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Abstract—Neuroimaging studies have demonstrated that
Alzheimer’s disease (AD) is closely related to changes in neu-
roanatomy in the form of damage to both grey matter and
white matter. However, the exact nature of AD’s relationship with
white matter anatomical deterioration is not fully understood at a
systemic level. To investigate this knowledge gap, we constructed
structural brain networks from ADNI-GO/2 diffusion tensor
imaging (DTI) images with brain regions of interest (ROIs)
as nodes and white matter connections as edges weighted by
fiber density. The cohort consists of healthy control (HC),
mild cognitive impairment (MCI), and clinically diagnosed AD
subjects. By optimizing consensus modularity of structural brain
networks at a subpopulation level to investigate community
structure throughout a range of resolution parameters (γ), we
observed a split of the reward-based decision-making module in
the AD group at γ = 1.3, thus finding a 7th consensus community
in the AD consensus brain network partition that was not present
in that of MCI or HC populations. Upon further investigation,
we found that thalamic and caudal regions were involved in the
increased segregation of AD brain networks. These regions are
implicated in regulation of decision-making processes, and their
segregation from other decision-making regions is a novel finding
in white matter biomarker studies of AD. Our study presents
novel evidence that AD may be a disconnection syndrome at
the mesoscopic structural level, with potential new avenues of
exploration into the role of the thalamus and caudate that may
reveal neural correlates of cognitive deficits in clinically diagnosed
AD.

Index Terms—Alzheimer’s Disease, Cognitive Systems, Dif-
fusion Tensor Imaging, Magnetic Resonance Imaging, Neuro-
science, Neuroimaging, Thalamus

I. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia, an irreversible progressive disease characterized by
memory loss followed by deterioration of cognitive function
and memory recall. There are currently 5.5 million people
afflicted with Alzheimer’s in the United States and the number
is estimated to increase to 15 million by the year 2050 [1].

AD has become one of the leading causes of death due
to the lack of effective treatment, with the death toll of
Alzheimer’s disease rising by 89% from 2000 to 2014 [2].
With an increasingly aging population at risk of developing
the disease, efforts to uncover the progression of Alzheimer’s
have become ever more important.

Neuroimaging is at the forefront of studying AD, allowing
researchers to map the distribution of pathaological traits
within the brain at structural and molecular levels [3]. Ob-
served imaging phenotypes are compared across subject pop-
ulations, including healthy control (HC), subjects with signifi-
cant memory concern (SMC) [4], subjects in pre-clinical stages
of mild cognitive impairment (MCI) [5], and patients clin-
ically diagnosed with Alzheimer’s Disease (AD). Traditional
approaches using magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI), diffusion tensor imag-
ing (DTI), and positron emission tomography (PET) have
accumulated evidence pointing towards Alzheimer’s disease
being a disconnection syndrome, characterized by a reduction
of efferent and afferent connections between cortical and
subcortical regions of interest (ROIs) in AD patients when
compared to other subject groups [6], [7].

A contemporary approach to investigating connectivity in
AD is through network neuroscience, where studies observe
altered properties of brain networks across subject groups
defined using ROIs as nodes and their corresponding pairwise
relationships quantified from functional and structural imaging
modalities as edges [8]–[18]. Properties of brain networks can
be characterized using local and global measurements that
are sensitive to connectivity disruptions and hypothesized to
possess neurobiological relevance [19]. In cortical thickness
structural connectivity networks derived from magnetic res-
onance imaging (MRI) data, it has been found that network
measurements related to small-world properties of clustering



coefficient and path length are perturbed in the AD groups
[20]. Lowered local efficiency associated with AD has been
found in fractional anisotropy white matter networks derived
from DTI [21]. Structural networks constructed using fiber
count and fractional anisotropy from DTI have also demon-
strated increased shortest path length and decreased global
efficiency of AD brain networks, related to a reduction in
connectivity [22]. However, the effects observed from these
network measurements have been inconsistent between studies
and imaging modalities, with difficulties in replication [23].

Another approach to investigating network connectivity
properties is via the mesoscale study of modularity, where
modules correspond to clusters of densely connected nodes
that are strongly coupled within the community but weakly
coupled externally [24]. Changes in connectivity will be re-
flected in the detected communities, as reduced intermodular
connections may result in increased segregation, while reduced
intramodular connections may cause community structure to
degrade and result in increased integration. Modularity stud-
ies in relation to Alzheimer’s disease have primarily used
functional signals taken from resting-state functional MRI
(RS-fMRI), electroencephalography (EEG), and magneto-
encephalography (MEG). Resting-state functional networks
(RSNs) across diagnostic groups in Alzheimer’s disease have
been observed to possess decreased segregation in the fron-
toparietal and default mode networks due to decreased promi-
nence of functional connectivity patterns within those two
systems [25]. When investigating networks constructed from
MEG, it was found that the number of modules and number of
intermodular connections were reduced in AD subjects [26].
Isolated studies observing modularity changes in structural
networks in relation to AD have been sparse, as former
research on the topic involved structural data statistically
coupled to functional modularity but not studied directly [27]
or structural modularity as a predictor in regression models
[28].

For this study, we used fiber density as edge weights.
We investigate changes to the number of modules and ROI
community membership within consensus partitions of rep-
resentative fiber density networks across subject populations
within an Alzheimer’s disease cohort. We expect to observe
alterations in two properties of community structure across
disease groups: 1) the number of communities detected, and
2) the ROI membership of detected communities. In particular,
we expect to observe these changes in communities with ROIs
implicated in memory recall and decision-making that support
the hypothesis that AD is a disconnection syndrome at a
structural level.

II. MATERIALS AND METHODS

Data and Preprocessing

We selected subjects that have available data in DTI scans,
T1-weighted structural MRI (sMRI), and demographic data
from the Alzheimer’s disease neuroimaging initiative (ADNI-
GO/2) database [29]. The subject population consisted of
healthy control subjects (n = 76), MCI subjects (n = 68),

TABLE I
ADNI GO-2 COHORT (N=173) POPULATION DEMOGRAPHICS

Variable HC MCI AD p
Avg. Age 73.3 ± 7.89 72.5 ± 7.40 73.0 ± 5.81 0.805
Avg. Edu. (Yr.) 16.0 ± 2.70 15.6 ± 2.85 15.3 ± 2.91 0.939
Num. M. 42 37 20 -
Num. F. 34 31 9 -
% Right-hand 89.5% 91.1% 89.7% -

TABLE II
ADNI GO-2 COHORT (N=173) ETHNIC REPRESENTATION

Group Nat. Am. Asian/Pac. Isl. Afr. Am. W. Cauc. Multi
HC 1 3 1 70 1
MCI 0 3 7 56 2
AD 0 0 2 27 0

and AD (n = 29) patients. The sex distribution was 99
male and 74 female subjects. The average age of the total
population was 73.0 years with the AD population averaging
at 72.5 years, the MCI population averaging at 72.0 years,
and the HC population averaging at 73.3 years. We tested
for group differences in continuous demographic variables
using ANOVA (Table I). No significant difference in ages was
detected across population groups (p = 0.805). Average num-
ber of years of education received was also consistent across
population groups (p = 0.939), with HC averaging 16.0 years,
MCI averaging 15.6 years, and AD averaging 15.3 years.
Subjects were also primarily right-handed (HC = 89.5%, MCI
= 91.1%, AD = 89.7%). Ethnic distribution in each subject
group is predominantly white caucasian (Table II). The DTI
data were entered into an image processing pipeline, including
denoising, motion-correction, and distortion-correction using
an overcomplete local principal components analysis (PCA)
[30]. Probabilistic white matter fiber tractography was then
performed using a streamline tractography algorithm called
fiber assignment by continuous tracking (FACT) [31].

sMRI images were then registered to lower resolution b0
volume of the DTI data using the FLIRT toolbox in the FMRIB
Software Library (FSL) [32] and 83 cortical and subcortical
brain regions of interest (ROIs) were extracted based on the
Lausanne 2008 Scale 33 Parcellation [33]. To define the
network edges, we use fiber density as described by [34], [35].
Specifically, the number of the fibres (NOF) connecting each
pair of ROIs (i, j) and each ROI’s surface area (SA) were
obtained, and the fiber density in the connection was obtained
by dividing NOF between ROIs (i, j) by the average SA of
regions i and j [34]. This normalization will correct for a
trend observed where larger ROIs have relatively higher fiber
counts. The final networks based on 83 ROIs were constructed
using the fiber density of tracts connecting between pairs of
ROIs. All obtained edges are retained, without an a priori
thresholding procedure to avoid a known issue of graph
theoretical measure sensitivity to edge threshold selection [36].

To study the changes in modularity across diagnostic pop-
ulations, the 173 subjects with diagnostic labels of HC, SMC,



early MCI, late MCI, and AD were further stratified into
three groups of HC, MCI, and AD to match more recent
definitions of AD labeling from the ADNI [37]. The HC
group consisted of 76 subjects, including HC subjects without
symptoms (n=37) and SMC subjects (n=19) that were self-
reported to have cognitive decline without objective cognitive
impairment [4]. The MCI group consisted of early MCI (n=18)
and late MCI (n=50) subjects. The final AD group consisted
of 29 subjects clinically diagnosed with Alzheimer’s disease.

Optimizing Modularity of Averaged Networks

We sought to find community structures within the repre-
sentative networks of each subject population. Modularity was
optimized using the community Louvain [38] implementation
in the Python version of the Brain Connectivity Toolbox (BCT)
[19] using a quality function containing a resolution parameter
γ [39]. Subject fiber density matrices within each population
were bootstrapped, resampling 80% of the population with
replacement, and averaging the density values to create mean
networks. These bootstraps were conducted 100 times to
generate an ensemble of partitions for each subject group. By
creating an ensemble, we can account for the variability of
optimal partition outputs from the Louvain algorithm [38].
Bootstrapping and averaging networks will also account for
within-group variability of subjects. The resolution parameter
γ was varied from 0 to 5 at increments of 0.1 to capture
a wide range of partition structures. For each gamma, the
average final Q-value within each subject group, the average
number of modules within each subject group, and the average
pairwise partition distance between subject groups defined
by normalized mutual information [40] were calculated. The
implementation of partition distance can be found in the BCT
package. Elbow transitions were then found in these metrics
varying by γ to obtain the optimal resolution parameter.

Construction of Association Matrices

The goal of the experiment is to obtain consensus commu-
nity partitions for each of the subject groups that are statis-
tically significant and capture group patterns. To do this, we
first created association matrices (Ap) for each subpopulation
by counting the number of times a node i shared a community
assignment with another node j normalized by the number of
partitions (n = 100) [41]. Entries in the association matrix
Ap(i, j) denote the probability that nodes i, j would share a
community for the population p. To ensure statistical signifi-
cance, the averaged association matrices were then thresholded
using a post-optimization null model [42]. The null model was
obtained by performing random permutations of the 100 parti-
tions obtained previously for each subpopulation, reassigning
each node’s community membership at random with uniform
probability, from which the null-model association matrix
(Anull,p) was then computed. Ap was then thresholded, where
values that were less than the maximum value expressed in
the corresponding Anull,p were set to 0. This process was
repeated for partitions obtained for each subject group to
obtain statistically significant association matrices.

Optimizing Consensus Partitions from Association Matrices

To obtain consensus modules, community Louvain was run
on the thresholded averaged association matrices. This method
has been proven to provide stable consensus partitions robust
to noise and heuristical variation in modularity optimization
[41] [42]. The effect of resolution parameter was again ex-
plored, over the range of γcon = 1 to γcon = 5 in increments
of 0.1. To select the optimal resolution parameter, average
number of groups, average group size, and minimum group
size were computed for each population. The goal was to
select a γcon that would yield 1) communities of reasonable
size, 2) an inflection point where community structure shows
significant change, and 3) a number of communities that may
potentially represent the 7 RSNs in the Yeo Atlas [43] plus an
additional subcortical ROI group. Consensus partitions were
thus obtained for each subject group for further functional
annotation.

Functional Annotation of Modules

A mapping of the 7-RSN Yeo Atlas [43] with an addi-
tional interhemispheric subcortical structure network (thala-
mus, caudate, putamen, pallidum, hippocampus, amygdala,
accumbens area, ventral diencephalon) to the Lausanne Scale
33 Parcellation was used for functional annotation of modules.
ROI members of the obtained consensus modules were then
assigned to a Yeo Atlas system. Ranked modes were computed
within each module, with the top 2 most represented RSNs
assigned to each module.

RESULTS

Resolution Parameter Selection

Optimal module identification has been demonstrated to
possess a resolution limit, where it is impossible to detect
modules of a certain size [44]. As such, we investigated the
effect of tuning a resolution parameter γ when optimizing a
quality function [39] for averaged fiber density networks ob-
tained from bootstraps (80% resampled) of subject networks in
each diagnostic population. To find the optimal γ, we observed
the average number of modules within the population, average
Q-value within the population, and average partition distance
between populations when varying γ in increments of 0.1
from 0 to 5. It was found that the average Q-value decreased
monotonically with a slight elbow transition at γ = 1, and
the average number of modules increased linearly with γ,
for all three populations of subject networks (Fig. 1a,b). We
considered these results to be insufficient to inform optimal
resolution parameter selection, therefore we studied a third
measurement: the distance between partitions of two different
subject groups (HC vs. MCI, HC vs. AD, MCI vs. AD)
defined by normalized mutual information [40]. A monotonic
relationship was found, where the partition distance between
groups increased as γ increased, with an elbow transition
yielding a plateau beginning at γ = 1. In observance of this
plateau, γ = 1 was chosen as the optimal resolution parameter,
where the partition distance between populations was at near
maximum while maintaining a reasonable number of modules



Fig. 1. When tuning the resolution parameter γ for the bootstrapped network
community detection procedure, we tracked the metrics of modularity quality
(Q-value), number of modules within each subject population, and average
partition distance between subject populations, and reported the average across
the 100 bootstraps performed within each population. (A) We found that
Q decreased monotonically as γ decreased, with an elbow-like transition at
around γ = 1. (B) We found that the average number of modules increased
monotonically with increases in γ. (C) The average partition distance defined
with normalized mutual information between subject groups reached near-
maximal values at γ = 1 before plateauing. This elbow transition indicates
that γ = 1 would be the ideal selection of the resolution parameter, where
the partition distance between groups is maximized while the number of
communities can be reasonable.

within each population (Fig. 1c). It is noted that γ = 1 is often
chosen as a default case, as it is equivalent to maximizing
the standard quality function Q [45] and represents a natural
trade-off between small and large communities [24] [39].

Consensus Partitions from Association Matrices

To analyze differences in modularity among populations,
we sought to find representative consensus modules for each
subject group via modularity optimization of thresholded asso-
ciation matrices. The associations were gathered from module
assignments with γ = 1 for 100 averaged networks constructed
from bootstraps (80% resampled with replacement) of each
diagnostic population (Fig. 2a), and were then thresholded
against association matrices of post-optimization permutation
null models (n = 100 random permutations, Fig. 2b). Using
community Louvain and tuning a resolution parameter γcon
from 1 to 5 to find an optimal selection for the resolution
parameter for consensus partitions, it was observed that the
number of communities was largely stable from γcon = 1 to 3
for all three populations (Fig. 3a). A transition was observed at
γcon = 1.3 where the AD consensus modules increased from
6 to 7. Beyond γcon = 3, the module assignments became
unstable, with the average size of a community dropping
rapidly (Fig. 3b). Upon further investigation, it was found that
the minimum community size rapidly descended to 1 after
γcon = 3, indicating instability in the community assignments
at high resolution parameter values (Fig. 3c). Thus, we chose

to investigate the consensus modules found for each subject
group at γcon = 1 and γcon = 1.3, where the community struc-
tures are the most stable and persistent across the resolution
range.

Community Assignment Changes in Consensus Partitions
Across Resolutions

Upon computing consensus modules, we sought to inves-
tigate the differences that existed across the subject groups.
When optimizing modularity with γcon = 1 on the association
matrices, 6 communities were discovered in each of the subject
groups (Fig. 4a). The main differences observed between HC
and MCI subject groups were an assignment switch of the
brain stem from community 4 to community 1, and a switch
of left supramarginal from community 5 to community 6.
However, in MCI vs. AD, the left supramarginal gyrus returned
to its HC community assignment. Between MCI and AD,
the left transverse temporal gyrus saw an allegiance switch
from community 6 to community 5. Lastly, MCI vs. AD saw
assignment switches of left and right caudate along with left
and right thalamus from community 4 to community 1.

At γcon = 1.3, we observed a 7th module in subjects with
AD. The aforementioned differences described in MCI vs. AD
in left and right (L/R) caudate and L/R thalamus were captured
with their segregation into the 7th community (Fig. 4b). HC
vs. MCI communities remained consistent between the two
tested γcon values. We thus note that the partitions obtained
at a resolution of γcon = 1.3 uncover increased segregation
in the representative AD brain network (Fig. 4e), and warrant
further investigation with functional annotation to identify key
differences in the AD consensus partition.

To investigate functional annotation of each module, we
mapped each module’s members to 7 functional RSNs based
on the Yeo Atlas [43] with an additional subcortical group.
Each module was labeled with the 2 most represented RSNs
within the community. The segregation of L/R thalamus and
L/R caudate in AD captured at γcon = 1.3 depicted these
two subcortical regions separating from community 4, which
consists mainly of Limbic and Subcortical system ROIs.
Further investigation of community 4’s members reveals that
the regions are primarily involved with reward-based decision-
making (L/R accumbens area, L/R medial orbitofrontal, L/R
frontal pole, L/R rostral anterior cingulate) [47], and as such,
we coin this community of ROIs as the reward-based decision-
making module, which sees increased segregation in AD with
the reassignment of the thalamic and caudal structures into a
separate module.

DISCUSSION

It has been hypothesized that Alzheimer’s disease is a
disconnection syndrome, where symptoms of memory recall
deficits and cognitive dysfunction may be related to a loss
of structural white matter connectivity in key systems. To
investigate that notion, we sought to optimize modularity of
fiber density networks across a range of resolution parameters
and detail the observed changes in the number of communities



Fig. 2. Association matrices for each subject population were obtained, where the number of times a node shared a community assignment with another node
was recorded. (a) In the top row, the original association matrices showed many low frequency co-assignments, with faint relationships between many of the
regions. (b) After thresholding against post-optimization null models, we observed that many of the lower-association values were removed, resulting in only
statistically significant associations post-thresholding.

Fig. 3. For the consensus modules, we tracked the (a) number of modules,
(b) the average module size in each partition, and (c) the minimum module
size in each partition obtained throughout the γ parameter tuning.

and membership of communities among HC, MCI, and AD
groups. Key differences were found in the AD group when
compared to HC and MCI. When investigating consensus

partitions for each subject group, we found a largely consistent
set of 6 modules across all subject groups, with a 7th stable
module in AD at γcon = 1.3. The source of the increased
segregation in the AD group came from the separation of two
subcortical structures, the thalamus and the caudate in both
hemispheres, away from the reward-based decision-making
module.

Modularity Changes in Alzheimer’s Disease

Previous studies of modularity in brain networks in AD
subjects have primarily investigated functional connectivity
during resting state. A resting-state fMRI study showed that
there was decreased segregation of frontoparietal and default
mode networks [25]. In MEG, it was found that the parietal
lobe became more segregated, with a reduction of intramodular
connections in AD subjects [26]. It is to be noted that modular-
ity of structural human brain networks has been demonstrated
to change with age [48]. However, due to the controlled age
across subject populations within the ADNI-GO/2 cohort (p =
0.805, Table I), the observed differences between diagnostic
populations are unlikely to be due to age. Thus, the findings in
our study of modularity in fiber density networks reveal a new
phenomenon of the segregation of the thalamus and caudate
related to AD. The notion of integration of modules has been
associated with the performance of higher-order cognition and



Fig. 4. Consensus module assignments were obtained and plotted using a color code, and differences among the populations were observed. (a) Six consensus
modules were found for γcon = 1 in all subject groups. We observed an assingment switch of left supramarginal gyrus and brainstem when comparing
MCI to HC. AD saw L/R thalamus and L/R caudate switch allegiance to group 1 compared to MCI. (b) At γcon = 1.3, 7 consensus modules were found
in AD, while the same 6 modules persisted for HC and MCI. Here, the segregation of L./R. thalamus and L./R. caudate were observed. (c-e) A axial view
of consensus brain networks and consensus modules were plotted in 3D space for each subject group using matplotlib [46] overlaid on top of FreeSurfer’s
averaged brain surface to provide a spatial depiction of the obtained communities.

working memory [49]; however, it is balanced with segregation
to maintain specialization of function [50].

In the present study, we observed that the detected structural
communities across all three subject groups are largely split
between left and right hemispheres with a set of central
brain modules connecting the two hemispheres (Fig. 4c-e),
with a disruption to the interhemispheric relay regions in AD
where the thalamus and caudate are segregated into their own
community. Therefore, observing segregation in AD subjects
not present in HC subjects may indicate an upset in the
integration-segregation balance, providing a potential point of
investigation.

Separation of Key Decision-Making Structures
It has been demonstrated in previous studies that the thala-

mus and caudate regions are implicated in the decision-making
pathways. The thalamus has traditionally been considered a
relay for neural connections; however, a recent study in mice
showed that the mediodorsal portion of thalamus is also in
close communication with the prefrontal cortex, regulating
rule-based information involved in decision making [51] [52]

[53]. Recent reviews of structural changes in neuropsychiatric
disorders have also corroborated evidence of mediodorsal
thalamic disruption in schizophrenia subjects [54]. A study on
electrode signals in monkeys during an AX continuous per-
formance task, a commonly used cognitive deficit assessment
for schizophrenia, revealed that mediodorsal thalamus neurons
were implicated in response selection [55]. As such, it can be
surmised that the thalamus is a key structure in mediating
decision-making processes in addition to its function as a
relay region, and its disruption could potentially be related
to the symptoms observed in neurodegenerative disease. Ac-
cordingly, Alzheimer’s disease is accompanied with a decline
in decision-making performance, with decreased ability in
AD subjects to make decisions under risk compared to MCI
subjects [56]. Therefore, we speculate through our study that
the disturbance to thalamic participation in the reward-based
decision-making module observed in AD subjects compared
to HC and MCI subjects may be related to cognitive deficits
present in AD.

The second set of structures that showed segregation from



the reward-based decision-making module were the left and
right caudate. The region has been found to assess outcomes
of goal-directed behavior, as such it plays a significant role
in mediating action schemas [57]. Given this knowledge, the
observed isolation of the caudate away from the reward-
based decision-making structures observed in AD subjects
may represent another neural correlate of reduced decision-
making abilities in AD patients.

Limitations
When performing modularity optimization, it is known that

the optimal community assignment is a computationally in-
tractable problem, with optimization algorithms often making
use of a heuristic to achieve a partition of approximately
maximal quality [24]. As such, the optimal community as-
signments may differ based on the approach used. However,
in the present study, we have employed the association matrix
to increase the stability of heuristic modularity optimization
[42], thus significantly mitigating the variance that arises from
community Louvain.

It must also be recognized that network analysis is sensi-
tive to the choice of ROI parcellation scheme [58], network
link density [59], and thresholding of edge strengths [36],
procedures which are not fully standardized in the field. The
exact nature of modularity’s sensitivity to network construction
protocol will be investigated in future work.

Lastly, the present study was conducted in one cohort of
ADNI. While the AD cohort used is limited in size due to
imaging data availability, the cohort is sufficiently large in
comparison to those of previous works that make use of a
modularity-based study paradigm [25] [26]. To address cross-
cohort generalizability, we aim to investigate a validation
cohort in future studies.

CONCLUSION

Through the investigation of modularity of representa-
tive white matter fiber density networks, we have identified
topological changes in subjects with clinically diagnosed
Alzheimer’s disease in a module associated with reward-
based decision-making. The study has uncovered a potential
role of the thalamus and caudate structures, which become
segregated from the decision-making ROIs in AD subjects, that
can be further explored to explain cognitive deficit symptoms
observed in clinically diagnosed AD. Our results also confirm
that Alzheimer’s disease is indeed a disconnection syndrome
at the structural level, with the novel exploration into the
segregated community structure of fiber density networks at
greater disease severity.
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