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ABSTRACT

In this paper, we present Occupancy-aware Object Association for Video Instance
Segmentation (O2VIS), a new framework crafted to improve long-term consistency
in instance tracking. We introduce the Instance Occupancy Memory (IOM) that
tracks global instance features and their occupancy status to effectively differentiate
between recurring and new objects. It ensures consistent tracking and effective
management of object identities across frames, enhancing the overall performance
and reliability of the VIS process. Moreover, we propose a Decoupled Object
Association (DOA) strategy that handles existing and newly appeared objects
separately to optimally assign indices based on occupancy. This technique enhances
the accuracy of object matching and ensures stable and consistent object alignment
across frames, especially useful in dynamic settings where objects frequently appear
and disappear. Extensive testing and an ablation study confirm the superiority of
our method over traditional methods, establishing new standards in the VIS domain.
Notably, our O2VIS achieves the best AP scores on the YouTube-VIS benchmarks
for 2019, 2021, and 2022, with results of 70.1, 66.2, and 54.0, respectively. We
provide our source code here.

1 INTRODUCTION

Video instance segmentation (VIS) is a complex task that requires segmenting, classifying, and
tracking objects across video frames (Yang et al., 2019). Recent breakthroughs in this field have been
significantly propelled by the adoption of query-based segmentation networks (Cheng et al., 2021b;
2022), which have notably enhanced the precision of instance segmentation. These networks utilize
object queries to extract distinctive features for each object within a frame and then group pixels on
the image feature map to delineate object regions. Building on the capabilities of these architectures,
many of the latest VIS approaches (Huang et al., 2022; Heo et al., 2022; Wu et al., 2022b; Heo et al.,
2023; Ying et al., 2023; Zhang et al., 2023a; Li et al., 2023a; Kim et al., 2024) focus on developing
sophisticated methods for instance association, aiming to improve the accuracy and efficiency of
tracking objects throughout a video.

To enhance object representation across frames, cross-frame contrastive learning has been explored
(Wu et al., 2022b; Li et al., 2023b; Ying et al., 2023), though it often necessitates heuristic post-
processing as illustrated in Fig. 1-(a). Addressing this, recent transformer-based trackers (Heo et al.,
2023; Zhang et al., 2023a) offer directly aligned predictions without the need for post-processing,
using cross-frame attention to dynamically reconstruct object representations from prior frames
(Fig. 1-(b)). Despite their benefits, such methods typically depend on previous frame data, potentially
affecting long-term tracking consistency. In both approaches, Some models enhance consistency
using a dynamic memory updated via object similarity (Wu et al., 2022b; Heo et al., 2023; Ying
et al., 2023) or momentum (Gao & Wang, 2023), yet challenges remain in consistently updating and
associating object representations, as detailed in Sec. A.1, suggesting areas for further enhancement
in VIS technologies.

To tackle the challenges inherent in VIS, we introduce Occupancy-aware Object Association for
Video Instance Segmentation (O2VIS), a system designed for temporally consistent tracking. Central
to our approach is an Instance Occupancy Memory (IOM), which incorporates global instance
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Figure 1: Comparison of VIS approaches. (a) The post-processing with memory method tracks
objects by associating updated objects in memory with current ones, as in (Ying et al., 2023). (b)
The transformer-based trackers associate previously tracked objects with current ones, as in (Zhang
et al., 2023a). (c) Our method updates the memory using the results from the tracking network and
occupancy, then utilizes this information for object association.

features and their occupancy status to indicate whether objects have previously appeared. The system
meticulously updates an occupied index set, essential for accurately assigning indices to newly
appearing objects while differentiating them from those already occupied. This design focuses on
foreground objects, facilitating robust updates of object information. This feature is particularly
beneficial in dynamic environments where objects may frequently appear and disappear. Such a
strategy ensures consistent tracking and effective management of object identities across frames,
enhancing the overall performance and reliability of the VIS process.

Our approach, O2VIS, proposes a Decoupled Object Association (DOA) strategy that effectively
utilizes global instance queries and their occupancy information for precise matching. This strategy
separates the object association process into two phases. Initially, the method tracks the existing
objects, ensuring their identities are persistently maintained across frames. It then aligns all instances
in the current frame using an adaptive anchor query. To construct this query, we employ Hungarian
matching technique, which strategically assigns newly appeared objects to unoccupied indices guided
by the occupancy. This careful allocation ensures a more stable anchor query by correctly placing
existing queries in occupied indices and new queries in unoccupied indices.

Our approach improves upon traditional cross-frame attention mechanisms, which frequently mis-
link new objects to background indices, leading to learning conflicts. By distinctly separating the
associations of existing and new objects, our decoupled strategy ensures precise and consistent
object alignment across the video, avoiding common pitfalls of conventional methods. Extensive
experiments demonstrate that our method surpasses traditional techniques, and an ablation study
highlights the effectiveness of each technical contribution. Our contributions to the field are manifold
and can be summarized as follows:

1. We present Occupancy-aware Object Association for Video Instance Segmentation, O2VIS, a
novel framework that leverages global instance queries for temporally consistent object matching.

2. We introduce the Instance Occupancy Memory (IOM), which stores object queries and their
occupancy status, crucial for accurate object matching.

3. We introduce the Decoupled Object Association (DOA) that separates the object association step
into matching existing objects in memory to queries and matching new objects.

4. Our model excels in challenging video environments, setting new benchmarks for state-of-the-art
performance in video instance segmentation.
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2 RELATED WORKS

Video Instance Segmentation. VIS primarily learns frame-to-frame feature associations using in-
stance segmentation architectures. The seminal work, MaskTrack R-CNN (Yang et al., 2019), add a
tracking head to Mask R-CNN (He et al., 2017), enhancing instance association. This is advanced by
SipMask (Cao et al., 2020) and CrossVIS (Yang et al., 2021b), which improves temporal associations
with cross-frame learning. Additionally, IDOL (Wu et al., 2022b) incorporates contrastive learning
into a query-based architecture (Zhu et al., 2020), boosting online method performance. Beyond
online methods, VisTR (Wang et al., 2021) apply DETR (Carion et al., 2020) for clip-level instance
predictions, constrained by dense self-attention. Efficiency improvements are further pursued with
IFC (Hwang et al., 2021), introducing a transformer with separate spatial and temporal attentions, and
TeViT (Yang et al., 2022) and Seqformer (Wu et al., 2022a), which adapt vision transformer back-
bones to enhance temporal associations and video-level instance predictions, respectively. Recently,
query-based segmentation networks have become fundamental to contemporary VIS approaches,
prominently featuring Mask2Former (Cheng et al., 2022) as a key underlying technology. MinVIS
(Huang et al., 2022) simplifies tracking by using post-processing based on cosine similarity between
object features. VITA (Heo et al., 2022) enhances this by temporally associating frame-level queries
to identify instance prototypes within a video. GenVIS (Heo et al., 2023) creates a tracking network
that operates at the sub-clip level. CTVIS (Ying et al., 2023) employs contrastive learning across an
expanded frame set to achieve detailed frame associations. DVIS (Zhang et al., 2023a) introduces a
decoupled architecture that segments the processes into distinct tasks of segmentation, tracking, and
refinement.

Object Tracking with Memory. Memory-based methods have shown significant advancements in
video analysis, particularly in tasks requiring sustained long-term consistency, such as video object
segmentation (Tokmakov et al., 2017; Xu et al., 2018; Duarte et al., 2019; Ventura et al., 2019; Huang
et al., 2020; Zhang et al., 2020; Cheng & Schwing, 2022), video instance segmentation (Yang et al.,
2019; Wu et al., 2022b; Heo et al., 2023; Ying et al., 2023), and video object tracking (Yang & Chan,
2018; Fu et al., 2021; Yan et al., 2021; Cai et al., 2022; Meinhardt et al., 2022; Zhao et al., 2023; Gao
& Wang, 2023). Some research has successfully utilized external memory in multi-object tracking
scenarios. MaskTrack R-CNN (Yang et al., 2019) employs an external memory to store predicted
instance representations, updating them with new data from the latest frame through a straightforward
replacement rule. Building on this, with the introduction of DETR (Carion et al., 2020), Meinhardt et
al. (Meinhardt et al., 2022) developed TrackFormer, which innovates a tracking-by-attention approach.
This method uses object query tokens to maintain temporal instance memories, enhancing tracking
continuity. Recent advancements have further improved long-term consistency by either stacking
these tokens in a memory buffer (Cai et al., 2022) or applying momentum to update the tokens (Gao
& Wang, 2023; Heo et al., 2023). Despite these advancements, current techniques do not thoroughly
address the challenges posed by the initial appearance or eventual disappearance of objects, often due
to occlusion. This oversight suggests there remains significant potential for further enhancements in
memory-based tracking methods.

3 PRELIMINARY

Transformer-based Tracker. Video instance segmentation (VIS) involves segmenting and tracking
objects consistently across video frames. To address this challenge, recent studies (Huang et al., 2022;
Heo et al., 2022; 2023; Ying et al., 2023; Li et al., 2023a; Zhang et al., 2023a;b) have adopted query-
based segmentation network like Mask2Former (Cheng et al., 2022). The segmentation network
S generates object representations Q̃t ∈ RN×C , categorical probabilities Pt ∈ RN×(K+1), and
segmentation masks Mt ∈ RN×H×W for each video frame {It}Tt=1 as follows:[

Q̃t, Pt,Mt

]
= S (It) , ∀t = {1, . . . , T}, (1)

where N is a sufficiently large number to detect objects in an image, while H , W , and C denote the
height, width of predicted mask and the channel dimensions of the object representations, respectively.
The categorical prediction head in the segmentation network classifies objects into K categories
or as no object ∅. The class label ct ∈ RN is determined by applying the argmax operation to the
probability matrix Pt along the (K + 1) dimension.
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The principal challenge in VIS is the maintenance of consistent object representations across frames,
ensuring that the aligned sequences of predicted objects Qt ∈ RN×C correspond to the same physical
entities throughout the video as follows:

Qt = T
(
Qt−1, Q̃t

)
, ∀t ∈ {1, . . . , T}, (2)

where T is a tracking network consisting of multiple transformer blocks and the initial queries
Q0 are initialized as raw features using raw features extracted from the segmentation network, Q̂1,
from the first frame. Recent state-of-the-art methods (Heo et al., 2023; Zhang et al., 2023a) use a
transformer-based tracker that encodes object features from each frame, informed by the sequence
from previous frames. Cross-attention layers within these transformers align current frame objects
with previous ones based on feature similarity, ensuring accurate and consistent tracking across the
video.

Discussion. The tracking network as outlined in Eq. (2) encounters two primary challenges. Firstly,
the methodology relies on maintaining consistent object indices once they are established, but this
consistency is not guaranteed. Given that object association hinges on comparisons with previous
frame objects, an object that temporarily disappears and then reappears in the scene may be incorrectly
indexed. Although strategies such as updating long-term memory with momentum (Gao & Wang,
2023) or enhancing object-wise similarity (Heo et al., 2023) have been proposed, they fail to preserve
object identities reliably over time. The second issue concerns the incorporation of new objects
into the scene. The cross-attention mechanism currently reconstructs objects in a frame based on
their similarity to previously identified objects. Consequently, indices for new objects, which should
ideally remain unassigned until needed, often default to background representation. This leads to
a flawed learning process where new objects are mistakenly associated with background features,
compromising the system’s ability to accurately track new entries into the scene. To address these
issues, we introduce an Occupancy-aware Object Association for Video Instance Segmentation,
referred to as O2VIS described in Sec. 4.

4 O2VIS

As illustrated in Fig. 2, our model consists of two tracking networks, TE for existing objects and
TA for all objects including new objects. These two networks align the object features produced by
the pretrained segmentation network S. Central to our architecture is the global instance occupancy
memory, denoted as M. Our approach incorporates two principal components to enhance tracking
precision and consistency: an instance occupancy memory in Sec. 4.1 and a decoupled object
association strategy in Sec. 4.2. These sections detail how they contribute to maintaining object
continuity and seamlessly integrating new objects into the scene.

4.1 INSTANCE OCCUPANCY MEMORY

To enhance tracking in video instance segmentation (VIS), we introduce the global instance occupancy
memory, a crucial component of our O2VIS framework. This memory system at any given time t,
denoted as Mt = {Ot,Qt}, consists of an occupancy indicators Ot ∈ BN and corresponding object
features Qt ∈ RN×C . This design accumulates the aligned queries Q̇t ∈ RN×C and the occupancy
Ot ∈ BN information over time as follows:

Qt = (1− pt)Qt−1 + ptQ̇t, Ot = Ot−1 ∨Ot, (3)

where pt is the foreground probability for each index calculated by summing the categorical probabil-
ities {P k

t }Kk=1 for all classes excluding the no-object probability P
(K+1)
t . Our method is initialized at

Q0 and O0 with Q̇1 and a zero vector 0 of length N , respectively. On
t for each object n is defined by:

On
t =

{
0 if cnt = ∅,

1 otherwise.
(4)

This dynamic update process allows the memory to adaptively reflect changes from the current video
frame, thereby enabling more precise tracking and identification of objects as they appear, move,
and potentially disappear within the scene. This memory design offers two main advantages critical
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Figure 2: Overall pipeline of our O2VIS. For each frame, the tracker TE utilizes Qt−1 from the
global instance occupancy memory and Q̃t from the segmentation network to predict aligned features
for matched existing objects. Occupancy-guided Hungarian matching assigns newly appeared objects
to unoccupied tokens, using the occupancy prior Ot−1. The resulting Q̄t, a combination of rearranged
Q̃t and existing Qt−1, serves as the adaptive anchor for TA. Updates to Qt and Ot are made based
on foreground probability pt of objects in the current frame and occupancy information Ot, derived
from the class head given the final instance queries Q̇t.

for effective video instance segmentation. Firstly, it allows for the strategic utilization of memory to
ensure that newly appeared objects are not erroneously matched to indices already assigned to other
objects. By continuously updating information about which indices are occupied and the specific
objects associated with those indices, our system can adeptly assign new objects to suitable indices.
Secondly, our approach enables consistent and robust maintenance of object information throughout
the video sequence. Unlike traditional memory update methods that might prioritize background
information, our method focuses on foreground objects. This prioritization is crucial in dynamic video
environments where objects frequently appear and disappear, ensuring that our system maintains
accurate and reliable object information over time.

4.2 DECOUPLED OBJECT ASSOCIATION

Based on our observation described in Sec. 3, we design a decoupled object association strategy that
consists of the following steps: 1) existing object tracking, 2) index assignment to new objects, and 3)
object alignment with an adaptive anchor query. To avoid unnatural associations that can arise from
directly tracking all objects observed in the instance queries Q̃t, we initially focus on matching all
instances to the existing objects recorded in the memory Qt−1 as follows:

Q̂t = TE
(
Qt−1, Q̃t

)
, (5)

where Q̂t represents aligned features of matched existing objects, and TE denotes the existing object
tracker. This mechanism specifically focuses on identifying existing objects in the current frame,
thereby minimizing ambiguity in the object association process. It is important to note that Q̂t

excludes any objects that have newly appeared at time t. This ensures that the system accurately
tracks and updates only those objects that persist across frames, without being confounded by newly
introduced elements.

When new objects appear, they are assigned previously unallocated indices for accurate tracking.
In this scenario, the queries from segmentation network Q̃t encompasses both existing and newly
appeared objects, whereas the queries Q̂t contains only the existing objects at occupied indices. By
matching these two object features, appropriate indices for the new objects can be identified. To
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facilitate this, we introduce an occupancy-guided Hungarian matching mechanism. This ensures
that newly appeared objects are not erroneously matched to indices that are already occupied in the
memory Ot−1 from the previous time (t− 1). The matching starts by aligning objects corresponding
to the occupied indices in Q̂t, followed by the remaining objects.

Given the entire index set EN = {1, . . . , N}, we identify indices νt, which can be separated into two
subsets ν̂t and ν̌t, within the unaligned queries Q̃ as either occupied objects or unoccupied objects.
Specifically, ν̂t denotes the ordered indices of occupied objects that correspond one-to-one with
existing objects, while ν̌t represents the ordered indices for the remaining unoccupied objects. The
process of determining these indices is formalized as follows:

ν̂t = argmax
ν⊂EN

∑
n∈Î

sim
(
Q̂n

t , Q̃
νn

t

)
, Î = {n|On

t−1 = 1},

ν̌t = argmax
ν⊂EN\ν̂t

∑
n∈Ǐ

sim
(
Q̂n

t , Q̃
νn

t

)
, Ǐ = {n|On

t−1 = 0},
(6)

where sim(·, ·) measures cosine similarity. To ensure robust object association, adaptive anchor
queries Q̄t is created by blending the current object queries Q̃t with existing object queries Qt−1

with the obtained matching relation ν̂t and ν̌t rather than solely relying on the matched objects as
query:

Q̄n
t =

{
Adp(Q̃ν̂n

t
t ,Qn

t−1) if On
t−1 = 1,

Adp(Q̃ν̌n
t

t ,Qn
t−1) otherwise,

where Adp(A,B) = sim(A,B) ·A+
(
1− sim(A,B)

)
·B.

(7)

The adaptive anchor queries Q̄t are processed through the alignment network TA to align with the
current frame’s object features Q̃t, producing the final instance queries Q̇t as follows:

Q̇t = TA
(
Q̄t, Q̃t

)
. (8)

4.3 TRAINING

Early training. In the initial stages of training, the quality of representations, such as Q̂t, can be
poor, making effective object matching as outlined in Eq. (6) challenging. To improve early training
outcomes and provide a more stable foundation for learning, we adopt the following approach:

Q̄t = Adp(Q̃∗
t ,Qt−1), where Q̃∗

t = Hungarian
(
Q̃∗

t−1, Q̃t

)
, ∀t ∈ {1, . . . , T}, (9)

where “Hungarian” refers to the Hungarian matching algorithm (Kuhn, 1955), employed to enhance
the initial alignment of object representations between frames. The initial queries Q̃∗

0 are initialized
as raw features using raw features extracted from the segmentation network, Q̃1, from the first frame.

The initial outputs from the tracking networks TE and TA often exhibit considerable noise, which can
impede the accuracy of the tracking process. To mitigate this, we adopt the approach described in
(Zhang et al., 2023a) for ground truth assignment, detailed in Sec. A.2. Specifically, predictions ŷ
from Q̃∗

t are used for assigning ground truth via Hungarian matching. This method is strategically
implemented during the first half of the total training iterations. This phased application allows
the model to adapt incrementally to the task’s complexity, enhancing the quality of the training
representations as the process evolves. Such a staged training approach not only stabilizes the learning
curve but also significantly improves alignment and tracking accuracy over time.

Training loss. In our approach, we utilize a comprehensive loss function aligned with those (Cheng
et al., 2021a; Li et al., 2023a; Zhang et al., 2023a). This function incorporates categorical cross-
entropy, binary cross-entropy, and dice losses, which are pivotal for effectively training our model. We
specifically focus on optimizing the networks TE and TA, while keeping other parameters static. We
use both the actual ground truth yt and a modified version, ẙnt , which adapts the indices by assigning
the no object label ∅ and zero mask where new objects appear. This modification ensures that ẙt

6
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Table 1: Comparison on YouTube-VIS validation sets. ∗ denotes offline methods.

Method Backbone YouTube-VIS 2019 YouTube-VIS 2021 YouTube-VIS 2022
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

MinVIS (Huang et al., 2022) R50 47.4 49.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7 23.3 47.9 19.3 20.2 28.0
VITA∗ (Heo et al., 2022) R50 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6 32.6 53.9 39.3 30.3 42.6
GenVIS (Heo et al., 2023) R50 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7 37.5 61.6 41.5 32.6 42.2
DVIS (Zhang et al., 2023a) R50 51.2 73.8 57.1 47.2 59.3 46.4 68.4 49.6 39.7 53.5 31.6 52.5 37.0 30.1 36.3
TCOVIS (Li et al., 2023a) R50 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9 38.6 59.4 41.6 32.8 46.7
DVIS-DAQ (Zhou et al., 2024) R50 55.2 78.7 61.9 50.6 63.7 50.4 72.4 55.0 41.8 57.6 34.6 - 35.5 - 41.1
DVIS++ (Zhang et al., 2023b) R50 55.5 80.2 60.1 51.1 62.6 50.0 72.2 54.5 42.8 58.4 37.2 57.4 40.7 31.8 44.6
Ours R50 55.7 79.8 61.4 51.3 62.7 50.7 72.9 56.9 43.7 58.4 41.1 62.4 46.2 35.8 47.5
MinVIS (Huang et al., 2022) Swin-L 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8 33.1 54.8 33.7 29.5 36.6
VITA∗ (Heo et al., 2022) Swin-L 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6 41.1 63.0 44.0 39.3 44.3
DVIS (Zhang et al., 2023a) Swin-L 63.9 87.2 70.4 56.2 69.0 58.7 80.4 66.6 47.5 64.6 39.9 58.2 42.6 33.5 44.9
GenVIS (Heo et al., 2023) Swin-L 64.0 84.9 68.3 56.1 69.4 59.6 80.9 65.8 48.7 65.0 45.1 69.1 47.3 39.8 48.5
TCOVIS (Li et al., 2023a) Swin-L 64.1 86.6 69.5 55.8 69.0 61.3 82.9 68.0 48.6 65.1 51.0 73.0 53.5 41.7 56.5
DVIS++ (Zhang et al., 2023b) ViT-L 67.7 88.8 75.3 57.9 73.7 62.3 82.7 70.2 49.5 68.0 37.5 53.7 39.4 32.4 43.5
DVIS-DAQ (Zhou et al., 2024) ViT-L 68.3 88.5 76.1 58.0 73.5 62.4 83.6 70.8 49.1 68.0 42.0 - 43.0 - 48.4
DVIS++∗ (Zhang et al., 2023b) ViT-L 68.3 90.3 76.1 57.8 73.4 63.9 86.7 71.5 48.8 69.5 50.9 75.7 52.8 40.6 55.8
Ours ViT-L 69.1 89.3 76.5 58.1 73.5 65.0 86.0 72.7 49.6 69.1 48.2 70.5 53.2 40.7 52.6
Ours∗ ViT-L 70.1 90.7 77.7 58.5 74.8 66.2 88.6 74.9 49.9 70.6 54.0 77.1 57.9 43.2 58.8

reflects only predictions for existing objects, thereby enhancing the relevance and accuracy of the
training process. The structure of our primary training loss is computed as follows:

LTrack =

T∑
t=1

NGT∑
n=1

(
L
(
ẙnt , ŷ

σ́(n)
t

)
+ L

(
ynt , ẏ

σ́(n)
t

))
, σ́ = argmin

σ∈SN

NGT∑
n=1

LMatch

(
ynf(n), ẏ

σ(n)
f(n)

)
,

(10)
where ẏt and ŷt are the predictions from the feature representations Q̇t and Q̂t, respectively. SN

represents a permutation of N elements, and LMatch denotes a pair-wise matching cost (Cheng et al.,
2021a). f(n) is computed specifically for the frame in which each n-th object first appears, following
the approach used in (Zhang et al., 2023a). This ensures that our model specifically learns from
relevant, existing object features and avoids any confusion from non-object areas or noise.

To ensure that occupied indices in Q̃ consistently represent the same objects across frames and that
unoccupied indices reflect changes, we implement a similarity-based loss function as follows:

LSim =
1

T ·NGT

T∑
t=2

NGT∑
n=1

(
sim

(
Q̃

ν
σ́(n)
t

t ,Qσ́(n)
t−1

)
−O

σ́(n)
t−1

)2

. (11)

Our model is jointly trained using an objective function that combines the tracking loss and the
similarity loss, with a balance determined by the weight λSim:

LTotal = LTrack + λSimLSim. (12)

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We evaluate the performance of our O2VIS using standard benchmark datasets: YouTubeVIS datasets
(2019, 2021, 2022) (Yang et al., 2019) and OVIS (Qi et al., 2022). For our segmentation network, we
employ the Mask2Former architecture (Cheng et al., 2022) equipped with three distinct backbone
encoders: ResNet-50 (He et al., 2016), ViT-L and ViT-H (Dosovitskiy et al., 2021). All backbones
are initialized with parameters pre-trained on COCO (Lin et al., 2014). Our tracking framework
integrates two networks TE and TA, each comprising three transformer blocks and enhanced with a
referring cross-attention layer (Zhang et al., 2023a) for improved accuracy. Our tracking networks
are trained with all other parameters frozen as previous studies (Zhang et al., 2023a; Li et al., 2023a).
We empirically set λsim as 1.0. Further details are described in Sec. A.2.

5.2 MAIN RESULTS

Following the standard evaluation metrics, Average Precision (AP) and Average Recall (AR), we
benchmark the performance of O2VIS against the current state-of-the-art methods in video instance
segmentation.
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Table 2: Comparisons with state-of-the-art methods on OVIS validation sets.

Method Backbone AP AP50 AP75 AR1 AR10

VITA(Heo et al., 2022) Swin-L 27.7 51.9 24.9 14.9 33.0
MinVIS(Huang et al., 2022) Swin-L 39.4 61.5 41.3 18.1 43.3
IDOL(Wu et al., 2022b) Swin-L 40.0 63.1 40.5 17.6 46.4
MDQE(Li et al., 2023b) Swin-L 41.0 67.9 42.7 18.3 45.2
NOVIS(Meinhardt et al., 2023) Swin-L 43.0 66.9 44.5 18.9 46.3
GenVIS(Heo et al., 2023) Swin-L 45.2 69.1 48.4 19.1 48.6
DVIS(Zhang et al., 2023a) Swin-L 45.9 71.1 48.3 18.5 51.5
TCOVIS(Li et al., 2023a) Swin-L 46.7 70.9 49.5 19.1 50.8
CTVIS(Ying et al., 2023) Swin-L 46.9 71.5 47.5 19.1 52.1
DVIS++(Zhang et al., 2023b) ViT-L 49.6 72.5 55.0 20.8 54.6
Ours ViT-L 51.7 73.9 57.5 21.1 56.2
UNINEXT(Yan et al., 2023) ViT-H 49.0 72.5 52.2 - -
Ours ViT-H 52.9 76.1 55.3 20.1 57.4

Figure 3: Qualitative comparison of O2VIS with DVIS++ and CTVIS.

Results on Youtube-VIS. We compare O2VIS with leading methods on the YouTube-VIS (YTVIS)
datasets. The performance metrics, detailed in Tab. 1, show that O2VIS outperforms state-of-the-art
method, DVIS++, by achieving higher AP scores: +1.8 AP on YTVIS19, +2.2 AP on YTVIS21,
and +3.1 AP on YTVIS22. Notably, O2VIS also surpasses the performance of DVIS-DAQ, which
addresses newly emerging and disappearing objects, under the same online setting equipped with
a ViT-L backbone, achieving margins of +0.8 AP, +2.6 AP, and +6.2 AP on YTVIS19, YTVIS21,
and YTVIS22, respectively. This significant improvement, particularly on longer video sequences,
underscores O2VIS’s ability to maintain long-term consistency effectively. This is largely attributed
to its innovative occupancy-aware memory mechanism that adapts dynamically to complex video
contexts.

Results on OVIS. Our results on the OVIS benchmark are detailed in Tab. 2, where O2VIS exhibits
remarkable superiority over existing models. Notably, both with the ViT-L and ViT-H backbone, our
model sets a new state-of-the-art by outperforming DVIS++ by +2.1 AP and UNINEXT by +3.9 AP.
The strong performance across these configurations, particularly in a dataset characterized by frequent
occlusions and dynamic object appearances, highlights the efficacy of O2VIS’s occupancy-aware
memory and object association techniques in maintaining accurate and consistent tracking under
challenging conditions. As shown in Fig. 3, our model demonstrates a clear advantage over previous
models in complex scenes, successfully predicting object trajectories even in the presence of severe
occlusions and multiple interacting objects.

5.3 ABLATION STUDY

Instance occupancy memory. We demonstrate the effectiveness of our instance occupancy memory
through the results in Tab. 3-(a)-(1-4), which show a notable improvement by +1.5, +2.9, +7.2,
and +3.6 AP on YTVIS19, YTVIS21, YTVIS22, and OVIS, respectively, compared to the baseline
(1). The previous memory systems (2, 3) hardly update recent object information, resulting in
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Table 3: Ablation studies on each component of O2VIS. HM and OHM denote standard/occupancy-
guided Hungarian matching, respectively. All experiments are evaluated using the AP metric.

(a) IOM, DOA

Architecture Memory type Tracking by YTVIS19 YTVIS21 YTVIS22 OVIS
(1) S None HM 51.1 45.0 26.8 26.4
(2) S Similarity HM 51.8 (+0.7) 46.8 (+1.8) 28.5 (+1.7) 28.6 (+2.2)
(3) S Momentum HM 48.0 (-3.1) 41.2 (-3.8) 30.9 (+4.1) 13.7 (-12.7)
(4) S IOM HM 52.6 (+1.5) 47.9 (+2.9) 34.0 (+7.2) 30.0 (+3.6)
(5) S IOM OHM 53.0 (+1.9) 48.4 (+3.4) 35.1 (+8.3) 31.4 (+5.0)
(6) S + TE IOM OHM 53.6 (+2.5) 49.6 (+4.6) 39.1 (+12.3) 33.9 (+7.5)
(7) S + TE + TA IOM TA 55.7 (+4.6) 50.7 (+5.7) 41.1 (+14.3) 37.1 (+10.7)

(b) Anchor query for TA

Anchor YTVIS19 YTVIS21 YTVIS22 OVIS

Q̃
νt
t 53.9 49.7 39.3 35.1

Qt−1 55.2 50.1 39.2 36.2
Q̄t 55.7 50.7 41.1 37.1

(c) Early training

Early training YTVIS19 YTVIS21 YTVIS22 OVIS

✗ 55.1 50.4 40.0 36.7
✓ 55.7 50.7 41.1 37.1

suboptimal tracking performance. Further details are described in Sec. A.1.1. This underscores
the effectiveness of our approach, confirming that updating memory with foreground probability
significantly enhances the model’s accuracy and reliability, especially in challenging scenarios where
precise object association is essential.

Decoupled object association. Tab. 3-(a)-(4-7) demonstrates the effectiveness of the decoupled object
association, which consists of two trackers, TE and TA, and occupancy-guided Hungarian matching.
While the use of occupancy information alone in object matching, as seen in the comparison between
(4) and (5), results in only a slight improvement of +0.4 to +1.4 AP, the performance significantly
increases when both occupancy and existing object information are used for tracking. Specifically,
comparing (4) and (6) shows a +4.0 AP gain on YTVIS22, demonstrating the effectiveness of
combining these two strategies. Although TA further boosts the performance, as shown in Tab. 3-
(b), the effectiveness depends on the choice of queries. While using only the object information
from the current frame Q̃νt

t as the anchor query results in performance similar to (a)-(6), using
the object information from previous frames Qt−1 as the anchor query leads to better frame-to-
frame associations and improves performance. The highest performance is achieved when both the
current and previous frame information are combined and used as the anchor query Q̄t. These results
demonstrate the strength of the Decoupled Object Association (DOA) in consistently tracking both
existing and newly appeared objects.

Early training strategy. Although O2VIS demonstrates robust performance, the initial stages of
training the tracker can be particularly challenging due to the scarcity of learned information. To
address this, we adopt a strategy where training initially relies on the outputs from the pre-trained
segmentation network S for the first half of the training iterations. This approach facilitates a more
stable and informed beginning to the learning process. The effectiveness of this strategy compared
to conventional methods is detailed in Tab. 3-(c), showcasing the advantages of integrating the
pre-trained knowledge at the early stages.

6 CONCLUSION

In this paper, we present Occupancy-aware Object Association for Video Instance Segmentation
(O2VIS), a robust method designed to maintain temporal consistency in VIS. At the heart of O2VIS is
the Instance Occupancy Memory, which utilizes global instance features and their occupancy status to
effectively discern and track objects over time. The memory is essential for correctly assigning indices
to new objects and distinguishing them from existing ones. We also propose the Decoupled Object
Association strategy, integrating global instance queries with occupancy information to ensure precise
object matching. This approach divides the object association process into two phases: continuously
tracking existing objects to preserve their identities and aligning all current frame instances via an
adaptive anchor query. This ensures both stable and accurate tracking. Extensive experiments confirm
that our O2VIS achieves top performance across the most standardized VIS benchmarks.
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A APPENDIX

A.1 MOTIVATION FOR O2VIS DESIGN

In this section, we outline the motivation behind the design of O2VIS, focusing on three key points:
(1) Instance Occupancy Memory (IOM) – A comparison between the proposed memory mechanism
and previous memory methods, highlighting specific issues that arise during updates. (2) Occupancy-
guided Hungarian Matching (OHM) – The importance of prioritizing the tracking of existing
objects first. (3) Decoupled Object Association (DOA) – Problems found within the cross-attention
block in existing transformer-based trackers.

A.1.1 INSTANCE OCCUPANCY MEMORY (IOM)
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Figure 4: Comparison of three different memory mechanisms

Fig. 4 illustrates how the memory mechanisms operate, including similarity-based memory,
momentum-based memory, and our proposed Instance Occupancy Memory (IOM).

Similarity-based memory (Wu et al., 2022b; Ying et al., 2023) updates the memory by assessing
the similarity between the memory from time t − 1 and the objects at time t. When the object
information at time t shows high similarity to the memory objects, it receives a significant weight
during the update; however, if the similarity is low, the update is minimal. This behavior is evident
in Fig. 4, where at time T = 2, the memory retains information about the circle-shaped object that
has disappeared, while the latest information for the triangle-shaped object is updated. As a result,
we observe a performance improvement over the baseline in Tab. 3-(a)-(2). However, at time T = 3,
when a new object appears, the memory structure struggles to update effectively due to the low
similarity to the existing memory.

Momentum-based memory (Gao & Wang, 2023) assigns a high weight (e.g., 99%) to the memory
information from time t− 1 and a low weight (e.g., 1%) to the objects at time t during the update. As
a result, the object information from the first frame is retained at a high ratio, while new objects or
the latest information are hardly updated. Consequently, as shown in Tab. 3-(a)-(3), we observe a
decline in performance across most datasets compared to the baseline.

Instance-occupancy memory uses the foreground probability of objects at time t as a weight to
update the object information. This means that the most recent and valid information is updated,
allowing accurate memory updates even in scenarios where new objects appear, as seen in Fig. 4
at T = 3. Additionally, when objects disappear, the foreground probability is low, so the previous
information is largely preserved, maintaining the object information well even in situations like
T = 2. This novel mechanism ensures consistent memory updates, both for newly emerging and
existing objects, offering robust performance in dynamic scenarios.
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A.1.2 OCCUPANCY-GUIDED HUNGARIAN MATCHING (OHM)

OHM
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result

Matched to unoccupied index

Newly appeared object

Occupied

Figure 5: Hungarian matching vs OHM

Despite the introduction of IOM, there are still instances where the traditional Hungarian algorithm
fails in accurate object matching. As shown in Fig. 4, when the model is unaware of occupied objects,
newly appeared objects can be mistakenly assigned the index of existing objects due to cases where the
similarity between foreground objects is higher than that between foreground and background objects.
To prevent this, we first track only the objects common between the current frame and memory using
TE , and then perform a two-step matching based on occupancy to ensure accurate object matching.
Through this strategy, more accurate object matching is achieved in most scenarios, as demonstrated
by the significant improvement in tracking performance shown in Tab. 3-(a), comparing (4) and (6).

A.1.3 DECOUPLED OBJECT ASSOCIATION (DOA)

Figure 6: Illustration of cross-attentntion mechanism in transformer-based tracking network.

Transformer-based trackers (Heo et al., 2023; Zhang et al., 2023a) align the objects in the current
frame with those in the previous frame by matching their order, with the cross-attention block being
central to this operation. As illustrated in Fig. 6, the cross-attention block reconstructs the objects in
the current frame based on the attention score between the objects in the previous frame and those in
the current frame. However, to reconstruct new objects, the attention score between foreground object

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

features and background features must be high, which leads to unnatural learning and suboptimal
tracking.

Based on this analysis, we propose generating an anchor query with decoupled strategy, which
incorporates information from both previous and newly appeared objects through TE and occupancy-
guided Hungarian matching (OHM), and then leveraging it in the cross-attention. By providing
appropriate anchors, our approach encourages the model to learn accurate tracking, particularly in
scenarios with dynamic object appearances.

A.2 TRAINING DETAILS

Datasets. We evaluate the performance of our O2VIS using standard benchmark datasets: YouTube-
VIS datasets (2019, 2021, 2022) (Yang et al., 2019) and OVIS (Qi et al., 2022), as detailed below.
Introduced by (Yang et al., 2019) alongside the pioneering study on the Video Instance Segmentation
(VIS) task, the YouTube-VIS datasets consist of high-resolution YouTube videos across 40 categories.
The 2019 release includes 2,238 videos for training, 302 for validation, and 343 for testing. In its 2021
update (Yang et al., 2021a), the dataset was expanded to include 2,985 training videos, 421 validation
videos, and 453 test videos, allowing for more extensive testing and development of VIS models. The
2022 version includes an additional 71 long videos in the validation set, while the training set re-
mained the same as in the 2021 version. OVIS dataset (Qi et al., 2022) presents significant challenges
with videos that often feature occlusions and long sequences that mirror complex real-world scenarios.
This dataset is particularly demanding, with a greater number of objects and frames compared to
YouTube-VIS, enhancing the difficulty of segmentation and tracking tasks. OVIS comprises 607
training videos, 140 validation videos, and 154 test videos, providing a robust platform for evaluating
the effectiveness of VIS approaches under challenging conditions.

Implementation Details. For our segmentation network, we employ the Mask2Former architecture
(Cheng et al., 2022) equipped with three distinct backbone encoders: ResNet-50 (He et al., 2016),
ViT-L and ViT-H (Dosovitskiy et al., 2021). All backbones are initialized with parameters pre-trained
on COCO (Lin et al., 2014). To improve memory efficiency with the ViT-L and ViT-H, we incorporate
a memory-optimized VIT-Adapter (Chen et al., 2022), aligning with recent advancements in network
efficiency (Zhang et al., 2023b). The segmentation network is further enhanced through pretraining
with a contrastive learning approach for better object representation (Wu et al., 2022b; Ying et al.,
2023; Zhang et al., 2023b; Lee et al., 2024). Our tracking framework integrates two networks TE and
TA, each comprising three transformer blocks and enhanced with a referring cross-attention layer
(Zhang et al., 2023a) for improved accuracy.

For training, our tracking networks are trained with all other parameters frozen as previous studies
(Zhang et al., 2023a; Li et al., 2023a). We employ the AdamW optimizer (Loshchilov & Hutter,
2017), initializing with a learning rate of 1e-4 and a weight decay of 5e-2. Training is conducted over
160k iterations, with learning rate reductions scheduled at the 112k mark. We process five frames
from each video in a batch of eight during training, adjusting the frame sizes to maintain a shorter
side between 320 and 640 pixels, and ensuring the longer side does not exceed 768 pixels. In all
experimental settings, we incorporate COCO joint training, as utilized in prior works (Wu et al.,
2022a; Heo et al., 2022; 2023; Ying et al., 2023; Zhang et al., 2023a). For inference, the shorter side
of input frames is scaled to 480 pixels, maintaining uniform aspect ratios. We empirically set λsim
as 1.0. In the online experiments using the R50 and ViT-L backbones, eight RTX2080 Ti GPUs are
employed. For the offline experiments, eight RTX3090 Ti GPUs are used, while the experiments
utilizing the ViT-H backbone are conducted with eight RTXA6000 GPUs.

Segmentation network. To achieve distinctive object representation, we employ the following
contrastive loss for pretraining the segmentation network S:

Lembed = − log
exp (v · k+)

exp (v · k+) +
∑

k− exp (v · k−)
= log

[
1 +

∑
k−

exp
(
v · k− − v · k+

)]
,

(13)
where k+, and k− denote positive embedding and negative embedding from anchor embedding v.
This contrastive loss is widely applied in the VIS field (Wu et al., 2022b; Li et al., 2023b; Ying et al.,
2023; Zhang et al., 2023b; Lee et al., 2024), learning frame-to-frame associations to create better
object representations.
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Figure 7: Results of O2VIS, DVIS++ and CTVIS on OVIS dataset

Early training. The initial outputs from the tracking networks TE and TA are also typically noisy. To
address this, we utilize the predictions ŷ from Q̃∗

t for ground truth assignment, formulated as:

σ́ = argmin
σ∈SN

NGT∑
n=1

LMatch

(
ynf(n), ŷ

σ(n)
f(n)

)
. (14)

The prediction ŷ provides guidance for rapid convergence in the same format as the tracked output of
MinVIS (Huang et al., 2022).

A.3 ADDITIONAL QUALITATIVE RESULTS

We provide additional comparisons with state-of-the-art models as shown in Fig. 7 to demonstrate
the robustness of our model in various scenarios. DVIS++ (Zhang et al., 2023b) faces challenges
with occlusions and rapid motions, resulting in less distinctive embeddings. Similarly, CTVIS (Ying
et al., 2023) has difficulty with objects of similar categories, which affects the distinctiveness of
embeddings. By employing a decoupled object association strategy, our model ensures consistently
discriminative embeddings, thereby improving segmentation and tracking performance.
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