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Abstract
Decision-makers often possess insufficient infor-
mation to render a confident decision. In these
cases, the decision-maker can often undertake ac-
tions to acquire the necessary information about
the problem at hand, e.g., by consulting knowl-
edgeable authorities or by conducting experi-
ments. Importantly, different levers of informa-
tion acquisition come with different costs, posing
the challenge of selecting the actions that are both
informative and cost-effective. In this work, we
propose CURIOSITREE, a heuristic-based, test-
time policy for zero-shot information acquisition
in large language models (LLMs). CURIOSITREE
employs a greedy tree search to estimate the ex-
pected information gain of each action and strate-
gically chooses actions based on a balance of
anticipated information gain and associated cost.
Empirical validation in a clinical diagnosis sim-
ulation shows that CURIOSITREE enables cost-
effective integration of heterogenous sources of
information, and outperforms baseline action se-
lection strategies in selecting action sequences
that enable accurate diagnosis.1

1. Introduction
As a motivating example, consider the process by which
a clinician arrives at a diagnosis for a patient (Ball et al.,
2015). Based on prior information—such as the patient’s
chart—the clinician forms an initial hypothesis that takes
the form of an implicit probability distribution over a set
of plausible diagnoses. If the clinician is sufficiently con-
fident in the predicted diagnosis, they proceed to diagnose
the patient. If not, the clinician takes information-gathering
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Figure 1: Summary of the different partitions of the Information
Ecosystem, and example queries of knowledge that may fall into
each partition for some M. We argue that any knowledge not
falling within the above five partitions is inaccessible to modern
language models, even if augmented with an embodied agent
capable of running empirical experiments.

steps to reduce his or her uncertainty via a differential di-
agnosis (Harvey and Bordley, 1972): proposing a plausible
set of diagnoses, then asking the patient further questions,
ordering laboratory tests, consulting relevant case studies, or
deductively reasoning about the information already avail-
able. Each action yields a subsequent hypothesis: a posterior
distribution that is the result of applying the accumulated
evidence to the previous hypothesis (El-Gamal and Grether,
1995). However, because these information-gathering steps
incur different costs (Ji et al., 2024) (e.g.financial cost, op-
portunity cost), it is essential to choose actions that enable
correct diagnosis while incurring minimal cost. In this work,
we propose a principled, decision-theoretic framework that
enables large language models (LLMs) to autonomously
select information-gathering actions under uncertainty. At
each time step, the framework either issues a prediction—if
the model has high confidence—or chooses an information-
gathering action aimed at maximally reducing uncertainty.

1.1. The Information Ecosystem

We begin by introducing the Information Ecosystem as com-
prising five distinct partitions, and propose that different
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kinds of information-gathering actions are required to ac-
cess knowledge within each partition. We first distinguish
between intrinsic and extrinsic knowledge with respect to a
model M, where intrinsic knowledge is the set of queries
that M can resolve using only its own weights, while ex-
trinsic knowledge is the set of queries for which M requires
access to external resources such as a data store, human
expert, or embodied agent within the physical world.

Intrinsic knowledge can be either direct or deliberative :
whereas direct knowledge is accessible immediately via
zero-shot prompting, deliberative knowledge requires the
generation of intermediary reasoning tokens in order to
access (e.g. (Wei et al., 2022; Yao et al., 2023)). Sim-
ilarly, extrinsic knowledge can be either documentary ,

institutional , or experimental . Figure 1 summarizes the
different partitions of the Information Ecosystem and pro-
vides example queries of knowledge in each partition.

1.2. Our Contributions

The central observation underlying our study is that query-
ing each partition of the Information Ecosystem requires a
distinct kind of query, and that different kinds of queries
typically incur different costs. For example, generating rea-
soning tokens may be inexpensive relative to conducting
a novel empirical investigation or identifying and query-
ing a human expert. Though a substantial body of litera-
ture studies retrieving knowledge from individual partitions,
we propose a unified, information-theoretic framework for
LLMs to navigate myriad forms of knowledge acquisition in
complex environments. Specifically, our work contributes
the following:

1. We present CURIOSITREE, a principled framework for
language models to autonomously and strategically query
diverse information sources at test time. By optimizing
the trade-off between the expected information gain of
each action with its associated cost, CURIOSITREE ef-
ficiently acquires information about a target estimand
under a constrained acquisition budget.

2. Unlike approaches reliant on costly fine-tuning or self-
play, CURIOSITREE performs zero-shot, test-time infor-
mation acquisition. It can therefore be readily integrated
into closed-source, API-served language models without
requiring access to model internals.

3. In simulation, CURIOSITREE acquires a greater quantity
of relevant information at lower cumulative cost than
other methods, enabling more effective and cost-efficient
information seeking across heterogenous modalities.

2. Related Work
Our work engages with the literature in active learning and
optimal experiment design (Cohn et al., 1996; Gal et al.,
2017; Y. Xia et al., 2025; Chaloner and Verdinelli, 1995;
Rainforth et al., 2024; Piriyakulkij et al., 2024; Rahbar et
al., 2025), tool use and reasoning in LLMs (Wei et al., 2022;
Yao et al., 2023; P. Lewis et al., 2020; Asai et al., 2023;
Thulke et al., 2024; Ghafarollahi and Buehler, 2024; R. Li
et al., 2024; Roohani et al., 2024; Schick et al., 2023; Hu et
al., 2023; Gou et al., 2023), and question-asking in LLMs
(Mazzaccara et al., 2024; M. J. Zhang et al., 2024; Lee et
al., 2025; Andukuri et al., 2024; W. Wang et al., 2024; B. Z.
Li et al., 2025; S. S. Li et al., 2025; Y. Chi et al., 2024;
Buck et al., 2017). See Appendix A for more detail.

3. Strategic Test-Time Information Acquisition
Problem Setting and Notation. Consider one datum
(X(i)

D , Y
(i)) 2 XD⇥Y , where XD denotes a covariate space

of dimension D (e.g., a patient’s complete clinical state) and
Y denotes a label space (e.g., the diagnosis). It is not re-
quired that all outcomes in Y be enumerated at the outset of
the algorithm, which is useful if the set of possible classes
is large or unknown at the outset. Y

(i) is determined by
an unknown ground-truth mapping f

⇤ : XD ! Y , where
Y

(i) = f
⇤(X(i)

D ). In practice, we do not have access to
X

(i)
D , instead observing only a projection X

(i)
d0

2 Xd0 onto
a potentially lower-dimensional subspace with dimension
d0  D. In our motivating example, X(i)

d0
may represent the

patient’s chart or a set of lab results: a partial-but-incomplete
representation of the patient’s clinical state X

(i)
D .

At each discrete time step t = 0, 1, ..., we consider an
agent that can undertake an action at 2 At to potentially
reveal additional information about X(i)

D . The set of valid
actions At may vary with time, e.g., a patient may only be
eligible for an MRI scan after having undergone preliminary
assessment. Actions are chosen according to a policy ⇡ :S1

t=0

�
(Xdt0 ,At0)

 
t0=0,...,t�1

[ {Xdt} !
S1

t=1 At that
produces each action at 2 At conditional on the history of
covariates and actions prior to at.

Consequently, under some environment E :S1
t=0 {(Xdt , at)}t=0,...,1 !

S1
t=1 Xdt , the observed

covariates evolve as,

X(i)
d0

E(X
(i)
d0

, a0), a0⇠⇡(H0)

���������������!
| {z }

t=0

X(i)
d1

E(X
(i)
d1

, a1), a1⇠⇡(H1)

���������������!
| {z }

t=1

· · · ,

(1)

where d0  d1...  D. Each action incurs a known, nonneg-
ative cost given by c :

S1
t=1 At ! R+, and the cumulative

cost of acquiring features must respect a predefined budget
B > 0, in that

Pt�1
t0=0 c(at)  B for all t.
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Inference Goal: Selective Zero-Shot Prediction. Our goal
is to accurately gather information to accurately predict
the label Y (i) in the zero-shot setting, utilizing a family
of pre-specified predictive functions G = {gdt}t=0,...,1.
Each function gdt : Xdt ! �(Y) maps a partially observed
covariate vector to a point on the probability simplex over
Y . That is, for any X

(i)
dt

2 Xdt , gdt(X
(i)
dt

) is the predictive
distribution given by

gdt(X
(i)
dt

) = cPr(Y (i) | X(i)
dt

). (2)

This zero-shot setting implicitly makes a regularity assump-
tion over the ground-truth mapping f

⇤, specifically, that for
some intermediary dimension dt  D, the partial observa-
tion X

(i)
dt

is sufficiently informative to support a meaningful
approximation of bY (i) via gdt . Put differently, we assume
f
⇤ is sufficiently “simple” that the bottleneck to its approxi-

mation under G lies in the information content of X(i)
dt

and
not the complexity of the function family to which f

⇤ be-
longs. However, because this regularity is not guaranteed—
nor is it guaranteed that a sufficiently informative X

(i)
dt

can
be obtained within the budget B—we employ selective pre-
diction, rendering a prediction, bY (i), if the output of gdt

supports a sufficiently high confidence in its most likely
label. Our selective prediction rule renders a prediction only
when the maximum score assigned to a given class by gdt

exceeds a target threshold (⌧ 2 [0, 1]) for the minimum
acceptable predicted probability.

CURIOSITREE: Strategic Cost-Effective Information
Acquisition via Tree Search. To achieve our inference goal,
we seek a policy ⇡ that balances the information gained
under each action with the cost incurred by the action. How-
ever, in the zero-shot setting, ⇡ cannot be learned from
data as it is assumed that there are no prior trajectories to
draw upon. As such, we implement ⇡ as a heuristic policy
combining principles from decision and information theory.

At time t, consider the distribution induced over Y by
gdt . If we have access to an environment simulator, bE :S1

t=0 {(Xdt , at)}t=0,...,1 !
S1

t=1 Xdt that predicts the
way in which a given action transforms the observed covari-
ates, we can represent the utility of each action using the
expected information gain (EIG) of each action under bE . We
write,

EIG(at|X
(i)
dt

) = H

⇣
cPr(Y (i)

| X
(i)
dt

)
⌘
� (3)

E
X̃(i)

dt+1
⇠bE(X(i)

dt
,at)

h
H

⇣
cPr(Y (i)

| X̃
(i)
dt+1

)
⌘i

,

where H is the Shannon entropy (Shannon, 1948). We
then implement ⇡ via the following sampling scheme using
Equation 3 as a guiding heuristic. At time step t, observe
X

(i)
dt

. Sample k
0 action candidates, {ã(0)t , ..., ã

(k0�1)
t } ✓

At, then choose at to satisfy

at = argmax
ã
(j)
t 2{ã

(0)
t ,...,ã

(k0�1)
t }

h
EIG(ã(j)

t |X(i)
dt

)� �c(ã(j)
t )

i
, (4)

where � 2 R+ is a scaling hyperparameter controlling the
tradeoff between utility and cost. In practice, because the
expectation in Equation 3 is analytically intractable, we
compute it using Monte Carlo. A complete algorithm box is
provided in Appendix B.1.

Implementation via Large Language Models. We opera-
tionalize our method using large language models (Radford
et al., 2019), which enables us to implement both the family
of prediction functions G and the environment simulator
bE using prompting (Kojima et al., 2022; Hao et al., 2023)
(Appendix B.2). All prompts used in our experiments can
be found in Appendix D. Notably, in our experiments we
prompt bE differently than E , to emulate the dynamics of
having an imperfect environment simulator.

4. Experiments
Our primary experimental setting consists of the following
clinical diagnosis simulator: a specially-prompted large lan-
guage model is instantiated with ground-truth underlying
diagnosis Y

(i), and is tasked with simulating the evolu-
tion of the observed patient information in response to a
sequence of actions undertaken by the patient’s clinician.
In our study, this “clinician” role is played by an interact-
ing language model, the actions of which are guided by
some policy. At each step, the simulator provides the abil-
ity to Generate Reasoning Tokens (Cost: 1), Perform

RAG on Wikipedia (Cost: 1), Ask the Patient a

Question (Cost: 2), or Requisition a Laboratory Test
(Cost: 3). Additional details are provided in Appendix C.

Baselines and Experiments. We implement both unimodal
baselines—those consisting of a single class of action—and
multimodal baselines—those consisting of more than one
class of action—to evaluate our method. Our four unimodal
baselines apply the CURIOSITREE heuristic to a clinician
agent that is capable of selecting actions from a single class.
Our two multimodal baselines consist of “Random Action
Selection”, in which an action is selected randomly from
the candidate choices, and “Self-Evaluation”, in which a
prompted language model assigns scores to each action
reflecting their informativeness relative to cost.

We select a series of ten diagnoses spanning varying de-
grees of commonality and diagnostic difficulty. For each
diagnosis, we evaluate each method of information ac-
quisition fifty times and track the following summary
statistics: Total Success Rate (# trials where bY (i) = Y (i)

# trials ), Cov-
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Figure 2: Result of fifty simulation runs with a ground-truth diagnosis “lupus”. (Top) Table highlighting the Total Success Rate, Coverage,
and Selective Success Rate of each method. Observe that CURIOSITREE enjoys a significantly higher Total Success Rate and Coverage
than baseline methods. (Bottom) Violin plots representing the cumulative cost incurred by each simulation. For each method, we show
two violin plots: the leftmost violin (in gray) represents simulation runs that either rendered an incorrect prediction or encountered the
acquisition budget, while the rightmost violin (in colour) represents simulation runs for which the method correctly predicted the patient’s
diagnosis. A better method is one that corresponds to a lower, fatter, coloured violin, as that represents a method that succeeds more often
while incurring less cumulative cost. CURIOSITREE visually achieves higher success at lower cost than the baseline methods.

erage (# trials where bY (i) 6= ;
# trials ), and Selective Success Rate

(# trials where bY (i) = Y (i)

# trials where bY (i) 6= ;
). For brevity, we report only the re-

sults for the diagnosis, “lupus” in the main manuscript,
and report the results on other diagnoses in the supple-
mentary materials. All of our experiments are run using
the Llama-3.1-70B-Instruct large language model
(Grattafiori et al., 2024), served using VLLM (Kwon et al.,
2023). We use a tradeoff parameter of � = 0.1.

5. Results, Discussion, and Conclusion
Finding (1): CURIOSITREE Selects More Efficient
Information-Gathering Actions. Figure 2 shows that CU-
RIOSITREE enjoys a higher success rate than the baseline
methods at lower cost, suggesting that incorporating explicit
search heuristics improves information-seeking in LLMs.

Finding (2): Integrating Heterogenous Information
Sources is Useful and Desirable. Figure 2 shows how,
in general, incorporating additional data modalities leads
to improved overall accuracy, suggesting that our motivat-
ing hypothesis—the need to flexibly integrate heterogenous

sources of information acquisition—is sound.

Finding (3): Intrinsic Knowledge May Serve to Sharpen
the Predictive Distribution. We suggest that the primary
role of Reasoning steps (intrinsic knowledge) is to sharpen
the predictive distribution rather than to alter its most likely
prediction. To test this, we identified 95 instances from
the experiment above in which CURIOSITREE undertook a
nonterminal Reasoning step. In 84% of these cases the most
likely diagnosis remained unchanged, indicating that Rea-
soning steps often preserve the top prediction, and in 62%
of these cases the reasoning step reduced the entropy of the
posterior predictive distribution. This suggests that intrin-
sic Reasoning steps act primarily to sharpen the predictive
distribution without altering its most likely prediction.

Conclusion. CURIOSITREE enables language models to ef-
ficiently and autonomously navigate the Information Ecosys-
tem for prediction and decision-making. Our findings high-
light the utility of structured, cost-aware exploration in
LLM-based agents and open avenues for broader deploy-
ment in real-world, resource-constrained settings.
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