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Abstract

Autoregressive modeling has been a huge success in the field of natural language pro-
cessing (NLP). Recently, autoregressive models have emerged as a significant area of
focus in computer vision, where they excel in producing high-quality visual content.
Autoregressive models in NLP typically operate on subword tokens. However, the
representation strategy in computer vision can vary in different levels, i.e., pixel-level,
token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data
compared to the sequential structure of language. This survey comprehensively exam-
ines the literature on autoregressive models applied to vision. To improve readability
for researchers from diverse research backgrounds, we start with preliminary sequence
representation and modeling in vision. Next, we divide the fundamental frameworks of
visual autoregressive models into three general sub-categories, including pixel-based,
token-based, and scale-based models based on the representation strategy. We then
explore the interconnections between autoregressive models and other generative mod-
els. Furthermore, we present a multifaceted categorization of autoregressive models
in computer vision, including image generation, video generation, 3D generation, and
multimodal generation. We also elaborate on their applications in diverse domains,
including emerging domains such as embodied AI and 3D medical AI, with about
250 related references. Finally, we highlight the current challenges to autoregres-
sive models in vision with suggestions about potential research directions. We have
also set up a Github repository to organize the papers included in this survey at:
https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.

1 Introduction

Autoregressive models, which generate data by predicting each element in a sequence based on the
previous elements through conditional probabilities, initially gained prominence in the field of natural
language processing (NLP) (Vaswani, 2017; Radford et al., 2019; Brown et al., 2020; Achiam et al.,
2023; Wan et al., 2023; Zhou et al., 2023a). This success can be attributed to their inherent advan-
tage of capturing long-range dependencies and producing high-quality, contextually relevant outputs.
Especially empirical scaling laws (Henighan et al., 2020; Hoffmann et al., 2022; Muennighoff et al.,
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Figure 1: We provide a timeline of representative visual autoregressive models, which illustrates the
rapid evolution of visual autoregressive models from early pixel-based approaches like PixelRNN in
2016 to various advanced systems recently. We are excitedly witnessing the rapid growth in this field.

2023; Tao et al., 2024; Lyu et al., 2023) reveal that increasing model size and compute budgets con-
sistently improves cross-entropy loss across various domains like image generation, video modeling,
multimodal tasks, and mathematical problem solving, following a universal power-law relationship.
Inspired by their achievements in NLP, autoregressive models have recently begun to demonstrate
formidable potential in computer vision.

The timeline in Figure 1 illustrates the key milestones and developments in the evolution of visual
autoregressive models, highlighting their transition from NLP to computer vision. To date, autore-
gressive models have been applied to a wide array of generative tasks, including image generation
(Parmar et al., 2018; Chen et al., 2020), image super-resolution (Guo et al., 2022; Li et al., 2016),
image editing (Yao et al., 2022; Crowson et al., 2022), image-to-image translation (Li et al., 2024e;d)
and video generation (Tulyakov et al., 2018; Hong et al., 2022), multi-modal tasks (Yu et al., 2023c; Lu
et al., 2022) and medical tasks (Ren et al., 2024a; Tudosiu et al., 2024), .etc. This broad applicability
underscores the potential for further exploration and application of autoregressive models.

With the rapid proliferation of visual autoregressive models, keeping up with the latest advancements
has become increasingly challenging. Therefore, a comprehensive survey of existing works is both timely
and crucial for the research community. This paper endeavors to provide a thorough overview of recent
developments in visual autoregressive and explores potential directions for future improvements.

We emphasize that there are at least three distinct categories of visual autoregressive models defined
by their sequence representation strategies: pixel-based, token-based, and scale-based models. Pixel-
RNN (Van Den Oord et al., 2016), as a representative pixel-wise model in the pioneering of next-
pixel prediction by transforming a 2D image into a 1D pixel sequence, capturing both local and
long-range dependencies but with high computational cost. Next-token prediction, inspired by NLP,
compresses images into discrete tokens for efficient high-resolution processing, exemplified by models
like VQ-VAE (Van Den Oord et al., 2017). VAR (Tian et al., 2024) introduces next-scale prediction, a
hierarchical method that generates content across multiple scales, from coarse to fine autoregressively
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capturing visual information at multiple resolutions. Each category offers unique advantages and
challenges, making them promising directions for future research.

We further introduce a multi-perspective categorization of autoregressive models applied to computer
vision, which classifies existing models based on criteria such as the sequence representation strategy,
the underlying framework, or the target task. Our categorization aims to provide a structured overview
of how these models are utilized across various vision tasks. We then present both quantitative and
qualitative metrics to assess their performance and applicability. Finally, we highlight the current
limitations of autoregressive models, such as computational complexity and mode collapse, and propose
potential directions for future research. In summary, this survey makes several contributions:

• Given the recent surge of advances based on visual autoregressive models, we provide a comprehen-
sive and timely literature review of these models, aiming to offer readers a quick understanding of
the generic autoregressive modeling framework.

• We categorize visual autoregressive models based on their sequence representation strategies and
systematically compile applications across various domains. This aims to help researchers in specific
fields quickly identify and learn about related work.

• We provide a comprehensive review of autoregressive models in vision from about 250 related
references and summarize their evaluations compared with GAN/Diffusion/MAE-based methods in
four image generation benchmarks (ImageNet, MS-COCO, MJHQ-30K, and GenEval bench).

2 Autoregressive Models

2.1 Preliminary

Visual autoregressive models are a class of generative models that sequentially predict visual elements,
where each prediction is conditioned on the previously generated elements. Visual autoregressive
models generally consist of two core components:

Sequence Representation. The visual data is first transformed into a sequence of discrete elements.
These elements may correspond to pixels, image patches, or latent codes derived from visual content,
depending on the specific model architecture. This transformation allows the visual data to be framed
as a sequential modeling problem, akin to text generation in natural language processing.

Autoregressive Sequence Modeling. Once the visual content is represented as an ordered se-
quence, the model is trained to generate each element by conditioning all preceding elements. Mathe-
matically, this is expressed as:

p(x) =
N∏

i=1
p(xi|x1, x2, ..., xi−1; θ), (1)

where p(xi|x1, x2, ..., xi−1, θ) represents the probability of the current element xi conditioned on all
previous elements in the sequence, with θ denoting the model parameters. The training objective is to
minimize the negative log-likelihood(NLL) loss, which is formulated as:

L(θ) = −
N∑

i=1
log p(xi|x1, x2, ..., xi−1; θ). (2)
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Image Generation (§3.1.1)

Unconditional Image Generation (§3.1.1)

Pixel-wise Generation (§3.1.1.a)

PixelRNN (Van Den Oord et al., 2016), PixelCNN (Van den Oord et al., 2016)
PixelCNN++ (Salimans et al., 2017), Gated PixelCNN (Reed et al., 2016),
PMARD (Reed et al., 2017),

PixelSNAIL (Chen et al., 2018), Image Transformer (Parmar et al., 2018),
ImageGPT (Chen et al., 2020)

Token-wise Generation (§3.1.1.b)

VQ-VAE (Van Den Oord et al., 2017), VQ-VAE-2 (Razavi et al., 2019),
VQGAN (Esser et al., 2021b), ViT-VQGAN (Yu et al., 2021a),
Efficient-VQGAN (Cao et al., 2023), TiTok (Yu et al., 2024c)
VQGAN-LC (Zhu et al., 2024b), LlamaGen (Sun et al., 2024a)
RQ-VAE (Lee et al., 2022a), MoVQ (Zheng et al., 2022), DQ (Huang et al., 2023b)
FSQ (Mentzer et al., 2023), Wavelet Tokenizer (Mattar et al., 2024),
DCT-Transformer (Nash et al., 2021),

VQ-VAE (Van Den Oord et al., 2017), VQ-VAE-2 (Razavi et al., 2019),
VQGAN (Esser et al., 2021b), LlamaGen (Sun et al., 2024a),
DeLVM (Guo et al., 2024), SAIM (Qi et al., 2023), MAR (Li et al., 2024c),
SAR (Liu et al., 2024g), RAL (Ak et al., 2020)
ImageBART (Esser et al., 2021a), DisCo-Diff (Xu et al., 2024)
ARM (Ren et al., 2024b), AiM (Li et al., 2024b),

Scale-wise Generation (§3.1.1.c) VAR (Tian et al., 2024)

Text-to-Image Synthesis (§3.1.2)

Token-wise Generation (§3.1.2.a)

DALL·E (Ramesh et al., 2021), CogView (Ding et al., 2021),
CogView2 (Ding et al., 2022), Parti (Yu et al., 2022),
Make-a-Scene (Gafni et al., 2022), LQAE (Liu et al., 2024b), Fluid (Fan et al., 2024)

VQ-Diffusion (Gu et al., 2022), Kaleido Diffusion (Gu et al., 2024)
DART (Zhao et al., 2024)

LLM4GEN (Liu et al., 2024f), V2T (Zhu et al., 2024a), MARS (He et al., 2024)
Lumina-mGPT (Liu et al., 2024a)

IconShop (Wu et al., 2023b), Make-a-Story (Rahman et al., 2023)
SEED-Story (Yang et al., 2024)

Scale-wise Generation (§3.1.2.b) STAR (Ma et al., 2024), VAR-CLIP (Zhang et al., 2024a),

Image-to-Image Translation (§3.1.3)

Image Painting (§3.1.3.a) QueryOTR (Yao et al., 2022), BAT-Fill (Yu et al., 2021b)

Multi-view Generation (§3.1.3.b) MIS (Shen et al., 2024), SceneScript (Avetisyan et al., 2024)

Visual In-Context Learning (§3.1.3.c) MAE-VQGAN (Bar et al., 2022), VICL (Bai et al., 2024b)

Image Editing (§3.1.4)
Text-driven Image Editing (§3.1.4.a) VQGAN-CLIP (Crowson et al., 2022), Make-A-Scene (Gafni et al., 2022)

Image-driven Image Editing (§3.1.4.b)
ControlAR (Li et al., 2024e), ControlVAR (Li et al., 2024d)

M2M (Shen et al., 2024), CAR (Yao et al., 2024), MSGNet (Cardenas et al., 2021)
MVG (Ren et al., 2024a)

Video Generation (§3.2)

Unconditional Video Generation (§3.2.1)

MAGVIT (Yu et al., 2023a), MAGVIT-v2 (Yu et al., 2023b)
Open-MAGVIT2 (Luo et al., 2024), OmniTokenizer (Wang et al., 2024b)

VPNs (Kalchbrenner et al., 2017), MoCoGAN (Tulyakov et al., 2018),
VideoTransformer (Weissenborn et al., 2019), LVT (Rakhimov et al., 2020),
VideoGPT (Yan et al., 2021), TATS (Ge et al., 2022),
PVDM (Yu et al., 2023d), MAGVIT-v2 (Yu et al., 2024b)

Conditional Video Generation (§3.2.2)

IRC-GAN (Deng et al., 2019), Godiva (Wu et al., 2021), LWM (Liu et al., 2024c),
CogVideo (Hong et al., 2022), NÜWA (Wu et al., 2022),
NUWA-Infinity (Liang et al., 2022), Phenaki (Villegas et al., 2022),
ART-V (Weng et al., 2024), ViD-GPT (Gao et al., 2024),
Loong (Wang et al., 2024e), PAV (Xie et al., 2024a), iVideoGPT (Wu et al., 2024c)

Convolutional LSTM (Shi et al., 2015), PredRNN Wang et al. (2017),
E3D-LSTM (Wang et al., 2019), SV2P (Babaeizadeh et al., 2018),
PVV (Walker et al., 2021), HARP (Seo et al., 2022), LVM Bai et al. (2024a),
ST-LLM (Liu et al., 2025), Pyramid Flow (Jin et al., 2024a)

MAGE (Hu et al., 2022), VideoPoet (Kondratyuk et al., 2024)

Embodied AI (§3.2.3) IRIS (Micheli et al., 2023), GAIA-1 (Hu et al., 2023), iVideoGPT (Wu et al., 2024d),
Genie (Bruce et al., 2024), GR-1 (Wu et al., 2024b), GR-2 (Cheang et al., 2024),

3D Generation (§3.3)

Motion Generation (§3.3.1) AMD (Han et al., 2024), T2M-GPT (Zhang et al., 2023a),
HiT-DVAE (Bie et al., 2022), HuMoR (Rempe et al., 2021)

Point Cloud Generation (§3.3.2) CanonicalVAE (Cheng et al., 2022), Octree Transformer (Ibing et al., 2023),
ImAM (Qian et al., 2024), Argus3D (Qian et al., 2024)

Scene Generation (§3.3.3) SceneScript (Avetisyan et al., 2024)

3D Medical Generation (§3.3.4)
SynthAnatomy (Tudosiu et al., 2022), BrainSynth (Tudosiu et al., 2024),
ConGe (Zhou & Khalvati, 2024), 3D-VQGAN (Zhou et al., 2023b),
Unalign (Corona-Figueroa et al., 2023), AutoSeq (Wang et al., 2024c)

Multimodal Understanding and Generation (§3.4)

Understanding Framework (§3.4.1)
BEiT (Bao et al., 2021), BEiT-v2 (Peng et al., 2022), LLaVA (Liu et al., 2024d),
VL-BEiT (Bao et al., 2022), BEiT-v3 (Wang et al., 2022b)
AIM (El-Nouby et al., 2024), AIMV2 (Fini et al., 2024)

Unified Framework (§3.4.2)

OFA (Wang et al., 2022a), CogView (Ding et al., 2021), M6 (Lin et al., 2021),
ERNIE-ViLG (Zhang et al., 2021), NEXT-GPT (Wu et al., 2023c),
SEED (Ge et al., 2024), Emu2 (Sun et al., 2024b), LaViT (Jin et al.),
Video-LaViT (Jin et al., 2024c), X-ViLA (Ye et al., 2024)

Chameleon (Team, 2024), Transfusion (Zhou et al., 2024)
ScalingLaw (Aghajanyan et al., 2023), RA-CM3 (Yasunaga et al., 2022),
SHOW-o (Xie et al., 2024b), Flamingo (Alayrac et al., 2022)
MXQ-VAE (Lee et al., 2022b), CoTVL (Ge et al., 2023), Emu (Sun et al., 2023)
Janus (Wu et al., 2024a), VILA-U (Wu et al., 2024e), Emu3 (Wang et al., 2024d)

Figure 2: Literature taxonomy of autoregressive models in vision.

2.2 Generic Frameworks

In the preceding sections, we have provided a general overview of visual autoregressive models about the
essential concept of sequence representation and sequence modeling. Then, we consider the representa-
tion strategy to classify the visual autoregressive models further, i.e. pixel-based models, token-based
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models, and scale-based models. Since representation strategy directly reflects how models handle
the underlying structure and features of visual data. Different representation strategies influence the
model’s granularity, efficiency, and applicability. Pixel-based models (Sec. 2.2.1) generate images pixel
by pixel, capturing fine-grained spatial details. Token-based models (Sec. 2.2.2) represent images as
a set of high-level discrete visual tokens, analogous to words in NLP. Scale-based models (Sec. 2.2.3)
generate images through a multi-scale representation, allowing the model to handle visual content from
different resolutions. We detail these three types of generic frameworks below.

Discussion about continuous methods Our categorization of autoregressive generation methods
is based on the representation strategy of the autoregressive elements. Although our discussion primar-
ily focuses on discrete autoregressive methods, we note that continuous autoregressive approaches (Li
et al., 2024c; Zhou et al., 2024), which operate directly in the embedding space without discretization,
can be naturally accommodated within this framework. Continuous autoregressive models share many
similarities with their discrete counterparts, with two notable differences: (a) they perform regres-
sion directly on continuous embeddings, eliminating the need for quantization; and (b) while discrete
models typically minimize negative log-likelihood using a cross-entropy loss, continuous models require
alternative loss formulations (e.g., diffusion loss (Li et al., 2024c)) on a case-by-case basis. Despite
these differences, the underlying principles of autoregressive generation paradigms remain analogous,
and our taxonomy is flexible enough to encompass both discrete and continuous methods.

2.2.1 Pixel-based Models

In pixel-based models, visual data is directly represented at the pixel level. PixelRNN (Van Den Oord
et al., 2016) emerged as the pioneering work for AR image generation. It converts a 2D image
I ∈ RH×W ×3 into a 1D discrete pixel sequence {x1, x2, · · · , xN } by applying a raster scan order.
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PixelRNN employs LSTM layers to sequentially predict each pixel based on previously generated pix-
els, as illustrated in Equation 1. Following this development, a series of AR generation works centered
around pixelCNN (Van den Oord et al., 2016; Reed et al., 2016; Salimans et al., 2017; Chen et al.,
2018; Reed et al., 2017) were proposed, achieving remarkable generation quality on CIFAR-10 and
ImageNet 32 × 32. Building upon these advancements, several attempts (Kalchbrenner et al., 2017;
Weissenborn et al., 2019) are made to extend the pixel-level AR approach to video generation through
per-pixel synthesis.

However, despite these milestones, generating high-resolution images remains a significant challenge
for pixel-level autoregressive models. This is primarily attributed to 1) the quadratically increasing
computational cost with sequence length and 2) the redundancy inherent in per-pixel information.
Some research (Reed et al., 2017) has explored the adoption of parallel techniques to generate images
at 256×256 resolution. However, these methods tend to yield suboptimal and blurry results.

2.2.2 Token-based Models

The token-based models represent a significant evolution in visual autoregressive modeling, drawing
inspiration from natural language processing(NLP). Unlike pixel-level models, which operate directly
on raw visual data, this paradigm compresses and quantifies an image or video into a sequence of
discrete tokens, allowing for more efficient processing of high-resolution content.

To achieve this, Vector Quantization(VQ) technique is employed to transform continuous visual fea-
tures into a sequence of discrete latent codes. Given a raw image x ∈ RH×W ×3, an encoder E first
maps the image to a latent feature map E(x) ∈ Rh×w×d. These continuous features are then quantized
into discrete codes using a learned codebook Z = {zk}K

k=1 ⊂ Rd containing K entries, where each entry
zk represents a prototype vector in the latent space. The quantization operation is defined as finding
the nearest codebook entry for each spatial feature vector ẑij ∈ Rd:

zq(x) =
(

arg min
zk∈Z

∥ẑij − zk∥
)

∈ Rh×w×d. (3)

This quantization process enables a compact and discrete representation of the latent feature space,
which is particularly advantageous for reducing the computational burden for high-dimensional image
generation tasks. A seminal work on discrete representation is VQVAE (Van Den Oord et al., 2017),
which introduced a two-stage paradigm that has become the de-facto standard for autoregressive
vision generation. In this paradigm, an encoder-decoder architecture is initially trained to learn the
discrete image representation. The encoder E maps the input image x to a latent space ze(x), where the
continuous latent features are quantized into discrete codes using VQ. The decoder D then reconstructs
the image from these discrete codes. The training objective consists of a reconstruction loss and a
commitment loss to ensure the latent codes effectively represent the input:

L = ∥x − D(zq(x))∥2
2 + ∥sg[E(x)] − zq(x)∥2

2 + β∥E(x) − sg[zq(x)]∥2
2, (4)

where sg denotes the stop-gradient operator, E(x) is the encoded latent vector, and zq(x) is the
quantized vector.

In the second stage, a powerful autoregressive model is trained to predict the next discrete token given
the sequence of previously generated tokens. Building upon the VQVAE, VQ-VAE-2 (Razavi et al.,
2019) introduced a multi-scale hierarchical architecture that further enhances the quality and diversity
of generated images. By incorporating multiple levels of latent representations, VQ-VAE-2 captures
both global and local details. This hierarchical approach improves the model’s ability to generate high-
resolution images, achieving state-of-the-art results on various image datasets. VQGAN (Esser et al.,
2021b) enhances the image tokenizer by integrating an additional PatchGAN-based discriminator loss
into the VQVAE framework. This approach facilitates the learning of a perceptually rich codebook.
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Furthermore, VQGAN employs a GPT-2-style decoder-only Transformer (Vaswani, 2017) to model the
distribution of tokens in a raster-scan order, scaling autoregressive image generation with millions of
pixels while maintaining computational efficiency.

2.2.3 Scale-based Models

The scale-based models, as proposed in VAR (Tian et al., 2024), introduce a hierarchical method for
autoregressive image generation. Unlike traditional next-token prediction models that operate on a
single resolution in a raster-scan order, it generates visual content across multiple scales from coarse to
fine. The autoregressive unit in this approach is an entire token map instead of a single token, which
enables the model to process visual data in a more structured and efficient manner.

A foundational idea behind VAR is the Residual Quantization(RQ) technique introduced in RQ-
VAE (Lee et al., 2022a). RQ-VAE improves upon standard VQ by recursively quantizing residuals
of feature maps. Unlike VQ-VAE, which requires larger codebooks to maintain quality as the reso-
lution of the quantized feature map decreases, RQ-VAE uses a fixed-size codebook and quantizes a
vector z by approximating the residuals step-by-step in a coarse-to-fine manner:

RQ(z; C, D) = (k1, k2, . . . , kD), where kd = arg min
zi∈C

|rd−1 − zi| (5)

where C is the shared codebook, D is the quantization depth, and rd−1 is the residual vector at
depth d − 1. This recursive quantization process allows RQ-VAE to represent high-resolution images
compactly, reducing spatial resolution while retaining essential information.

Building upon this idea, VAR employs a multi-scale quantization autoencoder to discretize an image
into token maps at various scales. Given a raw image x ∈ RH×W ×3, a multi-scale VQ-VAE encodes the
image into a set of token maps {R1, R2, ..., Rk}, where each token map Rk ∈ Rhk×wk×d corresponds
to a different scale k of the image and serves as the autoregressive unit. The generative process is
hierarchical, starting from the coarsest scale and autoregressively generating higher-resolution token
maps. During the k-th autoregressive step, all distributions over the hk × wk tokens in rk will be
generated in parallel.

Compared to token-based models, the scale-based models offer several advantages: a). It retains spatial
locality, which facilitates zero-shot generalization to novel tasks without the need for task-specific
training; b). The efficiency of token generation is improved by enabling parallel token generation within
each token map, reducing the overall computational complexity. This efficiency gain is particularly
beneficial for scaling up to larger image resolutions.

2.2.4 Analysis of Computational Costs

We compare the time complexity and efficiency of three autoregressive generation paradigms:
next-pixel prediction, next-token prediction, and next-scale prediction. We consider a baseline “vanilla”
architecture comprising a standard self-attention Transformer for autoregressive modeling, and an op-
tional CNN-based tokenizer for decoding. Our analysis assumes greedy sampling without any addi-
tional efficiency techniques.

In next-pixel prediction, an N×N image is generated sequentially, with the Transformer’s self-attention
incurring a per-step cost of OT (i2) for a sequence of length I. Consequently, generating all N2 pixels
requires:

N2∑
i=1

i2 = 1
6N2(N2 + 1)(2N2 + 1) (6)

which is equivalent to OT (n6) basic computation. Next-token prediction reduces this cost by incorpo-
rating an image tokenizer with a compression ratio k, which shortens the latent sequence to (N/k)2
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Require Tokenizer Compression Ratio Complexity Efficiency
Next-Pixel Prediction ✘ - OT (N6) ✩

Next-Token Prediction ✔ k OT (N6/k6) + OC(N2) ✩ ✩
Next-Scale Prediction ✔ k OT (N4/k4) + OC(N2) ✩ ✩ ✩

Table 1: Efficiency Comparison of Different Autoregressive Generation Paradigms. We consider the
task of generating an N × N image using a standard self-attention Transformer and an optional
CNN-based tokenizer.

tokens. The autoregressive cost is thereby reduced to OT (N6/k6), and decoding the latent represen-
tation back to an N × N image via a CNN incurs a cost of Oc(N2). The total cost is significantly
lower than that of next-pixel prediction, particularly for high-resolution image synthesis. Next-scale
prediction further enhances efficiency through a block-wise causal masking strategy and a reduced
number of iterative steps, resulting in a time complexity of OT (N4/k4) + Oc(N2) (Tian et al., 2024).
Table 1 summarizes comparative computational complexities and efficiency ratings of these paradigms.

2.3 Relation to Other Generative Models

Variational Autoencoder. Variational Autoencoders (VAEs) (Kingma, 2013) are a class of genera-
tive models that learn to map data into a continuous, lower-dimensional latent space and subsequently
reconstruct it back to the original data space. This process is governed by optimizing a variational
lower bound of the data likelihood. In contrast, autoregressive models directly capture the full data
distribution by predicting each element sequentially, optimizing negative log-likelihood(NLL) as the
training objective. While VAEs provide efficient sampling, their reliance on variational approxima-
tions often results in less sharp outputs (Child, 2021) and may suffer from posterior collapse (Zhao
et al., 2019; Chen et al., 2017) when equipped with a powerful decoder. Autoregressive models, on
the other hand, generate high-quality samples by modeling data dependencies at the original dimen-
sionality, but they are slower in inference due to their sequential generation process. To address these
limitations, hybrid approaches (Gulrajani et al., 2017; Van Den Oord et al., 2017; Chen et al., 2017)
have been proposed that integrate the autoregressive process into VAEs. One prominent example is
VQ-VAE (Van Den Oord et al., 2017), which utilizes a VAE framework to learn discrete latent spaces
and autoregressive models to refine generation, effectively leveraging the strengths of both models for
efficient and high-quality image synthesis.

Generative Adversarial Networks. GANs (Goodfellow et al., 2014) are known for generating
high-quality images with fast inference, enabled by their one-shot generation process. GANs demon-
strate particular strength in domains with structured data, such as facial synthesis, where their low-
dimensional latent space can effectively manipulate visual attributes (Xia et al., 2022). However, the
adversarial training objective that GANs rely on often results in training instability and mode col-
lapse (Liu et al., 2020), which requires a delicate balance between the generator and discriminator.
Additionally, the adversarial training paradigm that underpins GANs can hinder their scalability to
more diverse datasets and larger model sizes. In contrast, autoregressive models employ likelihood-
based training, which ensures a stable training process. Despite their relatively slow sampling speeds,
autoregressive models exhibit favorable scaling laws, where model performance consistently improves
with larger datasets and increased model sizes (Kaplan et al., 2020). These properties make autore-
gressive models particularly well-suited for building universal generative models and can be adapted
to a wide range of downstream tasks through zero-shot generalization of supervised fine-tuning (SFT),
enabling flexibility and robustness across different applications.

Normalizing Flows. Normalizing flows (Dinh et al., 2014; Rezende & Mohamed, 2015) utilize a
series of invertible and differentiable transformations to map a simple Gaussian distribution into a
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complex data distribution. Each transformation is designed to have an easily computable Jacobian
determinant, enabling efficient computation of the model’s likelihood. Both normalizing flows and
autoregressive models allow direct optimization via maximum likelihood estimation. However, nor-
malizing flows achieves this by enforcing a tractable likelihood, which imposes specific architectural
constraints to ensure invertibility. In contrast, autoregressive models optimize the likelihood by dis-
cretizing the data and sequentially predicting each element, thereby allowing greater flexibility in model
design and enhanced scalability with data and model size.

Diffusion Models. Diffusion models (Ho et al., 2020) have emerged as the state-of-the-art genera-
tion paradigm for a wide range of vision generation tasks. As recent challengers, autoregressive models
share several characteristics with diffusion models. Both methods can generate diverse, high-quality
samples, yet both also suffer from inefficient inference due to their iterative or sequential generation
processes. Additionally, both approaches are likelihood-based and optimize objectives such as Nega-
tive Log-Likelihood (NLL) or Evidence Lower Bound (ELBO), making them relatively easy to train.
Recent advances (Esser et al., 2021b; Rombach et al., 2022) in both fields have focused on compressing
visual content into latent spaces to improve the efficiency of high-resolution generation. Despite these
similarities, there are fundamental differences in their generative paradigms. Diffusion models employ
a predefined forward process that gradually corrupts data and an iterative denoising process to recover
samples. This iterative process retains spatial locality at each step, which benefits visual coherence.
However, the necessity to corrupt the training data with Gaussian noise may potentially limit their
scalability for understanding tasks. Additionally, while diffusion models operate primarily in contin-
uous spaces, their discrete variants still lag behind in performance, posing challenges for multimodal
applications like text generation. Autoregressive models, by contrast, inherently introduce unidirec-
tional biases and discretization, which might not be ideal for visual tasks, partially explaining their lag
behind diffusion models in recent benchmarks. However, autoregressive models offer flexibility in han-
dling diverse modalities and combining generation with understanding. This adaptability aligns with
the emerging trend of integrating autoregressive models with Large Language Models (LLMs) to create
a unified framework for multimodal input-output tasks, bridging both generation and understanding
capabilities. These distinctions and complementarities between the two approaches suggest potential
avenues for future research. Recent efforts have aimed to combine the strengths of both approaches,
such as integrating bidirectional contexts (Esser et al., 2021a; Zhou et al., 2024; Xie et al., 2024b),
autoregressive models with continuous representations (Li et al., 2024c; Zhou et al., 2024), discrete
diffusion models (Gu et al., 2022), and using autoregressive models to enhance the understanding
capabilities of diffusion models (Gu et al., 2024).

Masked Autoencoder. Masked autoencoders (MAEs) (He et al., 2022) are designed to learn ro-
bust data representations by randomly masking portions of the input data and training the model to
reconstruct the missing content. Both MAEs and autoregressive models share similarities as they com-
press images into discrete sequences of visual elements and model these sequences. In fact, MAEs and
autoregressive models inherit two leading paradigms from natural language processing (NLP): MAEs
adopt the BERT-style (Devlin et al., 2018) encoder-decoder structure, while autoregressive models
follow the GPT-Style (Radford et al., 2019) decoder-only approach. Nevertheless, there are essential
differences between them: 1) MAEs are trained by randomly masking visual tokens and reconstructing
the missing part, while autoregressive models are trained to predict the next element in an ordered
sequence; 2) MAEs utilize full attention, enabling each token to consider the entire surrounding con-
texts, whereas autoregressive models typically employ causal attention, restricting each token to focus
only on previous ones; 3) During decoding, MAEs randomly generate multiple tokens in parallel, while
autoregressive models generate tokens sequentially in a predefined order. These differences lead to
distinct strengths: MAEs generally excel in representation learning and visual understanding tasks,
and recent works like MaskGIT (Chang et al., 2022) and MAGE (Li et al., 2023c) also extend the
Masked Image Modeling (MIM) approach to image generation. In contrast, autoregressive models
are more suited for generating high-quality samples from scratch and demonstrate stronger scaling
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laws as they are scaled up, a property that has also been validated in language generation. Recent
research (Li et al., 2024c) has proposed viewing masked generative models as a generalized form of
autoregressive models and has investigated ways to enhance autoregressive models with MAE tricks.
However, given the essential differences between them and the comprehensive discussions on MAEs
in prior surveys, our review in this paper is mainly focused on standard autoregressive models. In
summary, both methods are based on sequence modeling and have their respective strengths. MAEs
provide efficient parallel decoding and the bidirectional attention in MAEs is well-suited for visual
data, and autoregressive models excel in scaling up and adapting to multimodal tasks. Rethinking the
relationship between these two approaches could potentially advance autoregressive generation. One
method that bridges these two algorithms is Show-o (Xie et al., 2024b), which incorporates MAE-like
masking strategies and bidirectional attention within an autoregressive framework to enhance image
generation capabilities.

2.4 Comparison between Autoregressive Methods and Non-Autoregressive Methods

In this subsection, we discuss the unique advantages of autoregressive models for vision in comparison
to non-autoregressive models, such as the popular diffusion-based (Ho et al., 2020) and rectified-flow
based models (Liu et al., 2022). We summarize these advantages in three key points:

1. Scaling Laws: The success of the next-token prediction paradigm in NLP (Achiam et al., 2023;
Lyu et al., 2023; Dubey et al., 2024) can be largely attributed to well-established scaling laws (Henighan
et al., 2020; Kaplan et al., 2020). Although the scaling properties of methods like diffusion and GANs
remain relatively underexplored, autoregressive visual models offer the potential to transfer success-
ful scaling experiences from NLP. This could enable efficient scaling in visual generation frameworks,
particularly in terms of model size and performance. Some work like VAR (Tian et al., 2024), Llama-
Gen (Sun et al., 2024a) and FLUID (Fan et al., 2024) exemplify how autoregressive methods benefit
from these scaling laws, highlighting their potential for advancing visual generation.

2: Deployment Efficiency: Autoregressive generative models can leverage the existing deployment
technologies designed for language models (Wan et al., 2023). Frameworks such as VLLM provide
acceleration for autoregressive models, significantly improving generation efficiency. This allows au-
toregressive visual models to benefit from infrastructure that has already been optimized for language
tasks, facilitating seamless deployment in real-world applications.

3. Bridging Language and Vision: Autoregressive models offer a promising pathway toward
unifying multimodal understanding and generation. By aligning closely with the structure of large
language models, autoregressive approaches may provide a natural bridge between vision and language
tasks. This synergy opens up the potential for more integrated and versatile models that can handle
both vision and language processing in a unified manner, contributing to a deeper understanding of
multimodal tasks (Team, 2024; Zhou et al., 2024; Xie et al., 2024b; Wu et al., 2024a).

In addition to these primary advantages, autoregressive models share some secondary benefits with cer-
tain non-autoregressive models. For example, autoregressive training demonstrates inherent stability.
By directly optimizing the negative log-likelihood (NLL) through the minimization of the cross-entropy
loss function, as depicted in Eq. 2, autoregressive models eliminate the need for adversarial training,
as is the case with GANs (Goodfellow et al., 2014), or for the complex design of invertible networks
like normalizing flows (Dinh et al., 2014; Rezende & Mohamed, 2015). Furthermore, autoregressive
models often demonstrates well generation diversity, less worrying about the model collapse curse that
can affect non-autoregressive models.

Despite these advantages, autoregressive models do have certain limitations. One significant draw-
back, when compared to diffusion models, is their difficulty in generating ultra-high-resolution images
or videos. The higher-order time complexity of autoregressive generation makes this task more chal-
lenging. As discussed in Table 1, autoregressive models using next-token prediction paradigm have a

10



Published in Transactions on Machine Learning Research (03/2025)

V
is

ua
lT

ok
en

iz
er

Foundational Works VQ-VAE (Van Den Oord et al., 2017), VQ-VAE-2 (Razavi et al., 2019),
VQ-GAN (Esser et al., 2021b)

Improvements on VQGAN
ViT-VQGAN (Yu et al., 2021a), Efficient-VQGAN (Cao et al., 2023),
LlamaGen (Sun et al., 2024a), VQGAN-LC (Zhu et al., 2024b),
TiTok (Yu et al., 2024c)

Variants of Vector-Quantization RQ-VAE (Lee et al., 2022a), MoVQ (Zheng et al., 2022),
DQ-VAE (Huang et al., 2023b), FSQ (Mentzer et al., 2023)

Image Compression Algorithms DCTransformer (Nash et al., 2021), Wavelet Transformer (Mattar et al., 2024)

Figure 5: Taxonomy of visual tokenizer in an unconditional generation.

time complexity of O(N6/k6) when generating an N ×N image, whereas a Diffusion Transformer (DiT)
model (Peebles & Xie, 2023) in a similar setting typically requires only O(TN4) time complexity (T
for the denoising steps). Additionally, while autoregressive generation has shown promising progress in
prompt-following when generating images from given prompts (Fan et al., 2024; Wang et al., 2024d), as
demonstrated by benchmarks like GenEval (Ghosh et al., 2024), the visual quality of single images gen-
erated by autoregressive models still lags behind state-of-the-art diffusion or flow-based models (Esser
et al., 2024; Labs, 2024), and significant research is still needed to bridge this gap. We provide a more
detailed discussion of potential future directions for this work in Section 5.

3 Visual Autoregressive Models

3.1 Image Generation

3.1.1 Unconditional Image Generation

Unconditional image generation refers to models producing images without specific input or guiding
conditions, relying solely on learned visual patterns from the training data. This process can be cate-
gorized into three paradigms: pixel-level, token-level, and scale-level generation. Pixel-level generation
creates images pixel by pixel, while token-level treats images as sequences of discrete tokens for more
efficient generation. And scale-level generation builds images progressively from low to high resolution.
This subsection will focus on the generation process itself, highlighting how models synthesize images
by autoregressive generation of each part based on previously generated content, ensuring coherence
and consistency. While other applications of autoregressive image generation will be introduced in
subsequent sections.

3.1.1.a Pixel-wise Generation

In the pixel-wise generation, the model constructs an image pixel on a pixel-by-pixel basis, uncondi-
tionally predicting each pixel’s quantified value based solely on the sequence of previously generated
pixels. This approach allows for direct optimization of the likelihood function, thus producing highly
detailed outputs, albeit at a significant computational cost. This unconditional generation marks the
inception of AR generation research, laying the foundational paradigm upon which all subsequent work
in this domain has been built.

Recurrent and Parallel Pixel Generation Techniques. PixelRNN (Van Den Oord et al., 2016)
uses RNNs to predict pixel values sequentially, effectively capturing complex dependencies between pix-
els. This work is the first to propose using an autoregressive approach for image generation. Building
on its success, PixelCNN (Van den Oord et al., 2016) adopts dilated convolutions to efficiently capture
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long-range pixel dependencies for generation. PixelCNN++ (Salimans et al., 2017) further optimizes
PixelCNN using a discretized logistic mixture likelihood function and architectural improvements, im-
proving image quality and efficiency. Reed et al. (2017) introduces a parallelized version of PixelCNN,
which reduces computational complexity and allows faster high-resolution image generation.

Transformer-based Approaches for Pixel Generation. Traditional CNNs and RNNs face scal-
ing issues when used for autoregressive image generation on large datasets, mainly due to their limited
ability to model long-term dependencies, and their model architectures also struggle to scale up in size.
To address this issue, Transformer (Vaswani, 2017) has been adapted for pixel-wise generation, lever-
aging its superior capacity to capture long-range dependencies within the data. PixelSNAIL (Chen
et al., 2018) is the first work to combine causal convolutions with self-attention mechanisms, allowing
the model to consider both local and broader contexts while preserving the sequential nature of pixel
generation. Inspired by it, The Image Transformer (Parmar et al., 2018) employs self-attention to han-
dle local neighborhoods in larger images, improving performance on complex tasks. ImageGPT (Chen
et al., 2020) utilizes a decoder-only architecture and goes further by treating images as sequences of
pixels, employing an autoregressive framework similar to that used in natural language processing.
The above approaches demonstrate the power of Transformers in modeling long-range dependencies
between pixels, laying groundwork for future advancements in large-scale unsupervised image learning.

3.1.1.b Token-wise Generation

Token-wise generation utilizes a different approach, where the image is divided into a sequence of
tokens, and each token is generated based on the previously generated tokens, similar to how text is
processed in natural language models. This paradigm often leverages models like transformers, which
can handle larger contexts in one step compared to pixel-by-pixel generation. These tokens typically
represent local patches of the image in a more compact form, allowing for faster generation and
scalability in terms of image size and complexity. Token-wise generation focuses on the representation
of images as sequences of discrete tokens, i.e., the design of the image tokenizer, as well as the modeling
of the autoregressive generation process at the token level.

(1) Design of Image Tokenizer

Brief Recap of Foundational Works. In Sec 2.2.2, we have briefly introduced seminal works
in visual tokenization, including VQ-VAE (Van Den Oord et al., 2017), VQ-VAE-2 (Razavi et al.,
2019), and VQGAN (Esser et al., 2021b). These groundbreaking studies collectively established a
two-stage paradigm for next-token prediction. This paradigm involves initially training a discrete
visual tokenizer, followed by training a powerful sequence model to autoregressively predict the next
token. VQ-VAE (Van Den Oord et al., 2017) initially introduces autoencoder-style training and VQ
techniques, compressing a 128 × 128 image into a 32 × 32 discrete latent. Building on this, VQ-
VAE-2 (Razavi et al., 2019) proposes a hierarchical structure that quantizes a 256 × 256 image into
both 64 × 64 and 32 × 32 latent maps, corresponding to the bottom and top levels, respectively.
VQGAN(Esser et al., 2021b) further advances this approach by integrating adversarial training and
perceptual loss, achieving better perceptual quality and improving image compression rates. Due to
its powerful representation capabilities, VQGAN is widely adopted in many autoregressive models and
MLLMs, serving as a robust visual encoder.

Improvements in Efficiency and Codebook Utilization. Despite the advances brought by
VQGAN, it still exhibits certain limitations, such as low codebook utilization and slow sampling
speed. Several works have emerged to improve upon the vanilla VQGAN. Yu et al. (2021a) pro-
posed ViT-VQGAN, which replaces the CNN network in the encoder-decoder architecture with a
Vision Transformer (Dosovitskiy, 2020), demonstrating superior reconstruction quality. In addition,
they introduce a linear projector to map latent codes from the high-dimensional space(768-d vector)
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to a lower-dimensional space(32-d vector), facilitating efficient code index lookup. They also apply
L2-normalization to the codebook vector to enhance training stability. ViT-VQGAN expands the code-
book size from 1024 to 8196 without compromising the codebook utilization. Efficient-VQGAN (Cao
et al., 2023) further improves efficiency by incorporating local attention through Swin Transformer
blocks (Liu et al., 2021). TiTok (Yu et al., 2024c) propose a Transformer-based 1D tokenizer, built on
ViT-VQGAN by introducing a set of fixed length latent tokens K as input to the Vision Transformer.
Adopting the architectures similar to Q-Former (Li et al., 2023b), this approach converts 2D image
patches into 1D latent tokens of length K, enabling a more compact latent representation.

Zhu et al. (2024b) presents VQGAN-LC, which maintains a static codebook and trains a projector to
map the entire codebook into the latent space without requiring modifications to the encoder/decoder.
To initialize a static codebook, they utilize a pretrained CLIP image encoder (Radford et al., 2021)
to extract patch-level features from the target dataset. These features are clustered, and class centers
are selected to initialize the codebook. VQGAN-LC successfully scaled the codebook size of VQGAN
to 100000 with a utilization rate of 99%. LlamaGen (Sun et al., 2024a) conducts a detailed ablation
study on the codebook size and vector dimension in VQGAN. Their results reveal that the large
codebook dimension and small size used in vanilla VQGAN resulted in each vector containing excessive
information. Consequently, attempts to scale the codebook size resulted in poor utilization rates.
Therefore, LlamaGen employs a much larger codebook size with smaller vector dimensions, which has
been shown to significantly enhance both reconstruction quality and codebook utilization.

Variants of Vector Quantization. Beyond improvements on VQGAN, several works have also
proposed variants of Vector Quantization. One such approach is Residual Quantization (RQ), in-
troduced by Lee et al. (2022a). As previously discussed in Sec. 2.2.3 and Eq. 5, RQ represents an
image as D quantizing residuals of feature maps, recursively approximating the final latent code z
in a coarse-to-fine manner. Each depth d shares the same codebook. Under constrained codebook
sizes, RQ has been shown to outperform VQ in reconstruction performance and generation quality.
Similarly, MoVQ (Zheng et al., 2022) adopts a multichannel index map with a shared codebook for
image quantization. They introduce modulation operations during decoding to incorporate spatial
variants and enhance reconstruction performance. Huang et al. (2023b) further propose Dynamic
Quantization (DQ), employing a hierarchical encoder to represent images at multi-level. DQ employ
Dynamic Grained Coding (DGC) modules to assign a dynamic granularity to each region, resulting
in a multi-grained representation where each region has a variable length. Other works attempt to
simplify the nearest-neighbor lookup in VQ by modifying the quantization process. Mentzer et al.
(2023) propose Finite Scalar Quantization (FSQ), which assumes that the distribution of the latent
code in a lower-dimensional space follows a simple, fixed grid partition. FSQ bounds each dimension of
the latent code z to L values, avoiding complex nearest-neighbor computations. It prevents codebook
collapse and demonstrates high codebook utilization when scaling up the codebook size.

Inspiration from Image Compression. Some works draw inspiration from traditional image
compression algorithms to design more effective image tokenizers. DCT-Transformer (Nash et al.,
2021), inspired by the JPEG compression algorithm (Wallace, 1991), designs a Discrete Cosine Trans-
form(DCT) (Ahmed et al., 1974) based transformer to convert images into quantized DCT coefficients.
Similarly, Mattar et al. (2024) develops a wavelet-based image coding method leveraging wavelet Tok-
enizer (Daubechies, 1992). This approach tokenizes visual details in a coarse-to-fine manner, ordering
the information starting with the most significant wavelet coefficients. These approaches provide fresh
perspectives on the design of image tokenizers.

(2) Autoregressive Modeling

Foundation Work in Autoregressive Modeling. As previously discussed, VQ-VAE (Van
Den Oord et al., 2017) and VQ-VAE-2 (Razavi et al., 2019) introduced the concept of tokenization,
steering autoregressive visual generation towards a two-stage paradigm. Despite these advancement,
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these models still rely on CNNs for token-wise autoregressive modeling. The inherent limitation of
CNNs, due to their local attention mechanisms, impedes their ability to effectively model long se-
quence dependencies. A significant milestone that unlocked the potential of autoregressive visual
generation was the advent of VQ-GAN (Esser et al., 2021b), which combines Transformer(Vaswani,
2017) with next-token prediction, employing a GPT-2 style decoder-only Transformer to predict sub-
sequent tokens in a raster-scan order. VQGAN enables the scaling of autoregressive image generation
to high-resolution images comprising millions of pixels, and surpasses all previous methods in both
generation quality and resolution. Since VQ-GAN, Transformer have become the de-facto standard
for autoregressive modeling.

Scaling Up to Larger Models. Following the establishment of Transformer structures, researchers
have sought to investigate whether the scaling laws observed in language models are also applicable
to autoregressive vision generation. LLamaGen (Sun et al., 2024a), for instance, directly employs the
Llama architecture (Touvron et al., 2023a;b) without additional modifications and trains a series of
image generation models with parameters ranging from 111M to 3.1B. Results demonstrate perfor-
mance improvements with the increase in model parameters, indicating the potential for scalable image
generation. In contrast, DeLVM (Guo et al., 2024) concentrated on minimizing data and parameter
requirements to develop data-efficient large vision models. DeLVM achieves high adaptability across
diverse vision tasks with significantly reduced data.

Efficiency and Long-sequence Modeling. Linear attentions have recently gained popularity for
their efficiency in long-sequence modeling during autoregressive generation. Both ARM (Ren et al.,
2024b) and AiM (Li et al., 2024b) leverage the Mamba architecture to enhance image generation.
ARM (Ren et al., 2024b) has made successful exploration on combining autoregressive models with
the Mamba architecture to enhance the visual capabilities of Mamba and accelerate the training
process. AiM (Li et al., 2024b) applies Mamba directly for next-token prediction in autoregressive
models, achieving superior quality and faster inference on ImageNet1K with a FID of 2.21x.

Exploration Beyond Raster Order. Traditional autoregressive methods typically serialize 2D
images into 1D discrete sequences following a raster order. However, recent research suggests that this
reliance on raster order and discrete representations may not be essential for autoregressive generation
modeling. Studies indicate that exploring alternative methods could lead to improved performance
and open up new possibilities for image representation. SAIM (Qi et al., 2023) introduces a stochastic
process for autoregressive image modeling by predicting image patches in random orders rather than
following a fixed raster order of pixel predictions. This stochastic approach challenges the conventional
necessity of raster order in autoregressive modeling. MAR (Li et al., 2024c) provides a theoretical
analysis suggesting that raster order and discrete representations are not necessary. MAR further
introduces a diffusion loss and trains an autoregressive model(in general definition) with continuous
representations in a Masked Image Modeling (MIM) style. They achieve comparable performance
to traditional discrete autoregressive techniques, questioning the conventional reliance on discrete
tokenization. SAR (Liu et al., 2024g) further generalizes the problem into a unified framework. SAR
enables causal learning with any sequence order or output intervals, offering a more flexible and
potentially powerful approach to autoregressive image modeling.

Intergration with Other Generative Models. The idea of combining autoregressive models with
other generative models like GANs (Goodfellow et al., 2014) and Diffusion (Ho et al., 2020) has also
garnered researchers’ interest. RAL (Ak et al., 2020) innovatively introduces adversarial learning and
policy gradient optimization into the training of autoregressive models to address the inherent exposure
bias problem, which is a common issue in autoregressive models. ImageBART (Esser et al., 2021a)
employs a coarse-to-fine autoregressive method, combining multinomial diffusion with hierarchical
structures to iteratively improve image fidelity and details during generation. DisCo-Diff (Xu et al.,
2024) aims to enhance diffusion models by augmenting them with learnable discrete latents. They
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adopt an autoregressive transformer to model the distribution of these discrete latents. This approach
achieves state-of-the-art FID scores on the ImageNet benchmark.

3.1.1.c Scale-wise Generation

While next-token prediction has achieved considerable success in vision generation and has almost
become the de-facto standard paradigm for visual autoregressive models, several significant challenges
still warrant discussion. The first is computational efficiency. Due to the inherent 2D nature of images,
the quadratic computational complexity of self-attention in transformers, and the autoregressive steps
involved in generation. the overall complexity can reach O(n6) when generating an n × n token map.
Although efforts have been made to reduce the sequence length through tokenization, the growing image
resolution exacerbates this issue, rendering the computational demands increasingly unsustainable.
The second challenge is the flattening operation. In the context of next-token prediction, visual tokens
are flattened into a 1D sequence after tokenization, which limits the model’s ability to leverage spatial
locality during autoregressive generation. While recent studies (Sun et al., 2024a) demonstrate that
LLM-style autoregressive models can produce high-quality images, the necessity of preserving spatial
locality remains an open issue.

In contrast to next-token prediction, the next-scale prediction paradigm utilizes token maps at different
scales as the base autoregressive units, progressively generating visual content via a coarse-to-fine
manner. This paradigm further reduces the sequence length required for autoregressive generation.
Generating a complete token map at each step, enables leveraging the inductive biases inherent in
images to enhance the quality of visual generation. In line with previous sections, we introduce the
design of visual tokenizers and autoregressive modeling within the next-scale prediction paradigm.

(1) Design of Video Tokenizer

The paradigm of next-scale prediction, akin to next-token prediction, requires a visual tokenizer to
compress an image into a discrete token map. A foundational technique behind this is the Residual
Quantization (RQ) introduced in RQ-VAE (Lee et al., 2022a). RQ-VAE is initially developed to
address the low utilization issue of VQGAN when scaling to larger codebook sizes, which is achieved
by introducing an additional depth dimension d. In RQ-VAE, each latent vector is quantized into
D codes, with each code representing the quantization of the residual vector at the current depth.
All depths d share the same codebook. RQ recursively approximates the final latent vector z in a
coarse-to-fine manner, providing a more accurate approximation of z while maintaining the codebook
size. Note that RQ still quantizes the image into a token-wise sequence based on spatial positions,
with each position having multiple residual codes at different scales. Although RQ is not a next-scale
prediction method, its hierarchical approach offers valuable insights for next-scale prediction.

Building on the hierarchical and residual-style quantization concepts of RQ-VAE, VAR (Tian et al.,
2024) introduces a more concise scale-wise quantization method. VAR employs a vanilla VQ-
GAN (Esser et al., 2021b) to encode the feature map in the latent space. It then interpolates and com-
putes residuals to quantize the feature map f ∈ Rh×w×c into K multi-scale token maps (r1, r2, ..., rK),
each at increasingly higher resolutions hk × wk, culminating in rK which matches the original feature
map’s resolution h × w. Similar to RQ-VAE, VAR quantizes the residuals of each scale relative to the
previous scale, with residuals sharing the same codebook across different scales. Through this hierar-
chical approach, VAR represents an image as a coarse-to-fine scale-wise sequence. The quantization
process of this sequence is entirely causal, and each autoregressive unit maintains spatial locality.

(2) Autoregressive Modeling
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Scale-wise generation involves creating images at multiple scales or resolutions. The model typically
starts by generating a coarse, low-resolution version of the image and progressively enhances details
through successive stages. This technique allows the model to capture both global structure and finer
details without needing pixel-level precision in the initial stages. As each phase refines the image,
it adds more detail and adjusts local features to improve overall fidelity and texture. Scale-wise
generation is particularly effective for high-resolution image synthesis, where maintaining consistency
across scales is crucial.

Despite its advantages, scale-wise generation is less common in autoregressive models due to the
significant complexity it introduces in training and computation. Generating images at multiple scales
requires careful coordination between different resolutions, which can be challenging and resource-
intensive. Each scale builds upon the previous one, increasing the risk of error propagation from lower
resolutions. Furthermore, this approach demands more computational power and memory as the model
processes and refines images on several scales, making it less efficient than single-resolution methods.

A pioneering work that achieved this breakthrough is VAR (Tian et al., 2024), which brought the
concept of "next-scale prediction" to reality. VAR innovatively shifts the focus from traditional pixel-
wise prediction to a scale-wise generation paradigm. As previously introduced, VAR draws inspiration
from RQ-VAE, quantizing a single image into token maps of various resolutions from coarse to fine.
VAR employs a standard decoder-only transformer to model the next-scale prediction, while a block-
wise causal mask is applied to enable each scale to depend only on its prefix and allow for parallel token
generation. VAR outperforms existing autoregressive models and diffusion transformers, achieving
superior results on benchmarks such as ImageNet. Furthermore, the model exhibits power-law scaling
laws similar to those observed in large language models, which may reveal a new research direction for
vision autoregressive modeling.

Overall, these scale-wise generation techniques mark significant advancements in high-resolution image
synthesis. Following VAR, numerous works have emerged based on VAR including text-to-image
generation, image editing, and controllable image generation. We will discuss these developments in
the subsequent chapters.

3.1.2 Text-to-Image Synthesis

Text-to-Image generation involves generating images based on specific textual conditions provided
to the model. Unlike unconditional image generation, which produces images without any input
constraints, text-to-image generation leverages additional information to guide the creation process.
By incorporating textual conditions, the model can produce more targeted and contextually relevant
images, enhancing the quality and applicability of the generated outputs. The illustration of typical
text-to-image synthesis frameworks is shown in Figure 6.

3.1.2.a Token-wise Generation

Exploration across the integration of textual conditions and visual modeling. A pioneering
effort in this field is is exemplified by DALL·E (Ramesh et al., 2021), which employs a BPE-encoder
and a pretrained VQ tokenizer to convert text and images into discrete tokens, respectively. The
model then utilizes text tokens as a prefix condition and learns to predict the subsequent image
tokens. Building upon this foundation, CogView (Ding et al., 2021) scales up the autoregressive token-
wise model by employing a VQ-VAE tokenizer to transform image patches into discrete tokens. This
approach enables the deployment of a 4-billion parameter Transformer model with higher performance.
CogView2 (Ding et al., 2022) further explores a hierarchical strategy for text-to-image generation. It
first train a base T2I model to generate images at low-resolution, followed by a fine-tuning stage
aimed at super-resolution. This hierarchical approach successfully reduces computational demands
and enhances large-scale image generation.
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Figure 6: Illustration of different frameworks for auto-regressive text-to-image generation.
(a) Generally, autoregressive text-to-image generation involves tokenizing text and images, and model
all the tokens with a autoregressive transformer. (b) With the flexibility of autoregressive transformers,
the autoregressive generation can be combined with other process, such as the denoising process or
multi-scale generation process. (c) With the bi-directional transformer, the autoregressive generation
sequence does not need to be a pre-defined order (such as raster scan), but can be any random order.

Actually, these methodologies treat text tokens as prefixes for autoregressive modeling, thereby the
transformer is responsible for both capturing text semantics and generating image content within the
autoregressive framework. In addition to this technical approach, another line of research involves
encoding text tokens using a dedicated text encoder and generating image content using a transformer
decoder. For instance, Make-a-Scene (Gafni et al., 2022) employs an external text encoder to process
the textual input, while Parti (Yu et al., 2022) adopts a sequence-to-sequence (seq2seq) model with an
encoder-decoder architecture. In Parti, a transformer encoder is utilized to encode the text information,
and a transformer decoder is employed to generate the corresponding image. During a period when
autoregressive modeling had not yet reached its full potential, these approaches demonstrated a more
robust semantic understanding compared to earlier methods.

Furthermore, LQAE (Liu et al., 2024b) proposes an unsupervised technique for aligning text with
images by quantizing image embeddings into text-like tokens, enabling few-shot multimodal learn-
ing. Fluid (Fan et al., 2024) introduces a random-order autoregressive model on continuous tokens,
highlighting importance of token representation and generation order in scaling autoregressive models.

Integration with Diffusion Models. Inspired by the powerful generative capabilities of diffusion
models, recent research has investigated the integration of diffusion models with autoregressive models
for text-to-image generation. VQ-Diffusion (Gu et al., 2022) employs a Vector Quantized Variational
Autoencoder (VQ-VAE) to map images into a discrete latent space. Subsequently, it utilizes a discrete
diffusion decoder instead of a transformer decoder to reconstruct the images. In contrast, Kaleido
Diffusion (Gu et al., 2024) maintains diffusion as the core generative framework while incorporating an
autoregressive model to handle the latent conditions, thereby enhancing both text understanding and
image generation capabilities. Another integrating autoregressive model with diffusion is DART (Zhao
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et al., 2024), which unifies autoregressive and diffusion within a non-Markovian framework, achieving
scalable, high-quality image synthesis.

Integration with Large Language Models. A significant advancement, LLM4GEN (Liu et al.,
2024f), presented an end-to-end framework combining text encoders like CLIP with diffusion models,
enriching token-wise generation with the semantic depth of large language models (LLMs). This
results in improved semantic correspondence between text and image tokens for complex prompts.
V2T (Zhu et al., 2024a) translates images into discrete tokens from an LLM’s vocabulary, aligning
visual and textual data for tasks such as image denoising. MARS (He et al., 2024) features the
Semantic Vision-Language Integration Expert (SemVIE) module, deeply integrating textual and visual
tokens, illustrating the flexibility of token-wise generation in producing detailed images from textual
descriptions. Lumina-mGPT (Liu et al., 2024a) applies Flexible Progressive Supervised Finetuning
(FP-SFT) to Chameleon (Team, 2024) with high-quality image-text pairs to fully unlock the potential
of the model for high-aesthetic image synthesis while preserving its general multimodal capabilities.

Expansion to Novel Tasks. IconShop (Wu et al., 2023b) further extends token-wise generation
to vector graphics, enabling scalable vector icon creation from text prompts. Make-a-story (Rahman
et al., 2023) focuses on generating visually coherent stories from text, employing a scale-wise generation
process to maintain consistency across multiple image frames within complex narratives. SEED-
Story (Yang et al., 2024), a multimodal storytelling model, generates images and text in parallel,
ensuring that visual details correspond seamlessly with the narrative across different resolution levels.
Its hierarchical attention mechanism preserves coherence between text and images at all scales, from
coarse descriptions to intricate image details.

3.1.2.b Scale-wise Generation

As previously discussed, VAR pioneered a novel paradigm beyond token-wise generation, termed scale-
wise generation, which generates images progressively from coarse to fine scales. Due to its advantages
in efficient generation, coupled with its demonstration of scaling laws analogous to those observed in
language models. Scale-wise generation has garnered significant research interest. Efforts have been
made towards extending this paradigm to the text-to-image generation domain.

STAR (Ma et al., 2024) is a pioneering work in the domain of scale-wise text-to-image generation.
Building upon the common paradigm of diffusion models (Rombach et al., 2022) in image generation,
STAR employs features from a pretrained text encoder, utilizing cross-attention layers to provide
detailed textual guidance. In addition, STAR introduces novel techniques such as Rotary Position
Embedding (ROPE) (Su et al., 2024) to enhance the autoregressive modeling capabilities. These
modifications result in improved text alignment and more efficient generation processes, demonstrating
the potential of scale-wise text-to-image generation to achieve higher fidelity and coherence.

Concurrently, VAR-CLIP (Zhang et al., 2024a) introduces their approach by concatenating text embed-
dings from a pretrained CLIP model with visual embeddings from a VAR encoder. In this framework,
the text embeddings serve as a condition to guide the generation of multi-scale tokens and the final
image. This method has demonstrated notable effectiveness in text-to-image generation.

In summary, scale-wise generation models provide a powerful framework for generating high-resolution
images by progressively refining outputs across multiple levels of detail. This hierarchical approach
not only ensures global coherence, but also captures intricate details, making it a robust solution for
text-to-image generation tasks.

3.1.3 Image-condition Synthesis

Autoregressive models have played a significant role in advancing image generation tasks, including
Image-to-Image translation, where the goal is to translate one image domain to another.
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3.1.3.a Image Painting

In parallel, some works focuses on specific editing tasks such as inpainting and outpainting, where
missing or extended visual content needs to be generated coherently. Inpainting fills in missing regions
by seamlessly blending new content with the surrounding areas. Outpainting, on the other hand,
extends image boundaries by generating new content that aligns naturally with the original scene,
creating larger images from smaller inputs. Despite these differences, both techniques face challenge of
maintaining visual coherence with existing context. Outpainting (Zhang et al., 2024b) is particularly
useful for generating panoramic views or expanding image contexts. QueryOTR (Yao et al., 2022)
addresses this by using a hybrid transformer-based encoder-decoder architecture, reframing outpainting
as a patch-wise sequence-to-sequence task. For inpainting, Yu et al. (2021b) combines autoregressive
modeling with context aggregation, ensuring consistent reconstruction of missing image regions by
using the information surrounding the pixel. The overview of image painting are shown in Figure 7.

3.1.3.b Multi-view Generation

MIS (Shen et al., 2024) introduces an autoregressive framework for generating multiple interrelated
images from the same distribution. By leveraging latent diffusion models, MIS enhances diversity while
ensuring semantic coherence across scenes. This approach demonstrates the potential of autoregressive
processes in multi-view and sequential image generation tasks. SceneScript (Avetisyan et al., 2024)
further explores autoregressive modeling in the context of scene reconstruction, using token-based
generation to translate complex 3D scenes into structured commands. Both works illustrate how
autoregressive models can be extended beyond single-image generation to more complex tasks like
multi-view generation and structured scene reconstruction.
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3.1.3.c Visual In-Context Learning

Bar et al. (2022); Bai et al. (2024b) has emerged as a key prompting method for visual autoregressive
models. MAE-VQGAN (Bar et al., 2022) firstly proposes visual prompting, where a pretrained visual
model adapts to new tasks as image inpainting without finetuning or modification. Inspired by it,
VICL (Bai et al., 2024b) adapts in-context learning to vision tasks by presenting task descriptions or
demonstrations through images or natural language text, encouraging models to generate predictions
based on provided image queries.

3.1.4 Image Editing

Image editing is a crucial area in computer vision, focusing on modifying, enhancing, or reconstructing
images based on various user inputs. Recent advancements in deep learning have enabled models to
perform complex editing tasks such as inpainting, outpainting, and style transformations, allowing users
to manipulate visual content with greater ease and precision. These tasks often involve generating new
content that seamlessly integrates with the existing image, either by filling in missing parts (inpainting)
or extending the image boundaries (outpainting), while maintaining visual consistency.

3.1.4.a Text-driven Image Editing

VQGAN-CLIP (Crowson et al., 2022) introduces a method for generating and editing images using
natural language input. Its editing capabilities stem from the combination of VQGAN’s image synthesis
and CLIP’s ability to guide image modifications based on text prompts. This allows users to modify
existing images or create new ones by altering styles, adding elements, or transforming parts of an
image, while maintaining visual coherence. In contrast, Make-A-Scene (Gafni et al., 2022), illustrated
in Figure 8, enhances this by incorporating scene layouts (segmentation maps) alongside text input.
This addition enables more precise control over the structure and content of images, making it especially
useful for localized edits. Make-A-Scene provides control over both semantics and spatial arrangement,
whereas VQGAN-CLIP focuses more on creative, text-driven modifications.

3.1.4.b Image-driven Image Editing

Image-driven image editing encompasses a range of techniques focused on modifying visual content
while maintaining consistency with the original image’s context and style. In the domain of autore-
gressive image generation, the introduction of control mechanisms is pivotal for enhancing both the
flexibility and precision of the generated images. For example, ControlAR (Li et al., 2024e) integrates
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spatial controls like canny edges and depth maps into the decoding process, allowing for a detailed
and precise manipulation of image tokens. This approach enables more accurate alignment with the
original image’s features during generation. Similarly, ControlVAR (Li et al., 2024d) advances this
concept by modeling image and pixel-level control representations through a scale-level strategy, thus
achieving fine-grained control over the image synthesis process while preserving the inherent properties
of autoregressive models. CAR (Yao et al., 2024) elaborates on a similar concept, focusing on advanced
control mechanisms in autoregressive models to enhance the detail and adaptability of visual outputs.

On the other hand, for complex image generation tasks involving multiple objects, Many-to-Many
Diffusion (M2M) (Shen et al., 2024) applies an autoregressive diffusion model to generate multi-image
sequences, scaling across both spatial and temporal dimensions while maintaining consistency across
frames. MSGNet (Cardenas et al., 2021) utilizes a vector-quantized variational autoencoder (VQ-VAE)
combined with autoregressive modeling. This framework prioritizes both spatial and semantic coher-
ence within generated images, effectively preserving consistency across multiple objects. Extending
this concept to medical imaging, MVG (Ren et al., 2024a) proposes a unified framework for diverse
2D medical tasks such as cross-modal synthesis, image segmentation, denoising, and inpainting. This
approach leverages autoregressive training conditioned on prompt image-label pairs, treating these
tasks as image-to-image generation problems.

Overall, image-driven image editing techniques focus on refining image synthesis and manipulation
tasks, employing control mechanisms, context-aware models, and coherent extensions of existing con-
tent to achieve precise and visually consistent outputs.

3.2 Video Generation

Building upon the advancements of autoregressive models in image generation, video generation (Yuan
et al., 2024a;b) has similarly seen significant progress by extending these models to capture temporal
dynamics in addition to spatial patterns. While autoregressive image models focus on generating
static frames, video generation introduces the challenge of producing coherent sequences over time.
Like image generation, video generation is categorized into unconditional and conditional approaches
with different condition inputs. By leveraging the success of autoregressive models in both domains,
researchers continue to push the boundaries of generating realistic and temporally consistent video
sequences. Additionally, the integration of video generation techniques into embodied AI systems
presents a new frontier, where generated videos are not just an end in themselves but are used to
enhance the capabilities of intelligent agents in complex, real-world environments. The basic pipeline
of autoregressive video generation can be found in Figure 9.

3.2.1 Unconditional Video Generation

(1) Design of Video Tokenizer

Recent works have expanded visual tokenization to videos by incorporating temporal compression.
MAGVIT (Yu et al., 2023a) extends the 2D VQGAN into a 3D tokenizer to quantize video data into
spatial-temporal visual tokens, employing an inflation technique for initialization using image pre-
training. However, it struggles to tokenize images effectively. Building on MAGVIT, MAGVIT-v2 (Yu
et al., 2023b) introduces a lookup-free quantization (LFQ) method, replacing the traditional codebook
with binary latents derived from an integer set of size K, similar to word tokenizers in natural lan-
guage processing (Sennrich, 2015). This LFQ approach allows the vocabulary size to grow in a way
that benefits the generation quality of autoregressive models. Additionally, MAGVIT-v2 integrates
C-ViViT (Villegas et al., 2022) and MAGVIT within a causal 3D CNN, enabling unified tokenization
of both images and videos using a shared codebook. Open-MAGVIT2 (Luo et al., 2024) has success-
fully implemented and open-sourced MAGVIT-v2 for image tokenization, explored its application in
auto-regressive models, and validated its scalability properties. OmniTokenizer(Wang et al., 2024b)
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employs a transformer-based architecture with decoupled spatial and temporal blocks to perform image
and video tokenization within a unified framework, utilizing a progressive training strategy to enable
general-purpose visual encoding across various modalities.

(2) Autoregressive Modeling

Unconditional video generation focuses on creating video sequences from scratch, without any specific
input conditions. One of the foundational approaches in this area is the Video Pixel Networks (VPNs)
(Kalchbrenner et al., 2017), which extend the PixelCNN model to video data. VPNs model each pixel
in a video frame based on the preceding pixels and frames, allowing for the capture of intricate spatial
details. However, VPNs face challenges in maintaining temporal coherence over longer sequences,
resulting in less realistic motion when generating extended videos.

To address some of these limitations, MoCoGAN (Tulyakov et al., 2018) introduces an approach by
decomposing the video generation process into two distinct components: motion and content. The
model employs Generative Adversarial Networks (GANs) to separately generate a static content frame
and a sequence of motion vectors, which are then combined to form the final video. This decomposition
allows MoCoGAN to produce videos with more realistic and temporally coherent motion, although
the strict separation of motion and content can sometimes limit the model’s ability to generate highly
complex and expressive content.

Video Transformer (Weissenborn et al., 2019) focuses on leveraging the transformer architecture to
enhance the capacity and performance of these models to handle larger datasets and generate higher-
resolution, longer videos. These advancements push the boundaries of what is possible with autoregres-
sive models, enabling the generation of more detailed and extended video sequences. This approach
offers a more efficient alternative to VPNs and MoCoGAN, particularly in handling the temporal
dynamics of video generation.

LVT (Rakhimov et al., 2020) and VideoGPT (Yan et al., 2021) represent a significant step forward
by combining the power of VQ-VAE with transformers. By operating in a discrete latent space, they
achieve a balance between computational efficiency and high-quality video generation, improving both
the diversity and fidelity of the generated videos.

To reflect the latest developments, including long-duration video synthesis, models such as TATS (Ge
et al., 2022) have been introduced. This model leverages the combination of VQGAN and transformer
architectures to produce temporally consistent long videos. Additionally, the PVDM (Yu et al., 2023d)
demonstrates advanced diffusion-based approaches for video generation, offering improved probabilis-
tic modeling in latent spaces. Furthermore, MAGVIT-v2 (Yu et al., 2024b) emphasizes the role of
tokenizers in refining autoregressive models for video generation. LARP (Wang et al., 2024a) uses a
learned AR generative prior, capturing global semantic content and enhancing compatibility with AR
models.

3.2.2 Conditional Video Generation

Conditional video generation involves generating videos based on specific inputs, such as text descrip-
tions, images, or existing video frames. This task is more complex than unconditional generation, as
it requires the model to ensure that the generated content aligns with the given conditions.

Text-to-Video Synthesis. Text-to-video synthesis is challenging because it involves translating
textual input into coherent and contextually appropriate video sequences. One of the earlier models
addressing this challenge is IRC-GAN (Deng et al., 2019), which employs a recurrent architecture com-
bined with GANs to iteratively refine video generation from text. By using introspective modules that
encourage the model to correct its own mistakes and recurrent convolutional layers to handle temporal
dependencies, IRC-GAN improves the quality and coherence of generated videos, setting a foundation
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Figure 9: The pipeline of the auto-regressive video generation. The multi-modal input tokens are
tokenized by different encoders, and set as prefix conditions for autoregressive models. The output
tokens are autoregressively generated.

for future models. Godiva (Wu et al., 2021) utilizes transformers to align textual descriptions with
video content. GODIVA is capable of producing diverse and realistic video outputs from natural lan-
guage descriptions, demonstrating the potential of transformers in bridging the gap between textual
and visual modalities.

Building on this foundation, CogVideo (Hong et al., 2022) enhances the text-to-video synthesis process
through large-scale pretraining. By leveraging vast amounts of data during pretraining, CogVideo
improves the model’s ability to generate coherent videos from a wide range of text inputs, making it
more robust and versatile in handling different types of textual descriptions.

NÜWA (Wu et al., 2022) introduces a visual synthesis pretraining approach to further enrich the
model’s understanding of visual information before fine-tuning on text-to-video tasks. This pretraining
phase allows the model to develop a more nuanced understanding of visual data, resulting in more
accurate and realistic video generation based on textual input. NUWA-Infinity (Liang et al., 2022)
extends the capabilities of its predecessor by enabling the generation of videos of arbitrary length.
By stacking multiple autoregressive models, NUWA-Infinity overcomes the limitations of fixed-length
video generation, providing greater flexibility and adaptability.

Phenaki (Villegas et al., 2022) takes a different approach by introducing variable-length video gener-
ation, allowing the model to produce videos that match the length and detail specified by the input
text. This flexibility makes Phenaki particularly suitable for generating videos that need to accommo-
date varying levels of detail and duration. ART-V (Weng et al., 2024) introduces a masked diffusion
model (MDM) to reduce drifting by determining which parts of the frame should rely on reference
images versus network predictions. Additionally, anchored conditioning maintains consistency across
long videos, allowing ART-V to produce detailed and aesthetically pleasing videos even with limited
training resources. ViD-GPT (Gao et al., 2024) applies a GPT-style autoregressive framework within
video diffusion models to generate high-fidelity video frames one at a time, conditioned on previously
generated frames. By leveraging a latent space diffusion process and sophisticated temporal condition-
ing, ViD-GPT effectively reduces temporal inconsistencies and visual drift, resulting in videos that are
both visually appealing and temporally coherent. Loong (Wang et al., 2024e) showcases capabilities
in generating lengthy videos using a short-to-long video training strategy. PAV (Xie et al., 2024a)
propose a progressive diffusion approach, improving both speed and fidelity in text-conditioned video
generation. ARLON (Li et al., 2024f) integrates autoregressive models with diffusion transformers to
provide long-range temporal guidance. LWM (Liu et al., 2024c) introduces an architecture capable of
handling very long video sequences by leveraging Blockwise RingAttention. iVideoGPT (Wu et al.,
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2024c) incorporates interactive mechanisms in video generation, making it more adaptable and scal-
able. Pandora (Xiang et al., 2024) uses a hybrid autoregressive-diffusion model to allow real time text
controlled video generation.

Visual Conditional Video Generation. Visual conditional video generation involves generating
future video frames based on an initial sequence of frames or images. This task requires models to
accurately capture and predict the temporal dynamics of video sequences. It relates to unconditional
video generation in that the methods developed for unconditional video generation can also be applied
to video prediction, providing a foundation for predicting future frames based on learned temporal
patterns. The Convolutional LSTM Network (Shi et al., 2015) is one of the foundational models in
this area, combining CNNs with LSTM units. This combination allows the model to effectively capture
both spatial and temporal dependencies, making it particularly effective for tasks like precipitation
nowcasting, where predicting the movement and evolution of visual patterns is crucial. Building upon
this, PredRNN (Wang et al., 2017) proposes to use a spatiotemporal memory, and E3D-LSTM (Wang
et al., 2019) integrates 3D convolutions into LSTM.

SV2P (Babaeizadeh et al., 2018) introduces stochastic elements into the video prediction process,
allowing the model to account for multiple possible futures rather than predicting a single deterministic
outcome. By learning a distribution over potential future frames, this model improves the realism and
diversity of the generated videos, making it more adaptable to real-world scenarios where uncertainty
and variability are inherent. PVV (Walker et al., 2021) and HARP (Seo et al., 2022) take advantage of
latent space prediction to improve the accuracy and efficiency of video prediction. VQ-VAE compresses
video data into a discrete latent space, where autoregressive models can more easily predict future
frames. HARP builds on this approach by combining latent space prediction with a high-fidelity
image generator, resulting in video sequences that are not only accurate but also visually detailed and
temporally coherent. MaskViT enhances video prediction by using masked visual pretraining, where
portions of video frames are masked during training, forcing the model to learn to predict the missing
information. This approach improves the model’s ability to handle occlusions and other challenging
scenarios in video prediction tasks.

LVM (Bai et al., 2024a) introduces an approach that enhances the scalability of large vision models,
making them more adaptable for multimodal tasks like image-to-video generation. ST-LLM (Liu et al.,
2025) demonstrates that large language models are highly effective temporal learners, significantly
advancing video generation tasks that rely on visual cues. Furthermore, Pyramid Flow (Jin et al.,
2024a) introduces an efficient approach to flow matching, improving the computational efficiency of
video generation models without compromising the temporal or spatial consistency of the generated
videos. Building on the power of masked auto-regression, MarDini (Liu et al., 2024e) combines Masked
AR with diffusion for scalable video generation.

Multimodal Conditional Video Generation. Multimodal conditional video generation combines
visual and textual inputs to create video sequences. MAGE (Hu et al., 2022) presentes a key example
of this approach, allowing users to control the motion and content of the generated video through
text descriptions. This model provides precise control over the generated video, making it particularly
useful for applications where detailed and specific video content is required, such as animation or visual
storytelling.

While most video generation models focus on either unconditonal or conditional generation, there are
models that aim to generalize across different types of video generation tasks, allowing a single model
to generate videos from a wide range of inputs without requiring task-specific training. VideoPoet
(Kondratyuk et al., 2024) is a significant step in this direction, leveraging a large language model (LLM)
for zero-shot video generation. VideoPoet can generate videos from diverse inputs, including text,
images, and existing videos, demonstrating the potential of LLMs in creating versatile and adaptable
video generation models. This approach shows promise for developing truly universal models that can
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handle the complex and varied demands of real-world video generation applications. The scalability
of multimodal video generation has also been improved by sequential modeling techniques.

Autoregressive models have significantly advanced video generation, offering new capabilities in both
unconditional and conditional video tasks. These approaches continue to evolve, improving scalability,
flexibility, and generalization, bringing us closer to universal models capable of addressing the diverse
demands of real-world video generation applications.

3.2.3 Embodied AI

While the previous subsections have focused on the generation of video sequences as an end goal, the
emerging field of embodied AI introduces an important application for video generation. In this context,
video generation is not merely about creating visually appealing or realistic sequences; instead, it serves
as a critical component in training and augmenting intelligent agents that interact with and navigate
their environments. By providing synthetic yet realistic visual data, video generation techniques can
significantly enhance the learning process for embodied AI systems, enabling them to better understand
and respond to dynamic, real-world scenarios. The following part explores how video generation is
being leveraged to empower embodied AI, bridging the gap between visual synthesis and intelligent
interaction.

Learning general world models in visual domains remains a significant challenge for policy learning in
embodied AI. One approach is to learn action-conditioned video prediction models (Oh et al., 2015;
Kaiser et al., 2020), which predict future frames based on current observations and actions. Advanced
model-based reinforcement learning (RL) algorithms (Hafner et al., 2020; 2021; 2023; Schrittwieser
et al., 2020; Hansen et al., 2022) enhance efficiency and accuracy by leveraging latent imagination. For
example, IRIS (Micheli et al., 2023) uses a discrete autoencoder and an autoregressive Transformer
to model dynamics as a sequence learning problem, improving sample efficiency with minimal tuning,
particularly in the Atari 100k benchmark(Kaiser et al., 2020). However, these methods often complicate
the process by tightly coupling model learning with policy learning.

To address this issue, recent efforts have focused on building world models that accumulate generaliz-
able knowledge beyond specific tasks. Leveraging scalable architectures such as Transformers (Micheli
et al., 2023) and pre-training on large-scale datasets (Wu et al., 2023a; Mendonca et al., 2023) have
shown promise. GAIA-1 (Hu et al., 2023) integrates an autoregressive world model with a video dif-
fusion decoder to predict future driving scenarios. By discretizing video frames into tokens, GAIA-1
trains a self-supervised autoregressive Transformer to predict the next frame at the representation
level. These representations are subsequently decoded via a video diffusion process, yielding realis-
tic frames with fine-grained details. iVideoGPT (Wu et al., 2024d) adopts a generic autoregressive
Transformer framework to enhance the flexibility of scalable world models. Genie (Bruce et al., 2024)
pre-trains world models by learning latent actions from videos without ground-truth actions, enabling
action-controllable virtual worlds. GR-1 (Wu et al., 2024b) and GR-2 (Cheang et al., 2024) intro-
duce GPT-style models for multi-task, language-conditioned visual robot manipulation. GR-1 is pre-
trained on video datasets and fine-tuned on robot data for end-to-end prediction of actions and future
keyframes. GR-2, pretrained on 38 million video clips, generalizes across diverse robotic tasks and
environments. Their architectures incorporate large-scale video generative pre-training into robotic
manipulation tasks, thereby enhancing few-shot learning and generalization capabilities.

3.3 3D Generation

With increasing demand for realistic and controllable 3D content across various fields—from gaming
and film to medical imaging and autonomous driving—researchers have been striving to advance 3D
generation methods. Recent approaches leverage autoregressive models to improve control and detail
in generated 3D structures. This section provides a comprehensive overview of key 3D generation
advancements, focusing on the areas of motion, point clouds, scenes, and medical imaging. By exploring
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these advancements, we observe the transformative potential of autoregressive methods in achieving
more accurate and versatile 3D models.

3.3.1 Motion Generation

T2M-GPT (Zhang et al., 2023a) leverages pretrained text embeddings to generate detailed human
motion sequences from textual descriptions. HiT-DVAE focuses (Bie et al., 2022) on generating 3D
human motion sequences, utilizing a dynamical variational autoencoder (DVAE) to encode temporal
dependencies in pose sequences into time-dependent latent variables, which are decoded across mul-
tiple scales to produce realistic motion. HuMoR (Rempe et al., 2021) models motion as a series of
hierarchical latent variables, ensuring that both global movement patterns and finer details are accu-
rately captured to produce realistic 3D motion sequences. AMD (Han et al., 2024) proposes a novel
autoregressive model that iteratively generates complex 3D human motions from long text descrip-
tions, leveraging the previous time-step text and motion sequences for improved temporal coherence
and diversity.

3.3.2 Point Cloud Generation

Recent advances in autoregressive models have greatly enhanced 3D generation tasks. Canonical-
VAE (Cheng et al., 2022) propose a transformer-based model for point cloud generation, decomposing
point clouds into semantically aligned shape compositions, improving both reconstruction and un-
conditional generation. Octree Transformer (Ibing et al., 2023) introduces an octree-based method
with adaptive compression, linearizing complex 3D data for efficient autoregressive generation. (Qian
et al., 2024) present the Improved Auto-regressive Model (ImAM) for 3D shape generation, leverag-
ing discrete representation learning for efficiency and supporting conditional generation. Additionally,
Argus3D (Qian et al., 2024) scales these autoregressive models with 3.6 billion parameters, achieving
impressive results on large-scale datasets.

3.3.3 Scene Generation

Inspired by the success of multi-scale alignment of visual and language tokens, more tasks are adopting
similar approaches.SceneScript (Avetisyan et al., 2024) proposes a novel autoregressive image gener-
ation approach by using structured language commands to represent scenes. This method provides
compact and interpretable scene representations, excelling in architectural layout estimation and 3D
object detection, while being easily extendable to new tasks.

3.3.4 3D Medical Generation

3D images are challenging to acquire due to cost, quality, and accessibility constraints. Aiming to
produce high-resolution 3D volumetric imaging data with the correct anatomical morphology, Syn-
thAnatomy (Tudosiu et al., 2022) and BrainSynth (Tudosiu et al., 2024) scale and optimize VQ-VAE
and Transformer models for high-resolution volumetric data. Similarly, ConGe (Zhou & Khalvati,
2024) and 3D-VQGAN (Zhou et al., 2023b) introduce the class-conditional generation framework for
synthesizing 3D brain tumor MRI ROIs. Another way to generate 3D representations is image syn-
thesis based on 2D images. To achieve this goal, Unalign (Corona-Figueroa et al., 2023) reformulate it
as a voxel-to-voxel prediction problem and achieve it by conditioning an unconstrained transformer on
2D input views. Specifically, they model such mapping with a conditional likelihood-based generative
model, allowing sampled 3D data to sit at arbitrary positions/rotations relative to the 2D data. More-
over, AutoSeq (Wang et al., 2024c) introduces an autoregressive pre-training framework to represent
3D medical images, which treats them as interconnected visual tokens, which performs well on several
downstream tasks in public datasets, demonstrating the strong ability of autoregressive training.

In summary, autoregressive modeling techniques have significantly advanced the generation of complex
and diverse 3D structures. By harnessing temporal dependencies, shape compositions, and conditional
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representations, these methods enhance fidelity and offer refined control over generated outputs. The
diverse applications across motion, point clouds, scene creation, and medical imaging underscore the
versatility of autoregressive 3D generation. Future research is poised to further refine these models,
pushing the boundaries of realism, scalability, and usability across various domains.

3.4 Multimodal Understanding and Generation

Previous sections discussed visual generation, which transforms language or visual input into visual
output. In this section, we shift our focus to multimodal-to-multimodal tasks. This section is di-
vided into two parts: the framework for multimodal understanding and the framework for unifying
multimodal understanding and generation.

3.4.1 The Framework for Multimodal Understanding

The evolution of sophisticated models in multimodal understanding has significantly advanced the
integration of visual and textual data. A key approach in this domain is the discrete image token
masked image modeling (MIM) method, which has gained traction as a powerful pretraining strategy.
This method is instrumental in learning robust visual representations by predicting missing parts of
images, thus allowing models to gain a deeper understanding of visual content in context.

One pivotal model built on this groundwork is the BEiT (Bao et al., 2021). BEiT leverages MIM by
treating images analogously to how BERT treats text, masking parts of the image and predicting the
discrete tokens for these masked sections. This enables the model to learn high-level visual features
efficiently, akin to how BERT captures linguistic nuances.

The lineage of BEiT has seen multiple significant enhancements. BEiT-v2 (Peng et al., 2022) intro-
duced the concept of visual quantization knowledge distillation (VQKD), which integrates semantic
information into the image tokenization process. By leveraging pretrained models like CLIP, BEiT-v2
incorporates semantic knowledge into the token representations, thereby improving the model’s ability
to capture both visual and semantic features more effectively.

VL-BEiT (Bao et al., 2022) represents a further advancement in the series, focusing on generative
vision-language pretraining. It employs a unified transformer-based architecture to seamlessly process
and integrate both image and text data. By using a generative approach for pretraining, VL-BEiT is
capable of learning joint visual and textual representations, enhancing its ability to perform tasks such
as image captioning and visual question answering with high accuracy and coherence. BEiT-v3 (Wang
et al., 2022b) continued to refine these ideas, integrating more sophisticated multimodal techniques
and achieving state-of-the-art results in a variety of vision-language benchmarks.

Additionally, Flamingo (Alayrac et al., 2022) demonstrated that in-context learning can be effectively
scaled to large-scale vision-language models. Specifically, they enhanced downstream tasks like image
captioning by requiring only a few examples for significant improvements.

As the field progressed, new frameworks like LLaVA (Liu et al., 2024d) emerged, representing the
latest wave in multimodal understanding. LLaVA is built upon the extensive capabilities of large
language models, integrating them with powerful visual representation modules, thereby setting new
paradigms in the seamless fusion of language and vision tasks.

Several works like the AIM series (El-Nouby et al., 2024; Fini et al., 2024) have also explored a
compelling framework for learning visual representations through generative pre-training. In AIM (El-
Nouby et al., 2024), images are decomposed into non-overlapping patches, and a causal Vision Trans-
former (ViT) (Dosovitskiy, 2020) is trained to autoregressively predict the next patch’s representation.
These predicted representations are then mapped to pixel space via a heavyweight MLP for pixel-level
reconstruction. This approach enables AIM to learn robust visual representations using only a gener-
ative objective. AIMV2 Fini et al. (2024) further enhances this by aligning visual representations with
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textual features, expanding its applicability to multimodal understanding tasks. Both models rely
solely on generative pretraining and exhibit strong scaling properties, mirroring trends observed in
LLMs Achiam et al. (2023); Dubey et al. (2024), and demonstrating that large autoregressive models
can serve as a versatile paradigm for unified representation learning across modalities.

These advancements mark significant strides in bridging visual and textual data, facilitating richer,
more context-aware AI systems that can process and interpret the world in a more human-like manner.

3.4.2 The Framework for Unifying Multimodal Understanding and Generation

The unified framework extends traditional multimodal understanding (Chen et al., 2022; Li et al.,
2023a; Zhang et al., 2023b; Shi et al., 2023; Xie et al., 2024b; Wan et al., 2024) by enabling both
visual and textual output generation. Unlike earlier models that focused solely on interpretation, this
framework leverages the integration of Large Language Models (LLMs) to enhance multimodal content
generation. The overview of auto-regressive multimodal LLM’s application is shown in Figure 10.

From pre-LLM era’s separate processing of modalities, the evolution to LLMs has allowed for a seamless
convergence of language and visual data. This progress supports more coherent and contextually rich
outputs, using native multimodal architectures to handle integrated inputs and outputs efficiently. As
a result, the Unified Framework facilitates applications that require simultaneous comprehension and
generation across modalities, such as interactive storytelling and dynamic content creation.

Autoregressive Vision-Language Fusion Methods. Before the advent of LLMs, several autore-
gressive models focused on integrating vision and language. Notable among these is OFA (Wang
et al., 2022a), which unified tasks across modalities using a shared transformer backbone, demonstrat-
ing versatility in handling tasks such as image captioning and visual question answering. Similarly,
CogView (Ding et al., 2021) and M6 (Lin et al., 2021), extended the capabilities to Chinese text inputs,
offering robust image generation from textual descriptions. ERNIE-ViLG (Zhang et al., 2021) further
advanced this by employing a multi-modal pretraining strategy that enhanced the understanding of
image-text pairs. Unified-IO (Lu et al., 2022) explored input-output transformations across modalities,
providing a unified framework for diverse tasks.

Integration with LLMs and Diffusion Models. With the rise of LLMs, autoregressive mod-
els have increasingly interfaced with diffusion models to enhance multi-modal capabilities. NEXT-
GPT (Wu et al., 2023c) exemplifies this trend by combining the autoregressive approach with diffusion
processes to improve image synthesis from textual inputs. The SEED (Ge et al., 2024) and EMU-series
(Sun et al., 2024b; 2023; Wang et al., 2024d) further explore this synergy, utilizing diffusion models to
refine and stabilize the output quality of generated visual content. LaViT (Jin et al.) employs a token
merging strategy, which reduces the number of visual tokens by merging tokens that are spatially
or semantically similar, thereby lowering computational costs while maintaining high-quality visual
generation. Video-LaViT (Jin et al., 2024c), an extension of LaViT, applies a keyframe-based token
reduction technique to video data, selecting keyframes that capture the most critical information and
sparsely sampling intermediate frames, significantly reducing token count while preserving temporal
coherence in video understanding and generation. Additionally, models like X-ViLA (Ye et al., 2024)
(Cross-modality Vision, Language, Audio) push the boundaries of multi-modal learning by serving as
a foundation model for cross-modality understanding, reasoning, and generation across video, image,
language, and audio domains. X-ViLA demonstrates the potential of unified multi-modal architectures
to handle diverse tasks across multiple data types, offering a holistic approach to multi-modal content
generation. This integration has proven beneficial in addressing the limitations of purely autoregressive
methods, particularly in generating high-fidelity and diverse images.

Autoregressive Models for Seamless Multi-Modal Integration. More recent developments
have seen the emergence of native multi-modal autoregressive models designed from the ground up to
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Figure 10: The overview of auto-regressive multi-modal LLMs’ application. The diagram
highlights a high-level architecture combining both text and image modalities within auto-regressive
LLMs. The image and text encoders process input data, which is subsequently integrated by the
multimodal model to generate text and image outputs. Two image decoding strategies are shown: (a)
Diffusion-based image decoder, where continuous image representations are progressively refined using
a transformer-based diffusion process, and (b) VQ-based image decoder, where discrete image tokens
are transformed into visual outputs. The framework is capable of handling a range of tasks, including
pure text-based tasks (e.g., translation), vision-language tasks (e.g., VQA), text-to-image generation,
image editing, and multi-modal conversational applications.

handle multiple data types. Models such as Chameleon (Team, 2024) and Transfusion (Zhou et al.,
2024) exemplify this new class of architectures, providing smooth integration of visual and textual
data. These models are built to natively support multi-modal tasks, offering enhanced flexibility
and scalability. Chameleon, for instance, is designed to handle multi-modal inputs with minimal
architectural adjustments, making it a versatile model for tasks ranging from image captioning to
multi-modal reasoning.

Aghajanyan et al. (2023) is an important precursor to these developments, exploring how scaling
laws apply to generative models that handle multiple modalities simultaneously. This work provides
critical insights into how model size, data quantity, and computation scale influence performance in
mixed-modal settings, guiding the design of larger, more capable multi-modal models like Chameleon
and Transfusion. Another notable model is RA-CM3 (Yasunaga et al., 2022), which incorporates
retrieval-augmented techniques to enhance multi-modal language modeling. By integrating a retrieval
mechanism, RA-CM3 improves the model’s ability to access relevant external knowledge, thereby
boosting performance on tasks requiring a deeper understanding of both visual and textual inputs.
This retrieval-augmented approach demonstrates how external knowledge sources can be leveraged to
enhance the capabilities of multi-modal models, particularly in tasks that require complex reasoning
or contextual understanding. SHOW-o (Xie et al., 2024b), for instance, introduces an innovative
modeling scheme that aligns image and text representations, facilitating tasks such as image generation
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and visual storytelling, with the use of MAGVIT-v2 (Yu et al., 2023b) tokenizer. VILA-U (Wu et al.,
2024e) injects high-level visual information into RQ-VAE tokenizer (Lee et al., 2022a) from a pretrained
CLIP (Radford et al., 2021) to unify understanding and generation. Janus (Wu et al., 2024a) explicitly
decouples the understanding and generation vision encoder, which avoids the conflict between vision
understanding and generation.

To further enhance the efficacy of visual in-context learning, CoTVL (Ge et al., 2023) successfully
applies visual chain-of-thought prompt tuning for vision-language modeling, and performs better in
tasks that require more reasoning abilities. These models highlight the potential for autoregressive
frameworks to serve as foundational architectures in multi-modal applications, promoting a more
holistic approach to understanding and generating content across modalities.

The previously mentioned multimodal tokenization involves encoding images into tokens, allowing
Large Language Models (LLMs) to process both visual and language signals in a unified space. Vision-
to-Language (V2T) Tokenizer (Zhu et al., 2024a) maps image patches to discrete tokens that correspond
to LLM vocabularies, enabling tasks like inpainting and deblurring. Similarly, the Multimodal Cross-
Quantization VAE (MXQ-VAE) (Lee et al., 2022b) encodes both image and text inputs as tokens,
generating coherent multimodal outputs. These approaches improve image-text generation, though
they typically predict pixels in a fixed order without considering random generation strategies.

In summary, the evolution of visual autoregressive models in the realm of multi-modality underscores
their growing importance and versatility. From early integrations to sophisticated native architectures,
these models continue to push the boundaries of what’s possible in generating and understanding multi-
modal content. Future research directions may focus on improving model efficiency, scalability, and
the ability to handle an even broader array of modalities.

4 Evaluation Metrics

This section presents commonly used quantitative and qualitative metrics to evaluate the visual au-
toregressive models, summarized in Table 2.

4.1 Evaluation of Visual Tokenizer Reconstruction

The Visual Tokenizer serves a crucial role in compressing visual content into discrete token sequences
and accurately reconstructing it. Evaluation metrics for these tokenizers primarily focus on reconstruc-
tion fidelity, with widely adopted metrics including PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang
et al., 2018), and rFID (Heusel et al., 2017). PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity Index Measure) are pixel-level metrics that quantify the degree of pixel-wise alignment be-
tween the reconstructed image and its reference. While PSNR captures the average signal-to-noise ratio
across image pixels, SSIM accounts for perceptual differences in structure, luminance, and contrast.
LPIPS, in contrast, measures perceptual similarity by evaluating features from a pretrained VGG
network (Simonyan & Zisserman, 2014). rFID (Reconstruction Fréchet Inception Distance) extends
the traditional FID to the reconstruction setting, measuring the distributional discrepancy between
original and reconstructed image sets in feature space.

4.2 Evaluation of Visual Autoregressive Generation

Beyond the evaluation of tokenizers, comprehensive assessments of visual autoregressive generation
models are essential to measure their performance across multiple dimensions. Key metrics include
the following five aspects:

1. Visual Quality assesses the realism of generated content relative to real data. One fundamental
metric is Negative Log-Likelihood (NLL), which directly quantifies the likelihood of generated data
under the model’s learned distribution. Additional metrics, such as Inception Score (IS) (Salimans
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Table 2: Evaluation metrics used to assess Visual autoregressive models performance. FR: Full-
Reference, NR: No-Reference. ↑ indicates that the higher the metric the better the model performance
and vice versa.

Metric Reference
Dependency

Source

Reconstruction Fidelity
Peak Signal-to-Noise Ratio (PSNR) ↑ FR -
Structural Similarity Index Measure (SSIM) ↑ FR Wang et al. (2004)
Learned Perceptual Image Patch Similarity (LPIPS) ↓ FR Zhang et al. (2018)
Reconstruction Fréchet Inception Distance (rFID) ↓ FR Heusel et al. (2017)

Visual Quality
Negative Log-Likelihood (NLL) ↓ NR Fisher (1922)
Inception Score (IS) ↑ NR Salimans et al. (2016)
Fréchet Inception Distance (FID) ↓ NR Heusel et al. (2017)
Kernel Inception Distance (KID) ↓ NR Bińkowski et al. (2018)
Fréchet Video Distance (FVD) ↓ NR Unterthiner et al. (2018)
Aesthetic Score ↑ NR Schuhmann (2022)

Diversity
Precision and Recall ↑ NR Kynkäänniemi et al. (2019)
MODE Score ↑ NR Che et al. (2022)

Semantic Consistency
CLIP Similarity (CLIPSIM) ↑ NR Radford et al. (2021)
R-precision ↑ NR Craswell (2009)

Temporal Coherence
Warpping Errors ↑ NR Lai et al. (2018)
CLIP Similarity Among Frames (CLIPSIM-Temp) ↑ NR Radford et al. (2021)

Human-Centered Assessment
Human Preference Score (HPS) ↑ NR Wu et al. (2023d)
Quality ELO Score ↑ NR Elo (1978)
Human Study Metrics (Ratings, Preference, etc.) NR -

et al., 2016), Fréchet Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance
(KID) (Bińkowski et al., 2018), measure the distributional closeness between generated samples and
real data. which evaluates different aspects of the generated content’s realism and closeness to real
data distributions. Aesthetic Score (Schuhmann, 2022), a CLIP-based method, also contributes to
this evaluation by measuring the aesthetic appeal of generated images through embeddings aligned
with human aesthetic preferences. For video generation tasks, the Fréchet Video Distance (FVD) (Un-
terthiner et al., 2018) extends FID by taking temporal modeling into consideration, evaluating the
distance between distributions of generated and real videos.

2. Diversity evaluates the variety and richness of generated outputs within the model’s distribution.
Precision and Recall (Kynkäänniemi et al., 2019) metrics here assess both fidelity and diversity: Pre-
cision measures the proportion of generated samples that lie within the real data distribution, while
Recall evaluates the extent to which the real data distribution is represented within the generated
outputs. While the MODE Score (Che et al., 2022) quantifies both the quality and diversity of the
generated samples.

3. Semantic Consistency examines the alignment between generated content and given textual
descriptions or other modalities of input. Metrics such as CLIP Score and R-precision (Craswell,
2009) are commonly used to assess this alignment. The CLIP Score quantifies the cosine similarity
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Type Model #Params Resolution FID ↓ IS ↑ Precision ↑ Recall ↑

GAN
BigGan (Brock, 2018) 112M 256 × 256 6.95 224.50 0.89 0.38
GigaGan (Kang et al., 2023) 569M 256 × 256 3.45 225.50 0.84 0.61
StyleGan-XL (Sauer et al., 2022) 166M 256 × 256 2.30 265.10 0.78 0.53

Diffusion

ADM (Dhariwal & Nichol, 2021) 554M 256 × 256 10.94 101.00 0.69 0.63
CDM (Daras et al., 2024) - 256 × 256 4.88 158.70 - -
LDM-4 (Rombach et al., 2022) 400M 256 × 256 3.60 247.70 - -
DiT-XL/2-G (Peebles & Xie, 2023) 675M 256 × 256 2.27 278.20 0.83 0.57
VDM++ (Kingma & Gao, 2024) 2B 256 × 256 2.40 225.30 - -
DiT-XL/2-G (Peebles & Xie, 2023) 675M 512 × 512 3.04 240.82 0.84 0.54

Mask MaskGIT (Chang et al., 2022) 227M 256 × 256 6.18 182.10 0.80 0.51
MaskGIT -re (Chang et al., 2022) 227M 256 × 256 4.02 355.60 - -

AR

VQGAN -re (Esser et al., 2021b) 1.4B 256 × 256 5.20 280.30 - -
VQGAN (Esser et al., 2021b) 227M 256 × 256 18.65 80.40 0.78 0.26
VQGAN (Esser et al., 2021b) 1.4B 256 × 256 15.78 74.30 - -
RQTran. -re (Lee et al., 2022a) 1.7B 256 × 256 3.80 323.70 - -
RQTran. (Lee et al., 2022a) 1.7B 256 × 256 7.55 134.00 - -
ViT-VQGAN -re (Yu et al., 2021a) 1.7B 256 × 256 3.04 227.40 - -
ViT-VQGAN (Yu et al., 2021a) 3.8B 256 × 256 4.17 175.10 - -
LlamaGen-B (Sun et al., 2024a) 111M 256 × 256 5.46 193.61 0.83 0.45
LlamaGen-L (Sun et al., 2024a) 343M 256 × 256 3.07 256.06 0.83 0.52
LlamaGen-XL (Sun et al., 2024a) 775M 256 × 256 2.62 244.08 0.80 0.57
LlamaGen-XXL (Sun et al., 2024a) 1.4B 256 × 256 2.34 253.90 0.80 0.59
LlamaGen-3B (Sun et al., 2024a) 3B 256 × 256 2.18 263.33 0.81 0.58
Open-MAGVIT2-B (Luo et al., 2024) 343M 256 × 256 3.08 258.26 0.83 0.52
Open-MAGVIT2-L (Luo et al., 2024) 804M 256 × 256 2.51 271.70 0.84 0.54
Open-MAGVIT2-XL (Luo et al., 2024) 1.5B 256 × 256 2.33 271.77 0.84 0.54
VAR-d16 (Tian et al., 2024) 310M 256 × 256 3.30 274.40 0.84 0.51
VAR-d20 (Tian et al., 2024) 600M 256 × 256 2.57 302.60 0.83 0.56
VAR-d24 (Tian et al., 2024) 1.0B 256 × 256 2.09 312.90 0.82 0.59
VAR-d30 (Tian et al., 2024) 2.0B 256 × 256 1.92 323.10 0.82 0.59
SPAE (Yu et al., 2024a) - 128 × 128 4.41 133.03 - -
SPAE (Yu et al., 2024a) - 256 × 256 3.60 168.50 - -
MAR-B (Li et al., 2024c) 208M 256 × 256 3.48 192.40 0.78 0.58
MAR-L (Li et al., 2024c) 479M 256 × 256 2.60 221.40 0.79 0.60
MAR-H (Li et al., 2024c) 943M 256 × 256 2.35 227.80 0.79 0.62
MAR-H w/ CFG (Li et al., 2024c) 943M 256 × 256 1.55 303.70 0.81 0.62
DART w/ CFG (Zhao et al., 2024) 812M 256 × 256 3.98 - - -

Table 3: Comparison of Model Parameters, Resolution, FID, IS, Precision, and Recall across various
Types of Generative Models on ImageNet dataset (Deng et al., 2009). -re is the generative model with
rejection sampling. w/ CFG is the model with classifier-free diffusion guidance (Ho & Salimans, 2022).

between visual outputs and textual input using a pretrained CLIP (Radford et al., 2021) model, while
R-precision measures the ranking of relevant generated samples with respect to their alignment with
the intended context.

4. Temporal Coherence focuses on the temporal consistency across generated frames. Warping
Errors (Lai et al., 2018), based on optical flow (Teed & Deng, 2020), measure the consistency of
motion and object placement over time. The additional commonly applied metric is CLIPSIM-Temp,
which calculates the CLIP similarity between successive frame embeddings.

5. Human-Centered Assessment is crucial for evaluating the subjective quality of generated visual
content, while quantitative metrics provide essential objective assessments. The Human Preference
Score (HPS) (Wu et al., 2023d) leverages a classifier trained on extensive human preference data,
estimating how closely generated outputs align with human aesthetic judgments. Recently, the Quality
ELO Score (Elo, 1978) has gained prominence: in this method, generative models compete on an
online platform (Analysis, 2023) where users express preferences between paired model outputs. These
preferences are then used to compute ELO scores, effectively capturing human rankings of models.

32



Published in Transactions on Machine Learning Research (03/2025)

Type Model #Para. MJHQ-30K MJHQ-30K MS-COCO
FID ↓ CLIP-Score ↑ FID-30K ↓

Diffusion

LDM (Rombach et al., 2022) 1.4B 12.64 - 12.64
DALL-E-2 (Ramesh et al., 2022) 6.5B 10.39 - 10.39
Imagen (Saharia et al., 2022) 3B 7.27 - 7.27
SD2.1 (Rombach et al., 2022) 860M 26.96 25.90 -
SD3-Medium (Esser et al., 2024) 2B 11.92 28.83 -
SDXL (Esser et al., 2024) 2.6B 8.76 28.60 -
PixArt-Σ (Chen et al., 2024) 630M 6.34 27.62 -
PixArt-α (Chen et al., 2023) 630M 6.14 27.55 -
Playground v2.5 (Li et al., 2024a) 2B 6.84 29.39 -
RAPHAEL (Xue et al., 2024) 3B - - 6.61

AR (Gen)

DALLE (Ramesh et al., 2021) 12B - - 27.50
Fluid (Fan et al., 2024) 10.5B 6.16 - 6.16
Fluid (Fan et al., 2024) 3.1B 6.41 - 6.41
Fluid (Fan et al., 2024) 1.1B 6.59 - 6.59
Fluid (Fan et al., 2024) 665M 6.84 - 6.84
Fluid (Fan et al., 2024) 369M 7.23 - 7.23
Muse (Chang et al., 2023) 3B 7.88 - 7.88
Parti (Yu et al., 2022) 20B 7.23 - 7.23
Emu3-Gen (Wang et al., 2024d) 8B 25.59 - -
LlamaGen (Sun et al., 2024a) 775M 25.59 23.03 -
HART (Tang et al., 2024) 732M 5.22 29.01 -
DART (Zhao et al., 2024) 812M - - 11.12

AR (Unified)

Seed-X (Ge et al., 2024) 17B 10.82 - 14.99
LVM (Bai et al., 2024b) 7B 17.77 - 12.68
Chameleon (Team, 2024) 34B - - 10.82
Show-o (Xie et al., 2024b) 1.3B 14.99 27.02 -
VILA-U (Wu et al., 2024e) 7B 12.81 - -
Janus (Wu et al., 2024a) 1.3B 10.10 - 8.53
Transfusion (Zhou et al., 2024) 7.3B 6.61 - 6.61

Table 4: Comparison of Model Parameters, FID, CLIP-Score across various Types of Generative
Models on MJHQ-30K (Li et al., 2024a) and MS-COCO (Lin et al., 2014) datasets.

Type Model #Para. GenEval ↑
Single Obj. Two Obj. Counting Color Position Color Attri. Overall

Diffusion

LDM (Rombach et al., 2022) 1.4B 0.92 0.29 0.23 0.70 0.02 0.05 0.37
DALL-E-2 (Ramesh et al., 2022) 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
DALL-E-3 (Betker et al., 2023) - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD1.5 (Rombach et al., 2022) 860M 0.97 0.38 0.35 0.76 0.04 0.06 0.43
SD2.1 (Rombach et al., 2022) 860M 0.98 0.51 0.44 0.85 0.07 0.17 0.55
SD3-Large (Esser et al., 2024) 8B 0.98 0.84 0.66 0.74 0.40 0.43 0.68
SDXL (Esser et al., 2024) 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.58
PixArt-α (Chen et al., 2023) 630M 0.98 0.50 0.44 0.80 0.08 0.07 0.48

AR (Gen)

Fluid (Fan et al., 2024) 10.5B 0.96 0.83 0.63 0.80 0.39 0.51 0.69
Fluid (Fan et al., 2024) 3.1B 0.83 0.83 0.60 0.82 0.41 0.53 0.70
Fluid (Fan et al., 2024) 1.1B 0.96 0.77 0.61 0.78 0.34 0.53 0.67
Fluid (Fan et al., 2024) 665M 0.96 0.73 0.51 0.77 0.42 0.51 0.65
Fluid (Fan et al., 2024) 369M 0.96 0.64 0.53 0.78 0.33 0.46 0.62
Emu3-Gen (Wang et al., 2024d) 8B 0.98 0.71 0.34 0.81 0.17 0.21 0.54
LlamaGen (Sun et al., 2024a) 775M 0.71 0.34 0.21 0.58 0.07 0.04 0.32

AR (Unified)

Seed-X (Ge et al., 2024) 17B 0.97 0.58 0.26 0.80 0.19 0.14 0.49
LVM (Bai et al., 2024b) 7B 0.93 0.41 0.46 0.79 0.09 0.15 0.48
Chameleon (Team, 2024) 34B - - - - - - 0.39
Show-o (Xie et al., 2024b) 1.3B 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Janus (Wu et al., 2024a) 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Transfusion (Zhou et al., 2024) 7.3B - - - - - - 0.63

Table 5: Comparison of various types of generative models on GenEval bench (Ghosh et al., 2024).

Additionally, there are various User Study Metrics, such as ratings, preferences, and other subjective
measures collected from user studies. These metrics are often case-specific and provide valuable insights
into evaluation.

33



Published in Transactions on Machine Learning Research (03/2025)

4.3 Task-Specific Evaluation Metrics

In the previous sections, we categorized and introduced several common metrics based on various
evaluation dimensions. In this subsection, we reorganize these metrics according to specific tasks. The
aim is to provide task-specific classifications, allowing readers to quickly identify the most relevant
metrics for each task. Specifically, metrics for visual autoregressive models are categorized as follows:

• Reconstruction

– PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), rFID (Heusel et al., 2017) are
pixel-level accuracy metrics for restoration tasks, which is commonly adopted for evaluating
the performance of tokenizers in token-based autoregressive models. Additionally, codebook
utilization is often employed to assess how effectively vectors in VQ codebooks are utilized.

• Image Generation

– General Metrics. FID (Heusel et al., 2017), IS (Salimans et al., 2016), and KID (Bińkowski
et al., 2018) are widely adopted for evaluating the quality of generated images. Precision and
Recall (Kynkäänniemi et al., 2019) are typically used to assess the fidelity and diversity of
generated content.

– Text-to-Image Generation. CLIPSim (Radford et al., 2021) and R-Precision (Craswell,
2009) are key metrics for evaluating the relevance between text and images in text-to-image
generation tasks.

– Inpainting In addition to the general quality metrics, pixel-level metrics are employed to
assess whether the inpainting results align with the ground truth.

• Video Generation

– General Metrics. FVD (Unterthiner et al., 2018) is commonly used to evaluate the video
quality. CLIPSIM-Temp (Radford et al., 2021) and Wrapping Errors (Lai et al., 2018) are used
to assess the temporal coherence across video generation tasks.

– Text-to-Video Generation. Similar to T2I Generation, T2V generation uses semantic con-
sistency metrics like CLIPSIM to evaluate alignment with given text descriptions. Benchmarks
such as VBench (Huang et al., 2024) and EvalCrafter (Liu et al., 2024h) are also widely used
to evaluate the overall performance of T2V generation.

• Task-Specific Metrics

– In addition, there are various task-specific metrics and benchmarks tailored to particular tasks.
These are designed to assess specified attributes according to task requirements. For example,
T2I-CompBench (Huang et al., 2023a) is used for evaluating compositional generation tasks,
while CLIPSIM-Img is applied to example-based image editing tasks.

4.4 Comparison of Existing Models

Based on the collected results presented in Table 3, Table 4, and Table 5, we conduct a comprehen-
sive analysis of different model types and their performance characteristics. First, comparing AR and
diffusion models reveals interesting patterns across metrics. While both approaches demonstrate com-
parable performance in Precision and Recall metrics, as well as FID scores, AR models show a notable
advantage in IS metrics. For instance, in Table 3, AR models consistently achieve higher IS scores,
with many models exceeding 250, while diffusion models typically show lower IS values. Second, the
comparison between specialized generation models (AR Gen) and unified models (AR Unified) reveals
clear performance differences across both Table 4 and Table 5. In Table 4, specialized generation
models achieve better FID scores compared to unified models. This pattern continues in Table 5,
where specialized generation models like Fluid demonstrate superior GenEval scores (0.70) compared
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to unified models. These consistent results across different metrics and datasets suggest that current
approaches to unifying understanding and generation might actually limit generation performance.
While the initial hypothesis suggested that unified understanding and generation would enhance gen-
eration quality, our analysis indicates otherwise. This performance gap might be attributed to the
current limitations in vision tokenization methods, which have not yet achieved a seamless integra-
tion of understanding and generation capabilities. The distinct requirements for visual understanding
versus generation tasks may create competing objectives that current unified architectures struggle to
optimize simultaneously. This observation suggests that further research is needed to develop more
effective approaches for unifying visual understanding and generation. The consistent performance gap
indicates that fundamental advances in vision tokenization and architectural design may be required
to realize the theoretical benefits of unified models.

5 Challenges and Future Work

5.1 Technical challenges

How to design a powerful tokenizer? This paper categorizes existing autoregressive models into
three primary types: next-pixel prediction, next-token prediction and next-scale prediction. Among
these, next-token prediction and next-scale prediction have gained prominence. Both approaches hinge
critically on the availability of a powerful tokenizer that can effectively compress images or videos into
discrete visual tokens. However, designing such a tokenizer is a non-trivial challenge. One of the
most widely adopted methods is VQGAN (Esser et al., 2021b), which employs VQ techniques and
adversarial training to develop a perceptually rich tokenizer. Vanilla VQGAN adopts a relatively
large vector dimension(256), allowing each vector to represent rich semantic information. However,
as the codebook size scales, this capacity becomes a bottleneck, significantly limiting the utilization
rate of larger codebooks, and presenting challenges for applying VQGAN in large-scale autoregressive
models. A rising trend in codebook design (Sun et al., 2024a) involves using smaller vector dimensions
with larger codebook sizes to enhance lookup efficiency and codebook utilization. Some studies (Yu
et al., 2023b; Luo et al., 2024) have even pushed the boundaries by reducing the vector dimension to
zero, developing a binary lookup-free quantization(LFQ) with a codebook size of 218. Additionally,
various advanced training strategies (Razavi et al., 2019; Yu et al., 2021a; Zhu et al., 2024b) have been
explored to further improve VQGAN’s codebook utilization. Another promising avenue is leveraging
hierarchical multi-scale properties (Lee et al., 2022a; Tian et al., 2024) to improve the compression
of visual data. In summary, designing a powerful tokenizer for open-domain visual data is crucial for
advancing autoregressive visual generation.

Discrete or continuous? Autoregressive models have traditionally been associated with discrete
representations. However, given that visual data are inherently continuous, most approaches require an
additional discretization step, which, as discussed earlier, is far from straightforward. Recent studies (Li
et al., 2024c) argue that the essence of autoregressive models lies in "next element prediction", regardless
of whether the elements are discrete or continuous. This perspective revives the debate over the merits
of “discrete vs. continuous” representations in autoregressive models. Continuous representations offer
advantages, particularly in simplifying the training of visual data compressors. However, they also pose
new challenges for designing autoregressive architectures. Firstly, the cross-entropy loss is no longer
applicable. Although L2 loss is a simple alternative, it often compromises the quality and diversity of
generated outputs (Li et al., 2024c). Thus, developing alternative loss functions tailored for continuous
settings is still under exploration. Secondly, the challenge of multimodal adaptability arises. Large
language models (LLMs) based on discrete representations have already shown remarkable capabilities,
but integrating visual continuous and discrete language representations within a unified autoregressive
framework remains a complex task. TransFusion (Zhou et al., 2024) has made pioneering efforts in
this area, yet significant work remains to build upon these initial efforts. Currently, continuous visual
representations have yet to demonstrate a decisive advantage over discrete ones in autoregressive
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modeling. The full potential of autoregressive model-based continuous representations remains to be
realized and represents a promising direction for future research.

Inductive bias in autoregressive model architecture. A key consideration in visual autoregres-
sive modeling is whether a vanilla autoregressive model, without any inductive bias, truly represents
the most optimal approach. Recent works (Sun et al., 2024a; Team, 2024) have shown that even
standard language models like Llama (Touvron et al., 2023a;b) can generate high-quality images and
achieve effective multimodal without requiring specific inductive bias. Nonetheless, there is still merit
in exploring architectures that incorporate inductive biases tailored to visual signals. VAR (Tian et al.,
2024) utilizes hierarchical multi-scale tokenization to capture visual structures better, while other ap-
proaches (Chang et al., 2022; Xie et al., 2024b) leverage masked image modeling strategies to enhance
performance. Additionally, recent works (Zhou et al., 2024; Xie et al., 2024b) highlight the advantages
of employing bidirectional attention over unidirectional ones for processing visual signals. Exploring
how inductive biases can be integrated into autoregressive models, and their potential impacts on
scalability and multimodal fusion, presents a challenging yet promising area for future research.

Downstream task. Current research on downstream tasks for visual autoregressive models largely
focuses on zero-shot capabilities in a limited range of tasks or on designing models specifically tailored
for individual downstream applications. In this respect, visual autoregressive models lag behind dif-
fusion and language models. A critical open question remains whether visual autoregressive models
can follow the trajectory of language models, which quickly adapt to new tasks via techniques such
as prompt tuning and instruction tuning, or attain the versatility of diffusion models, which excel
across various visual tasks including structure control, style transfer, and image editing. As research
on autoregressive models advances, developing a unified autoregressive model that could adapt to
downstream tasks is a primary focus in future work.

5.2 Application Roadmaps

Long Video Generation The generation of long videos remains an unsolved problem for various
generative models. Due to the inherent limitations of current generation algorithms, the most advanced
flow-based video generation models (OpenAI, 2024; Kuaishou, 2024) typically produce videos with
durations similar to the training data, usually around 5 to 10 seconds. However, autoregressive models,
particularly in the context of large language models (LLMs), have demonstrated strong extrapolation
abilities, generating text sequences that far exceed the length of the sequences seen during training.
This capability suggests that visual autoregressive models hold significant potential for generating long
video sequences. Recent work (Jin et al., 2024b) has begun to explore the use of autoregressive models
for generating longer video sequences, opening up new avenues for this challenging task.

World Simulator for Embodied AI A promising direction for the future of visual autoregressive
generation is the development of world simulators that can facilitate the training of models in dynamic,
interactive environments. These simulators would enable models to generate realistic visual content
by interacting with simulated worlds in a context-aware manner. By integrating physical dynamics,
environmental factors, and agent interactions, such simulators could allow visual autoregressive models
to generate long and temporally consistent video sequences, building on the model’s general ability
to extrapolate from sufficient training data. Existing works (Hu et al., 2023; Bruce et al., 2024; Wu
et al., 2024b; Cheang et al., 2024) have already made significant progress in leveraging autoregressive
models as world models. The potential to scale training data and model size to enable the learning
of general intelligence, allowing models to interact with the world and provide multimodal feedback,
presents an exciting avenue for further exploration.

Unified Multimodal Generation. The future of multimodal autoregressive generation lies in ad-
vancing models capable of seamlessly combining and generating content across different modalities,
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such as text, images, audio, and video. Autoregressive models naturally lend themselves to cross-
modal generation, as they treat different modalities equally in the token space. While existing work
has explored the potential of autoregressive models for multimodal generation (Lu et al., 2022; Wang
et al., 2024d) and unified models for both understanding and visual generation (Team, 2024; Zhou
et al., 2024; Xie et al., 2024b; Wu et al., 2024a), these models still fall short of the state-of-the-art
models in each individual modality. The key challenge likely lies in the development of large-scale
multimodal datasets and unified cross-modal representations. We hope an aha moment that, with suf-
ficient training, autoregressive models will emerge with powerful cross-modal generation capabilities,
where the strengths of one modality can boost the generation of others.

6 Conclusion

This survey provides a comprehensive overview of the autoregressive modeling landscape in computer
vision, drawing parallels to its foundational success in NLP while highlighting the unique represen-
tational strategies inherent to visual data. By categorizing autoregressive models into pixel-based,
token-based, and scale-based approaches, we offer a structured understanding of their underlying
mechanisms. Furthermore, we illuminate the diverse applications of these models across domains such
as image and video generation, multi-modal tasks, and medical applications. Finally, this survey
addresses current challenges in visual autoregressive models, offering valuable insights into potential
avenues for advancement in this rapidly evolving field.
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