+1 < \/CQ¢0 < By — Omax

Also, by triangle inequality,
IVargasill < || Vargen | + 1806 ganll < B2

Similar bounds hold for V ;) 41’s.
This completes the proof. ([

D Proof of Theorem 3

The procedures to prove Theorem 3 are close to the first stage of the proof of Theorem 2. We first establish
the KKT condition, then derive the sufficient decrease inequality for .

The following lemma presents the KKT conditions to problem (4) in the main paper.
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Lemma D.1 (KKT conditions for general loss) Suppose that {ﬂg, IAJ(Z-),Z, \A/(i)’g, \A/'(i)_yl} is the op-
timal solution to problem (4) in the main paper with general loss metric ¢, Ijg and IAJ(,;)J ’s are
non-singular, and M(;) has rank at least r1 +r;. We have

N
>0 (M O,V +000VT0) Vi =0 (39a)
i=1
¢ (M(i), U,VE,+ ﬁ(i),lvgm) Vi =0 (39D)
¢ (M), 0,95, + 0 V), l)T Uiy =0 (39¢)
¢ (M), 0,95, + 0 V), l) =0 (39d)
U0, U, =100, =107, ﬁ:o. (39¢)

Proof. The proof of the above lemma is very similar to the proof of Lemma The La-
grangian of the optimization problem (4) in the main paper can be written as

= T T B T 2 p T 2
L=yt (M(i), UgVipg + U(i),qu),z) +5 U0 1|, + 5 HU(o,zU(i),l - IHF
=1

+Tr (A7, Ug Uy 1)

(40)

where A7 ;) is the dual variable for the constraint UngU(i),l = 0.

Similar to Lemma |C.4, under the LICQ, we know that the optimality of Ijg, {V(i)yg, ﬂ(i)yl, V(i),l}
implies the KKT condition. Setting the gradient of £ with respect to V(;) , and V;); to zero,
we can prove equation and equation Then we examine the gradient of £ with respect
to U(i),l:

0

T T Y T
L=1 (M(i), UgV(i),g + U(i),lV(W) Vi + 2BU(i),l (U(i)le(i),l ) +U A(7)

Left multiplying both sides by ﬂg, we have A7 ;) = 0. Left multiplying both sides by fja),l’ we
have ﬂa)}lﬂ(i” —I = 0. Therefore we have ¢’ (M(Z—%UgVa)}g + U(i)’lV%;),l) \A/(i),l = 0. This proves
equation equation

Now, setting the derivative of £ with respect to U, to zero, we have

)
au,

(M(’L)a ﬂgvz) g + U(z) lV(Z) ) V(i),g + 2Nﬁﬂg (ﬂgﬁg — I) =0

Left multiplying both sides by ﬂg, we have ﬂgﬂg — I =0. We have thus proven equation
This completes the proof for equation [

The following lemma gives an upper bound on the Lipschitz constant when all the norm of
iterates and gradients are bounded.

Lemma D.2 (Lipschitz continuity for general loss metrics) In region B(Bi,Bs) as defined in
gl(M(i)ngV(z) + Ugq, ZV( ).l H < By,

and loss metric ( is L, Lipschitz continuous in the region, then the objectives f; with =0 are
Lipschitz continuous in the region,

equation if there exists a constant By > 0 such that

VAU Vi 40Ul Vi) = VAU Vi Ui V)|

2 ’ 2 (41)
< 10, = Ol [V, = Ve[, # [ = Ve + [Viou = Veou],
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fOT {U;p {V/(i),g}a {U/(i),l}a {V/(i)yl}}’{Um {V(i),g}7 {U(i),l}a {V(’L),l}} eB (Blv BQ): where Lgen is a con-
stant dependent on By, B, Ly, and By,

Lyen = \/8 (B3 + BY) L3 max{B}, B} + 2B}

Proof. The proof is similar to the proof of Lemma We will calculate the gradient of Jf;
over each variable, and bound the norm of the difference of the gradients. For simplicity, we

use AM;) to denote AM ;) =U (V) )"+ U, (V) )T = UV —Ue) Vi,

(@) AR ON

Vu, [i(Ug, Viiy g Uy Vi) — Vu, filUg: Vi g Uty Vi)

= 0 (M, Up(Viy) )7 + UiV )" ) Vi g
— 0 (M5, Ug (Vi) + U a(Vin)") Vi

/

Also by triangle inequalities, when (U;]’V(i)gVUl(i)l’V/(i)l) and (Uy, V4, Uiy, Vi,) are in
B (B, B2), we have:

HVUgﬂ'(UgaV(i),g, Uiy Vi) — VUgfi(UgaV(i),ng(i),laV(i),l)HF

< LB, HAM'(Z.)

L +B HV( Vi

i),g ﬁgHF

Then on the derivative over V;) ,,

Vv filUgs Vi) 00 Uiy i Vi) = Vv o filUgs Vg Uiy i Vi)

’ ’ ’ ’ T ’ T
= (M(i)v U,(Viyy ) + U(i),l(V(i),Z)T) U, — ¢ (M), Ug(Viy,e)" + U (Vi)") Uy

Thus by similar calculations, we have,

|90, Fi05 Vioyg Ui Vio) = V¥ iU, Voo Ui Vo),

<1 ] [ -V

i),9 F

And,

[ V010 FiU Vi Uy Vi) = Vo JiUi Vi U Vo),

< LyB, HAMI(Z-)

o B Vi =V,

Also,

930 iU Vi 5 Ul Vi) = Vv FilUg Ve, Ui V)|

< LB HAM'(i)

F

F +Ba HU(“’Z B U(i)’lHF
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’

Combining the 4 inequalities and the fact that HAM )H < Bs HU -U H + By HV(Z) g V(i) gHFJr

B “U(i)7l - (i)JHF + By HV(i),z - (i)’lHF, we have:
vai(U;’ V/(i)vg’ Ul(i)vl’ V/(i),l) - Vﬁ(Ug, Vii,g Ug V(i),l)Hi
- HVUJ”(UT@’V,@M’ Ui Vi) - VUgfi(UmV(z‘),ng(i),l’V(i),l)Hi
+ va(i),yﬂ(U,WV,(i),g’ U,(i),l7V/(i),l) — Vv, [iUg: Vi g, U(i)’l’v(i)’l)Hi
+ HVUWﬁ(Ulg’szﬂvg’ Ui Vi) = VUwﬁ‘(UgaV(i)avU(i)J’V(z‘),z)Hi
+ va(i%lﬁ(Ulg’ V/(i)vg’U/(i)yl’V/(i),l) - vVu),zﬁ'(UgaV(i),g,U(i),z,V(z’),z)Hi

2 2 2 2
2 / ’ ’ ’
< Lgen (HUg Uy, + [Vios = V|, + [V = Yo, + ][ Vo, - V<i>leF)

where L., is a constant defined as,

Lyen = /8 (B3 + B?) L3 max{B?, B3} + 2B} = O(Ly)
(|

With the established Lipschits continuity of the objective, we can prove the convergence of
Algorithm 1. Theorem [5]is a formal statement of such convergence guarantee.

Theorem 5 (Formal version of Theorem 3 in the main paper) Under the following conditions,

1. There exists conctants B;,Bs,By > 0 such that the iterates are bounded,
(Ug{Vii)e Uy Viyat € B(Bi, B2) and the gradient norm is alsop upper bounded (' < By.

2. { is Ly-Lipschitz continuous and lower bounded by a constant.

3. The constant stepsize 1 is upper bounded by n < — O(L%)

then for Algorithm with § = 0, the following holds,

1
97 (Vo Vi gr Uiy m Vi D = 0 (T> (42)

7'67

Proof. The proof is straightforward given Lemma As =0, we have,

Fi(Ug i1, Viiygrti1, Uty irits Vi irtt)

= (M), Upra Vi + Uttria Vi1t )
(M(l g, +1 (V( g +3 T Vi T+1U('L) 1r+1Ugrt1 (U;T+1U9:7+1)71)T
Ug,T+1U(i),l,T+%> V(Ti),z,r+1>

( Ugr1Viygri1 + Ui rres Vis )lf+1)

1( g7'+17V( gq—JrlaU( )7l,r+%7v(i),l,7'+1)

l

-1
( (i), 7+31 — g T+1 (Ug,T+1Ug,T+1)
l
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Combining this and Lemma we have

fiUgri1, Vg1, Uiy it Viyirs1) — fiUgr, Vo Uyir Vi i)
= fz (Ug,‘r+17 V(z) g, T-l,-l ’ U(z) l T-‘,—% ) V('L)l T+1) - f’L (Ug,‘f‘v V(i),g,Tv U(i),l,Tv V(i),l,T)

< <VUg]Eia Ug,'r-&-l Ug T> + <VV( 0, nga )9, T+1 V(i),g,T>

+ <VU<i)YLfl7;? U(i%lﬂ'—‘—% - U(i),l,7'> + <VV(i)’lfi7 V(i),l,TJrl - V(i),l,T>
Lg(’n

2 2 2
[ty = Yorar| + IV - V(i)JaTHF)

2
<|Ug T+1 — g,T”F + Hv(i),g,'rJr% - V(i),g,r

_ f <12 <2 <2
< < (V0. T0, ) + Vo Al + 19w Al + 19w )
<2
Lyen f ~ 12 ~ 2 =12
(% RO R LT R L T
F

Summing both side for ¢ from 1 to N, we have:

FUg 1. AV @y 941 Uy irsts Viyirs1}) = F(Ugr AV @00 Uiy irs Viyir )

N
= Z fi(Ugr+1, Viiygri1 Uy rt1s Viyars1) = filUgr, Viaygr Uy e Vi r)
=1

2
+2vaflu Vol +vafzu)

i=1

=7 (HfVUg

N
ge" + Vv Fill;
(ERN B
= 512
+ HVUO‘,)inHF + Hva,zfiHF>
Therefore, when n < —— T, We have:

fUg 1. {V gT+17U(i)zT+17V(¢ trt1 ) = FUgr AV @00 Uy irs Vigyar )

<4(l7

Summing up both sides for 7 from 1 to 7', we have:

i(iwﬁ

T=1
(F(Ug 1AV ()0, Uyt Viyun ) = F(Ugri1, AV @).g.041, Uiy ars1, Vioyure1}))

+z||w>gfzu 190 Fl +!|vaflll>

2 N
~ <102 <02 =12
| & + Z Hva,gfiHF + HVU(w,zfiHF + HvVu').,zfiHF)
—

3\[\')

f(u Uy 41,1V (),0.741, U ,7+1, Vi), 7+1}) is lower bounded by a constant, the right hand
(U

S
%(f 01 AV(0).0. Uiyt Viaa ) — F(Ugri1, {Viiy.gr+1. Uy ir11, Viur11})) is upper bounded
by a constant. Hence,

2

1
re{1 T} (Hf +Z||VV(>ngH +||VU()szH +||VV()lfz||> O<T>

This completes the proof. O
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E Auxiliary Lemmas

This section discusses some helper lemmas useful for our main proofs. These lemmas are
mostly derived from basic linear algebra.

Lemma E.1 For a symmetric matriz A € R"™*", if |A| < 2, we have,

- a+a)7| <apal,

Proof. We have
[t-a+a)| =[a+a) )| <a-l1al) T 1Al <4)Al,

The next lemma presents a similar result.

Lemma E.2 For a symmetric matric A € R™", if |A|| < %, we have,

_ 41l

1
I-(I+A) 2
H (T+4) F 3

Proof. Since ||A[|, < 2 <1, we can use the series

i (2n — 1)”(*1)"An

2nn!

n=1 F

= (2n — DN(=1)™ " 1
< B P Ay = - A

1A _AlAl
VI-TAL: (VI-TAL +1) — 3

Lemma E.3 For two matrices A,B € R"™*", we have,

o 1 2 2
IA~BI% > AJ% ~ B
Proof. We have

1 1
1A~ BIE = [AIZ + B + 2(A B) > AL + BIE - (5 1AL +21BI5 ) = 3 AL - IBIS

Lemma E.4 For two matrices A,B € R™", if A is invertable and ||[A™'||B]|| <1, we have,

A~ 1B

A-l—B*lHS A4
[a 37 < 1A+ § Sy

Proof. We have
L At < oy lAMIE
DA <Ia Sy

The proof is completed by invoking triangle inequality. ]

L ()

The following lemma is a well-known result and provides an upper bound on the norm of
product matrices.
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Lemma E.5 For two matrices A € R™*" and B € R"*P, we have,
[AB|z < [[All, 1Bl

and
[AB, <[[All, (Bl

Proof.
The proof can be found in |Sun & Luol (2016)).
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