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Abstract

Instruction tuning of Large Vision-language001
Models (LVLMs) has revolutionized the devel-002
opment of versatile models with zero-shot gen-003
eralization across a wide range of downstream004
vision-language tasks. However, the diversity005
of training tasks of different sources and for-006
mats would lead to inevitable task conflicts,007
where different tasks conflict for the same set008
of model parameters, resulting in sub-optimal009
instruction-following abilities. To address that,010
we propose the Mixture of Cluster-conditional011
LoRA Experts (MoCLE), a novel Mixture of012
Experts (MoE) architecture designed to activate013
the task-customized model parameters based014
on the instruction clusters. A separate univer-015
sal expert is further incorporated to improve016
generalization capabilities of MoCLE for novel017
instructions. Extensive experiments on Instruct-018
BLIP and LLaVA demonstrate the effectiveness019
of MoCLE.020

1 Introduction021

There has been a continuously increasing trend022

to develop intelligent assistants that can follow023

human instructions (Brown et al., 2020; OpenAI,024

2022; Chen et al., 2023b), with instruction tuning025

emerging as a notably effective approach. This026

method leverages large-scale well-formatted in-027

struction data to empower Large Language Mod-028

els (LLMs) to execute various human instructions,029

showcasing their ability to generalize across novel030

unseen tasks (Longpre et al., 2023). Likewise, ef-031

forts have been made to introduce similar capabil-032

ities to Large Vision-language Models (LVLMs)033

(Bai et al., 2023; Zhang et al., 2023; Ye et al., 2023;034

Chen et al., 2023c,a), including LLaVA series (Liu035

et al., 2023b,a), MiniGPT-4 (Zhu et al., 2023) and036

InstructBLIP (Dai et al., 2023).037

It is observed that for both the LLMs (Sanh et al.,038

2021; Wang et al., 2022; Chung et al., 2022) and039

LVLMs (Bai et al., 2023; Zhao et al., 2023; Li040
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Figure 1: Performance of the instruction-finetuned
LVLMs on zero-shot tasks, where larger values indi-
cate better performance. Only 2 out of 7 tasks benefit
from instruction tuning from all the data, while the task
experts show better performance on the other 5 tasks
(i.e., Flickr 30K, GQA, HM, SciQA and IconQA).

et al., 2023b), the ability to generalize to novel 041

unseen instructions necessitates multi-task instruc- 042

tion tuning, i.e., training on a diverse collection of 043

instruction-following tasks. However, the complex- 044

ity of various instruction tasks brings difficulties for 045

model fine-tuning. Specifically, Wei et al. (2021) 046

find that for certain model sizes, multi-task instruc- 047

tion tuning even fails to bring performance gains 048

for zero-shot tasks compared to the original models. 049

This is mainly attributed to the negative transfer 050

phenomenon (Zhang and Yang, 2017) during multi- 051

task instruction tuning, where the model struggles 052

to optimize the losses of multiple conflicted tasks, 053

leading to sub-optimal performance. 054

Similarly, tasks for vision-language instruction 055

tuning (e.g., visual question answering and im- 056

age captioning) focus on different perspectives of 057

LVLMs. This results in conflicts as most stud- 058

ies adopt sharing of all parameters. In our pre- 059

liminary study, we split the instruction data into 060

two disjoint subsets (“cap” for image captioning, 061

and “vqa” for visual question answering). We 062

then train InstructBLIP (Dai et al., 2023) using 063
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LoRA (Hu et al., 2021) on three data sets (“cap”,064

“vqa” and the full data “full”) to obtain three sets065

of parameters (i.e., task experts). Following the066

held-out evaluation protocol (Dai et al., 2023), we067

evaluate these experts on the unseen datasets/tasks068

with the best expert. As shown in Figure 1, on 5069

out of the 7 downstream tasks, the InstructBLIP070

instruction-tuned on all the data is outperformed by071

the task expert finetuned with only a subset of data.072

Among the 5 tasks, Flickr30k belongs to “cap”,073

and SciQA, GQA and IconQA belong to “vqa”.074

This shows that instruction tuning on similar tasks075

brings positive transfer to downstream tasks, while076

training on the full data with dissimilar tasks can077

hurt generalization performance.078

The use of disjoint task experts above is a naïve079

solution to negative transfer, where we manually080

partition the training tasks and train each expert081

separately. However, it has several limitations: (1)082

The taxonomies such as “vqa” and “cap” require083

human expertise, and are difficult to scale as the084

number of tasks grows. (2) The ability to gener-085

alize to unseen tasks is inhibited, as we do not086

know which expert to choose for novel tasks, while087

some new tasks might benefit from multiple train-088

ing tasks (e.g., VSR and TextVQA as in Figure 1).089

In this regard, specialization and generalization of090

LVLMs becomes a dilemma.091

This paper aims to develop an automatic and092

practical partition strategy and a network architec-093

ture that strikes a balance between specialization094

and generalization. In particular, we propose the095

Mixture of Cluster-conditional LoRA Experts (Mo-096

CLE) for vision-language instruction tuning. In097

this proposed framework, we first cluster instruc-098

tions of all the training data into several clusters via099

a pre-trained clustering model. In this way, similar100

tasks that can bring positive transfer to each other101

are automatically grouped into the same cluster,102

while different tasks that may cause conflict are103

separated (more justifications for the use of instruc-104

tion clusters are detailed in Sec. 3.2). Then we105

construct several task experts, with each focusing106

on a specific cluster. Using the cluster as condi-107

tion, a router dispatches the input data to one of108

the specialized task experts and an universal expert109

that is shared among all data. As we activate a spe-110

cialized expert for a group of similar tasks, tasks111

that are less similar are learned via separate experts,112

mitigating task conflicts. Meanwhile, since the uni-113

versal expert trained on all tasks also contributes114

to the model outputs, we can enjoy generalization115

and specialization simultaneously. 116

We validate effectiveness of MoCLE on Instruct- 117

BLIP (Dai et al., 2023) and LLaVA-1.5 (Liu et al., 118

2023a) and observe remarkable performance gains 119

compared to dense models and other MoE base- 120

lines(Chen et al., 2023d, 2024). 121

The main contributions of this work contain the 122

following three parts, 123

1. We identify the negative transfer phenomenon 124

(Liu et al., 2022b; Zhili et al., 2023) as tasks 125

conflict during instruction tuning of LVLMs. 126

2. We propose Mixture of Cluster-conditional 127

LoRA Experts (MoCLE), a novel parameter- 128

efficient finetuning framework suitable for the 129

vision-language instruction tuning, to mitigate 130

task conflicts and enjoy the benefits of huge 131

data training simultaneously. 132

3. Our proposed MoCLE achieves remarkable 133

performance gains on held-in/out tasks com- 134

pared to dense models and other MoE base- 135

lines(Chen et al., 2023d, 2024). 136

2 Related Work 137

2.1 Multi-Task Instruction Tuning 138

Instruction tuning (Sanh et al., 2021; Wei et al., 139

2021) fine-tunes a language model across tasks and 140

instruction templates to convey task intentions. Its 141

goal is to teach the model to understand relation- 142

ships between instructions and input/output pairs, 143

enabling generalization to unseen tasks with novel 144

instructions. Increasing the number of instructions 145

(Sanh et al., 2021), tasks (Wang et al., 2022; Chung 146

et al., 2022), and data diversity (Zhou et al., 2023) 147

have shown to be effective in improving perfor- 148

mance. However, Wei et al. (2021) find that for 149

certain model sizes, instruction tuning fails to out- 150

perform untuned models on unseen tasks due to full 151

capacity utilization for learning task mixtures. Our 152

work addresses this in vision-language instruction 153

tuning using specialized experts. 154

2.2 Mixture of Experts (MoE) 155

MoE models (Jacobs et al., 1991; Jordan and Ja- 156

cobs, 1993; Shazeer et al., 2017) are renowned for 157

their ability to increase model capacity through pa- 158

rameter expansion. Recent research integrates MoE 159

with adapters, exploring how pretrained adapters 160

can be effectively combined (Wu et al., 2024b), and 161

how they enhance performance in both few-shot 162
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Figure 2: Overall pipeline of MoCLE.

(Huang et al., 2023) and zero-shot scenarios (Jang163

et al., 2023; Muqeeth et al., 2024). Another line164

of research (Chen et al., 2024; Wu et al., 2024a;165

Luo et al., 2024; Zadouri et al., 2023; Chen et al.,166

2023d) focuses on augmenting model capacity in167

a parameter-efficient manner. However, these ap-168

proaches do not explicitly incorporate task/domain169

priors during the routing process, which might be170

limited when handling task conflicts. Two con-171

current studies (Liu et al., 2024; Li et al., 2024)172

incorporate domain information for expert routing.173

Unlike our approach, however, they do not address174

zero-shot generalization to unseen tasks.175

3 Methodology176

In this section, we start with the formulation of177

LVLM instruction tuning and an analysis of the178

limitations of task experts. We then introduce the179

proposed MoCLE. The overall framework is shown180

in Figure 2.181

3.1 Problem Formulation182

Suppose that there is a set of datasets that are di-183

vided into held-in and held-out datasets (Dai et al.,184

2023). A large vision-language model is first fine-185

tuned on the held-in dataset, and then evaluated on186

the held-out dataset in a zero-shot manner. To unify187

and diversify input-output formats and promotes188

instruction tuning, several task templates {Ti} are189

designed to wrap the raw inputs, which is a pair190

of text Xtxt and image Ximg from the dataset. For191

example, “Given the image, answer the question192

with no more than three words. {Question}” is a193

template for visual question answering tasks. The194

instruction is defined as I ≡ Ti(Xtxt) that wraps195

text inputs using the template.196

3.2 Clustering Data by Instructions 197

The purposes of partitioning the training data are 198

two-fold. First, we hope to train a task expert with 199

a collection of similar tasks so as to avoid task 200

conflicts. Second, we expect novel tasks to be 201

automatically assigned to the proper experts based 202

on their cluster without manual intervention. 203

To achieve these goals, we conduct clustering on 204

the instructions as they serve as the foundation for 205

identifying different tasks. Formally, let E(·) be a 206

pre-trained sentence encoder, and ei = E(Ii) be the 207

sentence representation of an instruction Ii. We use 208

the k-means clustering algorithm to group all in- 209

structions in the training datasets into K clusters by 210

iteratively minimizing
∑K

j=1

∑
ei∈Sj

∥ei − cj∥2, 211

where Sj is the set of instructions assigned to the 212

jth cluster, and cj is the centroid of the jth clus- 213

ter. In each k-means clustering iteration, each in- 214

struction is assigned to the nearest centroid with 215

all centroids updated as the average of instruction 216

representations in the corresponding cluster. 217

3.3 Mixture of Cluster-Conditional LoRA 218

Experts 219

In addition to considerations at the data level, we 220

also suggest an architectural design to tackle the is- 221

sue of negative transfer. We propose the Mixture of 222

Cluster-conditional LoRA Experts (MoCLE) that 223

learns to activate the LoRA expert at each layer 224

given the cluster of the data. Specifically, let E 225

as be the number of experts. We introduce a gate 226

vector G ∈ RE . Given an input xi, G determines 227

the experts to which the input is routed. The gate 228

vector is obtained as: 229

G = topk

(
softmax

(
1

τ

(
WgateC[xi] + ϵ

)))
,

(1) 230
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where topk(·) keeps the k largest entries unchanged231

and sets the others to zero. C[x], which is shared232

among all layers, is the learnable embedding of233

the cluster that x belongs to. This is the key for234

the model to choose proper task experts for the235

input data. To endow the clustering embedding236

with task information, we initialize it to be the237

centroid of the corresponding cluster. Moreover,238

Wgate is the trainable weights of the linear gate,239

which is learned at each layer where the MoE block240

is inserted, ϵ ∼ N(0, 1
E ) is a noise term that adds241

randomness to the expert choosing process (and en-242

courages MoCLE to explore multiple combinations243

of experts during training1), and τ is a temperature244

hyperparameter. The output yi is then computed245

as the sum of weighted outputs of the experts, and246

the original LLM linear layer (Hu et al., 2021) on247

the input xi, as:248

yi =

E∑
e=1

GeWexi +W0xi, (2)249

where W0 is the pre-trained linear layer of LVLM,250

We is the linear projection weight of the eth LoRA251

expert, and Ge (the eth entry in G) indicates the252

contribution of the eth expert.253

3.4 Universal Expert254

As will be shown in Sec. 4.4.1, the formulation in255

Sec. 3.3 still hurts the generalization ability of the256

entire model, due to the fact that instruction-tuned257

models generalize to unseen tasks via training on258

extensive instructions (Wei et al., 2021), while in259

our formulation, each expert sees fewer instructions260

than the original dense model.261

To alleviate this problem, we propose an univer-262

sal expert that learns from all training data. Specif-263

ically, we fix the number of activated experts to 1264

(i.e., k in Eq. 1 equals 1) and define Gmax as the265

maximum element in G. Then the output for all266

the experts is expressed as:267

yi =

(
E∑

e=1

GeWe + (1−Gmax)Wu

)
xi+W0xi.

(3)268

in which we additionally train an universal expert269

parameterized by Wu. Different from the task270

experts that are activated only for specific model in-271

puts, the universal expert is activated for all inputs.272

The final output is a weighted sum of outputs from273

1We do not apply load balancing during training as we
found it might distort task specialization.

one of the experts and the universal expert plus the 274

original LVLM’s output. Consequently, the task 275

expert learns distinct skills for certain tasks while 276

the universal expert masters holistic understanding 277

of the training corpus. The synergy between them 278

offers both specialization and generalization for the 279

LVLMs with MoCLE. 280

4 Experiment 281

In this section, we conduct an assessment of Mo- 282

CLE across multiple downstream tasks in a zero- 283

shot setting. We first detail the experimental set- 284

tings and implementation details, which are fol- 285

lowed by a description of the datasets and instruc- 286

tions employed, along with the outcomes of our 287

evaluations. Lastly, we present an ablation study 288

and visualizations of clustering and routing results. 289

4.1 Implementation Details 290

We evaluate the effectiveness of MoCLE on two 291

LVLMs: InstructBLIP (Dai et al., 2023) and 292

LLaVA-1.5 (Liu et al., 2023a). Specifically, we 293

compare the performance between the LVMs with 294

and without MoCLE. The detailed configuration of 295

MoCLE on these LVLMs are presented in Table 296

1. In addition, we encode all the instructions of 297

different datasets using the all-MiniLM-L6-v2 vari- 298

ant of the Sentence Transformer model (Reimers 299

and Gurevych, 2019) and cluster their embeddings 300

via k-means clustering algorithm. More training 301

details can be found in Appendix A. 302

4.2 Settings 303

For InstructBLIP, we follow (Dai et al., 2023) for 304

the choice of training datasets. However, these 305

datasets only focus on a single domain: natural 306

images. To validate the effectiveness of MoCLE 307

on multiple domains, for LLaVA-1.5, in addition to 308

its original training data LLaVA-665K (Liu et al., 309

2023a) which focus on natural image domain, we 310

include datasets from multiple domains, i.e., geo- 311

metric tasks: Geo170k (Gao et al., 2023), medi- 312

cal tasks: VQA-RAD (Lau et al., 2018), SLAKE 313

(Liu et al., 2021) and PathVQA (He et al., 2020). 314

More details on the training and evaluation datasets 315

are provided in Appendix C. Note that during 316

evaluation, we report the CIDEr score (Vedantam 317

et al., 2015) for Flickr30K, the iVQA accuracy 318

for iVQA, AUC score for HatefulMemes, Mean 319

Reciprocal Rank (MRR) for Visual Dialog, the 320

perception/perception+cognition score for MME 321
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Models LLM Expert Params. # Experts # Clusters Rank Temperature Trainable Params.

InstructBLIP Vicuna-7B q_proj, v_proj 4 + 1(universal) 64 8 0.05 Q-Former, LoRAs
LLaVA-1.5 Vicuna-1.5-7B up_proj, down_proj 4 + 1(universal) 4 128 0.1 MLP connector, LoRAs

Table 1: Architecture details of MoCLE on different LVLMs. Note that experts are added to each layer of the
transformer.

Models GQA VSR IQA Visdial MME POPE
A-OKVQA OKVQA VQAv2

Direct MC (test) (test-dev)

InstructBLIP (7B) 48.6 60.8 43.4 46.3 1202.9 77.6 58.8 73.8 57.0 77.4
+ MoCLE 49.3 64.7 46.3 46.9 1222.6 82.1 61.5 78.2 59.8 78.9

Table 2: Zero-shot results (InstructBLIP) on the held-out datasets, i.e., GQA, VSR, IconQA (IQA), Visdial,
MME, POPE and evaluation on held-in datasets, i.e., A-OKVQA, OKVQA, VQAv2. Here Direct and MC denote
directly answering and multiple choices. Best results are marked in bold.

Models
Flickr
30K

VQAT HM SQA
MSVD

QA
MSRVTT

QA
iVQA

InstructBLIP (7B) 81.3 53.9 65.3 62.0 41.4 23.0 51.3
+ MoCLE 81.9 57.1 65.6 63.9 42.6 24.4 53.2

Table 3: Zero-shot results (InstructBLIP) on the held-out datasets. Here, VQAT , HM and SQA denote TextVQA,
HatefulMemes and ScienceQA, respectively.

Methods Train Data MME MMB SQA GeoQA
VQA-RAD SLAKE PathVQA

Open Closed Open Closed Open Closed

Single LoRA
LLaVA-665k 1804 65.89 67.67 - - - - - - -

Geo170k - - - 57.82 - - - - - -
Med. Mix - - - - 53.90 84.19 86.05 85.58 38.07 91.77

Single LoRA All 1794 64.69 66.78 57.56 46.89 77.94 84.61 82.45 35.56 90.71
MoCLE All 1838 66.07 67.38 60.21 53.59 81.98 83.29 85.10 35.21 91.65

Table 4: Evaluation results of LLaVA-1.5-7B, where MMB denotes MMBench.

(InstructBLIP/LLaVA) and F1 score for the adver-322

sarial split of POPE. For all other datasets, we re-323

port the top-1 accuracy (%). Task templates for324

evaluation can be found in Appendix D.325

4.3 Evaluation Results326

InstructBLIP Tables 2 and 3 show the results on327

multiple held-out/in vision-language tasks. The328

proposed MoCLE shows considerable performance329

improvement over the original LVLM. Specifically,330

on held-out datasets such as IconQA, Visual Spa-331

tial Reasoning (VSR), TextVQA and ScienceQA332

datasets, we obtain an absolute performance gain of333

2.9%, 3.9%, 3.2%, and 1.9%, respectively. On held-334

in datasets, an absolute improvement of 4.4%, 2.8%335

and 1.5% can be observed on A-OKVQA (MC),336

OKVQA and VQAv2, respectively. This indicates337

that the proposed MoCLE facilitates generalization338

to unseen tasks and can effectively alleviate task339

conflicts during multi-task learning340

LLaVA-1.5 Similar to the preliminary results in341

Figure 1, we consider a Single-LoRA baseline342

where a single set of LoRAs are trained on nat-343

ural images (LLaVA-665k), geometric (Geo170K), 344

medical (Med. Mix) and a mixture of all tasks (All). 345

As can be seen, due to task conflicts, the model 346

trained on all tasks shows inferior results compared 347

to those trained on only one task. However, Mo- 348

CLE is able to reduce this gap on medical tasks 349

and even offer better performance on natural im- 350

age (MME, MMB) and geometric tasks (GeoQA) 351

compared to the model trained on one task. This 352

shows that MoCLE is effective with the presence 353

of multiple-domain datasets. 354

4.4 Ablation Studies 355

In this section, we first ablate the effectiveness of 356

the main components (i.e., Cluster MoE and univer- 357

sal expert) in the proposed MoCLE. Then we con- 358

duct a thorough analysis to study how the proposed 359

MoCLE responds to changes in hyper-parameters 360

(e.g., temperature and the number of clusters and 361

task experts). Notice that we use InstructBLIP 362

for all ablations and we report the evaluation re- 363

sults on Flickr30K (Flickr), Hateful Memes (HM), 364

ScienceQA (SQA), IconQA (IQA), Visual Spatial 365

5



LoRA(r=8) r=64 Cluster MoE Uni. Expert LoRA # Params. Flickr HM SQA IQA VSR VQAT Avg.

(a) ✓ 4.19M 81.3 65.1 57.4 44.2 62.8 49.4 60.0
(b) ✓ 33.55M 81.5 65.2 62.0 43.9 62.6 49.0 60.7
(c) ✓ ✓ 16.78M 81.9 65.4 63.3 46.1 58.9 54.9 61.8
(d) ✓ ✓ ✓ 20.97M 81.9 65.6 63.9 46.3 64.7 57.1 63.3

Table 5: Comparison of individual components of the MoCLE framework in zero-shot vision-language tasks.
Default settings are marked in gray .

Reasoning (VSR) and TextVQA (VQAT ).366

4.4.1 Effects of Different Components367

We start from MoCLE and remove its key compo-368

nent one-by-one to analyze their effect.369

Universal expert. Table 5 shows the ablation re-370

sults when varying different components of Mo-371

CLE. By comparing rows (d) and (c), we notice that372

a sharp performance drop in VSR and TextVQA373

tasks when the universal expert is removed. This374

is due to that instruction-tuned model generalizes375

to unseen tasks by training on many instructions,376

while in our case, each expert sees fewer instruc-377

tions than the dense model. For example, task378

TextVQA with instruction “OCR tokens: {}, Ques-379

tion: {}. Short answer:” needs not only VQA380

ability but also optical character recognition (OCR)381

skills, which are learned jointly from VQA data382

formatted as “Question: {}. Short answer:” and383

TextCaps data formatted as “OCR tokens: {}. Write384

a description for the photo”. Thus, universal expert385

is necessary to maintain generalization ability.386

Cluster MoE. Comparing rows (c) and (a), we ob-387

serve performance drop on SQA, IQA, and VQAT388

when cluster MoE is not used, which indicates it389

can alleviate task conflicts within a single set of390

LoRAs between different tasks.391

LoRA rank. As can be seen from rows (c), (b)392

and (a), naïvely increasing the LoRA ranks from393

8 to 64 only leads to a small average performance394

improvement of 0.7%, and thus cannot address task395

conflicts. Instead, promoting task specialization396

via clustering achieves notable improvement with397

fewer additional parameter (×4 in Cluster MoE398

versus ×8 when increasing the rank to 64).399

4.4.2 Universal Expert vs. Top-2 Experts400

To ablate the proposed universal expert, we remove401

it and activate one more existing expert. i.e., top-2402

gating. We report their performance in Table 6.403

The top-2 MoE model yields inferior results com-404

pared to MoCLE and it even performs worse than405

the MoCLE variant without the universal expert406

reported in Table 5. This can be explained by the407

Flickr HM SQA IQA VSR VQAT Avg.

Universal 81.9 65.6 63.9 46.3 64.7 57.1 63.3
Top-2 82.0 64.7 61.9 45.5 56.3 52.0 60.4

Table 6: Ablation study on the universal expert by
comparing with either (i) a universal expert that is acti-
vated all the time or (ii) expert with the second largest
logit, in addition to the top-1 expert.

Gating Flickr HM SQA IQA VSR VQAT Avg.

Token (LLaVA-MoLE) 81.7 65.4 61.9 44.0 49.0 46.6 58.1
(Chen et al., 2024)

Sentence (Octavius) 82.0 65.1 62.3 45.3 56.6 47.0 59.7
(Chen et al., 2023e)

Dataset 80.3 64.6 63.1 45.9 57.6 53.4 60.8
(Jang et al., 2023)

Cluster 81.9 65.4 63.3 46.1 58.9 54.9 61.8

Table 7: Ablation study on routing inputs based on
different input conditions.

intensified conflicts when task experts are shared 408

via top-2 gating because now each expert need to 409

learn common feature with other experts. However, 410

as the universal expert is shared all the time espe- 411

cially for this purpose, it frees task experts from 412

this duty and thus alleviates the conflicts. 413
4.4.3 Gating Strategies 414

We compare the proposed cluster-conditioned gat- 415

ing strategy with existing MoLE methods in Table 416

7. Note that MoLE denotes the mixture of LoRA 417

experts by applying MoE to LoRA. Some of these 418

methods adopt different configurations, e.g., # ex- 419

perts, expert params. and ranks. For fair compari- 420

son, we follow the first row of Table 1 except that 421

universal expert is not enabled in this experiment. 422

Token/Sentence-MoLE. The former obtains the 423

routing decision based on the hidden representa- 424

tions of each token (adopted by (Chen et al., 2024)) 425

and the later on the average representations of the 426

instruction tokens while excluding the visual to- 427

kens. (adopted by (Chen et al., 2023d)). Both of 428

these methods give inferior results on the evalua- 429

tion tasks. We speculate that this is because (1) a 430

sparse expert learns less data than its dense coun- 431

terpart, leading to lack of task generalization, (2) 432

similar tasks are not grouped together by the same 433

expert, resulting in task conflicts within that expert, 434

which can be verified by the routing visualization 435

in Figure 6, where samples in the same dataset are 436
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Figure 3: Ablation study on the number of clusters, experts and gate temperature. The x-axes of the first and
last figures are log-scaled. The y-axes are the average performance of Flickr, HM, SQA, IQA, VSR and VQAT .

routed to multiple experts instead of a dedicated437

one.438

Dataset-MoLE is a special case of MoCLE as it439

treats each dataset as a cluster while MoCLE lever-440

ages k-means to achieve this. It closely resembles441

to the dataset expert proposed in (Jang et al., 2023)442

except that we assign clusters for a sentence by its443

distance to cluster centers while they count, to this444

sentence, the number of closest reference sentences445

belonging to each dataset. Further, for fair com-446

parison, we only use 4 experts but they allocate447

an expert for each dataset. We observe inferior448

results compared to the proposed cluster routing.449

This results from the fact that Dataset-MoLE is less450

flexible as it can only assign a dataset to one cluster.451

However, in practice, we observe multiple tasks452

in a dataset which should be assigned to different453

clusters. (e.g., llava_150k contains reasoning, con-454

versations and captioning, which are assigned to455

different clusters/experts as in Figure 5 and 6a).456

4.4.4 Number of Clusters457

The number of clusters K controls the granularity458

of task specialization. A very small K would result459

in many different tasks to be processed by the same460

expert, and can increase the chance of task conflicts.461

As shown in Figure 3, when we cluster the inputs462

into 4 groups, the resulting model performs poorly463

on the evaluation tasks. However, as we increase464

the number of clusters to 16 and 64, we observe465

considerable performance gains. However, a K too466

large (256) introduces unnecessary complexity to467

the routing process (e.g., a paraphrased instruction468

gets routed to different experts). So we use 64469

clusters by default.470

4.4.5 Temperature471

In the proposed MoCLE, the temperature plays an472

important role in controlling the contribution of473

the universal expert. Specifically, as shown in Eq.474

(1), τ controls the sharpness of the gate distribu-475

tion, while the output of the universal expert is 476

weighted by 1−Gmax. Therefore, as τ decreases, 477

Gmax increases, and finally the contribution of the 478

universal expert decreases. As shown in Figure 3, 479

the results are consistent with our understandings. 480

When τ is either too small (0.01) or large (0.2) can 481

lead to inferior results. The temperatures of 0.05 482

and 0.1 seem to achieve a balance between spe- 483

cialization and generalization of the model. In the 484

experiments, we use temperature of 0.05 as default. 485

4.4.6 Number of Task Experts 486

As demonstrated in Figure 3, more task experts usu- 487

ally provides with stronger capacity. Specifically, 488

when only 2 task experts are employed, we observe 489

inferior overall results. This model has similar 490

capacity to the single LoRA model in Sec. 4.4.1, 491

where only one LoRA encounters difficulties in 492

fitting a diverse set of tasks. When the number of 493

task experts is increased to 4, the performance gets 494

improved. When the number of task experts be- 495

comes 8, it behaves similarly to the 4-expert case, 496

which indicates that the benefit of increasing capac- 497

ity converges as we use more task experts. Hence, 498

we use 4 task experts as the default setting. 499

4.5 Visualizations 500

4.5.1 Clustering 501

We first show the justification to represent the train- 502

ing data via their instructions. Specifically, for 503

each dataset, we sample 100 examples and encode 504

their instructions with the all-MiniLM-L6-v2 vari- 505

ant of the Sentence Transformer model (Reimers 506

and Gurevych, 2019). We then visualize the data 507

in Figure 4 via t-SNE (Van der Maaten and Hin- 508

ton, 2008). As can be seen, (1) Samples from the 509

same task are grouped together. For example, all 510

visual question generation (VQG, triangle markers) 511

data reside on the left part of the figure. (2) Sam- 512

ples from similar tasks are close to each other, e.g., 513
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Figure 4: T-SNE visualization of the instruction en-
coding. Different colors correspond to different datasets,
while the shape of the markers indicates the task cate-
gory defined manually.
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Figure 5: Clustering assignment of the training
datasets when K = 64. The labels on the y-axis in-
dicate the names of the datasets. The x-axis denotes the
cluster index to which the subsets are assigned.

coco_cap and textcaps both belong to the image514

captioning (CAP, small dots) task and stay close515

to each other at the lower right of the figure. Simi-516

larly, both visual question answering (VQA, cross517

markers) and conversation (CONV, y-shape) data518

involve answering user questions, which lie in the519

middle part of the figure, suggesting that instruc-520

tions are good representatives of training data.521

We then cluster all the instructions of the ex-522

amples in the training data into 64 groups using523

k-means clustering. Figure 5 shows the cluster as-524

signment of the training data. Here, each row in525

the heatmap denotes a subset of a dataset. The526

subset is obtained by applying the task template527

(Sec. 3.1) on the samples of the dataset. We ob-528

serve the following: (1) Different subsets of the529

same datasets are assigned to similar clusters. For530

example, aok_vqa, coco_vqa, and ok_vqa are in the531

first several clusters. (2) Datasets of similar tasks532

are assigned to common clusters. For example,533

0 1 2 3

-

--

--

-

-

-
--
-
-
-

---------------
-
-
-
-
-
-
-

coco_vqa
llava_l50k
aok_vqa
aok_vqg
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flickr_30k
VSR
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(a) Our MoCLE.

0 1 2 3

(b) Sentence MoLE.

Figure 6: Routing decisions of one LoRA mixture for
MoCLE and Sentence-MoLE. The setup of the vertical
axis is similar to Figure 5 except that we also include
the held-out tasks. They are separated by a dotted line
on the vertical axis. The horizontal axis corresponds to
the index of the LoRA experts.

llava_150k including llava_detail, llava_reason 534

and llava_conversation and a series of VQA tasks 535

share the first several clusters as they are to answer 536

questions. These justify the use of clustering on 537

task instructions as an automatic partition strategy 538

for training datasets. 539

4.5.2 Routing Results 540

Figure 6 visualizes the routing decisions of the 541

proposed MoCLE and Sentence-MoLE. We obtain 542

both results from one mixture of LoRA, i.e., one 543

linear module in a layer. The routing results are 544

aggregated by the subset of datasets similar to Fig- 545

ure 5. As can be seen from Figure 6a, MoCLE can 546

achieve task-level routing for the inputs. For exam- 547

ple, datasets from VQA and VQG tasks are handled 548

by expert 0 and 3, respectively. Instead, routing pat- 549

tern of Sentence-MoLE in Figure 6b reveals little 550

correlations between datasets and experts. That is, 551

different datasets obtain similar routing decisions, 552

and thus still suffer from task conflicts. 553

5 Conclusions 554

In this paper, we first show through extensive exper- 555

iments that task conflicts exist in vision language 556

instruction tuning. To address this, we propose 557

the Mixture of Cluster-conditional LoRA Experts 558

(MoCLE), a novel MoE architecture designed to ac- 559

tivate the task-customized model parameters based 560

on the instruction clusters. In addition, we achieve 561

task specialization and generalization in MoCLE si- 562

multaneously via a separate universal expert. Com- 563

prehensive evaluations of MoCLE on both held- 564

out/in tasks show the effectiveness of MoCLE. 565
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6 Limitations566

Although effective, we mainly focus on task con-567

flicts among text-based conversation tasks in this568

paper, while the support of our MoCLE for more569

complicated visual perception tasks is appealing,570

which has shown more severe task conflicts with571

the conversation tasks (Zhu et al., 2022).572
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A Training Details868

A.1 InstructBLIP869

Following (Dai et al., 2023), we adopt the same870

training configurations for the mentioned models871

such as the proposed MoCLE, the reproduced In-872

structBLIP (7B) and the task experts in Sec. 1. We873

train those models with a maximum of 60K steps874

and a batch size of 128. The AdamW optimizer875

(Kingma and Ba, 2014) is used, with β1 as 0.9, β2876

as 0.999, and a weight decay as 0.05. We apply a877

linear warmup of the learning rate during the initial878

1000 steps, increasing from 10−8 to 10−5, followed879

by a cosine decay with a minimum learning rate of880

0.881

A.2 LLaVA-1.5882

We follow (Liu et al., 2023a) for the training config-883

uration. Specifically, for LLaVA-150K(Liu et al.,884

2023a), Geo170K(Gao et al., 2023) and Med. Mix,885

i.e., VQA-RAD(Lau et al., 2018), SLAKE(Liu886

et al., 2021) and Path-VQA(He et al., 2020), we887

train the model for 1, 2 and 9 epochs, respectively.888

When training on all of these datasets, we copy889

each dataset k times (k is the number of epochs890

it is trained independently) and merge them into891

a single dataset. For each training job, we use a892

batch size of 128, weight decay of 0 and learning893

rate of 1e− 4, which is warmed up from 0 during894

the initial 3% steps and followed by a cosine decay895

with a minimum learning rate of 0.896

B Weights of the Universal Experts897

During training, if some training data obtains a very898

large weight on a task expert, such data tend to be899

very specific and might be less beneficial to other900

tasks. Hence, they get less weight on the universal901

expert. On the contrary, less specific (a.k.a, more902

general) data benefit more to other tasks and obtain903

larger weight on the universal expert. Therefore,904

the complementarity between the task experts and905

universal expert achieves good generalization in906

MoCLE.907

Figure 7 shows the average activation weights of908

the universal experts for different datasets during909

training. ocr_vqa obtains the lowest weight on the910

universal expert during training. Indeed, ocr_vqa911

includes samples that require the model to answer912

questions such as “What is the title of this book?”913

and “Who is the author of this book?”. Ques-914

tions like these have little overlap with the ones in915

other datasets. However, we observe much higher916

weights for ok_vqa, ok_vqg, aok_vqa, aok_vqg, 917

llava_*, and coco_vqa. This is consistent with our 918

previous observation in Sec. 4.5 that VQA abilities 919

are fundamental in LVLM. 920
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Figure 7: Weights of the universal expert for different
datasets. Colors indicate different datasets.

C Data 921

We list the training and evaluation data for Instruct- 922

BLIP and LLaVA-1.5 in Table 8. 923

C.1 Dataset Abbreviation 924

For InstructBLIP, we further show in Table 9 (1) 925

the abbreviation used in Sec. 4.5 for each dataset 926

and (2) their manually defined task category. As 927

shown in Table 9, we use 13 datasets in total. Here 928

multiple datasets might be associated with the same 929

data sources because these sources are formatted 930

by different groups of task templates (see Appendix 931

D). For LLaVA-150K (Liu et al., 2023b), we do 932

not apply any task template as it has been well 933

formatted. 934

D Task Templates 935

For InstructBLIP, we use the same set of task tem- 936

plates following (Dai et al., 2023) for instruction 937

tuning and held-in/out evaluation. Please refer to 938

Tables 10 and 11 for training and evaluation tem- 939

plates 940

E Case Studies 941

In this section, we present several case studies with 942

MoCLE. First, we study its conversation abilities 943

via a range of tasks, including object counting, 944

optical character recognition (OCR), and image 945

introduction. Then we showcase some example 946

instructions sampled from different clusters. 947
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Models Training datasets Evaluation Datasets

InstructBLIP

Flickr30K (Young et al., 2014), GQA (Hudson and Manning, 2019)
Web CapFilt (Li et al., 2023a) VSR (Liu et al., 2022a), IconQA (Lu et al., 2021)

A-OKVQA (Schwenk et al., 2022) TextVQA (Singh et al., 2019), Hateful Memes (Kiela et al., 2020)
TextCaps (Sidorov et al., 2020), VQAv2(Goyal et al., 2017) ScienceQA (Lu et al., 2022), MSVD-QA (Xu et al., 2017)

OKVQA (Marino et al., 2019), COCO (Lin et al., 2014) MSRVTT-QA (Xu et al., 2017), iVQA (Yang et al., 2021)
OCRVQA (Mishra et al., 2019), LLaVA-150K (Liu et al., 2023b) MME (Fu et al., 2023), POPE (Li et al., 2023c)

OKVQA∗, A-OKVQA∗, VQAv2∗

LLaVA-1.5

LLaVA-665K (Liu et al., 2023a) MME, MMBench(Liu et al., 2023c), ScienceQA
Geo170K (Gao et al., 2023), VQA-RAD (Lau et al., 2018) GeoQA∗ (Chen et al., 2021), VQA-RAD∗

SLAKE (Liu et al., 2021), PathVQA (He et al., 2020) SLAKE∗, PathVQA∗

Table 8: Datasets used for training and evaluation. *: the train split of this dataset is used during instruction tuning.

Datasets Data Source Task Template Group

aok_vqa A-OKVQA VQAMC
aok_vqg A-OKVQA VQG
coco_cap COCO CAP
coco_vqa VQAv2 VQA
coco_vqg VQAv2 VQG

ocrvqa OCR-VQA VQA
ok_vqa OKVQA VQA
ok_vqg OKVQA VQA
textcaps TextCaps OCRCAPS
capfilt Web CapFilt CAP

llava_conversation LLaVA-150K -
llava_detail LLaVA-150K -
llava_reason LLaVA-150K -

Table 9: Abbreviation and manually defined task categories for the training datasets of InstructBLIP.

E.1 Conversations948

In Table 12, we instruct the model to conduct a949

very difficult object counting task. The correct950

answer for this question is 63, which is quite hard951

for existing LVLMs. InstructBLIP fails to give the952

correct answers, while with MoCLE, InstructBLIP953

can respond the user query in a much more proper954

manner.955

In Table 13, the model is queried to recognize the956

character in the image. InstructBLIP performs not957

so well on this query possibly because OCR-related958

tasks conflict with other tasks during training. With959

MoCLE, the model can give correct results.960

In Table 14, we ask the model to introduce a961

famous person in the image. InstructBLIP gives962

a blunt response to the user query and does not963

follow the instruction of “introduction”. This might964

be due to the conflict between image caption and965

conversation tasks. In the training data, there are a966

large portion of image caption data that require the967

model to give a brief description to the image, while968

the user query in this example expects a detailed969

introduction to Albert Einstein. With MoCLE, the970

user query is identified and routed to the correct971

expert that is specialized at such a conversation972

task, thus, the model outputs a desired response.973

Similarly, in Table 15, we ask the model to de- 974

scribe the image in a detailed manner. InstructBLIP 975

still mistakes this query as an image caption task 976

and gives very short caption to this image. Instead, 977

with MoCLE, the model correctly understands the 978

“in details” in the instruction and provides sufficient 979

details. 980

E.2 Sample Instructions in Clusters 981

In Table 16, we showcase some sample instructions 982

assigned to different clusters. Though all the in- 983

structions in the 4 selected clusters belong to VQA- 984

related tasks, they focus on various perspectives 985

such as food, pet, men, and counting, justifying the 986

usage of a large number of instruction clusters. 987
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Template Group Task Template

CAP

A short image caption:
A short image description:
A photo of
An image that shows
Write a short description for the image.
Write a description for the photo.
Provide a description of what is presented in the photo.
Briefly describe the content of the image.
Can you briefly explain what you see in the image?
Could you use a few words to describe what you perceive in the photo?
Please provide a short depiction of the picture.
Using language, provide a short account of the image.
Use a few words to illustrate what is happening in the picture.

VQA

{Question}
Question: {Question}
Question A short answer to the question is
Q: {Question} A:
Question: {Question} Short answer:
Given the image, answer the following question with no more than three words. {Question}
Based on the image, respond to this question with a short answer: {Question}. Answer:
Use the provided image to answer the question: {Question} Provide your answer as short as possible:
What is the answer to the following question? “{Question}”
The question “{Question}” can be answered using the image. A short answer is

VQG

Given the image, generate a question whose answer is: {Answer}. Question:
Based on the image, provide a question with the answer: {Answer}. Question:
Given the visual representation, create a question for which the answer is “{Answer}”.
From the image provided, craft a question that leads to the reply: {Answer}. Question:
Considering the picture, come up with a question where the answer is: {Answer}.
Taking the image into account, generate an question that has the answer: {Answer}. Question:

Table 10: Task templates used during training. For OCRCAPS, we insert “OCR tokens:{}” before the template
of CAP. For VQAMC (i.e., multiple choice VQA), we append “Options: (a) option 1 (b) option2, . . .” after the
question and before the answer.

Evaluation Dataset Instruction

GQA, iVQA,

Question: {} Short answer:
MSVD, MSRVTT,
OKVQA, VQAV2,
A-OKVQA(Direct)
A-OKVQA(MC),

Question: {} Options: {}. Short answer:
IconQA

NoCaps, Flickr30k A short image description:
TextVQA OCR tokens: {}. Question: {} Short answer:

ScienceQA Context: {} Question: {} Options: {}. Answer:
HatefulMemes This is an image with: “{}” written on it. Is it hateful? Answer:

VSR Based on the image, is this statement true or false? “{}” Answer:
Visdual Dialog Dialog history: {}\n Question: {} Short answer:

Table 11: Task templates used during evaluation.
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Model responses to counting-related queries.

User How many books are there?

New Bing I see that you have sent me an
image. According to the de-
scription you provided, there
are 30 books on the bookshelf.

InstructBLIP 100

+MoCLE There are a lot of books on the
shelves. It is difficult to say ex-
actly how many books there are,
but it appears to be a large num-
ber.

Table 12: Model responses to counting-related
queries.

Model responses to OCR-related queries.

User What are all the exact scene texts in
the image?

New Bing According to the description you
provided, the image contains a li-
cense plate with the text “S3302CD”.
If you have any other questions or if
there is anything else I can help you
with, please let me know!

InstructBLIP The exact characters in the image are
“S 3000 CD.”

+MoCLE The exact characters in the image are
“S 3302 CD.”

Table 13: Model responses to OCR-related queries.

Model responses when asked to introduce a famous person.

User Can you give an introduction to this
person?

New Bing I’m sorry, I cannot give an introduc-
tion to this person as I am not al-
lowed to describe people’s identity,
gender, race or emotions

InstructBLIP albert einstein

+MoCLE Albert Einstein was a German-born
theoretical physicist who developed
the theory of relativity. He is con-
sidered one of the most influential
scientists of the 20th century.

Table 14: Model responses to introduce a celebrity.

Model responses when queried to give detailed image descriptions.

User Introduce me this image in details.

New Bing It appears to be a photograph of an
adult elephant walking on a beach.
The elephant is walking towards the
camera and is in the center of the
frame. The background consists of
the ocean and the sky. The elephant
is walking on the sand and there are
a few birds in the foreground. The
elephant appears to be dark grey in
color and has large ears and tusks

InstructBLIP an elephant walking along the beach

+MoCLE An elephant is walking along the
beach, with birds in the background.
The elephant’s trunk is extended to-
wards the water, and it appears to be
enjoying its time at the beach.

Table 15: Model responses to give detailed image
description.
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Cluster Instruction Samples Topics

1

“Q: what is being done to the food in the glass fronted box? A:”

Food

“Q: what category of pizza would this fall into? Options: (a) vegetarian (b) meat
lovers (c) pesto (d) pepperoni, A:”
“what are the large pieces of cake supposed to be?”
“Q: what does this person have on her teeth? Options: (a) braces (b) candy (c)
food (d) gum, A:”
“what is the food in? A short answer to the question is”
“what category of pizzas would this be considered?”

2

“Q: what sport is the cartoon dog playing? A:”

Pet
“Question: what is likely her favorite animal? Options: (a) cat (b) dog (c) pig (d)
sheep, Short answer:”
“Q: what is surrounding the cat? A:”
“Based on the image, respond to this question with a short answer: what color is
the cat?. Answer:”
“What might the relationship between the two women and the dog be?”

3

“what type dressing does this man favor?”

Men

“Based on the image, respond to this question with a short answer: what are the
men doing?. Answer:”
“what is the standing man doing with his arms?”
“what is the man in red shirt doing? Options: (a) laughing (b) crying (c) singing
(d) yelling”
“Question: what is the man doing with the pole?”
“Question: why is the man kneeling on the ground?”

4

“how many more animals need to be added to all of these to get the number ten?”

Counting
“Question: how many big elephants are inside of this zoo enclosure together?
Options: (a) one (b) four (c) two (d) three, Short answer:”
“Q: how many people are seated on the staircase made of wood? A:”
“Question: how many donuts are there?”
“What is the answer to the following question? “how many engines are visible?””

Table 16: Sampled instructions from different clusters.

16


	Introduction
	Related Work
	Multi-Task Instruction Tuning
	Mixture of Experts (MoE)

	Methodology
	Problem Formulation
	Clustering Data by Instructions
	Mixture of Cluster-Conditional LoRA Experts
	Universal Expert

	Experiment
	Implementation Details
	Settings
	Evaluation Results
	Ablation Studies
	Effects of Different Components
	Universal Expert vs. Top-2 Experts
	Gating Strategies
	Number of Clusters
	Temperature
	Number of Task Experts

	Visualizations
	Clustering
	Routing Results


	Conclusions
	Limitations
	Training Details
	InstructBLIP
	LLaVA-1.5

	Weights of the Universal Experts
	Data
	Dataset Abbreviation

	Task Templates
	Case Studies
	Conversations
	Sample Instructions in Clusters


