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Abstract

Arabic remains one of the most underrepresented languages in natural
language processing research, particularly in medical applications, due to
the limited availability of open-source data and benchmarks. The lack of
resources hinders efforts to evaluate and advance the multilingual capa-
bilities of Large Language Models (LLMs). In this paper, we introduce
MedAraBench, a large-scale dataset consisting of Arabic multiple-choice
question-answer pairs across various medical specialties. We constructed
the dataset by manually digitizing a large repository of academic materials
created by medical professionals in the Arabic-speaking region. We then
conducted extensive preprocessing and split the dataset into training and
test sets to support future research efforts in the area. To assess the quality
of the data, we adopted two frameworks, namely expert human evaluation
and LLM-as-a-judge. Our dataset is diverse and of high quality, spanning
19 specialties and five difficulty levels. For benchmarking purposes, we
assessed the performance of eight state-of-the-art open-source and propri-
etary models, such as GPT-5, Gemini 2.0 Flash, and Claude 4-Sonnet. Our
findings highlight the need for further domain-specific enhancements. We
release the dataset and evaluation scripts to broaden the diversity of medi-
cal data benchmarks, expand the scope of evaluation suites for LLMs, and
enhance the multilingual capabilities of models for deployment in clinical
settings.

1 Introduction

The emergence of Large Language Models (LLMs) has driven transformative progress in
Natural Language Processing (NLP) in recent years. They have demonstrated exceptional
performance across various renowned benchmarks due to their powerful understanding and
reasoning abilities, grounded in the vast amount of knowledge in their training corpora
(Brown et al., 2020; Bommasani et al., 2022; Chowdhery et al., 2022). This includes general
and domain-specific benchmarks (Wang et al., 2021; Stahlberg, 2020).
However, performance improvements remain variable across underrepresented languages and
domains, particularly in high-stakes applications like medicine (Jiang et al., 2025; Yang
et al., 2025). For example, Arabic is among the most spoken languages in the world, with
over 400 million speakers across the globe. However, it remains underrepresented in the
medical domain, mainly due to the unique challenges that it poses with its rich morphology,
dialectal variation, and limited expert‑annotated resources (Farghaly & Shaalan, 2009).
These challenges are compounded by the variability in the language of instruction across
medical schools in Arabic-speaking regions. In some countries, such as Syria and Sudan,
Arabic is widely used in exams and instructional materials, while in others, English and
French remain dominant (Alhamami & Almelhi, 2021). This uneven linguistic landscape
underscores the need for robust tools that can reason over Arabic medical text, particularly
in zero- or low-resource educational settings.
Several benchmarks have been recently introduced in the medical domain. However, most
of them focus almost exclusively on English (Jin et al., 2021; 2019). Recent work began to
address this need but remain limited in scope and size (Abu Daoud et al., 2025). Thus,
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Table 1: Comparison of MedAraBench with existing medical QA benchmarks, including
estimated dataset size.

Benchmark Language(s) Type Size Expert
Annotation

Difficulty
Mapping

Specialty
Coverage Arabic Public

MedQA English, Chinese MCQs 60,000 X × X × X
MedMCQA English MCQs 193,000 X × X × X
MMLU (USMLE) English MCQs 1,800 × × X × X
MMLU Translation 14 incl. Arabic MCQs 15,000 X × X X X
AraMed Arabic QA 270,000 X × X X ×
MedAraBench (Ours) Arabic MCQs 24,000 X X X X X

there is a pressing need for large-scale benchmarks to assess and improve LLMs for Arabic-
language medical reasoning.
To address those gaps, in this paper, we present MedAraBench, a comprehensive benchmark
for evaluating and advancing LLMs on Arabic medical tasks. The dataset consists of curated
Multiple-Choice Questions (MCQs) spanning different specialties and difficulty tiers aligned
with stages of medical education. We propose a standardized development and evaluation
protocol to enable reproducible and clinically meaningful assessment of LLMs. Our key
contributions are as follows:

• We introduce MedAraBench, a large-scale Arabic medical benchmark featuring
24,883 MCQs across 19 medical specialties and five difficulty levels. The bench-
mark includes standardized training and test sets to enable systematic evaluation
and advancement of LLMs.

• We perform extensive quality assessment via human expert evaluation, focusing on
question clarity, clinical relevance, and medical correctness, as well as automated
LLM-as-a-judge analysis.

• We benchmark eight state-of-the-art proprietary and open-source LLMs on the
MedAraBench test set in the zero-shot setting to establish baseline performance
for future research.

2 Related Work

In recent years, several benchmark datasets have been developed to assess the capabilities
of LLMs in the medical domain, driven by the expanding demand for applications that can
streamline clinical workflows. Despite this progress, Arabic remains underrepresented in
clinical NLP, mainly due to the lack of high-quality data to support building clinical ap-
plications in Arabic (Abdelaziz et al., 2025). As such, most existing benchmarks focus on
English. For instance, the Massive Multitask Language Understanding (MMLU) benchmark
includes question-answer pairs from the US Medical Licensing Exam (USMLE) (Hendrycks
et al., 2021). Jin et al. (2020) introduce MedQA, a multilingual benchmark dataset con-
sisting of multiple-choice questions sourced from medical licensing exams in English and
Chinese. MedMCQA (Pal et al., 2022) extends these benchmarks to a multilingual evalua-
tion framework but remains limited in Arabic.
Recent work have introduced new resources for medical evaluation in Arabic. Translations
of existing datasets, such as of MMLU into 14 languages, including Arabic, by professional
human translators (Achiam et al., 2023), provide valuable data but lack necessary nuances
for proper integration into clinical practice. AraMed presents an Arabic medical corpus and
an annotated Arabic QA dataset sourced from online medical platforms (Alasmari et al.,
2024). MedArabiQ presents one of the first Arabic medical MCQ datasets (Abu Daoud
et al., 2025), yet lacks specialty coverage, difficulty mapping, and expert evaluation.
Several evaluation frameworks have been proposed to evaluate the performance of clinical
AI models. Kanithi et al. (2024) introduce ‘MEDIC’, a framework for evaluating LLMs from
medical reasoning andethics, to in-context learning and clinical safety. Wang et al. (2024)
propose testing models on real-world input noise, dialogue interruptions, and reasoning jus-
tifications. Despite the growing interest in multilingual evaluation, there remains a critical
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Figure 1: Overview of MedAraBench.

gap in comprehensive, high-quality, and clinically relevant benchmarks for under-served
languages. We aim to address this gap by introducing a comprehensive Arabic benchmark.
Table 1 provides a structured comparison between MedAraBench and other existing medical
benchmarks, covering key dimensions such as language coverage, specialty diversity, expert
annotation, and public availability.

3 Methodology

Here, we describe the steps pertaining to data collection, processing, evaluation and bench-
marking, to facilitate proper reuse and fair comparison, aligning with best practices for
benchmark construction and evaluation. An overview is provided in Figure 1.

3.1 Data Collection and Preprocessing

We compiled a large repository of scanned paper-based exams and lecture notes, hosted on
student-led social platforms of regional medical schools. The dataset did not include any
personal or real patient data, so anonymization was not necessary, and our data collection
complied with privacy and ethical standards. Considering the nature of the documents, we
recruited professional typists to digitize the data. We then aggregated the documents to
build a single MCQ dataset.
Upon manual inspection by NLP researchers, we observed that several documents exhib-
ited issues such as missing or malformed correct answers, incomplete or duplicated answer
choices, non-standard formatting or misaligned fields, and ambiguous answer keys or extra-
neous non-MCQ content. To ensure dataset quality and model compatibility, we applied
strict filtering criteria to remove any questions with such issues. The filtering process was
performed manually by five NLP researchers. While data acquisition and preprocessing re-
quired extensive effort, it highlights that the dataset is not publicly accessible in structured
formats, thus reducing the likelihood of data contamination.
Each question is associated with several annotations: (i) number of answer choices (i.e.,
ABCD (4 choices), ABCDE (5 choices), and ABCDEF (6 choices)), (ii) difficulty level cor-
responding to five years of study (Y1 - Y5), and (iii) medical specialty. The questions
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fall under 19 medical specialties: Anatomy, Anesthesia, Biochemistry, Cell and Molecular
Biology, Chemistry and Physics, Embryology, Emergency Medicine, Internal Medicine, Med-
ical Ethics, Microbiology, Ophthalmology, Pathology, Pediatrics, Pharmacology, Physiology,
Preventive Medicine, Psychiatry, Statistics, and Surgery.
We performed a stratified random split of the dataset into training (80%) and test sets
(20%). This was to ensure that the medical specialties are represented evenly across the
training and test sets (i.e., if the dataset contains 100 Cardiology questions, 80 would be
randomly included in the training set, while the remaining 20 would be in the test set). We
summarized the dataset in terms of token length distribution, medical specialty distribution,
and difficulty level distribution.

3.2 Quality Assessment

To further assess the quality of our dataset, we conducted two analysis: human expert
evaluation and using LLM-as-a-judge.

3.2.1 Human Expert Evaluation

We designed our expert evaluation protocol to assess the data according to the following
criteria:

1. Medical Accuracy: the extent to which the question, options, and correct answer
reflect current, evidence-based medical knowledge (Scale: high or low) (Olatunji
et al., 2024; Iskander et al., 2024; Rejeleene et al., 2024).

2. Clinical Relevance: the practical importance and applicability of the question
content to real-world medical practice or education (Scale: high or low) (Iskander
et al., 2024; Olatunji et al., 2024).

3. Question Difficulty: the complexity required to answer the question correctly
(Scale: high or low) (Iskander et al., 2024).

4. Question Quality: assessment of the MCQ construction quality (Scale: high or
low) following established medical education standards (Al-Rukban, 2006):

• Clarity: question is clear, complete, and unambiguous.
• Option Homogeneity: all distractors are plausible and of similar type.
• Single Best Answer one clearly correct option exists.
• No Cueing: options do not provide clues to other answers.

We selected samples for review from the test set and determined the sample size based on
Cochran’s formula (Cochran, 1977), to create a representative sample size (Hosseini, 2024).
We estimated a single proportion at 95% confidence with a ±5 percentage‑point margin of
error, using p = 0.5 as a conservative assumption when the true quality rate is unknown
because it maximizes variance and therefore yields a safe upper bound on sample size. We
first calculated an estimated sample size assuming an infinite population using

n0 = z2p(1 − p)
e2

with z = 1.96, p = 0.5, and e = 0.05. However, since the dataset is finite, we then applied
the finite population correction using

n = n0

1 + n0−1
N

.

We recruited two board-certified clinicians specializing in Anesthesiology and Internal
Medicine with Arabic clinical fluency and over 20 years of experience each. The reviews
were double-blinded to model outputs and data provenance, and were conducted indepen-
dently with pre-registered instructions on Qualtrics.
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(a)

(b)

Figure 2: Overview of dataset according to difficulty level and specialties.

3.2.2 LLM-as-a-Judge

Considering that only a subset of the test set was considered for the human expert evaluation,
we further introduced an LLM-as-a-judge evaluation protocol as an additional rating of data
quality. We prompted three SOTA LLMs (gpt-4-0613, gemini-1.5-pro-latest, and claude-
3.5-sonnet-latest) to act as medical education experts and to evaluate the MCQs along the
same metrics used in our expert quality evaluation: Medical Accuracy, Clinical Relevance,
Question Difficulty, and Question Quality, however on a Likert 1 to 5 scale for the entire test
set. This approach gives us the advantage of providing a more nuanced evaluation across a
broader set of our data, while also providing insights on the efficacy of LLMs in evaluating
the quality of Arabic medical data relative to expert annotators.

3.3 Benchmarking Protocol

To introduce new benchmark results, we evaluated 8 proprietary and open-source models
on the test set of the MedAraBench benchmark. We set the models’ temperature as 0 to
ensure stable outputs as shown in previous work for classification of MCQs (Abu Daoud
et al., 2025). We selected one letter response per question.

• Open-source models: Llama-3.3-70b-instruct (Grattafiori et al., 2024) and
Deepseek-chat-v3-0324 (DeepSeek-AI, 2024).

• Proprietary models: Claude-sonnet-4-20250514 (Anthropic, 2025), Gemini-2.0-
flash (Google Cloud, 2025), GPT-4.1 (OpenAI, 2025a), GPT-5 (OpenAI, 2025b),
GPT-o3 (OpenAI, 2025c), and Qwen-plus (Yang & et al., 2024).

4 Results

In this section, we present a summary of our dataset and the results of our expert quality
evaluation, LLM-as-a-judge experiments, and benchmarking experiments.
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Table 2: Expert quality assessment results for the representative data subset.

Metric Average [standard deviation] Percent Agreement Cohen’s Kappa
Medical Accuracy 0.722 [0.448] 82.0% 0.555
Clinical Relevance 0.653 [0.476] 65.6% 0.275
Question Difficulty 0.669 [0.471] 65.6% 0.233
Question Quality 0.767 [0.423] 68.3% 0.152

Table 3: Evaluation results of LLM-as-a-judge applied to the test set.

Model Evaluation Metric (average)
Medical Accuracy Clinical Relevance Question Difficulty Question Quality

Gemini 1.5 Pro 3.83 2.95 2.15 3.49
GPT-4 3.80 3.16 2.76 3.28
Claude 4.19 3.47 2.53 3.44
Average (Likert 1 to 5) 3.94 3.19 2.48 3.40
Average (Fraction of 5) 0.79 0.64 0.50 0.68

4.1 Dataset Summary

The initial dataset consisted of 34,333 MCQs. The manual filtering process resulted in a
reduction of approximately 29% of the initial dataset, yielding 24,883 samples overall. The
training set consisted of 19,894 samples, and the test set of 4,989 samples. An overview of
the dataset is shown in Figure 2. Additional statistical summaries can be found in Appendix
A.

4.2 Expert Quality Assessment

At 95% confidence and ±5% margin, Cochran’s formula initially yielded n0 = 384 questions.
The final sample size was 378 after adjusting for a finite sample. Hence, our two annotators
completed a review of 378 questions as a representative sample of the entire dataset. The
results of our data quality assessment and the inter-annotator agreement are summarized in
Table 2. Our results show slight to fair levels of agreement across all metrics, with Medical
Accuracy having the highest level of agreement with a Cohen’s Kappa score of 0.555 and a
percentage agreement of 82%.
Additionally, we provide a detailed per-specialty breakdown of the evaluation results in
Appendix B. To better assess the results, we investigate individual average and agreement
scores for each specialty. Specifically, Figures B1, B2, B3, and B4 show the average accuracy
per specialty for each metric, while Tables B1, B2, B3, and B4 show the average accuracy
and agreement results per specialty for each metric. All in all, our expert quality evaluations
indicate that the data is of high quality with fair levels of agreement across a random sample
of our test set.

Table 4: Benchmark accuracies by answer-choice set and overall.

Type Model ABCD ABCDE ABCDEF Overall

Proprietary

claude-sonnet-4-20250514 0.702 0.658 1.000 0.694
gemini-2.0-flash 0.661 0.623 1.000 0.654
gpt-4.1 0.694 0.588 0.500 0.673
gpt-5 0.762 0.774 1.000 0.764
gpt-o3 0.768 0.754 1.000 0.765
qwen-plus 0.633 0.554 1.000 0.618

Open-source llama-3.3-70b-instruct 0.562 0.484 0.500 0.547
deepseek-chat-v3-0324 0.635 0.555 1.000 0.620
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4.3 LLM-as-a-Judge Assessment

The results of our LLM-as-a-judge experiments are summarized in Table 3 across all four
evaluation metrics. Our results show moderate agreement among different LLMs and com-
parable results with the expert evaluation scores. To better understand the results in com-
parison with expert evaluations, we provide a detailed breakdown of the LLM-as-a-judge
results in Appendix C. Generally, we see alignment between LLM-as-a-judge evaluation and
expert evaluation of the quality of our dataset, with both

4.4 Benchmarking SOTA LLMs

We report all benchmarking results in Table 4. Our results show that reasoning models con-
sistently outperform all others across the benchmark dataset. Specifically, GPT-o3 achieves
the highest performance in the ABCD subset with an accuracy score of 0.768, while llama-
3.3-70b-instruct performs the poorest with a score of 0.562. Within the ABCDE subset,
GPT-5 achieves the highest performance with an accuracy score of 0.774, while llama-3.3-
70b-instruct performs the poorest with a score of 0.484. Overall, GPT-o3 and GPT-5 have
the highest accuracy scores of 0.765 and 0.764, respectively, while llama-3.3-70b-instruct
and qwen-plus have the lowest accuracy scores of 0.547 and 0.618, respectively. Appendix D
includes a more detailed breakdown of the accuracy scores per specialty and level for each
of the 8 evaluated models.

5 Discussion

Overall, in this study, we present MedAraBench, a new 24k dataset consisting of both
training and test sets. We report performance baseline results for SOTA LLMs and highlight
critical differences in model capabilities under zero-shot settings. By exposing gaps in Arabic
medical understanding, MedAraBench offers useful insights for the development of more
inclusive, multilingual, and domain-specialized language models.
The expert quality assessment and LLM-as-a-judge experiments provide valuable insights
into the quality of our data and the plausibility of using LLMs to evaluate the quality
of medical datasets. Namely, the expert quality evaluation yields average scores ranging
from 0.653 - 0.767 across all 4 evaluation metrics, with percent agreements and Cohen’s
Kappa scores ranging from 0.656 - 0.820 and 0.152 - 0.555, respectively, indicating slight
to fair levels of agreement across all metrics. The average evaluation metric scores indicate
moderate to high-quality data and fair agreement across annotators, but they indicate the
need for the curation of more benchmark datasets of higher quality and clinical relevance to
properly assess the readiness of LLMs for clinical deployment. While they are not directly
comparable due to varying evaluation scales, we note that the results of LLM-as-a-judge and
expert quality evaluation are comparable. These results demonstrate the potential of LLMs
to be used for data quality evaluation in the medical domain, pending further alignment
with medical standards.
Our benchmark evaluation results coincide with prior research on LLM benchmarking in
the medical domain, whereas proprietary models typically outperform open-access models
in structured tasks such as multiple-choice QA. This was previously demonstrated by Chen
et al. (2025) and Alonso et al. (2024), who demonstrated superior accuracy performance
by proprietary models relative to open-source models in medical QA tasks across multiple
languages. This was further shown by Abu Daoud et al. (2025), who demonstrated superior
performance by proprietary models such as Gemini 1.5 Pro, Claude 3.5 Sonnet, and GPT-4
in Arabic medical MCQ. Our results reinforce those findings, with all proprietary models
performing at significantly higher or similar accuracy scores to open-source models. Namely,
we observe that the lowest overall zero-shot accuracy score was achieved by llama-3.3-70b-
instruct at 0.547, followed by deepseek-chat-v3-0324 and qwen-plus with accuracy scores
of 0.620 and 0.618, respectively. On the other hand, we observe that gpt-o3, gpt-5, and
claude-sonnet-4-20250514 achieve the highest accuracy scores of 0.765, 0.764, and 0.694,
respectively. This is possibly due to the larger training corpora, stronger pretraining on
structured datasets, more extensive instruction tuning, and specialized reinforcement learn-
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ing pipelines that proprietary models undergo relative to their open-source counterparts.
Additionally, our results show significantly higher performance by reasoning models (gpt-5
and gpt-o3) relative to other models, showing the promise and importance of incorporat-
ing reasoning and explainability into medical NLP as a whole and Arabic medical NLP
specifically.
Building on existing frameworks (Abu Daoud et al., 2025), this study adopts an equivalent
evaluation design by utilizing structured Arabic medical MCQs, thus covering a similar task
definition and allowing for comparison of different generations of models. This alignment
allows us to compare on a high-level legacy LLMs (older models) against contemporary
models (newer models). Our results show significant improvement in accuracy scores for
all contemporary models relative to legacy models. Namely, claude-3.5-sonnet-20240620
achieved an accuracy score of 0.535 when tested with the MedArabiQ dataset, while claude-
sonnet-4-20250514 achieved an overall accuracy score of 0.694 on MedAraBench. Addi-
tionally, gpt-4.1, gpt-5, and gpt-o3 achieved accuracy scores of 0.673, 0.764, and 0.765 on
MedAraBench, which show significant improvement relative to the 0.535 achieved by gpt-4
in MedArabiQ. While the test sets are different, this indicates a generational improvement
that can be attributed to model advances and increased domain-specific training data.
However, despite the significant improvement across generations, the highest performing
model achieved an accuracy score of 0.765, which does not match expert-level performance
and indicates clear headroom for improvement before being ready for deployment in clinical
settings. Furthermore, this allows us to raise important questions about what exactly LLMs
are learning. High accuracy does not necessarily indicate deep understanding or clinical rea-
soning. Instead, models may be leveraging statistical associations and lexical patterns to
eliminate implausible answers. For example, frequent exposure to certain disease-treatment
pairs during pretraining may allow models to make educated guesses without reasoning
through symptom progression or differential diagnosis. This distinction is crucial, particu-
larly in high-stakes applications such as medical education or decision support. Future work
should consider evaluating not just answer correctness, but also the rationale behind model
choices, possibly through explanation-based tasks or clinician scoring of model justifications.

6 Limitations and Future Work

While our study provides a comprehensive evaluation of LLMs on Arabic medical MCQs and
represents a substantial advancement in benchmarking capabilities, several limitations exist.
First, the dataset is limited in its capability to evaluate LLMs on classification tasks only
due to the nature of the MCQ dataset, preventing the evaluation of LLMs in generative
tasks. Additionally, although the data source was not available in a structured digital
format and required extensive digitization and cleaning efforts, we cannot certainly rule out
contamination. Furthermore, our data assumes fluency in Modern Standard Arabic, which,
despite being common in formal settings, may not fully align with linguistic realities. This
can affect the generalizability of MedAraBench to learners or practitioners accustomed to
dialectal or mixed-language instruction.
Another limitation emerges from our expert quality evaluation experiments. Although our
dataset was reviewed by two expert clinicians, we observed occasional inconsistencies across
their assessments. We acknowledge that expert disagreement and inherent subjectivity are
common in clinical judgment, but recognize the need for broader consensus in future val-
idation efforts. Moreover, our data is text-only in its format, limiting its applicability to
accommodating image-based reasoning required in specialties such as radiology and derma-
tology, and warranting expansions to other data modalities in future work.
In this study, we primarily focused on zero-shot evaluation of model performance, providing
an assessment without further adaptation. While this is an important evaluation framework,
future work could explore the impact of few-shot and chain-of-thought prompting strategies,
as well as fine-tuning as an opportunity to improve model accuracy and performance. Fur-
thermore, future work could warrant the incorporation of dialectal data to enhance model
adaptability across diverse Arabic clinical settings.
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7 Conclusion

To conclude, we introduced a large-scale Arabic medical benchmark designed to evaluate the
zero-shot performance of LLMs on curated MCQs. Covering 19 medical specialties and span-
ning five difficulty levels, MedAraBench provides a comprehensive and fine-grained lens for
assessing Arabic medical reasoning in LLMs. Our benchmark provides an advancement for
developing benchmarks in the Arabic language and exposes limitations in the performance
of current LLMs in low-resource language tasks and the need for robust multilingual train-
ing strategies. Future work should explore fine-tuning strategies and the curation of larger
and higher-quality datasets tailored to Arabic medical contexts. We release MedAraBench
in hopes of supporting downstream clinical applications, and we hope that it serves as a
catalyst for continued research at the intersection of Arabic NLP and medical AI.

Ethics Statement

The authors disclose the use of generative AI tools to assist with LaTeX code cleanup and
formatting only, with all content, analyses, and conclusions authored and verified by the
researchers involved in this project.

Reproducibility Statement

The MedAraBench benchmark is available at https://anony-
mous.4open.science/r/medarabench-3BE4/
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A Data Analysis

A.1 Token Length Distribution

There are 24,883 questions in our dataset. The questions are moderate in length, with
a total average length of 8.0214 characters. The answers vary in format, whereas 24,523
questions have four answer choices (A, B, C, and D), 9801 questions have five answer choices
(A, B, C, D, and E), and 9 questions have six answer choices (A, B, C, D, E, and F). The
average answer length across the datasets is 16.371 characters. Figure A1 below gives a
detailed breakdown of the distributions of text lengths of the entire dataset.

Figure A1: Distribution of Text Lengths. (a) Distribution of question length; (b)
Distribution of answer length; (c) Distribution of Option A length; (d) Distribution of
Option B length; (e) Distribution of Option C length; (f) Distribution of Option D length;
(g) Distribution of Option E length; and (h) Distribution of Option F length in MedArabiQ
v2 dataset.

A.2 Distribution per Medical Specialty

The largest subsets of the dataset fall under Anatomy (8146 questions - 23.73% of the
dataset) and Physiology (4927 - 14.35%), while the smallest subsets fall under Preventive
Medicine (41 - 0.12%) and Medical Ethics (76 - 0.22&). A more detailed breakdown of the
distribution of questions according to specialty can be shown in Table A1 and Figure 2 (b)
above.

A.3 Distribution per Difficulty Level

The largest subset of the dataset fall under Y1 (19414 questions - 56.55% of the dataset)
while the smallest subset falls under Y4 (1161 - 3.38%). A more detailed breakdown of
the distribution of questions according to level can be shown in Table A2 and Figure 2 (a)
above. Additionally, Figure A2 shows the the composition of the five levels across the 19
specialties included in MedAraBench.
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Table A1: Distribution of Questions per Medical Specialty.

Medical Specialty Number of Questions Percentage
Anatomy 8146 23.73%
Anesthesia 413 1.20%
Biochemistry 1826 5.32%
Cell and Molecular Biology 4194 12.22%
Chemistry and Physics 5250 15.29%
Embryology 542 1.58%
Emergency Medicine 121 0.35%
Internal Medicine 1148 3.34%
Medical Ethics 76 0.22%
Microbiology 1597 4.65%
Ophthalmology 1347 3.92%
Pathology 132 0.38%
Pediatrics 337 0.98%
Pharmacology 524 1.53%
Physiology 4927 14.35%
Preventive Medicine 41 0.12%
Psychiatry 225 0.66%
Statistics 2132 6.21%
Surgery 409 1.19%

Table A2: Distribution of Questions per Difficulty Level.

Difficulty Level Number of Questions Percentage
Y1 19414 56.55%
Y2 7860 22.89%
Y3 4134 12.04%
Y4 1161 3.38%
Y5 1764 5.14%

B Expert Quality Assessment Details

In this appendix, we provide a detailed breakdown of the expert evaluation results introduced
in Section 2. While the main text summarizes overall averages and agreement levels across
all specialties, here we report per-specialty results to give a more fine-grained view of model
performance and annotator consistency.
Figures B1–B4 present the distribution of annotator scores across specialties for each of
the four evaluation metrics (Medical Accuracy, Clinical Relevance, Question Difficulty, and
Question Quality). The corresponding Tables B1– B4 report the average scores, number of
evaluated questions, percentage agreement, and Cohen’s Kappa values for each specialty.
Together, these results highlight the variability across domains and provide context for
interpreting the aggregate quality metrics shown in the main text.
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Figure A2: Level Composition within Each Specialty. Composition of the 5 different
levels (Y1 - Y5) in MedArabiQ v2 dataset.

Figure B1: Overall Annotator Accuracy Scores per Specialty.
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Figure B2: Overall Annotator Relevance Scores per Specialty.

Figure B3: Overall Annotator Difficulty Scores per Specialty.

Figure B4: Overall Annotator Quality Scores per Specialty.
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Table B1: Annotator Accuracy Scores per Specialty.

Specialty Average [standard deviation] Number of Questions Percent Agreement Cohen’s Kappa
Anatomy 0.689 [0.464] 103 0.748 0.431
Anesthesia 0.600 [0.503] 10 0.600 0.167
Biochemistry 0.625 [0.489] 24 0.750 0.471
Cell and Molecular Biology 0.613 [0.489] 62 0.774 0.529
Chemistry and Physics 0.708 [0.457] 48 0.917 0.798
Embryology 1.000 [0.000] 1 1.000 -
Emergency Medicine 1.000 [0.000] 2 1.000 -
Internal Medicine 0.917 [0.280] 18 0.944 0.640
Microbiology 0.400 [0.498] 15 0.733 0.455
Ophthalmology 0.820 [0.388] 25 0.880 0.603
Pathology 0.625 [0.518] 4 0.750 -
Pharmacology 1.000 [0.000] 4 1.000 -
Physiology 0.895 [0.308] 43 0.884 0.380
Statistics 0.947 [0.226] 19 1.000 1.000

Table B2: Annotator Relevance Scores per Specialty.

Specialty Average [standard deviation] Number of Questions Percent Agreement Cohen’s Kappa
Anatomy 0.699 [0.479] 103 0.641 0.225
Anesthesia 1.000 [0.000] 10 1.000 -
Biochemistry 0.667 [0.494] 24 0.708 0.400
Cell and Molecular Biology 0.726 [0.501] 62 0.435 0.095
Chemistry and Physics 0.333 [0.470] 48 0.688 0.286
Embryology 1.000 [0.000] 1 1.000 -
Emergency Medicine 1.000 [0.000] 2 1.000 -
Internal Medicine 1.000 [0.280] 18 0.833 0.000
Microbiology 1.000 [0.407] 15 0.600 0.000
Ophthalmology 1.000 [0.303] 25 0.800 0.000
Pathology 1.000 [0.463] 4 0.500 -
Pharmacology 1.000 [0.000] 4 1.000 -
Physiology 0.930 [0.275] 43 0.884 0.224
Statistics 0.947 [0.504] 19 0.211 0.021

C LLM-as-a-Judge

The models were provided with the full test set of MCQ (stem, options, and correct answer)
and instructed to return only valid JSON output. The exact prompt was:

Listing 1: Prompt provided to LLMs
You are a medical education expert. Evaluate the following multiple -

choice
question (MCQ) on a scale of 1 to 5 for each of the following metrics:

1. Medical Accuracy (1=very inaccurate , 5=highly accurate)
2. Clinical Relevance (1=not relevant , 5=highly relevant)
3. Question Difficulty (1=very easy, 5=very difficult)
4. Question Quality (1=poor, 5=excellent)

Important: Return ONLY valid JSON. No explanations , no markdown , no text.
The response must be exactly like this:

{
"medical_accuracy": <1-5>,
"clinical_relevance": <1-5>,
"question_difficulty": <1-5>,
"question_quality": <1-5>

}

Question stem: {row['Question']}
Options:
{options_text}
Correct answer: {row['Correct Answer']}

This setup ensured that LLM outputs were standardized and machine-readable. By ag-
gregating scores across thousands of test questions, we obtained descriptive statistics and
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Table B3: Annotator Difficulty Scores per Specialty.

Specialty Average [standard deviation] Number of Questions Percent Agreement Cohen’s Kappa
Anatomy 0.816 [0.464] 103 0.650 0.240
Anesthesia 0.700 [0.510] 10 0.500 0.074
Biochemistry 0.708 [0.476] 24 0.750 0.442
Cell and Molecular Biology 0.661 [0.463] 62 0.710 0.320
Chemistry and Physics 0.958 [0.408] 48 0.625 0.027
Embryology 1.000 [0.000] 1 1.000 -
Emergency Medicine 1.000 [0.577] 2 0.000 -
Internal Medicine 0.722 [0.487] 18 0.611 0.182
Microbiology 0.933 [0.305] 15 0.800 -0.098
Ophthalmology 0.880 [0.418] 25 0.720 0.229
Pathology 0.500 [0.535] 4 1.000 -
Pharmacology 0.500 [0.518] 4 0.750 -
Physiology 0.372 [0.494] 43 0.651 0.281
Statistics 0.316 [0.500] 19 0.368 -0.009

Table B4: Annotator Quality Scores per Specialty.

Specialty Average [standard deviation] Number of Questions Percent Agreement Cohen’s Kappa
Anatomy 0.573 [0.451] 103 0.573 0.044
Anesthesia 0.600 [0.489] 10 0.700 0.348
Biochemistry 0.583 [0.449] 24 0.625 0.143
Cell and Molecular Biology 0.548 [0.448] 62 0.484 -0.120
Chemistry and Physics 0.708 [0.457] 48 0.792 0.496
Embryology 1.000 [0.000] 1 1.000 -
Emergency Medicine 1.000 [0.000] 2 1.000 -
Internal Medicine 0.889 [0.280] 18 0.944 0.640
Microbiology 0.533 [0.490] 15 0.533 0.037
Ophthalmology 0.760 [0.370] 25 0.840 0.432
Pathology 0.750 [0.518] 4 0.750 -
Pharmacology 1.000 [0.000] 4 1.000 -
Physiology 0.884 [0.292] 43 0.860 0.178
Statistics 0.895 [0.273] 19 0.842 -0.075

model-wise distributions that enabled a more fine-grained analysis than binary human rat-
ings alone.
Figure C5 shows box plots of the score distributions for each metric. These plots display
the median (horizontal line inside the box), interquartile range (box), and outliers (circles).
Gemini and GPT-4 produced broader spreads across the 1–-5 scale, while Claude’s ratings
were more concentrated toward higher scores, particularly for Medical Accuracy and Clinical
Relevance. Question Difficulty was more evenly distributed across models, with medians
near 2–-3.
To examine agreement between models, Pearson correlation coefficients were calculated on a
per-question basis. Heatmaps for each metric are shown in Figure C6. Correlations ranged
from 0.49 to 0.72, indicating moderate consistency between models. For example, Claude
generally assigned higher absolute values, but the relative ordering of items remained similar
across models.
It is important to interpret these results alongside the clinician ratings, which were binary
(high/low). Binary judgments compress intermediate cases into “low,” whereas the LLMs
frequently assigned middle values (2-–4). This explains much of the apparent discrepancy:
questions rated as “low” by clinicians often received intermediate LLM scores. Rather than
contradicting clinicians, the LLMs add resolution by distinguishing between poor, moderate,
and strong items within the test set.
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Figure C5: Distribution of LLM ratings (1–5) across four evaluation metrics and three
models. Box plots show medians, interquartile ranges, and outliers.

Figure C6: Pearson correlations of Medical Accuracy, Clinical Relevance, Question Diffi-
culty, and Question Quality scores across models.

D Performance per Specialty and Level

To complement the overall evaluation, we analyze model accuracy across different medical
specialties and difficulty levels. This breakdown highlights domain-specific strengths and
weaknesses, as well as how performance varies across the five curriculum levels (Y1–-Y5).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure D1: Accuracy per Specialty across all 8 models.

Figure D2: Accuracy per Level across all 8 models.
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Table D1: Accuracy on MedAraBench (contemporary) vs MedArabiQ (legacy).

MedAraBench MedArabiQ
Contemporary Model Accuracy Legacy Model Accuracy
claude-sonnet-4 69.4 claude-sonnet-3.5 53.5
gemini-2.0-flash 65.4 gemini-1.5 57.5
gpt-4.1 67.4

gpt-4 53.5gpt-5 76.4
gpt-o3 76.5
llama-3.3-70b 54.7 llama-3.1-8b 26.2
qwen-plus 61.8 qwen-2.5-7b 38.0
deepseek v3 62.0 deepseek v3 50.5

Table D2: Average Scores of Expert vs LLM evaluation of MedAraBench

Evaluation Metric Expert Evaluation (average + std) LLM Evaluation (average + std)
Medical Accuracy 0.722 [0.448] 0.788 [0.312]
Clinical Relevance 0.653 [0.476] 0.639 [0.281]
Question Difficulty 0.669 [0.471] 0.496 [0.179]
Question Quality 0.767 [0.423] 0.681 [0.245]
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E Answer Choice Distribution Balance

After constructing the dataset, we observed small but notable imbalances in answer distri-
butions after constructing our dataset.
This could lead to model bias toward any specific answer position (e.g., always selecting
“A”). As such, to address this, we analyzed and adjusted the distribution of correct answer
choices across all subsets and splits by making minimal targeted adjustments (e.g., reorder-
ing options when possible) to bring the correct answer frequencies closer to uniformity. This
refinement was done independently for the training and test sets across each answer format
group (ABCD, ABCDE, ABCDEF). This adjustment ensures a balanced representation of
correct answers and helps reduce the likelihood that models learn position-based heuristics.
Figures E1–E3 visualize the resulting distributions.

Figure E1: Answer Choice Distribution for ABCD format (Train/Test)

Figure E2: Answer Choice Distribution for ABCDE format (Train/Test)

We further validated this balance using chi-square goodness-of-fit tests. Chi-square
goodness-of-fit tests confirmed no significant deviation from uniformity in ABCD and
ABCDE splits (p > 0.97), indicating that the observed answer distributions do not sig-
nificantly deviate from a uniform distribution. The ABCDEF format was excluded from
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Figure E3: Answer Choice Distribution for ABCDEF format (Train/Test)

this analysis in the test set due to insufficient sample size (n = 2). All tests support the
conclusion that the distributions do not significantly differ from uniformity.
The resulting χ2 values and p-values were as follows:

• ABCD (Train): χ2 = 0.099, p = 0.992
• ABCD (Test): χ2 = 0.212, p = 0.976
• ABCDE (Train): χ2 = 0.422, p = 0.981
• ABCDE (Test): χ2 = 0.226, p = 0.994
• ABCDEF (Train): χ2 = 0.714, p = 0.982
• ABCDEF (Test): χ2 = 6.02, p = 0.304

This adjustment ensures a balanced representation of correct answers and helps reduce the
likelihood that models learn position-based heuristics.
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