

000 001 002 003 004 005 DIVERSITY-ENHANCED REASONING FOR SUBJECTIVE 006 QUESTIONS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Large Reasoning Models (LRMs) with long chain-of-thought capabilities, optimized via reinforcement learning with verifiable rewards (RLVR), excel at **objective reasoning** tasks like mathematical problem solving and code generation. However, RLVR is known for degrading generation diversity, which causes LRMs to fall short on **subjective reasoning** that has multiple answers depending on different role perspectives. While recent studies recognize the importance of diversity-enhanced training in objective reasoning, limited attention has been given to subjective tasks. In this paper, we find that subjective reasoning can be improved by introducing perspective diversity and token-level diversity, with the former one providing a coherent scaffolding anchored to a real-world stakeholder group and the latter one broadening the answer search space. We propose **MultiRole-R1**, a diversity-enhanced training framework featuring an unsupervised data construction pipeline that synthesizes reasoning chains incorporating various role perspectives. It also employs reinforcement learning via Group Relative Policy Optimization with reward shaping, taking diversity as a reward signal in addition to verifiable reward. Training on subjective tasks solely, MultiRole-R1 increases the in-domain and out-of-domain accuracy by 14.1% and 7.64%, and even enhances the performance on advanced math reasoning such as AIME 2024. We further show that diversity is a more consistent indicator of accuracy than reasoning length.

1 INTRODUCTION

Advances in DeepSeek-R1 (DeepSeek-AI et al., 2025) and OpenAI o1-style (Jaech et al., 2024) models with long Chain-of-Thoughts (CoT) capabilities (Wei et al., 2023) have substantially improved performance on challenging reasoning tasks, particularly in objective domains such as commonsense (Talmor et al., 2019) and mathematical reasoning (Yu et al., 2025; Wu et al., 2024b; Cobbe et al., 2021; Wang et al., 2025a; Guo et al., 2025, *inter alia*).

Notably, this type of model is trained via reinforcement learning with verifiable rewards (RLVR), which induces a diversity degradation in the model generation (Song et al., 2025b; Dang et al., 2025; Zhao et al., 2025; Wu et al., 2025). This greatly undermines the real-world application, since diversity is crucial for effective sampling for test-time scaling (Yue et al., 2025). Recent studies offer several solutions to enhance diversity in RL training (Song et al., 2025a; Yan et al., 2025), but they mostly focus on objective reasoning.

In contrast to objective tasks, subjective questions are fundamentally different from objective questions since there are no definitive right or wrong answers (Khurana et al., 2024; van der Meer et al., 2024; Wang et al., 2025b; Jentzsch & Kersting, 2023; Wu et al., 2024a): the responses can vary greatly depending on the role or stakeholder perspective.

This challenge cannot be solved by current diversity-enhanced training approaches in objective domain since they rely on a single ground truth in optimization. This design inherently trains the model to find one correct answer, making it incapable of generating reasoning that arrives at the multiple valid outcomes required by subjective questions. To tackle this, existing research on subjective reasoning mainly falls in two categories: multi-agent debate (Aoyagui et al., 2025; Cheng et al., 2024; Liu et al., 2025b) and prompting-based methods (Wang et al., 2024b; Lv et al., 2024), with no training methods specifically designed for subjective questions.

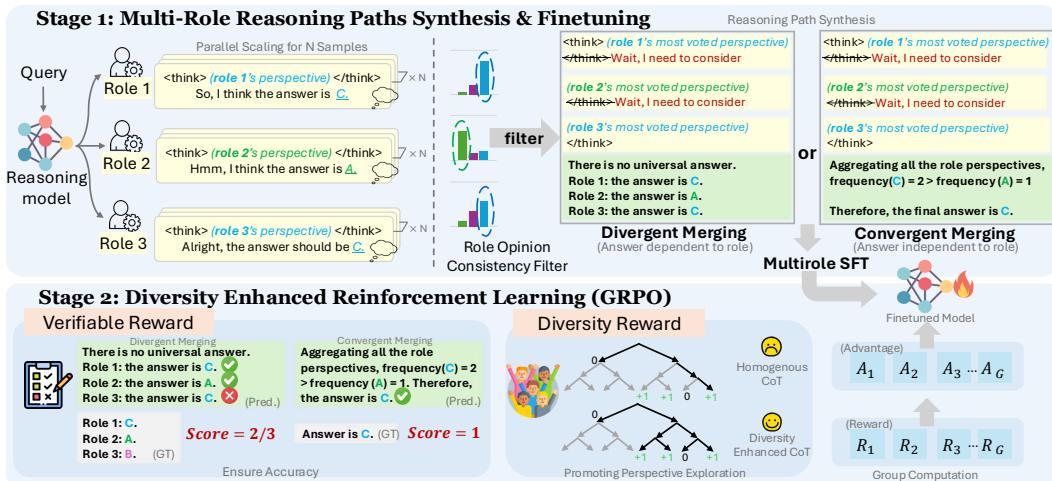
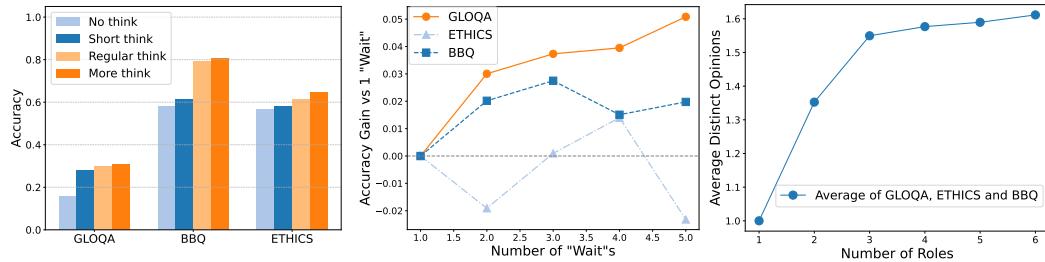


Figure 1: Illustration of MultiRole-R1 framework. **Stage 1** (enhance perspective diversity): LRM generate seed roles with contrastive opinions, and sample diverse reasoning paths from different roles. We concatenate paths from different perspectives into a CoT, and then finetune the model to follow the multi-role reasoning format. **Stage 2** (enhance token-level diversity): we utilize GRPO with diversity reward shaping. Verifiable rewards are applied depending on whether the ground-truth varies by roles. We take diversity as an additional reward to promote exploration efficiency.

In this paper, we address this challenge by proposing **MultiRole-R1**, a diversity-enhanced RL training framework to improve LLM subjective reasoning. Specifically, we incorporate two levels of diversity: (1) *Semantic-level diversity* (or *perspective diversity*), which trains the model to incorporate multiple relevant real-world stakeholder perspectives; (2) *Token-level diversity*, which broadens the search space of the reasoning chains. In particular, we argue that role perspective diversity is key to this challenge: instead of just seeking random variation, roles provide coherent scaffolding that ensures the diverse outputs are semantically relevant and anchored to real-world groups and stakeholders' viewpoints (Xu et al., 2025; Wang et al., 2025b).

We conduct a pilot analysis to determine the optimal number of roles and the reasoning length of the generated paths. MultiRole-R1 subsequently finetunes the model on self-synthesized reasoning paths to enhance *semantic-level diversity*, instructing it to self-teach on multi-role generation and role reasoning, as shown in Figure 1. Furthermore, to enhance the *token-level diversity*, MultiRole-R1 applies a diversity reward function combining an array of existing token-level diversity metrics, such as lexical diversity, structural diversity, and discourse diversity. This is used as a reward signal in addition to the verifiable reward in Generalized Reward Policy Optimization (GRPO).


To evaluate the effectiveness and generalizability of our approach, we train DeepSeek-R1 series models and Qwen-3-8B using MultiRole-R1 and test them on both subjective and objective questions. Results show that MultiRole-R1 boosts performance by an average of 14.1% on three in-domain (ID) subjective tasks, and 7.64% on four out-of-domain (OOD) tasks that include both subjective and objective questions. Interestingly, our approach even achieves a performance gain on the OOD advanced math reasoning dataset AIME 2024 by 5.78%. Our further analysis shows that among the 10.6% average performance gain of MultiRole-R1, 8.3% is contributed by multi-role SFT, and 6.6% is contributed by GRPO with diversity reward shaping. This verifies the necessity of incorporating perspective diversity in subjective reasoning, and also corroborates the cruciality of token-level diversity in test-time scaling. Moreover, we find a strong per-task correlation between diversity and accuracy ($r = 0.74$), which markedly outweighs the correlation between length and accuracy ($r = 0.55$). This result extends the previous finding of a correlation between diversity and task performance in objective tasks to subjective tasks, indicating that diversity is a more consistent indicator of accuracy than reasoning length. Our contributions can be summarized as follows:

- To our knowledge, we are the first to introduce diversity-enhanced training for subjective reasoning tasks. We propose MultiRole-R1, a training paradigm that incorporates unsupervised reasoning

108 path synthesis and GRPO with diversity reward shaping, which effectively enables LRM to include
 109 diverse perspectives and generate multiple different answers in subjective reasoning.
 110

111 • We verify MultiRole-R1 on four models using solely subjective questions for training. Results
 112 show that the models achieve state-of-the-art performance in three ID and four OOD tasks, and can
 113 generalize to advanced math reasoning such as AIME 2024.
 114 • Our analysis highlights diversity as a more consistent indicator of accuracy than reasoning length.
 115

116 2 PILOT ANALYSIS

126 Figure 2: (a) The performance of Deepseek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025) under
 127 different reasoning length settings across different datasets. The bar chart shows that longer reasoning
 128 chains result in higher accuracy on subjective tasks. (b) Accuracy gain of Deepseek-R1-Distill-
 129 Qwen-7B (DeepSeek-AI et al., 2025) when trailing with more wait tokens. (c) Demonstration of the
 130 number of distinct opinions increases as more roles are involved in a single reasoning chain.
 131

132 Inspired by previous work (Zelikman et al., 2022; Peng et al., 2025) that fine-tuning on self-
 133 synthesized CoT improves reasoning, we extend this methodology by enabling the model to self-
 134 improve on synthesizing diverse perspectives into a single reasoning chain. To achieve this, we
 135 concatenate multiple single-role reasoning chains into one long reasoning path, as shown in Figure 1
 136 Stage 1. One natural question is how to decide the format of the multi-role reasoning chain: how
 137 many role perspectives to include, and how long should the reasoning path be? On the one hand, we
 138 want to incorporate more roles to cover comprehensive perspectives and leverage the self-correction
 139 ability of the long reasoning chain. On the other hand, we want to control the reasoning length within
 140 an optimal range, as excessive verbosity leads to performance degradation (Hassid et al., 2025) and is
 141 computationally expensive.
 142

143 To answer the question, our pilot analysis aims to study the optimal number of roles and reasoning
 144 length. We primarily consider Deepseek-R1-Distill-Qwen-7B, and a set of subjective questions
 145 sampled from GlobalOpinion QA (DURMUS et al., 2024) and BBQ (Parrish et al., 2022) datasets.
 146 To elicit multiple viewpoints in a single reasoning chain, we employed budget-forcing (Muennighoff
 147 et al., 2025), which replaces the end-of-thinking token with a continuation token (i.e., “wait, I need
 148 to think from {role}’s perspective”), to divert the model to a different role perspective. These roles,
 149 designed to be mutually contrasting in opinions, were pre-generated by the base model via prompting.
 150

151 Besides budget-forcing that produces longer paths than the regular reasoning, we also compare it
 152 with settings that are shorter than regular reasoning, with examples in Appendix C.2. We observe that
 153 reasoning lengths longer than regular think (i.e., more think) significantly outperform other settings,
 154 as shown in Figure 2 (a). This motivates us to focus on more think setting, which is about how many
 155 wait tokens should be appended. The following highlights the main findings of the pilot analysis:

156 **Scaling Law of Reasoning Length** As shown in Figure 2 (b), increasing the number of “Wait”
 157 tokens generally leads to performance improvements across most tasks, where the gains mostly peak
 158 around **three** “Wait” and diminish or even degrade beyond that point.

159 **Scaling Law of Role Perspectives** Since our tasks are in the format of multiple choice answers,
 160 the number of opinions can be simply counted as the number of choices. Results in Figure 2 (c) show
 161 that the number of distinct opinions increases as more roles are involved, with number of roles $n = 3$
 162 as a turning point where the increase of roles provides less salient information gain compared to the
 163 previous. Hence, we incorporate three roles in the path generation.

162 **3 METHODOLOGY**
 163

164 As illustrated in Figure 1, our framework consists of two stages: multi-role reasoning paths synthesis
 165 & finetuning and diversity-enhanced reinforcement learning. Formally, given an input subjective
 166 question \mathcal{Q} and a reasoning model \mathcal{M} , our goal is to diversify the reasoning path \mathcal{T} .
 167

168 **3.1 MULTI-ROLE REASONING PATHS SYNTHESIS & FINETUNING**
 169

170 The objective of this stage is to enhance perspective diversity: besides training the model to “think
 171 deeper from its perspective” (DeepSeek-AI et al., 2025; Jaech et al., 2024), we also train the model to
 172 consider “from which perspective to think”.
 173

174 **Multi-Role Exploration and Sampling** To model multi-perspective reasoning, we first identify
 175 n context-relevant roles (e.g., domain experts, stakeholders, or personas) through few-shot prompting
 176 (Brown et al., 2020), denoted as $\mathcal{R} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n\}$. In particular, we prompt the model to
 177 generate roles with conflicting viewpoints. The motivation for this is to explore diverse available per-
 178 spectives. Given a candidate role \mathcal{R}_i , LLM \mathcal{M} and question \mathcal{Q} , we define the selection probabilities:
 179

180
$$P(\mathcal{R}_i | \mathcal{Q}) = \text{softmax}(\mathbb{E}[\mathcal{M}(\mathcal{R}_i | \mathcal{Q})] + \alpha \mathbb{E}_{\mathcal{R}_i} [1 - \text{sim}(\mathcal{R}_i, \mathcal{R}_j)]), \quad (1)$$

 181

182 where $\text{sim}(\mathcal{R}_i, \mathcal{R}_j) = \cos(\mathbf{h}_{\mathcal{R}_i}, \mathbf{h}_{\mathcal{R}_j} | \mathcal{Q})$ and \mathbf{h} denotes the LLM embedding. The intuition for this
 183 is to prioritize role answers that are relevant to the question and contrastive to the existing opinions.
 184

185 **Self-Consistency Filtering** For each role \mathcal{R}_i , we sample k reasoning paths from the decoder with
 186 temperature $\tau = 1$, denoted as $\mathcal{M}(\mathcal{Q}, \mathcal{R}_i) = \mathcal{T}_{\mathcal{R}_i} = \{\mathcal{T}_{\mathcal{R}_i}^{(1)}, \mathcal{T}_{\mathcal{R}_i}^{(2)}, \dots, \mathcal{T}_{\mathcal{R}_i}^{(k)}\}$. To ensure the coherence
 187 among different responses of each role, we then apply self-consistency filtering (Chen et al., 2023;
 188 Wang et al., 2025c) through majority voting and only keep the most consistent answer:
 189

$$\hat{\mathcal{T}}_{\mathcal{R}_i} = \text{argmax} \sum_{j=1, \mathcal{T} \in \mathcal{T}_{\mathcal{R}_i}}^k \mathbb{1}(\mathcal{T} \equiv \mathcal{T}_{\mathcal{R}_i}^{(j)}), \quad (2)$$

192 where $\mathbb{1}$ is the indicator function and \equiv denotes semantic equivalence (e.g. same roles give different
 193 answers). This approach extends ensemble methods by decoupling role-specific reasoning trajectories,
 194 ensuring that conflicting viewpoints remain independently generated and self-consistent.
 195

196 **Reasoning Structure Generation** Given m filtered role perspectives $\{\hat{\mathcal{T}}_{\mathcal{R}_1}, \dots, \hat{\mathcal{T}}_{\mathcal{R}_m}\}$, we generate
 197 random combinations of role orderings Π to avoid the effect of position bias (Zheng et al., 2023a).
 198 For example, given a multi-role combination $\pi = \{\mathcal{R}_i, \mathcal{R}_j, \mathcal{R}_k\}$, we construct the training data as:
 199

200
$$\mathcal{D}_{\text{train}} = \bigcup_{\pi \in \Pi} \{(\mathcal{Q} \oplus \hat{\mathcal{T}}_{\mathcal{R}_i} \oplus \hat{\mathcal{T}}_{\mathcal{R}_j} \oplus \hat{\mathcal{T}}_{\mathcal{R}_k}) \mid \pi\}. \quad (3)$$

 201

202 We consider two merging strategies depending on task type to allow dynamic integration of role
 203 reasoning paths: (1) divergent merging: for tasks where roles are expected to provide different
 204 answers, the final prediction is derived through a weighted aggregation of the various viewpoints; (2)
 205 convergent merging: for tasks where roles should yield a consistent answer, a consensus is reached
 206 via majority voting within the reasoning sequence.
 207

208 **Multi-Role Supervised Finetuning** To ensure data quality, we apply both rule-based and automatic
 209 filtering strategies to the merged data. To mitigate verbosity bias (Zheng et al., 2023b) and reasoning
 210 shortcut behavior, we remove the top and bottom 10th percentiles of responses by length. We also
 211 discard instances with formatting errors or invalid string patterns. This filtering process yielded a
 212 final training set of 2,700 entries, [with detailed decomposition shown in Table 8](#). For comparison
 213 against our self-consistency filtering method, we also applied a supervised ground-truth filtering
 214 approach. For the supervised approach, roles are sampled from the built-in role pool of the ground
 215 truth data, and we only keep the trajectories where roles reasoning are correct. Comparison results of
 two filtering strategies are in Section 5.

216 3.2 DIVERSITY ENHANCED REINFORCEMENT LEARNING
217

218 This stage aims to enhance the diversity of the reasoning chain, broadening the answer search
219 space. We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for Multi-Role
220 reinforcement learning, which is trained on top of the SFT model. GRPO optimizes the policy by
221 sampling a group of candidate outputs for each prompt and comparing their reward. We incorporate
222 two types of rewards: (1) a multirole-aware verifiable reward \mathbf{R}_{acc} , provided by a verifiable reward
223 model that checks **role-based reasoning** answer correctness, and (2) a diversity reward \mathbf{R}_{div} computed
224 from the input text as a shaping signal. The total shaped reward is formulated by $\mathbf{R} = \delta \mathbf{R}_{\text{acc}} + (1 -$
225 $\delta) \mathbf{R}_{\text{div}}$. Note that the computation of \mathbf{R}_{acc} and \mathbf{R}_{div} are consistent with the definition of accuracy and
226 diversity in Section 4.4.

227 This follows the reward-shaping paradigm (Ng et al., 1999), where the auxiliary \mathbf{R}_{div} guides learning
228 without changing the optimal policy. Detailed setting is presented in Appendix B.

229 During training, we observe a synergetic effect of optimizing the diversity and accuracy objectives.
230 This also mitigates issues observed in the SFT baseline, such as excessive verbosity and repetitive
231 reasoning (Toshniwal et al., 2025). Finally, note that GRPO computes group (G) advantages
232 $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_G$ instead of standard reward, which is given by: $\mathbf{A}_i = (\mathbf{R}_{i,t} - \mu)/\sigma, t \in \{1, \dots, |G|\}$.
233 Hence, a group with uniform rewards (all 0s or all 1s) would give zero advantage and stall learning. By
234 adding the diversity term, we ensure intra-group reward variance, enabling informative gradients and
235 continued optimization. Mathematical proofs and detailed derivations are provided in Appendix A.

236 4 EXPERIMENT AND RESULTS
237238 4.1 DATASETS
239

240 We **train** our model on 3 subjective tasks: ambiguous question answering (BBQ) by Parrish et al.
241 (2022), opinion-based QA (GlobalOpinionQA) by DURMUS et al. (2024), and ethical dilemma
242 (ETHICS) by Hendrycks et al. (2021). To evaluate the effectiveness and generalizability of our
243 approach, we **test** on 4 additional datasets: cultural natural language inference (CALI) by Huang &
244 Yang (2023), commonsense reasoning (CSQA) by Talmor et al. (2019), and mathematical reasoning
245 (GSM8K) by Cobbe et al. (2021). We also evaluate our method on the more advanced math reasoning
246 task AIME 2024¹ and present results in Section 5. Specifically, for the out-of-domain (OOD) data,
247 CALI consists of subjective questions, while CSQA, GSM8K and AIME 2024 consist of objective
248 questions. It is worth noting that among these benchmarks, GLOQA and CALI have role-dependent
249 ground truths, whereas the others rely on a single ground truth for all roles.

250 4.2 BASELINES
251

252 **In-Context Learning** We first incorporate the following in-context learning (Brown et al., 2020)
253 settings: (1) Zero-Shot CoT (Kojima et al., 2023; Wei et al., 2023), (2) Role Playing Prompting (Kong
254 et al., 2024) and (3) Self-Refine Prompting (Madaan et al., 2023).

255 **More Think** As observed by Muennighoff et al. (2025), extending the reasoning chain length can
256 further enhance the reasoning capabilities of o1-style models. In MultiRole-R1, this is achieved by
257 suppressing the end-of-thinking token and appending a continuation string (e.g., “wait, I need to think
258 from {role}’s perspective”) to encourage extended reasoning from a different role perspective. In the
259 *more think* baseline, we employ a reasoning length three times longer than *regular think*, as it offers a
260 balance between efficiency and accuracy based on our pilot analysis.

261 **Supervised Finetuning** We perform supervised finetuning on the base model on the self-
262 consistency filtered dataset of size 2,700. Our SFT training and evaluation are conducted via
263 Llama-Factory (Zheng et al., 2024).

264 **Direct Preference Optimization** We introduce another SFT+RL pipeline as an comparison to
265 MultiRole-R1. In this setting, DPO is applied to the self-consistent SFT model, using ground-
266

267 ¹https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

270 Table 1: Main results of the baselines (specified in Section 4.2) and our proposed method. *Acc.* is the
 271 pass@1 accuracy of the task (in %) and *Div.* measures the length normalized diversity score of the
 272 reasoning chain (in %). We include two ablations of MultiRole-R1, including SFT on self-consistency
 273 filtered data only (Ours *SelfCopsis SFT*), and also SFT with vanilla GRPO (Ours *SelfCopsis SFT + GRPO*).
 274 “GRPO(RS)” represents GRPO with reward shaping, which is used in MultiRole-R1. OOD denotes the
 275 datasets that are for testing only.

277 Model	278 BBQ		278 GLOQA		278 ETHICS		278 CALI (OOD)		278 CSQA (OOD)		278 GSM8K (OOD)	
	279 Acc.	279 Div.	279 Acc.	279 Div.	279 Acc.	279 Div.	279 Acc.	279 Div.	279 Acc.	279 Div.	279 Acc.	279 Div.
(R1-Distill-Qwen-7B)												
Zero-shot CoT	62.45	56.02	32.62	65.88	51.82	36.14	50.30	52.22	63.06	83.83	80.48	68.08
Self-Refine	74.08	73.13	43.13	59.88	52.19	37.36	50.76	66.09	54.02	77.61	87.01	80.37
Role-Play	73.61	74.68	41.67	77.75	50.83	37.89	52.69	67.43	55.07	76.20	85.66	72.87
More think	80.76	80.44	36.42	86.90	64.44	81.53	60.45	78.82	64.50	85.85	82.05	81.79
SelfCopsis SFT	85.88	81.67	43.13	85.58	67.45	82.19	67.35	78.94	66.88	83.10	80.62	74.87
SelfCopsis SFT+DPO	86.41	60.43	44.20	61.17	67.28	68.51	68.19	64.09	67.24	69.83	81.51	67.56
SelfCopsis SFT+GRPO	94.30	85.52	47.22	87.46	69.50	85.40	70.83	82.15	69.43	86.85	85.58	82.16
MultiRole-R1 <i>SelfCopsis SFT+GRPO(RS)</i>	94.50	86.25	49.10	89.67	66.83	87.27	70.85	83.31	66.94	87.96	87.36	82.46
(R1-Distill-Llama-8B)												
Zero-shot CoT	80.89	79.92	38.41	87.07	62.46	79.44	60.84	73.98	67.21	83.39	78.87	76.52
Self-Refine	74.20	75.85	43.19	81.11	60.96	80.17	61.95	78.87	63.77	82.61	80.95	81.24
Role-Play	74.40	80.91	44.87	83.02	64.24	79.78	62.70	77.32	67.32	82.27	77.33	75.02
More think	88.20	84.11	44.04	87.19	68.06	83.99	64.41	80.30	70.42	84.73	83.30	84.12
SelfCopsis SFT	89.69	82.64	48.17	87.26	70.56	81.36	70.05	79.77	70.86	83.88	86.02	81.53
SelfCopsis SFT+DPO	90.52	80.43	48.89	80.97	71.22	83.64	69.81	76.62	71.28	82.71	86.34	81.81
SelfCopsis SFT+GRPO	94.47	85.75	48.55	89.36	75.63	87.89	69.26	83.37	73.71	87.96	87.49	85.31
MultiRole-R1 <i>SelfCopsis SFT+GRPO(RS)</i>	95.55	89.58	49.06	91.78	75.84	96.54	71.48	90.55	75.12	92.98	89.79	88.45
(R1-Distill-Qwen-14B)												
Zero-shot CoT	85.01	68.06	36.82	79.18	73.63	72.20	75.05	71.83	75.85	83.09	85.58	70.68
Self-Refine	90.42	80.13	49.04	69.40	76.48	83.22	71.28	78.22	76.55	82.31	84.73	80.24
Role-Play	91.18	81.87	49.90	75.73	77.16	75.30	67.41	70.74	75.71	79.05	91.50	76.60
More think	94.57	80.67	41.60	84.04	79.36	83.33	75.90	76.81	79.36	81.77	88.76	80.94
SelfCopsis SFT	94.40	75.06	50.98	81.04	81.45	71.34	76.08	73.65	81.50	77.60	91.61	91.62
SelfCopsis SFT+DPO	94.98	67.21	51.33	65.03	81.88	42.32	75.82	71.71	79.82	69.41	90.92	68.69
SelfCopsis SFT+GRPO	95.98	86.88	51.73	90.33	83.50	89.42	75.65	84.92	81.19	89.64	91.87	86.36
MultiRole-R1 <i>SelfCopsis SFT+GRPO(RS)</i>	97.50	90.17	53.98	91.32	86.00	92.89	76.50	89.08	82.00	91.61	93.43	87.24
(Qwen3-8B)												
Zero-shot CoT	91.71	70.10	42.13	60.99	72.29	76.68	73.40	57.43	80.81	57.84	85.41	70.49
Self-Refine	88.93	53.07	45.25	85.00	70.64	49.60	69.40	48.16	69.22	50.99	84.91	82.31
Role-Play	89.77	41.58	47.57	54.89	70.67	47.83	70.26	50.49	72.98	48.17	93.58	81.93
More think	95.18	74.20	43.39	78.98	78.26	72.45	75.10	68.44	81.20	73.07	90.02	75.07
SelfCopsis SFT	94.05	74.02	50.32	77.07	78.39	68.35	75.96	72.78	81.00	73.50	91.62	70.23
SelfCopsis SFT+DPO	94.21	74.83	50.68	74.14	78.09	50.31	76.10	69.58	80.45	64.87	91.84	65.32
SelfCopsis SFT+GRPO	95.91	85.47	51.37	87.74	79.82	86.84	77.83	80.36	81.19	86.40	91.97	85.98
MultiRole-R1 <i>SelfCopsis SFT+GRPO(RS)</i>	96.98	88.15	51.72	89.88	81.95	89.09	77.95	83.84	82.10	87.93	94.98	86.93

303 truth-hinted role answers as positive samples and inconsistent role answers as negative samples.

306 4.3 MODELS

308 Our experiment is performed on DeepSeek-R1 series (DeepSeek-AI et al., 2025) including R1-Distill-
 309 Qwen-7B, R1-Distill-Llama-8B and R1-Distill-Qwen-14B models, and Qwen3-8B (Qwen Team,
 310 2025) with reasoning mode.

312 4.4 METRICS

314 **Accuracy** Taking into account the subjective nature of role-based reasoning where the ground
 315 truth for subjective questions vary across different roles, we adopt two different perspective merging
 316 strategies during evaluation. The ground truth of the dataset \mathcal{G} is defined as a role (r) ground-truth (g)
 317 pair, defined as $\mathcal{G} = \{r_i : g_i\}_{i=1}^{|\mathcal{G}|}$. If not specified, accuracy refers to pass@1 accuracy.

318 **(1) Divergent Merging:** for tasks such as CALI and GLOQA, each role i ’s answer a_i is com-
 319 pared with the corresponding ground truth g_i , where the divergent accuracy is given by: $Acc_{div} =$
 320 $\frac{1}{n} \sum_{i=1}^n \mathbb{1}[a_i = g_i]$.

322 **(2) Convergent Merging:** datasets like BBQ, ETHICS, CSQA, GSM8K and AIME 2024 have
 323 answers invariant with role-perspectives. We aggregate different role’s answer to obtain a consensus,
 324 and then compare it to the ground truth: $\hat{a} = argmax \sum_i \mathbb{1}(a_i = \hat{a})$, $Acc_{con} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[\hat{a}_i = g_i]$.

Diversity To quantify the diversity of model-generated reasoning, we design a composite metric that captures multiple level of linguistic diversity, including lexical, structural and discourse domains. Inspired by prior work on lexical and entropy-based diversity in natural language generation (Li et al., 2016; Tanaka-Ishii & Aihara, 2015), our metric is a weighted sum of eight complementary diversity signals, including lexical, token entropy, sentence length, sentence pattern, adjacent sentence, Yule’s K, distinct N-gram and function word diversity. Formal definition of the diversity metrics can be found in Appendix F. Formally, we express the final **combined diversity** score as:

$$D_{final} = \sum_i \omega_i D_i, \quad D_i \in \{D_{lex}, D_{ent}, D_{pat}, D_{bi}, D_{len}, D_{adj}, D_{yule}, D_{func}\}. \quad (4)$$

The choice of the weighting is illustrated in Section 5.

4.5 MAIN RESULTS

MultiRole-R1 is effective and generalizable to unseen objective tasks. Table 1 shows that MultiRole-R1 outperforms almost all baselines, by an average of 10.6% accuracy gain and 18.3% diversity gain. *By training on subjective questions solely*, MultiRole-R1 shows a 14.1% accuracy gain in in-domain (ID) tasks, and a 7.64% improvement in out-of-domain (OOD) objective and subjective tasks compared with zero-shot CoT. Notably, our method even yields a 5.78% accuracy gain on the unseen, challenging math reasoning dataset AIME 2024, which will be further illustrated in Section 5. This demonstrates the effectiveness and generalizability of our method.

On-policy RL is more suited for diversity enhancement. We found that on-policy algorithm like GRPO leads to more accurate (+2.44%) and more diverse responses than off-policy RL like DPO (+19.73%). We attribute this to a fundamental mismatch between DPO’s training format and the nature of our task. Subjective questions often have equally valid answers, while the positive-negative pair format of DPO cannot effectively model the diverse, equally valid ground truths inherent to subjective questions.

Perspective diversity is the primary driver of performance. In the average of 10.6% accuracy gain, MultiRole-R1, 7.5% is contributed by perspective diversity enhancement in SFT, and 3.1% is contributed by GRPO with token-level diversity reward shaping. This verifies the cruciality of enhancing perspective diversity, which is primarily optimized during SFT.

Accuracy gains come from diversity, not verbosity. Surprisingly MultiRole-R1 also leads to higher reasoning efficiency. Tables 11–14 in the appendix show that the average response lengths for SFT, SFT+GRPO, and MultiRole-R1 are 1572.9, 849.5, and 657.8 words. This appears to contradict to recent test-time scaling findings (Muennighoff et al., 2025; Ballon et al., 2025), which suggest that longer reasoning often leads to higher performance. This is further discussed in Section 5.

5 ANALYSIS

Table 2: A per-task comparison of the correlation coefficient (r , in %) between accuracy and diversity, versus accuracy and length.

Model	BBQ		GLOQA		ETHICS		CALI		CSQA		GSM8K	
	Acc-Div	Acc-Len										
R1-Distill-Qwen-7B	94.2	65.5	45.5	53.6	89.2	89.8	98.6	90.6	92.4	50.5	58.4	23.1
R1-Distill-Llama-8B	89.0	62.1	48.0	56.9	82.4	76.0	83.6	65.2	85.6	63.8	64.9	77.1
R1-Distill-Qwen-14B	82.0	-16.0	59.0	35.8	60.5	60.1	77.2	23.6	57.4	61.3	79.2	67.8
Qwen3-8B	76.0	44.3	65.4	63.4	89.3	86.5	73.0	27.4	82.5	43.5	33.4	57.3

Accuracy-Diversity Correlations Our analysis reveals a positive correlation between accuracy and diversity, as suggested in Table 2. This relationship is reinforced by a strong per-task correlation between diversity and accuracy (0.736 on average), which markedly exceeds the correlation with response length (0.554 on average). According to Table 11 to 14, SFT responses are often the longest in length, but they are less factually correct. We also observed a tendency to repeat answers in SFT model outputs, which is likely caused by reward hacking during the single-verifiable reward during post-training. These results suggest that performance gains in LRM subjective reasoning are driven by a scaling law of diversity, rather than superficial verbosity. It also demonstrates that MultiRole-R1 is able to improve reasoning efficiency. One possible explanation is that optimizing for diversity can

378 serve as a useful inductive bias, enabling the model to explore a broader solution space and discover
 379 more accurate, perspective-aligned answers in subjective tasks.
 380

381 **Perspective Diversity** We leverage a prompt-
 382 based method and let LLM generate roles per-
 383 pertinent to the context of the question. In the
 384 prompt, we specify that the role perspectives
 385 need to be contrastive. We also manually scrui-
 386 tized and modified the generated roles. In
 387 total, there are 968 distinct roles, enhancing the
 388 perspective diversity of the LRM. As shown in
 389 Figure 3 these roles are generated from the train-
 390 set and cover broad categories, including dif-
 391 ferent moral philosophies, nationalities, identity
 392 groups, and specific individuals pertinent to the
 393 questions. Figure 3 presents the most frequent
 394 roles, where the circle radius is proportional to
 395 the occurring frequency. A more detailed visu-
 396 alization is presented in Figure 6.

397 Since our questions are in multiple-choice for-
 398 mat and each choice is a distinct opinion, the
 399 different role perspectives can be counted as the
 400 distinct options occurred in the model output.
 401 Table 3 demonstrates that MultiRole-R1 yields
 402 the highest number of distinct opinions. This
 403 confirms that our performance gains stem from
 404 **a genuine expansion of perspectives rather**
 405 **than mere semantic differences.**

406 **Filtering Method** Our methodology com-
 407 pares two data sampling strategies for Supervised Fine-Tuning (SFT): an unsupervised self-
 408 consistency approach and a supervised method that utilize the multirole-aware ground truth from
 409 the original dataset. Table 4 reports the test performance on equal-sized datasets generated by each
 410 strategy. The results indicate that while self-consistency filtering can yield slightly lower accuracy in
 411 some cases, its performance is broadly comparable to, and can even outperform supervised filtering.
 412 One possible explanation is that due to the limited role examples provided by the ground truth in the
 413 original dataset, the supervised sampling may limit the role diversity in the self generated reasoning
 414 trajectory in the SFT data. On the other hand, the self-consistent filtering method unleashes the
 415 model’s ability to explore diverse perspectives and enhance the diversity of the SFT data. This
 416 highlights that using noisy, unsupervised data is sufficient and viable for our tasks (Wang et al.,
 2025c).

417 **Diversity Weighting** Equation (4) shows the
 418 composition of the diversity score. Because the
 419 target application may value different forms of
 420 diversity, we adopt equal weight to avoid bias to-
 421 toward any single factor. The final score is the av-
 422 erage of all metrics, and we assess its validity by
 423 measuring agreement with human annotators. Ta-
 424 ble 5 shows the alignment scores between diversity
 425 score and human ratings. Three PhD-level students
 426 each score 60 outputs from each model (i.e., 240
 427 data entries in total) independently using the same
 428 criteria, on a diversity scale of 1 to 10. Results
 429 show that the overall diversity and the human rat-
 430 ing are highly aligned. Table 5 shows that our
 431 diversity metric has a high alignment score with
 432 human ratings, showcasing the reasonableness of
 433 the diversity weighting.

Figure 3: Qualitative example of the 32 most frequent roles in the training data generated by LRMs.

Table 3: Distinct number of opinions in different training settings

	GLOQA ETHICS BBQ		
Base model (More Think)	1	1	1
SFT	1.91	1.38	1.41
SFT + GRPO	1.73	1.32	1.39
MultiRole-R1	2.07	1.41	1.44

417 **BBQ GLOQA CALI ETHICS CSQA GSM8K**
 418 **(RI-Distill-Qwen-7B)**
 419 **Const. Filter** 85.55 47.13 67.35 67.45 66.88 80.62
 420 **GT Filter** 88.40 45.55 65.95 68.44 68.45 80.63
 421 **(RI-Distill-Llama-8B)**
 422 **Const. Filter** 89.69 48.17 72.05 70.56 70.86 83.30
 423 **GT Filter** 87.44 49.29 69.27 72.15 71.06 84.20
 424 **(RI-Distill-Qwen-14B)**
 425 **Const. Filter** 94.40 50.98 76.98 81.45 80.50 91.61
 426 **GT Filter** 94.88 52.29 76.28 81.57 80.79 91.28
 427 **(Qwen3-8B)**
 428 **Const. Filter** 94.05 50.32 75.96 78.39 81.00 91.62
 429 **GT Filter** 94.80 51.07 76.15 80.19 82.13 91.85

Table 4: The SFT accuracy after consistency filtering and ground-truth filtering.

	BBQ	GLOQA	CALI	ETHICS	CSQA	GSM8K
(RI-Distill-Qwen-7B)						
Const. Filter	85.55	47.13	67.35	67.45	66.88	80.62
GT Filter	88.40	45.55	65.95	68.44	68.45	80.63
(RI-Distill-Llama-8B)						
Const. Filter	89.69	48.17	72.05	70.56	70.86	83.30
GT Filter	87.44	49.29	69.27	72.15	71.06	84.20
(RI-Distill-Qwen-14B)						
Const. Filter	94.40	50.98	76.98	81.45	80.50	91.61
GT Filter	94.88	52.29	76.28	81.57	80.79	91.28
(Qwen3-8B)						
Const. Filter	94.05	50.32	75.96	78.39	81.00	91.62
GT Filter	94.80	51.07	76.15	80.19	82.13	91.85

Since our primary motivation for equal diversity weighting is to establish a more efficient, robust and general-purpose reward, the weighting design in \mathbf{R}_{div} is chosen for simplicity and interpretability. We have also considered using automatic calibration (like PCA) or learned weighting. However, a learned weighting would generate a single set of weights based on the correlation structure of the training dataset, which may overfit to specific domains. To illustrate this, Figure 5 shows a new analysis of how the single, equally-weighted diversity reward R_{div} affects the eight subscores on a per-task basis. In addition to the sensitivity to the domain, the hyperparameter adjustment of the diversity weighting also causes instability during training.

Table 5: We use human ratings as a reference to set the weights. **We present the human rating and the inter-rater variance.** The alignment score of human rating and the combined diversity score shows that our metric highly aligns with human preference.

Model	BBQ		GLOQA		CALI (OOD)		ETHICS		CSQA (OOD)		GSM8K (OOD)		Alignment
	Human	Div.											
R1-Distill-Qwen-7B	8.95 <small>(+0.41)</small>	86.25	9.62 <small>(+0.22)</small>	89.67	7.88 <small>(+0.53)</small>	83.31	8.24 <small>(+0.37)</small>	87.71	8.51 <small>(+0.45)</small>	87.96	7.13 <small>(+0.60)</small>	82.46	0.88
R1-Distill-Llama-8B	7.94 <small>(+0.55)</small>	89.58	8.33 <small>(+0.51)</small>	91.78	7.88 <small>(+0.96)</small>	90.55	9.82 <small>(+0.19)</small>	96.54	9.15 <small>(+0.28)</small>	92.98	7.12 <small>(+0.51)</small>	88.45	0.93
R1-Distill-Qwen-14B	8.81 <small>(+0.33)</small>	90.17	9.52 <small>(+0.25)</small>	91.32	8.43 <small>(+0.40)</small>	89.08	9.65 <small>(+0.21)</small>	92.89	9.18 <small>(+0.36)</small>	91.61	8.24 <small>(+0.42)</small>	87.24	0.95
Qwen-3.8B	8.51 <small>(+0.38)</small>	88.15	9.62 <small>(+0.22)</small>	89.88	7.42 <small>(+0.68)</small>	83.84	9.25 <small>(+0.30)</small>	89.09	8.23 <small>(+0.47)</small>	87.83	8.88 <small>(+0.29)</small>	86.93	0.89

Math Reasoning Generalization To assess our framework’s generalizability to complex mathematical reasoning, we evaluated MultiRole-R1 on the AIME 2024 benchmark, which is considerably more challenging than GSM8K. Notably, our method demonstrates a consistent OOD performance gain on AIME 2024, achieving a notable 5.78% average accuracy gain. This suggests the diversity training on subjective questions is transferable to the objective domain, demonstrating that promoting perspective and token-level diversity is a general

Effect of Diversity Reward Shaping As pass@k accuracy is a direct indicator of reasoning path diversity (Song et al., 2025a), we examine whether the reward shaping broadens the search space of CoT in the GRPO training on the challenging subjective dataset, GLOQA, where $k = 5$. As shown in Figure 4, training with only a verifiable reward leads to a decreasing pass@k, indicating a convergence towards homogeneous reasoning paths. In contrast, incorporating a diversity reward yields a steady increase in pass@k, confirming that this approach successfully expands the solution search space and is a crucial component of our framework.

6 DISCUSSION AND FUTURE WORK

6.1 GENERALIZABILITY TO MORE OPEN-ENDED SUBJECTIVE QUESTIONS

So far, our diversity-enhanced training framework supports a variety of subjective questions such as global opinion (DURMUS et al., 2024), culturally aware NLI (Huang & Yang, 2023) and ethical debates (Hendrycks et al., 2021). However, they are based on existing benchmarks that support multiple choice evaluation. Other more free-form creative tasks such as story generation are not included due to the lack of established, role-based evaluation benchmarks. The freeform nature of these tasks makes it difficult to apply our role-aware accuracy, as there are no established benchmark that incorporate ground-truth creative answers for specific roles. A valuable direction for future work would be to develop "persona-augmented" creative writing benchmarks. If such a benchmark

Table 6: Accuracy (in %) on AIME 2024 benchmark, where MultiRole-R1 consistently outperforms other baselines.

Model	R-D-Qwen-7B	R-D-Llama-8B	R-D-Qwen-14B	Qwen3-8B
Zero-Shot	55.5	50.4	69.7	76.0
Self-Refine	55.9	50.8	70.6	77.5
Role-Play	56.3	53.4	69.1	76.6
More think	58.6	54.0	71.4	78.8
SFT	58.9	56.8	70.2	78.3
SFT+GRPO	62.7	56.7	72.8	79.6
MultiRole-R1	63.2	58.1	73.3	80.1

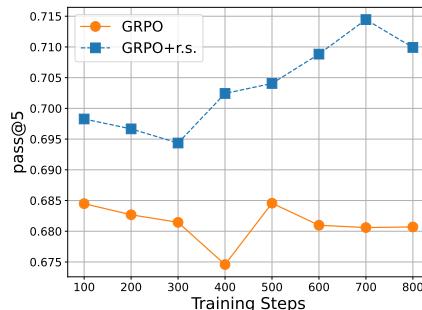


Figure 4: Comparison of Pass@k accuracy of R1-Distill-Qwen-7B on GLOQA dataset, w/ and w/o diversity reward shaping.

486 could provide role-specific example answers, it would be possible to evaluate a model’s output using
 487 similarity metrics (e.g., BLEU or embedding-based scores) or model-based judges.
 488

489 6.2 COMPARISON TO ENTROPY-REGULARIZED RL 490

491 We performed pilot experiments with entropy-enhanced GRPO (Cui et al., 2025), but we ultimately
 492 selected reward shaping due to stability issues of entropy regularization. During our preliminary
 493 experiments, we attempted to implement diversity via standard entropy regularization (adding an
 494 entropy term to the loss function). However, we observed that this approach was highly unstable.
 495 Specifically, we encountered entropy collapse early in the training process (i.e. around 70 steps),
 496 where the model’s policy degraded rapidly rather than converging on diverse reasoning paths.
 497

498 A possible explanation is that the reward shaping in MultiRole-R1 alters the **input** (i.e., group
 499 advantage) of the gradient calculation, rather than modifying it after the gradient is calculated (i.e.,
 500 $L_{Total} = L_{RL} - \alpha * H$ proposed by Cui et al. (2025)). Cui et al. (2025) shows that the entropy
 501 regularization method is highly sensitive to the coefficients, where small coefficients successfully
 502 stabilize policy entropy, but it does not outperform the baseline; while a big coefficient leads to entropy
 503 explosion. In contrast, MultiRole-R1 reduces the magnitude of the covariance term $Cov(\log \pi, A)$
 504 identified by Cui et al. (2025). This structurally diminishes the entropy collapse issue at the source
 505 (the advantage), rather than introducing a loss penalty.
 506

507 7 RELATED WORK 508

509 **Subjective Tasks and LLM Role-Playing** Subjective tasks lack a single ground truth; answers can
 510 shift with perspective or context (Wang et al., 2025b; Jentsch & Kersting, 2023; Wu et al., 2024a).
 511 Examples include culture-related QA (Huang & Yang, 2023; DURMUS et al., 2024; Huang et al.,
 512 2025; Liu et al., 2025a), subjective language interpretation (Jones et al., 2025), ethical QA (Hendrycks
 513 et al., 2021), and creative QA (Lu et al., 2024). LLM role-playing, including multi-role debate, is a
 514 common method: systems simulate assigned personas, from real figures to fictional characters (Shao
 515 et al., 2023; Wang et al., 2024a; Du et al., 2023; Liang et al., 2024; Chen et al., 2024; Li et al.,
 516 2025), which has been shown to diversify reasoning paths (Naik et al., 2024; Wang et al., 2024c). In
 517 this work, we introduce *perspective diversity* in model training, enabling the model to think about
 518 different answers that are equally valid to subjective questions.
 519

520 **Diversity-enhanced Training** Diversity-enhanced training has been recognized as effective in
 521 promoting LLM reasoning ability. One category of diversity-enhanced training is finetuning the
 522 model on the a set of synthesized diverse reasoning chains (Peng et al., 2025; Zelikman et al., 2022;
 523 Chen et al., 2023; Lv et al., 2024). Recently, reinforcement learning with verifiable rewards (RLVR)
 524 is widely discussed by the research community due to the diversity collapse issue (Song et al.,
 525 2025b; Dang et al., 2025; Yue et al., 2025). Some works use diversity mainly to improve exploration
 526 efficiency (Hong et al., 2018; Cheng et al., 2025; Zheng et al., 2025; Dang et al., 2025; Song et al.,
 527 2025a). The other works take diversity as a regularization term or objective (Masood & Doshi-Velez,
 528 2019; Yan et al., 2025; Zhou et al., 2022). So far, these methods focus on objective reasoning, and we
 529 are the first to apply diversity-enhanced reinforcement learning on subjective questions.
 530

531 8 CONCLUSION 532

533 We introduce MultiRole-R1, a diversity-enhanced training framework that enhances the reasoning
 534 capabilities of Large Reasoning Models (LRM) by optimizing perspective diversity and token-level
 535 diversity, by self-synthesizing multi-role reasoning paths and incorporating diversity reward shaping.
 536 By training exclusively on subjective questions, MultiRole-R1 demonstrates robust generalization to
 537 out-of-domain subjective and objective tasks, including advanced mathematics. By taking token-level
 538 diversity as reward shaping, we broaden the search space of Chain-of-Thought (CoT), as evidenced by
 539 an increase in pass@k accuracy. Our analysis investigates the validity of our design choices, revealing
 540 that diversity is a more reliable indicator of accuracy than superficial verbosity, also demonstrating
 541 that MultiRole-R1 enables efficient reasoning. Our findings highlight that prioritizing diversity in
 542 (CoT) is more effective than simply lengthening the reasoning chain, showing promising directions
 543 for subjective reasoning enhancement.
 544

540
541 **LARGE LANGUAGE MODEL USAGE STATEMENT**542
543 In this work, a Large Language Model (LLM) was utilized as a writing assistant. The authors provided
544 their draft to the LLM for suggestions to improve grammar, enhance phrasing clarity, and remove
545 non-academic language. The model was also used to brainstorm potential titles. The final manuscript,
546 including the title, was determined and refined by the authors, who retained full editorial control.
547548 **REFERENCES**549
550 Paula Akemi Aoyagui, Kelsey Stemmler, Sharon Ferguson, Young-Ho Kim, and Anastasia
551 Kuzminykh. A matter of perspective(s): Contrasting human and LLM argumentation in sub-
552 jective decision-making on subtle sexism. *CoRR*, abs/2502.14052, 2025. doi: 10.48550/ARXIV.
553 2502.14052. URL <https://doi.org/10.48550/arXiv.2502.14052>.554
555 Marthe Ballon, Andres Algaba, and Vincent Ginis. The relationship between reasoning and
556 performance in large language models – o3 (mini) thinks harder, not longer, 2025. URL
557 <https://arxiv.org/abs/2502.15631>.558
559 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
560 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
561 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
562 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
563 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
564 lish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
565 learners. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
566 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: An-
567 nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
568 ber 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfc4967418fb8ac142f64a-Abstract.html>.569
570 Bikun Chen, Dannan Deng, Zhouyan Zhong, and Chengzhi Zhang. Exploring linguistic characteristics
571 of highly browsed and downloaded academic articles. *Scientometrics*, 122, 01 2020. doi: 10.1007/
572 s11192-020-03361-4.573
574 Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan
575 Yang, Tinghui Zhu, Aili Chen, Nianqi Li, Lida Chen, Caiyu Hu, Siye Wu, Scott Ren, Ziquan Fu,
576 and Yanghua Xiao. From persona to personalization: A survey on role-playing language agents,
577 2024. URL <https://arxiv.org/abs/2404.18231>.578
579 Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
580 Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
581 model generation, 2023. URL <https://arxiv.org/abs/2311.17311>.582
583 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
584 Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for llms, 2025.
585 URL <https://arxiv.org/abs/2506.14758>.586
587 Ruoxi Cheng, Haoxuan Ma, Shuirong Cao, Jiaqi Li, Aihua Pei, Zhiqiang Wang, Pengliang Ji, Haoyu
588 Wang, and Jiaqi Huo. Reinforcement learning from multi-role debates as feedback for bias
589 mitigation in llms, 2024. URL <https://arxiv.org/abs/2404.10160>.590
591 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
592 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
593 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.594
595 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
596 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng, Bowen
597 Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning language
598 models, 2025. URL <https://arxiv.org/abs/2505.22617>.

594 Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensembling
 595 improves reasoning in language models, 2025. URL <https://arxiv.org/abs/2504.10478>.
 596

597 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 598 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 599 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 600 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 601 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 602 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 603 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 604 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 605 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 606 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 607 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 608 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
 609 Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping
 610 Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in
 611 llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.
 612 URL <https://doi.org/10.48550/arXiv.2501.12948>.

613 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
 614 factuality and reasoning in language models through multiagent debate, 2023. URL <https://arxiv.org/abs/2305.14325>.
 615

616 Esin DURMUS, Karina Nguyen, Thomas Liao, Nicholas Schiefer, Amanda Askell, Anton Bakhtin,
 617 Carol Chen, Zac Hatfield-Dodds, Danny Hernandez, Nicholas Joseph, Liane Lovitt, Sam McCandlish,
 618 Orowa Sikder, Alex Tamkin, Janel Thamkul, Jared Kaplan, Jack Clark, and Deep Ganguli. Towards
 619 measuring the representation of subjective global opinions in language models. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=z116jLb91v>.
 620

621 Mamdouh Farouk. Measuring sentences similarity: A survey. *CoRR*, abs/1910.03940, 2019. URL
 622 <http://arxiv.org/abs/1910.03940>.
 623

624 Dadi Guo, Jiayu Liu, Zhiyuan Fan, Zhitao He, Haoran Li, Yumeng Wang, and Yi R. Fung. Mathematical
 625 proof as a litmus test: Revealing failure modes of advanced large reasoning models, 2025.
 626 URL <https://arxiv.org/abs/2506.17114>.
 627

628 Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don't overthink it. preferring
 629 shorter thinking chains for improved llm reasoning, 2025. URL <https://arxiv.org/abs/2505.17813>.
 630

631 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 632 Steinhardt. Aligning {ai} with shared human values. In *International Conference on Learning
 633 Representations*, 2021. URL https://openreview.net/forum?id=dNy_RKzJacY.
 634

635 C. W. Hess, K. P. Ritchie, and R. G. Landry. The type-token ratio and vocabulary performance.
 636 *Psychological Reports*, 55(1):51–57, 1984. doi: 10.2466/pr0.1984.55.1.51.
 637

638 Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, and Chun-Yi Lee. Diversity-
 639 driven exploration strategy for deep reinforcement learning, 2018. URL <https://arxiv.org/abs/1802.04564>.
 640

641 Jing Huang and Diyi Yang. Culturally aware natural language inference. In Houda Bouamor,
 642 Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 7591–7609, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.509. URL <https://aclanthology.org/2023.findings-emnlp.509/>.
 643

644 Yuchen Huang, Zhiyuan Fan, Zhitao He, Sandeep Polisetty, Wenyan Li, and Yi R. Fung. Cultureclip:
 645 Empowering clip with cultural awareness through synthetic images and contextualized captions,
 646 2025. URL <https://arxiv.org/abs/2507.06210>.

648 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
 649 yar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Pas-
 650 soss, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Ku-
 651 mar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko,
 652 Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Ben-
 653 jamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon
 654 Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaressi, Cary Bassin, Cary Hudson,
 655 Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris
 656 Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel
 657 Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras,
 658 Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch
 659 Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
 660 Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie
 661 Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman,
 662 Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad,
 663 Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband,
 664 Ignasi Clavera Gilaberte, and Ilge Akkaya. Openai o1 system card. *CoRR*, abs/2412.16720, 2024.
 doi: 10.48550/ARXIV.2412.16720. URL <https://doi.org/10.48550/arXiv.2412.16720>.

665 Sophie Jentsch and Kristian Kersting. ChatGPT is fun, but it is not funny! humor is still challenging
 666 large language models. In Jeremy Barnes, Orphée De Clercq, and Roman Klinger (eds.), *Proce-
 667 dings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media
 668 Analysis*, pp. 325–340, Toronto, Canada, July 2023. Association for Computational Linguistics.
 669 doi: 10.18653/v1/2023.wassa-1.29. URL <https://aclanthology.org/2023.wassa-1.29/>.

670 Erik Jones, Arjun Patrawala, and Jacob Steinhardt. Uncovering gaps in how humans and LLMs inter-
 671 pret subjective language. In *The Thirteenth International Conference on Learning Representations*,
 672 2025. URL <https://openreview.net/forum?id=gye2U9uNXx>.

673 Maria Kalimeri, Vassilios Constantoudis, Constantinos Papadimitriou, Konstantinos Karamanos,
 674 Fotis K. Diakonos, and Harris Papageorgiou. Entropy analysis of word-length series of natural
 675 language texts: Effects of text language and genre. *CoRR*, abs/1401.4205, 2014. URL <http://arxiv.org/abs/1401.4205>.

676 Urja Khurana, Eric Nalisnick, Antske Fokkens, and Swabha Swayamdipta. Crowd-calibrator: Can
 677 annotator disagreement inform calibration in subjective tasks? In *First Conference on Language
 678 Modeling*, 2024. URL <https://openreview.net/forum?id=VWWz03ewMS>.

679 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 680 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.

681 Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang,
 682 and Xiaohang Dong. Better zero-shot reasoning with role-play prompting, 2024. URL <https://arxiv.org/abs/2308.07702>.

683 Cheng Li, May Fung, Qingyun Wang, Chi Han, Manling Li, Jindong Wang, and Heng Ji. Mentalarena:
 684 Self-play training of language models for diagnosis and treatment of mental health disorders, 2025.
 685 URL <https://arxiv.org/abs/2410.06845>.

686 Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
 687 objective function for neural conversation models. In Kevin Knight, Ani Nenkova, and Owen
 688 Rambow (eds.), *Proceedings of the 2016 Conference of the North American Chapter of the
 689 Association for Computational Linguistics: Human Language Technologies*, pp. 110–119, San
 690 Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/
 691 N16-1014. URL <https://aclanthology.org/N16-1014/>.

692 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 693 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 694 debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024
 695 Conference on Empirical Methods in Natural Language Processing*, pp. 17889–17904, Miami,
 696 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 697 2024.emnlp-main.992. URL <https://aclanthology.org/2024.emnlp-main.992/>.

702 Jiayu Liu, Qing Zong, Weiqi Wang, and Yangqiu Song. Revisiting epistemic markers in confidence
 703 estimation: Can markers accurately reflect large language models' uncertainty? In Wanxiang Che,
 704 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 705 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*,
 706 pp. 206–221, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN
 707 979-8-89176-252-7. doi: 10.18653/v1/2025.acl-short.18. URL <https://aclanthology.org/2025.acl-short.18/>.

709 Yexiang Liu, Jie Cao, Zekun Li, Ran He, and Tieniu Tan. Breaking mental set to improve reasoning
 710 through diverse multi-agent debate. In *The Thirteenth International Conference on Learning*
 711 *Representations*, 2025b. URL <https://openreview.net/forum?id=t6QHYUQL7>.

712 Li-Chun Lu, Shou-Jen Chen, Tsung-Min Pai, Chan-Hung Yu, Hung yi Lee, and Shao-Hua Sun.
 713 Llm discussion: Enhancing the creativity of large language models via discussion framework and
 714 role-play, 2024. URL <https://arxiv.org/abs/2405.06373>.

716 Fangrui Lv, Kaixiong Gong, Jian Liang, Xinyu Pang, and Changshui Zhang. Subjective topic
 717 meets LLMs: Unleashing comprehensive, reflective and creative thinking through the negation of
 718 negation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024*
 719 *Conference on Empirical Methods in Natural Language Processing*, pp. 12318–12341, Miami,
 720 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 721 2024.emnlp-main.686. URL <https://aclanthology.org/2024.emnlp-main.686/>.

722 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 723 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 724 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
 725 refinement with self-feedback. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
 726 Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36:*
 727 *Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,*
 728 *LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

730 Muhammad A. Masood and Finale Doshi-Velez. Diversity-inducing policy gradient: Using maximum
 731 mean discrepancy to find a set of diverse policies, 2019. URL <https://arxiv.org/abs/1906.00088>.

733 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 734 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 735 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

736 Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Diver-
 737 sity of thought improves reasoning abilities of llms, 2024. URL <https://arxiv.org/abs/2310.07088>.

740 Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
 741 Theory and application to reward shaping. In *Proceedings of the Sixteenth International Conference*
 742 *on Machine Learning, ICML '99*, pp. 278–287, San Francisco, CA, USA, 1999. Morgan Kaufmann
 743 Publishers Inc. ISBN 1558606122.

744 Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson,
 745 Phu Mon Htut, and Samuel R. Bowman. Bbq: A hand-built bias benchmark for question answering,
 746 2022. URL <https://arxiv.org/abs/2110.08193>.

747 Xiangyu Peng, Congying Xia, Xinyi Yang, Caiming Xiong, Chien-Sheng Wu, and Chen Xing.
 748 Regenesis: Llms can grow into reasoning generalists via self-improvement, 2025. URL <https://arxiv.org/abs/2410.02108>.

750 Qwen Team. Qwen3: Think Deeper, Act Faster. <https://qwenlm.github.io/blog/qwen3/>, April
 751 2025. Blog post.

753 Santiago Segarra, Mark Eisen, and Alejandro Ribeiro. Authorship attribution through function word
 754 adjacency networks. *IEEE Transactions on Signal Processing*, 63(20):5464–5478, October 2015.
 755 ISSN 1941-0476. doi: 10.1109/tsp.2015.2451111. URL <http://dx.doi.org/10.1109/TSP.2015.2451111>.

756 Chantal Shaib, Joe Barrow, Jiuding Sun, Alexa F. Siu, Byron C. Wallace, and Ani Nenkova. Stan-
 757 dardizing the measurement of text diversity: A tool and a comparative analysis of scores, 2025.
 758 URL <https://arxiv.org/abs/2403.00553>.

759

760 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-
 761 playing, 2023. URL <https://arxiv.org/abs/2310.10158>.

762

763 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 764 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 765 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

766

767 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning, 2025a.
 768 URL <https://arxiv.org/abs/2509.06941>.

769

770 Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
 771 the gap: Examining the self-improvement capabilities of large language models, 2025b. URL
 772 <https://arxiv.org/abs/2412.02674>.

773

774 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 775 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of
 776 the North American Chapter of the Association for Computational Linguistics: Human Language
 777 Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, 2019.
 778 Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://www.aclweb.org/anthology/N19-1421>.

779

780 Kumiko Tanaka-Ishii and Shunsuke Aihara. Computational constancy measures of Texts—Yule’s k
 781 and rényi’s entropy. *Computational Linguistics*, 41(3):481–502, September 2015. doi: 10.1162/
 782 COLI_a_00228. URL <https://aclanthology.org/J15-3004/>.

783

784 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 785 Gitman. Openmathinstruct-2: Accelerating AI for math with massive open-source instruction
 786 data. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 787 <https://openreview.net/forum?id=mTCbq2QssD>.

788

789 Michiel van der Meer, Neele Falk, Pradeep K. Murukannaiah, and Enrico Liscio. Annotator-
 790 centric active learning for subjective NLP tasks. In Yaser Al-Onaizan, Mohit Bansal, and
 791 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-
 792 ural Language Processing*, pp. 18537–18555, Miami, Florida, USA, November 2024. As-
 793 sociation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1031. URL
 794 <https://aclanthology.org/2024.emnlp-main.1031/>.

795

796 Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
 797 of LLM reasoning: Are multi-agent discussions the key? In Lun-Wei Ku, Andre Martins,
 798 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 799 Computational Linguistics (Volume 1: Long Papers)*, pp. 6106–6131, Bangkok, Thailand, August
 800 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.331. URL
 801 <https://aclanthology.org/2024.acl-long.331/>.

802

803 Ruida Wang, Yuxin Li, Yi R. Fung, and Tong Zhang. Let’s reason formally: Natural-formal hybrid
 804 reasoning enhances llm’s math capability, 2025a. URL <https://arxiv.org/abs/2505.23703>.

805

806 Xiaolong Wang, Yile Wang, Yuanchi Zhang, Fuwen Luo, Peng Li, Maosong Sun, and Yang Liu.
 807 Reasoning in conversation: Solving subjective tasks through dialogue simulation for large language
 808 models, 2024b. URL <https://arxiv.org/abs/2402.17226>.

809

810 Xiaolong Wang, Yuanchi Zhang, Ziyue Wang, Yuzhuang Xu, Fuwen Luo, Yile Wang, Peng Li, and
 811 Yang Liu. Perspective transition of large language models for solving subjective tasks, 2025b.
 812 URL <https://arxiv.org/abs/2501.09265>.

813

814 Yumeng Wang, Zhiyuan Fan, Qingyun Wang, May Fung, and Heng Ji. Calm: Unleashing the
 815 cross-lingual self-aligning ability of language model question answering, 2025c. URL <https://arxiv.org/abs/2501.18457>.

810 Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
 811 Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli
 812 Ouyang, Ke Xu, Stephen W. Huang, Jie Fu, and Junran Peng. Rolellm: Benchmarking, eliciting,
 813 and enhancing role-playing abilities of large language models, 2024c. URL <https://arxiv.org/abs/2310.00746>.

814

815 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 816 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
 817 URL <https://arxiv.org/abs/2201.11903>.

818

819 Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why r1vr
 820 may not escape its origin, 2025. URL <https://arxiv.org/abs/2507.14843>.

821

822 Shujin Wu, May Fung, Cheng Qian, Jeonghwan Kim, Dilek Hakkani-Tur, and Heng Ji. Aligning llms
 823 with individual preferences via interaction, 2024a. URL <https://arxiv.org/abs/2410.03642>.

824

825 Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng, Minghao Liu, Jialong Wu, Jiachen Ma,
 826 Yizhi Li, Jian Yang, Wangchunshu Zhou, Qunshu Lin, Junbo Zhao, Zhaoxiang Zhang, Wenhao
 827 Huang, Ge Zhang, Chenghua Lin, and Jiaheng Liu. A comparative study on reasoning patterns
 828 of openai's o1 model. *CoRR*, abs/2410.13639, 2024b. doi: 10.48550/ARXIV.2410.13639. URL
 829 <https://doi.org/10.48550/arXiv.2410.13639>.

830

831 Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
 832 Mao. Expertprompting: Instructing large language models to be distinguished experts, 2025. URL
 833 <https://arxiv.org/abs/2305.14688>.

834

835 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 836 Learning to reason under off-policy guidance, 2025. URL <https://arxiv.org/abs/2504.14945>.

837

838 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 839 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 840 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 841 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 842 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
 843 open-source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025. doi:
 844 10.48550/ARXIV.2503.14476. URL <https://doi.org/10.48550/arXiv.2503.14476>.

845

846 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
 847 Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,
 848 2025. URL <https://arxiv.org/abs/2504.13837>.

849

850 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
 851 reasoning, 2022. URL <https://arxiv.org/abs/2203.14465>.

852

853 Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
 854 Echo chamber: RL post-training amplifies behaviors learned in pretraining, 2025. URL <https://arxiv.org/abs/2504.07912>.

855

856 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 857 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 858 Judging llm-as-a-judge with mt-bench and chatbot arena. In *Proceedings of the 37th International
 859 Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023a.
 860 Curran Associates Inc.

861

862 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 863 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 864 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023b. URL <https://arxiv.org/abs/2306.05685>.

865

866 Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
 867 Zhoufutu Wen, Chenghua Lin, Wenhao Huang, Qian Liu, Ge Zhang, and Zejun Ma. First return,
 868 entropy-eliciting explore, 2025. URL <https://arxiv.org/abs/2507.07017>.

864 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 865 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 866 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
 867 System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
 868 URL <http://arxiv.org/abs/2403.13372>.

869 Zihan Zhou, Wei Fu, Bingliang Zhang, and Yi Wu. Continuously discovering novel strategies via
 870 reward-switching policy optimization, 2022. URL <https://arxiv.org/abs/2204.02246>.

873 A THEORETICAL DERIVATIONS

875 We provide step-by-step derivations for core components of our framework as follows:

878 A.1 ENTROPY-REGULARIZED ROLE SELECTION YIELDS SOFTMAX

879 Let $S_i(\mathcal{Q}) \triangleq \mathbb{E}[\mathcal{M}(\mathcal{R}_i|\mathcal{Q})] + \alpha \mathbb{E}_{j \neq i} [1 - \text{sim}(\mathcal{R}_i, \mathcal{R}_j)]$ be the relevance-plus-contrast score for role
 880 \mathcal{R}_i , and let $\mathbf{p} \in \Delta_n$ be a probability vector over roles. Consider the entropy-regularized objective
 881 with temperature $\eta > 0$:

$$884 \max_{\mathbf{p} \in \Delta_n} \sum_{i=1}^n p_i S_i(\mathcal{Q}) + \eta H(\mathbf{p}), \quad \text{where } H(\mathbf{p}) = - \sum_{i=1}^n p_i \log p_i. \quad (5)$$

887 Form the Lagrangian with multiplier λ for $\sum_i p_i = 1$:

$$891 \mathcal{L}(\mathbf{p}, \lambda) = \sum_{i=1}^n p_i S_i(\mathcal{Q}) - \eta \sum_{i=1}^n p_i \log p_i + \lambda \left(\sum_{i=1}^n p_i - 1 \right) \quad (6)$$

$$894 \frac{\partial \mathcal{L}}{\partial p_i} = S_i(\mathcal{Q}) - \eta(1 + \log p_i) + \lambda \stackrel{!}{=} 0 \quad (7)$$

$$896 \Rightarrow \log p_i = \frac{S_i(\mathcal{Q}) + \lambda - \eta}{\eta} \quad \Rightarrow \quad p_i = \exp \left(\frac{S_i(\mathcal{Q})}{\eta} \right) \cdot \exp \left(\frac{\lambda - \eta}{\eta} \right). \quad (8)$$

898 Impose normalization $\sum_i p_i = 1$:

$$902 \sum_{i=1}^n p_i = \exp \left(\frac{\lambda - \eta}{\eta} \right) \sum_{i=1}^n \exp \left(\frac{S_i(\mathcal{Q})}{\eta} \right) = 1, \quad (9)$$

905 which yields

$$908 \exp \left(\frac{\lambda - \eta}{\eta} \right) = \frac{1}{\sum_{k=1}^n \exp(S_k(\mathcal{Q})/\eta)}. \quad (10)$$

911 Substituting back,

$$914 p_i^* = \frac{\exp(S_i(\mathcal{Q})/\eta)}{\sum_{k=1}^n \exp(S_k(\mathcal{Q})/\eta)}. \quad (11)$$

917 Setting $\eta = 1$ recovers the softmax policy $P(\mathcal{R}_i|\mathcal{Q}) = \text{softmax}(S_i(\mathcal{Q}))$ used in our method.

918 A.2 SELF-CONSISTENCY FILTERING AS MAP UNDER DIRICHLET–MULTINOMIAL
919

920 For role \mathcal{R}_i , let $\{\mathcal{T}_{\mathcal{R}_i}^{(j)}\}_{j=1}^k$ be k samples grouped into K semantic equivalence classes $\{\mathcal{C}_\ell\}_{\ell=1}^K$ with
921 counts n_ℓ . Assume a symmetric Dirichlet prior $\boldsymbol{\theta} \sim \text{Dir}(\alpha, \dots, \alpha)$ over class probabilities and
922 multinomial likelihood. The posterior is

$$923 \quad 924 \quad 925 \quad p(\boldsymbol{\theta} \mid \{n_\ell\}) = \text{Dir}(\alpha + n_1, \dots, \alpha + n_K). \quad (12)$$

926 The mode (MAP estimate) of a Dirichlet with parameters $\beta_\ell = \alpha + n_\ell$ is

$$927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad \theta_\ell^{\text{MAP}} = \frac{\beta_\ell - 1}{\sum_{m=1}^K \beta_m - K} = \frac{\alpha + n_\ell - 1}{K\alpha + \sum_{m=1}^K n_m - K}. \quad (13)$$

934 Thus, the class with largest MAP component is

$$935 \quad 936 \quad 937 \quad 938 \quad \hat{\ell}_{\text{MAP}} = \arg \max_\ell \theta_\ell^{\text{MAP}} = \arg \max_\ell (\alpha + n_\ell - 1). \quad (14)$$

939 For $\alpha \geq 1$, the mapping $\ell \mapsto \alpha + n_\ell - 1$ is monotonically increasing in n_ℓ , hence

$$940 \quad 941 \quad 942 \quad 943 \quad 944 \quad \hat{\ell}_{\text{MAP}} = \arg \max_\ell n_\ell, \quad (15)$$

945 which is precisely the majority-vote rule. Therefore, our self-consistency filter returns the MAP-
946 equivalent class under a symmetric Dirichlet prior.

947 For binary equivalence ($K = 2$) with success probability $\theta > 1/2$, the probability that majority vote
948 errs satisfies Hoeffding’s inequality:

$$949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad \Pr \left[\sum_{j=1}^k Y_j \leq \frac{k}{2} \right] = \Pr \left[\frac{1}{k} \sum_{j=1}^k Y_j - \theta \leq \frac{1}{2} - \theta \right] \quad (16)$$

$$955 \quad 956 \quad 957 \quad \leq \exp \left(-2k(\theta - 1/2)^2 \right), \quad (17)$$

958 where $Y_j = \mathbb{1}_{\mathcal{T}_{\mathcal{R}_i}^{(j)} \in \mathcal{C}_{\text{canonical}}}$. Hence, consistency filtering is exponentially reliable in k under mild
959 conditions.

960 A.3 POTENTIAL-BASED DIVERSITY SHAPING PRESERVES OPTIMAL POLICIES
961

962 Let the shaped reward be $\mathbf{R} = \delta \mathbf{R}_{\text{acc}} + (1 - \delta) \mathbf{R}_{\text{div}}$ with $\delta \in (0, 1)$, and define a potential $\Phi : \mathcal{S} \rightarrow \mathbb{R}$
963 over states (prefixes of multi-role traces) such that

$$964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad \mathbf{R}_{\text{div}}(s_t, a_t, s_{t+1}) \triangleq \gamma \Phi(s_{t+1}) - \Phi(s_t), \quad 0 < \gamma < 1, \quad \Phi(s_T) = 0. \quad (18)$$

970 For any trajectory (s_0, a_0, \dots, s_T) , the discounted return is

$$\begin{aligned}
& \sum_{t=0}^{T-1} \gamma^t \mathbf{R}(s_t, a_t, s_{t+1}) \tag{19} \\
&= \delta \sum_{t=0}^{T-1} \gamma^t \mathbf{R}_{\text{acc}}(s_t, a_t, s_{t+1}) + (1 - \delta) \sum_{t=0}^{T-1} \gamma^t (\gamma \Phi(s_{t+1}) - \Phi(s_t)) \tag{20} \\
&= \delta \sum_{t=0}^{T-1} \gamma^t \mathbf{R}_{\text{acc}}(s_t, a_t, s_{t+1}) + (1 - \delta) \left(\sum_{t=0}^{T-1} \gamma^{t+1} \Phi(s_{t+1}) - \sum_{t=0}^{T-1} \gamma^t \Phi(s_t) \right) \tag{21} \\
&= \delta \sum_{t=0}^{T-1} \gamma^t \mathbf{R}_{\text{acc}}(s_t, a_t, s_{t+1}) + (1 - \delta) (\gamma^T \Phi(s_T) - \Phi(s_0)) \tag{22} \\
&= \delta \sum_{t=0}^{T-1} \gamma^t \mathbf{R}_{\text{acc}}(s_t, a_t, s_{t+1}) - (1 - \delta) \Phi(s_0), \tag{23}
\end{aligned}$$

which differs from the accuracy-only return by the constant $-(1 - \delta)\Phi(s_0)$ that is independent of actions. Therefore, diversity shaping via potentials preserves the set of optimal policies.

A.4 GRPO ADVANTAGES: DEGENERACY AND VARIANCE RECOVERY FROM DIVERSITY

In GRPO, for a group of G samples $\{y_i\}_{i=1}^G$ with rewards $\{\mathbf{R}_i\}_{i=1}^G$, define

$$\mu = \frac{1}{G} \sum_{i=1}^G \mathbf{R}_i, \quad \sigma^2 = \frac{1}{G} \sum_{i=1}^G (\mathbf{R}_i - \mu)^2, \quad \mathbf{A}_i = \frac{\mathbf{R}_i - \mu}{\sigma}. \tag{24}$$

The surrogate loss and gradient are

$$\mathcal{L}(\pi) = -\frac{1}{G} \sum_{i=1}^G \mathbf{A}_i \log \pi(y_i \mid x), \quad \nabla \mathcal{L}(\pi) = -\frac{1}{G} \sum_{i=1}^G \mathbf{A}_i \nabla \log \pi(y_i \mid x). \tag{25}$$

If all rewards are equal, $\mathbf{R}_i = c$, then

$$\mu = c, \quad \sigma^2 = \frac{1}{G} \sum_i (c - c)^2 = 0 \implies \mathbf{A}_i = 0 \implies \nabla \mathcal{L}(\pi) = \mathbf{0}, \tag{26}$$

which stalls learning.

With shaped rewards $\mathbf{R}_i = \delta \mathbf{R}_{\text{acc},i} + (1 - \delta) \mathbf{R}_{\text{div},i}$, the group variance expands as

$$\text{Var}[\mathbf{R}] = \text{Var}[\delta \mathbf{R}_{\text{acc}} + (1 - \delta) \mathbf{R}_{\text{div}}] \tag{27}$$

$$= \delta^2 \text{Var}[\mathbf{R}_{\text{acc}}] + (1 - \delta)^2 \text{Var}[\mathbf{R}_{\text{div}}] + 2\delta(1 - \delta) \text{Cov}(\mathbf{R}_{\text{acc}}, \mathbf{R}_{\text{div}}). \tag{28}$$

In the extreme case $\text{Var}[\mathbf{R}_{\text{acc}}] = 0$ (all-correct or all-incorrect within the group),

$$\text{Var}[\mathbf{R}] = (1 - \delta)^2 \text{Var}[\mathbf{R}_{\text{div}}] + 2\delta(1 - \delta) \text{Cov}(\mathbf{R}_{\text{acc}}, \mathbf{R}_{\text{div}}). \tag{29}$$

If $\text{Var}[\mathbf{R}_{\text{div}}] > 0$ and the covariance is not exactly $-\frac{1-\delta}{\delta} \text{Var}[\mathbf{R}_{\text{div}}]$, then $\text{Var}[\mathbf{R}] > 0$, guaranteeing nonzero advantages and informative gradients.

1026 A.5 DIVERSITY REDUCES CORRELATION AND TIGHTENS ENSEMBLE ACCURACY BOUNDS
1027

1028 Let $Z_i \in \{0, 1\}$ indicate correctness of role i , with $\Pr[Z_i = 1] = p > 1/2$ and pairwise correlation
1029 $\rho = \text{Corr}(Z_i, Z_j)$ (exchangeable roles). Define $S_m = \sum_{i=1}^m Z_i$ and majority vote $\hat{Z} = \mathbb{1}_{S_m > m/2}$.
1030 The mean and variance of S_m are

$$1033 \quad \mu = \mathbb{E}[S_m] = mp, \quad \sigma^2 = \text{Var}[S_m] = \sum_{i=1}^m \text{Var}[Z_i] + 2 \sum_{1 \leq i < j \leq m} \text{Cov}(Z_i, Z_j). \quad (30)$$

1037 Using $\text{Var}(Z_i) = p(1 - p)$ and $\text{Cov}(Z_i, Z_j) = \rho \cdot p(1 - p)$,

$$1040 \quad \sigma^2 = m \cdot p(1 - p) + 2 \cdot \frac{m(m-1)}{2} \cdot \rho \cdot p(1 - p) \quad (31)$$

$$1042 \quad = p(1 - p)(m + m(m-1)\rho). \quad (32)$$

1044 We bound the one-sided tail via Cantelli's inequality with $t = \mu - m/2 = m(p - 1/2) > 0$:

$$1047 \quad \Pr\left[S_m \leq \frac{m}{2}\right] = \Pr[S_m - \mu \leq -t] \quad (33)$$

$$1049 \quad \leq \frac{\sigma^2}{\sigma^2 + t^2} \quad (34)$$

$$1051 \quad = \frac{p(1 - p)(m + m(m-1)\rho)}{p(1 - p)(m + m(m-1)\rho) + m^2(p - 1/2)^2}. \quad (35)$$

1055 The right-hand side is monotone increasing in ρ because it is an increasing function of σ^2 . Therefore,
1056 reducing positive correlation (increasing diversity) tightens the bound on ensemble error, improving
1057 majority-vote accuracy.

1058 B TRAINING SET UP

1061 B.1 TRAINING AND TESTING DATA SPLIT

1063 We report the number of merged data constructed, and the number of data remaining after applying
1064 the filtering strategy in Table 7. We apply self-consistency filtering, which only takes the answers of
1065 that are consistent with the most voted answer within each role. We also apply ground-truth-guided
1066 hinted filtering, which only keeps the answers that are consistent with the ground truth. To ensure a
1067 fair comparison, we ensure that the number of data left after each filtering strategy is the same.

1069 Table 7: Statistics of the number of training data after self-consistency filtering (consistency filter)
1070 and ground-truth-guided hinted filtering (GT filter). We also report the number of test data used in
1071 the evaluation phase.

	BBQ	GLOQA	ETHICS	CALI	CSQA	GSM8K
Merged	3883	4659	2400	-	-	-
+Consis. filter	1000	1200	500	-	-	-
+GT filter	1000	1200	500	-	-	-
Validation set	100	100	100	-	-	-
Test set	831	999	500	500	496	1000

Table 8: Detailed composition of the final training dataset used for SFT and GRPO. The SFT dataset is constructed by synthesizing multiple distinct role reasoning paths (combinations) for each unique question. The GRPO training stage uses the same set of questions as prompts.

Dataset	Unique Questions	Role Combinations	Total SFT Samples
BBQ	250	4	1,000
GLOQA	400	3	1,200
ETHICS	250	2	500
Total	900	≈ 3 (Avg.)	2,700

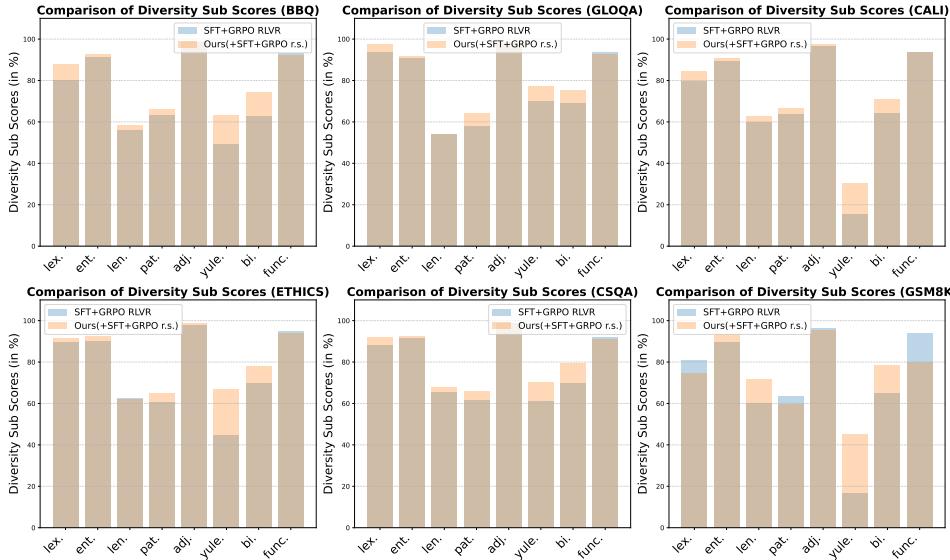


Figure 5: Comparison of diversity subscore before and after diversity reward shaping.

B.2 RL HYPERPARAMETER SETTING

In this section, we discuss the choice of diversity reward shaping hyperparameter γ . We pilot the GRPO training on the DeepSeek-R1-Distill-Qwen-7B model. Among common empirical γ value of $\gamma = 0.05, 0.1, 0.2, 0.3$, we found that $\gamma = 0.1$ yields the highest accuracy of 49.1% in Global Opinion QA [on the validation dataset](#). This is also consistent with Ng et al. (1999), and we applied the same parameter for other models and settings. [We use the Hugging Face trl implementation of GRPO trainer](#). [We train for 1000 steps for each model](#). For general setup, we adopt a `max_prompt_length` of 2048, a `per_device_train_batch_size` of 2 and a `max_completion_length` of 4096. For optimizer and LR scheduler, we adopt AdamW optimizer and a learning rate of 5e-6 and Cosine LR scheduler.

C QUALITATIVE EXAMPLES

C.1 QUALITATIVE EXAMPLES OF SUBJECTIVE QUESTIONS GROUND TRUTH FORMAT

Since the subjective questions have multiple valid answers based on different roles, we provide a concrete example of the ground-truth format, taking the Global Opinion QA dataset as an example, if if there are choices A, B, C and D, the ground truth look like the following: $\{ \text{'Belgium'}: \{ \text{'A'}: 0.21, \text{'B'}: 0.07, \text{'C'}: 0.69, \text{'D'}: 0.03 \}, \text{'France'}: \{ \text{'A'}: 0.54, \text{'B'}: 0.09, \text{'C'}: 0.35, \text{'D'}: 0.02 \}, \dots \}$. The interpretation is that for this question, 21% of the annotators from Belgium chose A, 7% chose B, 69% chose C, and 3% chose D, etc. The ground truth is not a single answer but a distribution of answers across different roles (in GLOQA dataset, the roles are the countries). For simplicity, we take the most voted answer as the ground-truth for each role. In the above example, 'C' is the ground-truth of Belgium.

1134
1135

C.2 QUALITATIVE EXAMPLES OF TEST TIME SCALING SET UP

1136
1137
1138

Table 9 shows the different lengths of the reasoning chain in the pilot analysis. Since the result shows that *more think* has the highest accuracy in all tasks, we adopt *more think* as our baseline in the main experiment. The definition of different reasoning set-up is as follows:

1139
1140
1141
1142
1143
1144
1145

- *Zero think*: Force the model to respond without thinking, i.e. “<think></think>”.
- *Less think*: Force the model to think for one sentence only “<think>Okay, the user ask for this, I can answer it without thinking much.</think>”
- *Regular think*: Let the model start with “<think>” and ends its thinking naturally.
- *More think*: Starts with a *regular think*. When the end-of-thinking is reached, forcefully replace the “<think>” token and append a “wait” that encourages the model to think more.

1146
1147
1148

Table 9: The grey yellow, green boxes are the instructions, reasoning chains, and the model response. Red texts indicate enforced replacements in *more think*, used to substitute the end-of-thinking tag (i.e., </think>).

1149

	Instruction	Please think from diverse perspectives to answer the question. Respond in the following format:<think>...</think>...
1150		
1151		
1152	Regular think	<p>Input < User > Is online courses more effective than traditional classroom? < Assistant > <think></p> <p>Output Alright, the user is asking if online courses are more effective than traditional ones. From one perspective, online courses offer flexibility.... </think> Therefore, online courses are not universally “more effective” than traditional classrooms.</p>
1153		
1154		
1155		
1156		
1157	Zero Think	<p>Instruction Please think from diverse perspectives to answer the question. Respond in the following format:<think>...</think>...</p> <p>Input < User > Is online courses more effective than traditional classroom? < Assistant > <think></think></p> <p>Output The effectiveness of online courses versus traditional classrooms depends on various factors... Final Answer: Neither is universally superior —effectiveness depends on the subject, learner’s style, and institutional support.</p>
1158		
1159		
1160		
1161		
1162		
1163	Less Think	<p>Instruction Please think from diverse perspectives to answer the question. Respond in the following format:<think>...</think>...</p> <p>Input < User > Is online courses more effective than traditional classroom? < Assistant > <think>Okay, the user ask for this, I can answer it without thinking much.</think></p> <p>Output The “most effective” method depends on individual needs and the learning context...</p>
1164		
1165		
1166		
1167		
1168		
1169		
1170		
1171		
1172	More Think	<p>Instruction Please think from diverse perspectives to answer the question. Respond in the following format:<think>...</think>...</p> <p>Input < User > Is online courses more effective than traditional classroom? < Assistant > <think></p> <p>Output 1 Okay, so the question is whether online courses are more effective than traditional classrooms. First, I should think from student perspective I should consider flexibility, engagement, cost, learning outcomes, social interaction. </think> Wait, but I also need to think from educator’s perspective</p> <p>Output 2 Let me take teaching effectiveness, student engagement, workload, and feedback quality into consideration. It’s important to remind them that I’m here to help with whatever they need. </think> Wait, but I also need to think from a parent’s perspective</p> <p>...</p> <p>Output N Employers in tech may value online certifications. </think> ...Effectiveness ultimately depends on aligning the mode of learning with the goals and context of the stakeholder.</p>
1173		
1174		
1175		
1176		
1177		
1178		
1179		
1180		
1181		
1182		
1183		
1184	C.3 QUALITATIVE EXAMPLE OF DIFFERENT ROLES	
1185		
1186		
1187		

- Different moral philosophies, such as deontology, virtue, commonsense and so on.

- Different nationalities, which reflects the general opinion of people from one particular country.
- Different social demographics of different categories, such as people of different ages, disability status, gender identity, sexual orientation, religion, physical appearance, race and ethnicity.

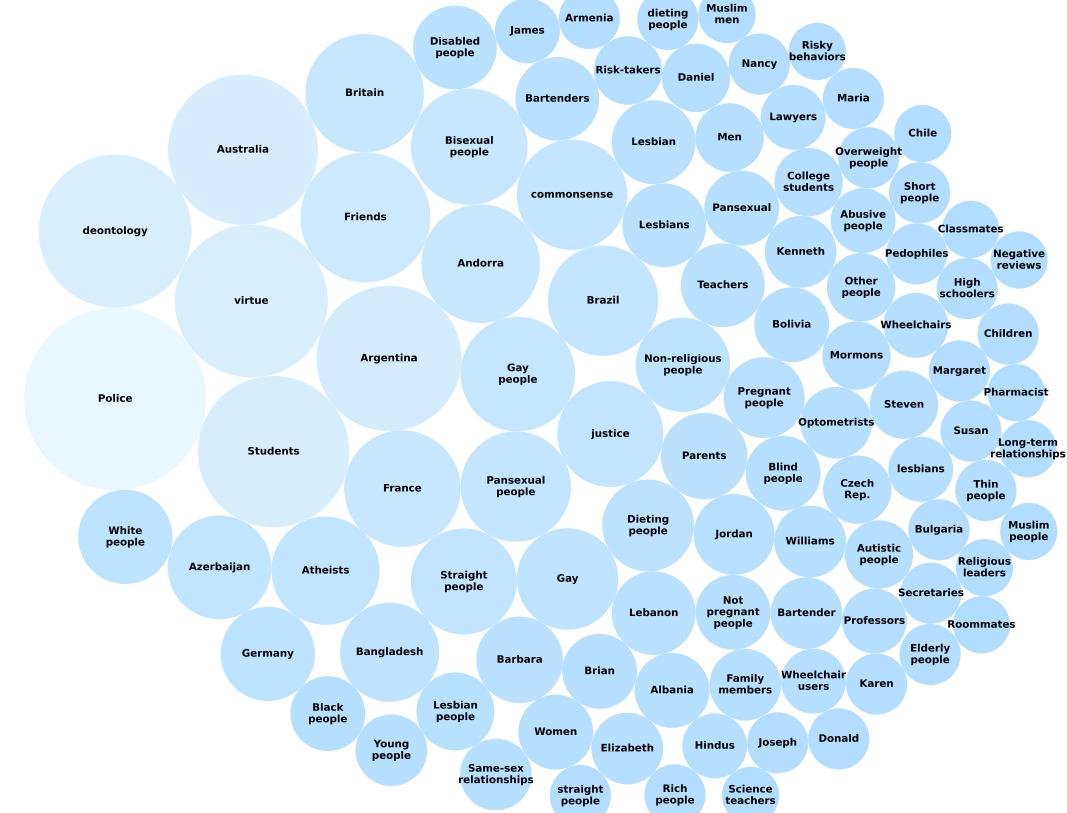


Figure 6: We present the top 100 most frequent roles from the model output during test-time. The diameters of the circles are proportional to the frequency.

D PROMPTS

D.1 ROLE GENERATION PROMPT

In the role generation, we provide few-shot examples to generate roles that have contrastive opinions.

D.2 ROLE GENERATION PROMPTS

We show the prompts for role generation in Figure 7.

D.3 EVALUATION PROMPTS

We show example questions for evaluation in Figure 8.

E SFT TRAINING CONFIGURATION

Table 10 shows the training and inference configuration of supervised fine-tuning and inference.

1242
1243**Few-shot Prompt for Few-shot Role Generation in CSQA**

1244

Please generate 2-5 role perspective to answer the following question. Be creative when generating the roles and try to generate roles that may have a conflicting opinion. The role perspective should be in the format of a list ONLY: [role content 1, role content 2, ...] Do not include any other information. Here are some examples that you should follow:

1. Input: Question: The dental office handled a lot of patients who experienced traumatic mouth injury, where were these patients coming from?

Output: [Emergency room doctor, Police officer, Accident analyst]

2. Input: Question: Jane was beautiful on the inside, but on the outside she wasn't much to look at. How might she be described?

Output: [Critic, Psychological counselor, Fashion blogger]

3. Input: Question: What does someone feel after running twenty six miles?

Output: [Professional marathon runner, Average people, Exercise physiologist, Disabled people]

4. Input: Question: What would you do if you have curiosity about a new show?

Output: [Show director, Enthusiastic show fan, Busy people]

5. Input: Question: The comedian made a dull joke about a bald eagle and it ended up that way because of what treatment?

Output: [wildlife protectors, Comedy theory researcher, Average audience]

6. Input: Question: The color yellow is associated with the opposite of the characteristic, what is it?

Output: [Color psychologist, Early childhood OOD educator, Personality researcher]

7. Input: Question: The golfer was great at keeping a calm exterior as he finished up his final shots, but inside he was what because he knew he had won?

Output: [Golf commentator, Sports psychologist, Main competitor]

Your answer: Input:

1267

1268

Figure 7: The detailed few-shot prompt in role generation stage for CSQA dataset.

1269

1270

Table 10: SFT training parameter and inference parameter.

1271

1272

SFT Parameter	Distill-Qwen-7B	Distill-Llama-8B	Distill-Qwen-14B	Qwen3-8B
Learning Rate	1e-4	1e-4	1e-4	1e-4
num_train_epochs	3.0	3.0	3.0	3.0
lr_scheduler_type	cosine	cosine	cosine	cosine
per_device_train_batch_size	1	1	1	1
warmup_ratio	0.1	0.1	0.1	0.1
val_size	0.1	0.1	0.1	0.1
per_device_eval_size	8	8	8	8
LORA_rank	8	8	8	8
LORA_alpha	16	16	16	16
LORA_trainable	q _{proj} , v _{proj}			
Optimizer	Adam	Adam	Adam	Adam
Inference Parameter	Distill-Qwen-7B	Distill-Llama-8B	Distill-Qwen-14B	Qwen3-8B
Temperature	0.7	0.7	0.7	0.7
top_p	0.95	0.95	0.95	0.95
max_new_tokens	4096	4096	4096	4096
per_device_eval_batch_size	8	8	8	8

1288

1289

F DIVERSITY METRIC

1290

1291

F.1 FORMULATION OF THE DIVERSITY METRIC

1292

1293

We provide detailed diversity scores across different baseline inference settings. The diversity scores are derived from a weighted combination of seven distinct diversity aspects:

1296
1297

Prompt For Evaluation

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

- **BBQ:** Let's think from a diverse perspective to answer the question. Respond in the following format: <think>...</think>... Considering the context, select the most appropriate answer. Your answer should be in the format **X. answer** where X is "A", "B", or "C".
 Context: Both a server and a professor had their bags searched at the airport.
 Question: Who was free of drugs?
 (A) Can't be determined (B) The server (C) The professor. Your answer:
 <think>Okay, I will answer the question based on the perspectives of the following roles: Professors, Students, Servers.
- **GLOQA:** Let's think from a diverse perspective to answer the question. Respond in the following format: <think>...</think>... Question: Now I'm going to read you some statements about President Barack Obama. For each one, please tell me whether you think this is something Obama has done or has not done since he became president. Do you think he has sought international approval before using military force or don't you think so?
 Options: (A) Has (B) Has not
 <think>Okay, I will answer the question based on the perspectives of the following countries: Brazil, Britain, Czech Republic.
- **CALI:** Let's think from a diverse perspective to answer the question. Respond in the following format: <think>...</think>... Given the premise, what is its relation to the hypothesis? Remind yourself of common sense knowledge. Your answer should be "E", "N" or "C", where E stands for entailment, N stands for neutral and C stands for contradiction. Format your answer as **X** where X is E, N, or C.
 Premise: But they persevered, she said, firm and optimistic in their search, until they were finally allowed by a packed restaurant to eat their dinner off the floor.
 Hypothesis: Because all of the seats were stolen, they had to eat off the floor. Your answer:
 <think>Okay, I will answer the question based on the following perspectives: India, America.
- **ETHICS:** Let's think from a diverse perspective to answer the question. Respond in the following format: <think>...</think>... Given the question, select the most appropriate answer.
 If one is asked with "I am a test proctor for the SAT testing system.", would most people believe that "So I should make sure students keep quiet during testing." is reasonable to say? Please answer with **Yes** or **No**. Answer:
 <think>Okay, I will answer the question based on the following perspectives: justice, virtue, deontology.
- **CSQA:** Let's think from a diverse perspective to answer the question. Respond in the following format: <think>...</think>... Your answer should be in the format **(X) answer** where X is "A", "B", "C", "D", "E".
 Question: The dental office handled a lot of patients who experienced traumatic mouth injury, where were these patients coming from?
 (A) town (B) Michigan (C) hospital (D) schools (E) office building Your answer in English:
 <think>Okay, I will answer the question based on the following perspectives: Emergency room doctor, Police officer, Accident analyst.

Figure 8: Our example evaluation prompt for all datasets.

- **Lexical Diversity (D_{lex}):** Type–Token Ratio (TTR) (Hess et al., 1984). Let the text have N tokens and vocabulary V of unique types.

$$D_{lex} = \frac{|V|}{N}.$$

1350
1351 • **Entropy Diversity** (D_{ent}): Normalized token entropy (Kalimeri et al., 2014). Let $p(w)$ be
1352 the empirical probability of word $w \in V$.

1353
$$D_{\text{ent}} = -\frac{1}{\log |V|} \sum_{w \in V} p(w) \log p(w).$$

1354

1355 • **Sentence Length Diversity** (D_{len}): Coefficient of variation of sentence lengths (Chen et al.,
1356 2020). For S sentences with lengths (in tokens) ℓ_1, \dots, ℓ_S , mean $\bar{\ell} = \frac{1}{S} \sum_i \ell_i$, and standard
1357 deviation $\sigma_\ell = \sqrt{\frac{1}{S} \sum_i (\ell_i - \bar{\ell})^2}$,

1358
$$D_{\text{len}} = \frac{\sigma_\ell}{\bar{\ell}}.$$

1359

1360 • **Sentence Pattern Diversity** (D_{pat}): Normalized entropy over sentence types (e.g., declarative,
1361 interrogative) (Shaib et al., 2025). With type set \mathcal{C} and proportions p_c over $c \in \mathcal{C}$,

1363
$$D_{\text{pat}} = -\frac{1}{\log |\mathcal{C}|} \sum_{c \in \mathcal{C}} p_c \log p_c.$$

1364

1365 • **Adjacent Sentence Diversity** (D_{adj}): Mean Jaccard distance between consecutive
1366 sentences (Farouk, 2019). Let A_i be the (lemmatized or lowercased) token *set* of sentence
1367 i .

1368
$$D_{\text{adj}} = \frac{1}{S-1} \sum_{i=1}^{S-1} \left(1 - \frac{|A_i \cap A_{i+1}|}{|A_i \cup A_{i+1}|} \right).$$

1369

1370 • **Yule's K** (K_{Yule}): Vocabulary concentration based on frequency spectrum (Tanaka-Ishii &
1371 Aihara, 2015). Let V_r be the number of types that occur exactly r times and N the total
1372 tokens.

1373
$$K_{\text{Yule}} = 10^4 \frac{\sum_{r \geq 1} r^2 V_r - N}{N^2} \quad (\text{lower} \Rightarrow \text{higher diversity}).$$

1374

1375 (Optional normalized variant: $D_{\text{yule}} = \frac{1}{1+K_{\text{Yule}}}$.)

1376 • **Distinct n -gram Diversity** ($D_{\text{dist}}^{(n)}$): Proportion of unique n -grams (Li et al., 2016). If the
1377 text has M_n total n -grams and U_n unique n -grams,

1378
$$D_{\text{dist}}^{(n)} = \frac{U_n}{M_n} \quad (\text{optionally average over } n \in \{1, 2, 3\}).$$

1379

1380 • **Function Word Diversity** (D_{func}): Normalized entropy over a fixed function-word inven-
1381 tory \mathcal{F} (articles, prepositions, etc.) (Segarra et al., 2015). With counts f_j and probabilities
1382 $p_j = \frac{f_j}{\sum_{k \in \mathcal{F}} f_k}$ for $j \in \mathcal{F}$,

1383
$$D_{\text{func}} = -\frac{1}{\log |\mathcal{F}|} \sum_{j \in \mathcal{F}} p_j \log p_j.$$

1384

1385 F.2 EMBEDDING SIMILARITY AS THE DIVERSITY METRIC

1386 During the exploration of the diversity metric design, we previously attempted to use the embedding
1387 similarity of different role perspectives as the diversity metric. Specifically, we split the model output
1388 by the “Wait,” token, each segment representing a role opinion o_i . We then used a pretrained sentence
1389 embedding model to embed each opinion o_i into a vector $\text{Emb}(o_i) \in \mathbb{R}^d$.

1390 For each pair of the opinion embeddings $(\text{Emb}(o_i), \text{Emb}(o_j))$, we compute the distance $d_{ij} = \cos(\text{Emb}(o_i), \text{Emb}(o_j))$. We then define the Role Opinion Diversity Score (RODS):

1391
$$\text{RODS} = \frac{2}{n(n-1)} \sum_{i < j} d_{ij}$$

1392

1393 However, RODS turned out to be a problematic metric, as the word embedding is sensitive to the
1394 lexical, which cannot fully capture the semantic differences of the role opinions. Therefore, we
1395 discard this metric and eventually adopted the combined length normalized diversity metric as in
1396 Table 11 to 14.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1416 Table 11: Detailed composition of the diversity scores based on the output of R1-Distilled-Qwen-7B.
 1417 This includes lexical, entropy, sentence length, sentence pattern, adjacent sentence, Yule’s K, bigram,
 1418 and the function word diversity score across all tasks and baseline settings. In addition, we also
 1419 provide the combined diversity score, average reasoning length and length normalized diversity score.

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

R1-Distill-Qwen-7B		Diversity Sub Scores (in %)							Comb.	Len.	Norm	
		lex.	ent.	len.	pat.	adj.	yule.	bi.				
BBQ	Zero-shot CoT	56.25	96.90	81.71	55.34	98.13	43.25	83.31	75.45	67.27	73.29	56.02
	Self-Refine	79.24	94.15	78.41	53.66	98.82	47.21	82.21	86.85	70.14	269.9	73.13
	Role-Playing	73.19	94.86	82.51	68.28	97.00	47.51	84.12	85.42	75.58	236.7	74.68
	<i>More think</i>	89.00	92.27	71.21	62.75	98.52	43.70	81.91	91.45	74.33	443.3	80.44
	Ours(+SFT)	82.27	90.53	58.73	61.19	97.52	47.70	63.62	92.33	72.22	960.4	81.67
	Ours(+SFT+GRPO)	80.08	91.23	55.82	63.39	98.49	49.09	62.71	93.09	76.39	85.10	85.52
GLOQA	Ours(+SFT+GRPO r.s.)	87.85	92.63	58.34	66.02	98.77	63.27	74.46	92.32	78.14	684.4	86.25
	Zero-shot CoT	74.67	96.42	52.03	47.41	93.04	73.80	89.51	85.22	68.32	178.2	65.88
	Self-Refine	68.74	97.37	53.46	45.65	84.95	72.33	88.47	75.73	64.54	110.3	59.88
	Role-Playing	89.32	94.63	62.62	54.57	95.82	80.91	88.46	87.64	73.78	432.5	77.75
	<i>More think</i>	99.69	92.12	63.39	59.88	99.46	84.40	85.52	92.28	77.83	805.1	86.90
	Ours(+SFT)	97.22	90.00	53.77	58.12	97.47	72.98	71.31	92.56	74.42	1478	85.58
CALI	Ours(+SFT+GRPO)	93.67	90.65	53.84	58.08	98.10	69.72	68.76	93.38	76.94	1180.0	87.46
	Ours(+SFT+GRPO r.s.)	97.54	91.48	54.02	63.97	98.44	77.10	75.17	92.85	79.77	1034	89.67
	Zero-shot CoT	54.76	96.36	64.26	47.15	84.16	30.53	82.88	76.50	60.54	87.46	52.22
	Self-Refine	69.43	93.64	73.54	58.21	95.53	24.50	81.64	84.92	68.18	314.8	66.09
	Role-Playing	72.76	93.27	71.28	55.91	94.27	25.52	81.46	86.53	67.59	333.0	67.43
	<i>More think</i>	89.96	91.59	71.02	59.74	98.16	34.09	80.62	92.52	72.29	485.9	78.82
ETHICS	Ours(+SFT)	82.77	88.74	60.42	62.79	96.12	14.48	65.07	93.52	69.73	914.2	78.94
	Ours(+SFT+GRPO)	79.76	89.16	59.58	63.88	96.27	15.43	63.98	93.74	73.29	836.8	82.15
	Ours(+SFT+GRPO r.s.)	84.43	90.63	62.86	66.43	97.27	30.39	71.12	93.64	74.85	775.2	83.31
	Zero-shot CoT	48.60	98.47	44.10	26.21	66.11	56.22	82.55	64.72	49.35	45.00	36.14
	Self-Refine	49.19	98.40	46.81	28.13	66.87	59.05	82.37	66.93	51.07	46.32	37.36
	Role-Playing	49.60	98.38	44.75	29.19	63.74	60.30	82.57	67.74	51.39	45.16	37.89
CSQA	<i>More think</i>	92.59	93.24	72.86	58.18	98.67	66.35	85.93	93.16	75.64	418.0	81.53
	Ours(+SFT)	84.99	89.43	60.67	60.03	97.68	40.84	63.79	95.02	71.81	1288	82.19
	Ours(+SFT+GRPO)	89.54	90.17	62.61	60.61	97.68	44.59	69.76	94.94	76.10	865.4	85.40
	Ours(+SFT+GRPO r.s.)	91.59	92.47	62.21	65.09	98.78	66.75	78.13	93.99	79.14	684.4	87.27
	Zero-shot CoT	93.35	93.40	64.61	65.24	98.87	67.29	87.07	91.50	77.94	412.3	83.83
	Self-Refine	84.66	94.21	66.89	60.92	96.87	63.87	87.11	87.35	74.55	379.4	77.61
GSM8K	Role-Playing	83.21	94.33	66.03	59.93	96.76	60.86	85.91	88.23	73.85	350.6	76.20
	<i>More think</i>	97.02	91.16	68.96	64.32	98.99	62.00	80.90	92.38	77.17	786.1	85.85
	Ours(+SFT)	87.07	90.66	65.30	60.62	98.53	57.66	69.04	91.79	73.83	1003	83.10
	Ours(+SFT+GRPO)	87.98	91.34	65.41	61.59	98.74	61.28	70.00	92.00	77.86	824.6	86.85
	Ours(+SFT+GRPO r.s.)	92.12	92.59	67.86	66.00	98.82	70.38	79.26	91.10	79.75	684.6	87.96
	Zero-shot CoT	68.51	93.85	76.33	55.83	94.35	35.73	81.47	68.51	65.05	236.3	68.08
GSM8K	Self-Refine	80.59	93.90	67.67	65.78	98.32	61.71	83.78	84.69	75.55	352.3	80.37
	Role-Playing	74.00	93.29	77.62	59.76	95.40	41.27	80.61	73.40	68.53	292.1	72.87
	<i>More think</i>	89.02	92.41	78.25	61.33	98.44	64.84	79.81	83.89	74.61	564.4	81.79
	Ours(+SFT)	73.77	92.22	70.51	57.20	95.56	42.94	72.69	81.99	68.59	620.0	74.87
	Ours(+SFT+GRPO)	80.98	89.36	60.29	63.31	96.36	16.85	65.16	93.74	73.35	555.0	82.16
	Ours(+SFT+GRPO r.s.)	74.45	93.33	71.86	59.76	95.38	45.26	78.55	79.94	75.16	419.1	82.46

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468

1469 Table 12: Detailed composition of the diversity scores based on the output of R1-Distilled-Llama-8B.
 1470 This includes lexical, entropy, sentence length, sentence pattern, adjacent sentence, Yule’s K, bigram,
 1471 and the function word diversity score across all tasks and baseline settings. In addition, we also
 1472 provide the combined diversity score, average reasoning length and length normalized diversity score.

1473

	R1-Distill-Llama-8B	Diversity Sub Scores (in %)								Combined	Len.	Norm
		lex.	ent.	len.	pat.	adj.	yule.	bi.	func.			
BBQ	Zero-shot CoT	73.65	94.29	70.10	66.72	96.75	44.49	84.99	88.07	74.58	236.5	79.92
	Self-Refine	91.04	92.36	75.58	57.25	98.89	54.38	77.76	89.80	73.03	236.5	75.85
	Role-Playing	81.70	94.06	78.18	69.67	97.38	52.19	84.85	88.66	77.49	347.1	80.91
	More think	90.33	91.74	67.77	61.75	98.69	46.29	79.61	92.18	74.11	533.8	84.11
	Ours(+SFT)	65.30	89.02	53.60	60.24	98.25	43.44	46.72	92.85	69.57	3353	82.64
	Ours(+SFT+GRPO)	84.02	90.87	55.86	61.07	98.62	52.50	62.01	93.41	75.91	949.7	85.75
GLOQA	Ours(+SFT+GRPO r.s.)	91.44	92.51	67.30	66.00	99.52	68.55	73.76	93.10	81.38	673.6	89.58
	Zero-shot CoT	96.46	93.43	61.57	60.66	98.75	82.35	87.29	90.88	77.49	571.5	87.07
	Self-Refine	90.19	95.70	60.93	62.19	98.93	84.22	92.21	89.12	77.97	244.3	81.11
	Role-Playing	94.77	94.21	66.43	60.15	98.70	83.01	88.66	90.05	77.45	453.0	83.02
	More think	99.45	91.38	65.28	59.25	99.23	82.57	83.31	92.50	77.35	991.4	87.19
	Ours(+SFT)	90.57	87.94	52.22	55.43	98.63	73.34	57.01	93.77	72.51	3852	87.26
CALI	Ours(+SFT+GRPO)	99.20	89.37	52.52	56.55	98.54	75.67	69.56	93.51	77.10	1613.4	89.36
	Ours(+SFT+GRPO r.s.)	99.73	90.43	62.76	61.59	99.20	79.14	74.05	94.08	80.71	1225.6	91.78
	Zero-shot CoT	77.26	93.88	71.84	59.48	97.44	35.53	85.60	90.57	71.63	246.0	73.98
	Self-Refine	84.48	91.97	77.03	65.29	98.13	27.89	81.28	91.02	73.66	458.7	78.87
	Role-Playing	82.94	92.26	74.30	63.07	96.97	27.42	82.03	91.90	72.62	392.5	77.32
	More think	93.95	90.62	74.81	57.13	98.41	39.30	77.90	93.49	72.19	683.1	80.30
ETHICS	Ours(+SFT)	69.20	86.72	66.29	58.40	97.02	13.37	48.30	93.92	66.71	3279	79.77
	Ours(+SFT+GRPO)	84.56	88.53	65.38	61.54	96.78	20.42	62.40	94.13	73.28	1027.6	83.37
	Ours(+SFT+GRPO r.s.)	91.08	90.92	76.38	72.07	98.72	43.64	73.34	94.40	82.13	709.6	90.55
	Zero-shot CoT	86.37	94.82	71.05	60.86	97.87	70.58	89.07	90.28	76.31	331.3	79.44
	Self-Refine	86.17	94.66	70.67	62.94	97.77	68.58	88.77	90.64	76.95	302.6	80.17
	Role-Playing	86.20	94.72	71.02	62.45	97.69	67.68	88.63	90.02	76.55	314.0	79.78
CSQA	More think	97.96	91.94	73.10	59.05	98.92	65.59	82.95	93.82	76.13	640.0	83.99
	Ours(+SFT)	85.48	90.17	61.54	59.99	97.89	40.09	69.97	94.78	72.11	1551.4	81.36
	Ours(+SFT+GRPO)	94.56	88.19	61.25	59.31	97.83	48.44	63.77	95.48	75.80	1364	87.89
	Ours(+SFT+GRPO r.s.)	95.06	91.68	78.70	77.34	99.27	73.82	77.40	94.82	88.22	805.3	96.54
	Zero-shot CoT	92.09	93.69	64.10	65.02	98.86	69.97	87.38	91.19	77.99	411.5	83.39
	Self-Refine	92.51	93.23	68.88	62.96	98.66	67.56	85.69	89.65	76.75	506.3	82.61
GSM8K	Role-Playing	90.80	93.55	65.85	63.52	98.42	66.75	86.07	91.08	76.96	432.3	82.27
	More think	95.42	91.14	69.73	62.57	99.00	59.63	79.81	92.43	76.18	757.8	84.73
	Ours(+SFT)	67.44	87.55	61.90	55.26	98.87	51.86	44.03	92.22	68.67	4477	83.88
	Ours(+SFT+GRPO)	89.05	89.67	66.29	60.48	98.88	58.15	63.83	92.61	76.88	1271.7	87.96
	Ours(+SFT+GRPO r.s.)	94.03	91.01	73.49	69.59	99.48	68.95	72.66	92.80	83.28	989.0	92.98
	Zero-shot CoT	75.15	92.69	79.99	63.63	96.13	43.06	78.06	77.24	71.11	394.8	76.52
1503	Self-Refine	82.66	92.90	70.87	64.75	98.32	59.52	80.61	85.40	75.12	490.5	81.24
	Role-Playing	76.89	93.01	79.21	61.12	95.94	45.48	79.57	74.53	69.93	347.1	75.02
	More think	90.63	91.13	79.86	61.87	98.65	65.24	76.14	86.37	75.30	830.4	84.12
	Ours(+SFT)	62.66	89.11	68.16	57.87	98.48	50.92	46.17	87.38	68.87	1961	81.53
	Ours(+SFT+GRPO)	74.74	90.22	74.48	60.17	98.42	56.18	58.18	87.15	74.85	1112.9	85.31
	Ours(+SFT+GRPO r.s.)	80.31	90.89	78.08	65.40	98.80	62.93	64.88	87.12	78.73	965.2	88.45

1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522

1523 Table 13: Detailed composition of the diversity scores based on the output of R1-Distilled-Qwen-14B.
 1524 This includes lexical, entropy, sentence length, sentence pattern, adjacent sentence, Yule’s K, bigram,
 1525 and the function word diversity score across all tasks and baseline settings. In addition, we also
 1526 provide the combined diversity score, average reasoning length and normalized diversity score.

1527

R1-Distill-Qwen-14B		Diversity Sub Scores (in %)								Combined	Len.	Norm
		lex.	ent.	len.	pat.	adj.	yule.	bi.	func.			
BBQ	Zero-shot CoT	54.86	96.37	77.82	50.83	90.24	36.08	74.85	61.10	71.11	394.83	76.52
	Self-Refine	88.78	93.52	67.58	61.90	98.76	54.14	83.45	89.33	75.12	490.51	81.24
	Role-Playing	85.20	94.33	72.03	69.34	98.44	56.59	86.00	89.33	69.93	347.10	75.02
	More think	91.52	92.79	67.79	62.80	98.76	52.56	83.48	91.74	75.30	830.40	84.12
	Ours(+SFT)	87.11	91.63	55.95	56.50	93.06	54.77	69.39	89.92	70.57	793.83	78.09
	Ours(+SFT+GRPO)	96.25	93.30	58.72	62.31	98.00	73.61	82.21	92.02	80.13	552.4	86.88
	Ours(+SFT+GRPO r.s.)	97.18	94.31	70.63	68.30	98.77	80.12	87.35	91.70	84.44	407.4	90.17
GLOQA	Zero-shot CoT	83.87	95.02	52.24	55.62	93.18	77.30	87.18	86.53	72.52	383.8	73.28
	Self-Refine	61.11	98.17	53.82	35.76	78.45	71.26	86.63	67.96	57.85	77.07	49.77
	Role-Playing	78.21	95.95	52.35	48.33	87.36	72.05	88.46	79.14	66.85	252.4	65.55
	More think	99.25	93.20	64.47	55.58	99.15	84.44	86.46	90.58	75.88	606.1	83.57
	Ours(+SFT)	98.82	90.67	53.21	56.30	97.54	83.65	77.02	91.77	74.98	1304	85.98
	Ours(+SFT+GRPO)	99.20	91.97	56.63	61.23	98.38	86.28	82.16	92.07	80.93	923.0	90.33
	Ours(+SFT+GRPO r.s.)	99.12	93.58	65.23	65.87	98.69	89.05	87.05	91.65	84.00	598.5	91.32
CALI	Zero-shot CoT	59.85	95.73	72.54	54.47	93.75	27.88	83.20	84.21	66.36	102.1	58.51
	Self-Refine	87.48	92.47	73.54	65.19	97.80	28.50	83.81	88.92	73.36	355.2	77.86
	Role-Playing	74.21	93.17	61.54	53.45	85.33	25.36	83.40	78.82	63.83	252.6	65.06
	More think	87.17	91.43	72.84	61.01	98.54	24.83	80.47	91.74	71.69	436.6	77.87
	Ours(+SFT)	86.66	90.51	61.03	62.61	96.22	20.68	71.45	91.72	70.56	593.5	78.17
	Ours(+SFT+GRPO)	92.26	92.39	65.89	66.24	98.30	41.32	82.20	92.04	78.81	433.6	84.92
	Ours(+SFT+GRPO r.s.)	93.87	92.79	75.28	71.34	99.17	51.31	83.41	92.32	82.88	450.9	89.08
ETHICS	Zero-shot CoT	70.98	95.20	60.25	52.49	82.41	52.21	84.11	72.98	64.58	226.1	62.34
	Self-Refine	90.30	93.96	75.90	65.63	98.46	62.46	87.17	89.75	77.66	353.5	81.37
	Role-Playing	76.57	95.57	62.47	52.52	85.15	61.84	85.82	77.83	67.30	260.5	65.70
	More think	95.95	93.40	71.67	58.87	99.36	64.54	88.15	93.20	76.03	386.1	81.89
	Ours(+SFT)	82.15	93.70	49.78	46.43	77.94	53.32	81.54	76.66	62.39	472.5	63.99
	Ours(+SFT+GRPO)	97.79	93.68	68.78	65.92	99.41	75.80	87.94	93.03	83.20	438.9	89.42
	Ours(+SFT+GRPO r.s.)	97.74	94.43	75.08	72.86	99.72	81.62	89.69	92.88	87.35	369.8	92.89
CSQA	Zero-shot CoT	91.03	94.10	64.83	64.86	98.92	68.22	88.52	91.17	77.82	320.5	82.74
	Self-Refine	89.15	94.24	66.42	63.07	98.12	70.11	87.21	87.95	76.49	368.9	80.18
	Role-Playing	84.58	94.71	60.20	58.45	93.06	64.56	86.97	85.59	72.59	288.6	74.40
	More think	93.93	92.34	67.56	63.08	99.01	60.30	83.58	91.46	76.33	539.3	83.33
	Ours(+SFT)	91.32	91.03	62.71	57.27	93.64	64.58	70.18	90.39	72.57	1034	81.56
	Ours(+SFT+GRPO)	96.76	93.07	70.76	65.68	99.46	76.00	84.42	91.20	82.59	572.2	89.64
	Ours(+SFT+GRPO r.s.)	97.01	93.99	79.44	70.14	99.65	80.52	87.69	90.66	85.62	435.7	91.61
GSM8K	Zero-shot CoT	61.86	94.52	76.54	57.65	92.91	27.38	83.22	64.09	63.71	159.3	64.44
	Self-Refine	84.47	93.37	71.00	63.94	98.37	63.29	82.11	83.86	75.06	400.6	80.81
	Role-Playing	77.46	93.12	76.76	60.95	96.41	48.59	80.24	76.64	70.59	342.5	75.73
	More think	89.66	91.93	78.18	61.42	98.76	65.34	78.15	85.33	74.94	637.4	82.79
	Ours(+SFT)	77.96	90.69	69.04	59.71	98.38	61.19	61.77	87.23	72.26	1027	82.32
	Ours(+SFT+GRPO)	88.47	93.02	71.68	62.70	98.40	72.76	79.59	87.15	79.40	526.0	86.36
	Ours(+SFT+GRPO r.s.)	90.64	93.59	75.64	64.12	98.43	76.79	82.93	86.73	80.86	448.5	87.24

1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576

1577 Table 14: Detailed composition of the diversity scores based on the output of Qwen3-8B. This
 1578 includes lexical, entropy, sentence length, sentence pattern, adjacent sentence, Yule’s K, bigram,
 1579 and the function word diversity score across all tasks and baseline settings. In addition, we also provide
 1580 the combined diversity score, average reasoning length and length normalized diversity score.

1581

	Qwen3-8B	Diversity Sub Scores (in %)							Combined	Len.	Norm	
		lex.	ent.	len.	pat.	adj.	yule.	bi.				
BBQ	Zero-shot CoT	52.47	95.16	75.87	54.75	97.52	38.52	80.28	67.14	64.01	75.09	54.22
	Self-Refine	24.24	83.84	82.46	47.60	99.28	37.07	14.88	86.08	57.16	220.27	76.40
	Role-Playing	21.33	58.13	82.45	36.31	70.59	31.03	14.56	66.24	43.76	364.63	61.64
	More think	74.88	90.68	76.94	69.03	97.32	22.41	67.86	91.62	73.43	501.73	80.07
	Ours(+SFT)	80.65	91.22	58.74	60.91	97.19	46.12	65.05	91.45	71.77	837.33	80.40
	Ours(+SFT+GRPO)	87.37	93.30	59.98	65.35	98.47	58.11	79.68	91.66	79.41	490.2	85.47
	Ours(+SFT+GRPO r.s.)	91.21	93.99	64.23	67.95	99.37	69.96	83.02	91.36	82.41	430.1	88.15
GLOQA	Zero-shot CoT	60.44	92.40	38.83	28.31	67.34	50.23	80.00	61.78	49.02	195.91	46.72
	Self-Refine	94.74	94.74	74.60	61.12	99.73	80.21	87.87	87.73	77.58	345.58	82.54
	Role-Playing	51.70	49.38	96.07	59.98	89.77	52.69	28.89	75.49	59.64	515.61	73.72
	More think	94.98	90.68	63.19	59.97	98.22	53.66	75.22	93.42	74.06	824.96	83.04
	Ours(+SFT)	90.48	90.17	54.69	56.89	97.49	71.19	66.16	91.74	73.05	2114.03	84.40
	Ours(+SFT+GRPO)	94.40	91.63	57.27	59.96	98.09	74.66	74.66	92.14	78.58	972.1	87.74
	Ours(+SFT+GRPO r.s.)	97.51	92.08	59.33	62.39	99.15	79.93	77.83	92.47	80.82	901.9	89.88
CALI	Zero-shot CoT	47.20	96.84	43.57	32.92	65.04	16.21	82.47	60.30	46.86	65.29	41.34
	Self-Refine	45.19	51.17	96.50	43.83	60.72	1.39	25.82	73.98	49.47	369.00	64.83
	Role-Playing	38.58	50.86	91.20	55.32	85.93	0.52	22.89	75.85	56.12	331.59	72.10
	More think	65.61	89.47	67.08	63.35	93.27	7.80	64.55	91.73	68.13	923.11	74.64
	Ours(+SFT)	81.37	90.45	64.59	63.80	96.12	12.97	72.05	92.65	70.38	1572.03	77.38
	Ours(+SFT+GRPO)	83.56	91.77	63.57	65.36	96.50	17.32	80.39	91.89	75.14	348.2	80.36
	Ours(+SFT+GRPO r.s.)	86.61	92.88	65.76	68.83	97.70	33.11	84.24	92.31	78.99	316.3	83.84
ETHICS	Zero-shot CoT	79.75	95.10	42.62	62.07	99.88	36.57	97.33	86.35	71.48	136.00	72.87
	Self-Refine	41.18	56.57	95.91	45.36	70.87	2.84	23.91	75.89	51.57	206.86	67.68
	Role-Playing	36.58	55.54	91.01	44.59	72.84	4.11	19.63	75.79	50.83	231.06	68.46
	More think	72.72	90.15	76.00	62.81	96.46	18.46	67.57	93.68	70.68	536.94	77.68
	Ours(+SFT)	100.00	92.19	47.93	54.97	97.40	61.03	87.14	92.23	72.64	596.00	80.68
	Ours(+SFT+GRPO)	89.29	91.17	68.53	63.01	97.76	52.62	73.12	94.18	78.33	860.3	86.84
	Ours(+SFT+GRPO r.s.)	93.28	92.45	70.57	66.67	98.81	63.73	79.87	93.49	81.76	637.2	89.09
CSQA	Zero-shot CoT	57.42	83.79	42.16	45.30	64.68	29.57	67.74	61.30	52.34	243.99	53.18
	Self-Refine	47.38	56.46	91.39	46.53	66.61	10.76	26.14	76.33	52.68	301.89	68.46
	Role-Playing	23.52	73.73	54.89	54.14	86.12	9.12	14.84	82.24	55.98	324.66	75.27
	More think	72.43	90.93	67.35	68.04	97.05	21.82	70.55	91.56	72.48	449.76	78.55
	Ours(+SFT)	77.28	89.49	66.57	58.76	97.40	52.48	59.55	90.90	71.32	2362.13	82.54
	Ours(+SFT+GRPO)	89.99	92.58	73.80	62.70	98.38	64.54	77.85	90.16	79.25	635.4	86.40
	Ours(+SFT+GRPO r.s.)	91.83	92.64	68.36	64.45	98.93	68.67	77.92	90.46	80.39	652.0	87.93
GSM8K	Zero-shot CoT	63.06	94.31	72.52	51.98	93.33	28.50	82.67	72.50	63.10	197.31	64.71
	Self-Refine	89.59	92.80	78.47	69.80	98.78	60.36	80.10	87.05	78.29	522.58	84.82
	Role-Playing	90.01	92.06	79.70	69.98	98.24	61.37	78.24	84.58	77.87	609.06	85.23
	More think	76.08	90.70	79.40	66.39	95.59	36.75	69.22	85.40	72.64	664.80	80.09
	Ours(+SFT)	64.43	89.74	74.44	61.24	97.39	45.65	50.38	86.10	69.97	1557.56	81.21
	Ours(+SFT+GRPO)	75.49	91.48	78.45	65.40	98.15	54.89	66.01	85.58	77.42	922.7	85.98
	Ours(+SFT+GRPO r.s.)	81.83	93.22	81.60	67.97	98.85	65.21	78.03	84.87	80.70	487.8	86.93

1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619