UniGist: Towards General and Hardware-aligned
Sequence-level Long Context Compression

Chenlong Deng'f, Zhisong Zhang>*, Kelong Mao', Shuaiyi LiZ,
Tianqing Fang?, Hongming Zhang?, Haitao Mi?, Dong Yu?, Zhicheng Dou'*

'Renmin University of China 2Tencent Al Lab 2City University of Hong Kong
{dengchenlong, dou}@ruc.edu.cn, zhisong.zhang@cityu.edu.hk

Abstract

Large language models are increasingly capable of handling long-context inputs,
but the memory overhead of key-value (KV) cache remains a major bottleneck
for general-purpose deployment. While various compression strategies have been
explored, sequence-level compression, which drops the full KV caches for certain
tokens, is particularly challenging as it can lead to the loss of important contextual
information. To address this, we introduce UniGist, a sequence-level long-context
compression framework that efficiently preserves context information by replacing
raw tokens with special compression tokens (gists) in a fine-grained manner. We
adopt a chunk-free training strategy and design an efficient kernel with a gist
shift trick, enabling optimized GPU training. Our scheme also supports flexible
inference by allowing the actual removal of compressed tokens, resulting in real-
time memory savings. Experiments across multiple long-context tasks demonstrate
that UniGist significantly improves compression quality, with especially strong
performance in detail-recalling tasks and long-range dependency modeling.

1 Introduction

As large language models (LLMs) are applied to more sophisticated and demanding applications, the
ability to process long-range context has emerged as a fundamental requirement [29, 59]. A wide
range of real-world applications, such as retrieval-augmented generation and long-form document
understanding, require models to retain and reason over input sequences with extensive lengths [16,
60]. This has spurred growing interest in scaling up context windows from a few thousand tokens
to hundreds of thousands or even millions, enabling models to incorporate more history, maintain
coherence, and ground responses in broader contexts [23, 35, 46, 14].

Despite this progress, long-context modeling still remains a challenge due to the inherent compute and
memory bottlenecks of the underlying Transformer architecture [37]. In particular, the cost of self-
attention scales quadratically with sequence length, making both training and inference increasingly
resource-intensive as the context grows [2, 50]. More critically, key-value (KV) caching, which is
essential for efficient autoregressive decoding during inference, has also become a major source of
memory consumption [18, 36]. In long-context settings, the memory required to store KV caches can
even exceed that of the model’s parameters. These limitations highlight the need for effective KV
compression techniques that can reduce computational and memory overhead without sacrificing the
model’s ability to retain and reason over essential contextual information.

This work focuses on sequence-level compression, which directly reduces the number of token repre-
sentations along the sequence dimension [43, 58]. A particularly promising and general sequence-

"This work was done during internship at Tencent AI Lab.
*Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

level strategy is the gist token-based approach [27, 17, 26, 30, 6, 54, 11], which segments long
sequences into chunks and inserts learnable virtual tokens (i.e., gists) to represent the original tokens.
In principle, this method has potential for dramatically reducing sequence length, as gist tokens can
be much fewer than raw tokens.

However, we observe two major drawbacks in existing gist-based methods. First, they suffer from
notable degradation when required to recall information from distant chunks. We hypothesize that
this is due to the prevalent chunk-wise training scheme, which introduces a shortcut letting tokens
to minimize loss by attending only to nearby uncompressed tokens within the same chunk [6, 54].
As a result, the model is less inclined to learn to integrate information across chunk boundaries,
limiting its ability to reason over long-range dependencies. Second, the chunk-wise design suffers
from fragmented memory usage and complex computational graphs, which hampers overall training
efficiency. In this training scheme, chunks are processed in an iterative style and separate memory
allocations are required for each chunk, leading to potential under-utilization of hardware resources.

In this work, we address the above challenge by introducing UniGist, a unified gist-based framework
for context compression. Unlike prior approaches that rely on chunk-wise training, we remove this
constraint and enable the model to learn compression more effectively over the entire sequence
through a unified sparse gist layout. To further enhance the efficiency of this layout, we propose a gist
shift trick, which is a hardware-aligned kernel design that transforms the irregular, vertically sparse
attention pattern into a right-aligned block structure. This transformation aligns with the block-wise
execution patterns of modern GPU architectures, significantly enhancing training throughput as well
as supporting fast autoregressive inference. Experiments over a wide range of long-context tasks
illustrate the effeciveness and efficiency of the proposed approach.

Our main contributions are as follows:

1) We propose UniGist, a sequence-level compression method with a unified sparse gist layout,
enabling effective and efficient long context modeling without chunk-wise training.

2) We introduce the gist shift trick to align the proposed sparse attention layout with GPU-friendly
block structures, significantly improving training throughput and supporting efficient inference.

3) With experiments on a variety of long-context tasks, we demonstrate that UniGist can provide
improvements for context compression, with especially strong performance in detail-recalling
tasks and long-range dependency modeling.

2 Related Work

KV Cache Compression. Transformer-based large language models mostly employ key-value
caching to avoid repetitive attention computations during inference. However, as real-world appli-
cations demand ever-increasing context lengths, the associated memory and bandwidth overhead
has quickly become a primary bottleneck for real-time systems. To tackle this, KV compression
techniques are widely explored along four orthogonal dimensions (i.e, layer, head, token sequence,
and numerical precision). Layer-level strategies typically skip certain transformer layers or share
activations across layers [33, 34, 3, 32]. At the head level, multiple query heads can share a single
key head, or the long-term cache of specific heads can be eliminated [1, 31]. Recent low-rank
approaches further introduce a promising direction for this line [10, 56]. Precision-focused methods
apply custom quantization and control the floating-point error they introduce to maintain the model’s
ability [24]. Moreover, some techniques within the layer, head, and precision dimensions demon-
strate near-lossless performance on general long context tasks, making them broadly applicable in
cutting-edge models.

On the other hand, sequence-level compression falls into two broad categories. Token eviction dis-
cards older token activations in real time once a budget is exceeded. For example, StreamingL.LM [43]
retains only the initial and recent tokens, which irreversibly lose the details in evicted tokens. To miti-
gate this, most of the following methods [58, 22, 47, 4, 12, 13] have to rely on hybrid eviction of layer
or head level, or even resort to question heuristics rather than general compression. Token merging
aggregates multiple tokens to reduce the overall cache size [57, 38, 40]. Models that introduce new
“gist” tokens and adopt more training often achieve more stable compression [27, 6, 54]. Nonetheless,
prior study shows that gist-based compression still struggles to retain highly complex details [11].

KV cache of gist tokens Output hidden states for language modeling
rrrrrrrrrrrrrrrrr
i) eReekinnioned

Long-dependency Context (Textbook)

MultiKey-2 (Parallel-style NIAH)) Comparison of Full Attention and Compression Model

—e— Compression Model
Full Attention

L oo é oo
o K prefix
t TE7E | Language Model

.. 000000
an&nok - - - n 150

A Compressed Context A Current-chunk Context [Question-Needie Pair 145

Average Loss

Important 1. The model rarely attends to compressed context across chunks,
(Tnsert gist fokens for each chunk) Observations: 2. The compressed needle rarely receives large attention weights,
E as most weights are used for attention sink and streaming. 16 32 64 128 256 512 1024 2048

000D | 0O is]s]=]=] Token position within each chunk (log scale)

Chunked Long Sequence Input
(a) Compression Architecture (b) Attention Weight Distribution Analysis (c) Loss Distribution within Chunks

Figure 1: Analysis of previous architectures. (a) Previous approaches adopt a chunk-wise strategy,
which accumulates gist representations iteratively. (b) Our attention analysis reveals that tokens tend
to ignore compressed contexts outside the current chunk. (c) Our token-position analysis indicates
that tokens near the chunk ends may rely only on uncompressed tokens to minimize the target loss.

Our method addresses the key limitations of gist-based architectures, achieving high-quality and
general-purpose compression using sequence-level alone.

Sparse Attention. Sparse attention has been widely adopted to mitigate the quadratic complexity of
self-attention by restricting computation to a subset of token interactions. Empirical studies show that
attention maps in language models are inherently sparse, enabling full attention can be approximated
closely. Early methods focus on designing fixed sparsity patterns and training models to adapt to
them [2, 51, 50]. With large language models scaling, researchers find that models trained with full
attention could preserve performance by simply adopting dynamically searched sparsity patterns
without extra tuning [20, 42, 41, 44, 53]. More recent works train dynamic attention patterns from
scratch [15, 25, 49], in some cases even outperforming full attention. However, to ensure generality
across diverse inputs, state-of-the-art sparse attention methods still require the cache for each token to
maintain reachability. Our method leverages the intrinsic sparsity of the gist token—based architecture,
eliminating the need for distant original token caches and achieving substantial acceleration during
both training and inference.

3 Why Does Typical Gist-based Compression Fail in Details?

3.1 Preliminary

Previous empirical study [11] shows that the most effective variant of gist token-based compression
inserts learnable gist tokens in an interleaved manner within each fixed-length chunk, and retains
the KV cache of gist tokens across all transformer layers. This section introduces this variant as the
representative architecture for our analysis.

Figure 1(a) illustrates the overall architecture. Given a long sequence X = |21, 3, ..., 2T, a chunk
length L, and a compression ratio 7, the sequence is first divided into N = T'/ L fixed-length chunks.
Within each chunk, one gist token is inserted after every r raw tokens to compress the sequence. As a
result, each chunk contains L raw tokens and n = L/r interleaved gist tokens.! The i-th chunk’s
content is given by:

T

X = [x(li),...,x(i),gl,...,I(Li)_r_i_l,...,z(Li),gn], r<1L, n

the 1-st gist unit the n-th gist unit

where g denotes the inserted gist tokens. Each group consisting of r raw tokens and the subsequent
gist token is defined as a gist unit. For simplicity, all inserted gist tokens share the same embedding.
For the i-th chunk, its input to the transformer blocks contains not only the current X @ but also the
accumulated KV cache from all preceding chunks’ gist tokens G«; as the prefix, thereby enabling
information flow across chunks. To maintain consistency with the inference stage, the same chunking

"Here we assumes that 7" can be divided by L and r for clarity.

(i N
i Reserved KV Cache (all layers) i Vanilla Position IDs:
I 0000000o0ooo I [oTiT2]3T4[5]6[7]8]9]
;'.__'.__'.__'.__'.__'.__'.__'.__‘.__'.:'.__'.__'.__'.__'.__'.__'.__'.__'.__'.J\ e e
. . 7
i For Language Modeling (last hidden states) I \\ Pie
. - e
i [Rt Kt Mot o Kol Mol Kok NSRS Kot Kot Mot IR \ -
Lozt e W’
T Recover Distance Relocation
\
\
[Language Model (One-pass Forward and Backward)] \\
\
x

00000000 oo0oo-ocooo

Reconstructed Long Sequence Input | 0 | 1 | 2 | 3 | 4 | g | 5 | 6 | 7 | 8 |
T T T T T T T T T l
!_D Sink token D Raw token D Gist token_!

(a) Model Architecture (b) Attention Pattern (c) Revised Position Encodings

Figure 2: Overall architecture of UniGist. (a) We adopt a chunk-free training strategy that allows
one-pass sequence processing. (b) We design a gist-enhanced attention pattern to effectively aggregate
information. (c) We revise positional encoding to maintain the relevant distances between raw tokens.

and iterative chunk-size forward strategy are used during training. The final training objective follows
the standard cross-entropy language modeling loss over raw tokens.

3.2 Analysis

We analyze why previous gist-based models struggle to fully utilize compressed context from two
perspectives by experimenting on a well-trained gist-based model:

Attention Patterns. We examine the attention patterns on two datasets with long-range dependen-
cies (Figure 1(b)). In natural data such as textbooks, most tokens exhibit little attention across chunk
boundaries. For structured tasks like RULER MultiKey-2 [19], which follow a parallel needle-in-a-
haystack pattern, attention also remains mostly localized within the current chunk. In addition, many
attention weights concentrate at the beginning of each chunk, even though this region may contain
irrelevant key-value pairs. In contrast, the actual related piece of context receives little attention.

Token Positions. We perform continue-training with a well-trained compressed model on 32K-
length sequences and measure the average loss at each relative position within chunks, excluding the
first chunk that has no previous contexts. As shown in Figure 1(c), tokens at the beginning of each
chunk consistently exhibit higher loss, while those closer to the end show loss patterns similar to full
attention models. This suggests that tokens near the end can rely on nearby uncompressed tokens to
minimize the language modeling loss. As a result, previous contexts may not be effectively used for
compression learning, which limits the overall efficiency of training.

These observations suggest that chunk-wise training is a primary bottleneck limiting compression
quality. Previous approaches rely on chunk-wise training to ensure consistency between training
and inference, but this strategy prevents models from learning cross-chunk dependencies and limits
compression performance, calling for better designs for training strategies.

4 Method

4.1 Unified Gist Context-based Language Modeling

As illustrated in Section 3.2, the chunk-wise training leads to an under-attention problem, that is,
tokens in each block tend to ignore earlier compressed contexts. To address this, we eliminate the
coarse-grained chunking strategy and introduce a unified attention pattern to enable the language
model to learn more effective context compression. Figure 2 provides an overview of our strategy.
Given a token sequence [z, x2, . . ., 27|, we construct the augmented input with the following steps:

1) Attention Sink Prefix. We prepend a fixed number of s sink tokens [s1, so, ..., s5] at the
beginning of the entire sequence. They serve as fixed “attention sinks” [43] to prevent mode
collapse that can occur when initial raw tokens are compressed and then removed.

Move Position ids
[o]1]2]3]4]5]66]7]8]0Jio] ——— [o]1]2]3]4]5]6[7]8]o]6]10] Inner Loop

KT:dx N
et KV block start/end indices
Q:Nxd V:N xd

Compute on SRAM

doory sauuy

‘Lm Shift Trick

Output to HEV
sm(QKTV:N x d

-
Outer Loop

(a) Attention Pattern Transformation (b) Block Table-free Kernel Design

Outer Loop

[sink tokens [Rawtokens [Gist tokens [Local tokens

Figure 3: Kernel design of our efficient sparse gist attention. (a) We adopt the gist shift trick by
moving all gist tokens to the rightmost position of the sequence to facilitate GPU block processing.
(b) With fixed compression rate, non-visible blocks can be skipped by pre-calculating block indexes.

2) Gist Token Insertion. We interleave learnable gist tokens into the token sequence with a
compression ratio 7 (i.e., one gist token for every r raw tokens). We uniformly apply this
insertion operation over all raw tokens. After this operation, the new sequence will be:

Z = [517"'assaxla"'7xr7.gl;xr+lv"'7x2T792a-~~7mTng/T]

, @)

=[z1,...,2p], T =s+T+T/r

3) Position Encoding Alignment. Inserting gist tokens shifts the position indices of later tokens,

which changes the original distances between raw tokens and may harm language coherence. To

mitigate this, we assign each gist token the same position id as the raw token right after it, so
that all raw-token distances remain unchanged.

With this gist-augmented input, we define a unified sparse autoregressive attention pattern that is
applied to all tokens. For each z; € Z, the set of its visible tokens is defined as:

A(z) = (SUGUW,) N {25 < t}, 3)

where the intersection with {z;|j < t} enforces the autoregressive constraint, restricting each token
to attend only to itself or prior tokens. S and G are sink and gist tokens, respectively, which can
provide conpressed contexts. The local window W, consists of the current gist unit that contains
zt, as well as the previous k gist units (each containing r raw tokens followed by one gist token).
This helps the model retain its basic language modeling ability with local contexts. The final training
objective remains the standard autoregressive cross-entropy loss over raw tokens x; € X C Z.

4.2 Hardware-aligned Kernel Design

Sparse attention patterns in gist-token-based models are inherently efficient. Nevertheless, to fully
realize such efficiency on GPU devices, we need suitable hardware-aligned kernels. Because of the
sparsely inserted gist tokens, our attention patterns are incompatibility with FLASH_ATTN kernels [8].
Therefore, we design a custom kernel that supports efficient processing.

Since our attention pattern evenly distributes the gist tokens in a fine-grained way, conventional
GPU kernels cannot fully exploit the advantages of sparse attention. The main reason is that GPU
kernels are optimized for processing data in blocks (typically of size 64 or 128). In our setting (with
a compression ratio of 4 or 8), gist tokens are always attended to and are present in every block. As a
result, no blocks can be skipped during attention computation in training, even though the raw tokens
in previous blocks outside the local window are not visible to later tokens and can be skipped.

We address this issue with the gist shift trick, which moves all gist tokens to the rightmost position
of the sequence. This transformation converts the attention pattern into a dense, right-aligned scheme
that aligns well with standard GPU block processing, as shown in Figure 3. In this way, all the gist
tokens are gathered together, and each token will only need to attend to the compacted gist blocks in
addition to the sink and local window blocks. This leads to a scheme that can fully exploit the sparsity
benefits by skipping non-attended blocks. Note that with a fixed compression ratio, our attention

Prefill Stage (chunk size=4) Settings: sink size=2, compression ratio=2, local gist unit=1 (Sink tokens () Raw tokens () Gist tokens}

(1) Truncate the sequence input and apply forward (2) Progressively compress the sequence (3) Compression completed

00000000/ ocoooo oooooo |oooooao 00000000

01 23 445¢6'67 880910 01 4456 6 7 8 8 910 01 46 88 910
The first chunk The second chunk Cache after the first compression The second chunk Compressed KV cache

Decoding Stage

(1) Forward with the compressed cache (2) Reach the next gist token (3) Compress and continue generating
00000000 C] DDDDDDDDD oo 0000ococooo o
0146 828 910 01 9 1010 11 12 01 4 6 810101112 12
- — A
Compressed KV cache New tokcn input Past KV cache New token input Compressed KV cache New token input

Figure 4: Illustration of flexible inference. Since the raw tokens outside the local window will never
be attended to by future tokens, these invisible raw tokens can be safely discarded at each compression
point. For prefilling, we can re-adopt the chunk-wise scheme and encode each chunk of the input
with our efficent kernel, with nonvisible tokens dropped after each chunk. For decoding, nonvisible
raw tokens can be discarded after each new gist is inserted.

layout is deterministic, and there is no need to build or store any block index tables. Instead, the
indexes of the visible blocks for each token can be directly pre-calculated.

This trick brings a side effect that the original token indexes are distorted, which leads to the difficulty
of calculation in-block attention masks. To mitigate this issue, we pass an auxiliary input of the
original token indexes to the kernel. With this information, we can easily calculate the attention
masks according to Equation 3.

4.3 One-pass Training and Flexible Inference

Training: One-pass with Full Sequence. With our unified attention pattern and custom kernel, we
can process long sequences in a single pass without chunk-wise iterative processing during training.
This eliminates memory fragmentation and reduces the complexity associated with the chunk-based
scheme, leading to faster and more memory-efficient training.

Inference: Flexible Decoding with Low Memory Usage. For prefilling, which naturally follows
the iterative manner, we can re-adopt the chunk-wise scheme to encode each chunk with our kernel
to reduce peak memory usage.? The overall procedure is illustrated in Figure 4. During inference,
each token only attends to tokens defined by the autoregressive pattern. Raw tokens beyond the local
window are no longer required and can be dropped on the fly during generation. This also allows
compatibility with efficient decoding techniques like FlashDecoding [9].

S Experiments

5.1 Experimental Setup

Baselines. We compare UniGist primarily with methods that perform sequence-level context
compression, as compression techniques along other dimensions are often orthogonal and not directly
comparable. Our baselines include three categories of methods: (1) Vanilla Full Attention Models,
including the original model and its supervised fine-tuned variant using the same data as ours to
control for variables. (2) Training-free Context Compression, where we include StreamingL.LM [43],
SnapKV [22], PyramidKYV [4], and AdaKV [12] (based on SnapKV) as popular eviction methods. (3)
Gist Token-based Compression, where we evaluate AutoCompressors [6] and Activation Beacon [54]
as state-of-the-art methods. Both use chunk-wise compression to enable general-purpose compression.

Implementation Details. We use Llama3.1-8B-Instruct and Llama-3.2-3B-Instruct as the base
models to evaluate performance across different model sizes [35]. Continued pretraining is conducted
on 16B tokens of 32K-length samples drawn from Prolong’s [14] mixed dataset, followed by super-
vised tuning on 1B tokens of mixed instruction data. Cross-document masking is applied during
training to block attention across document boundaries. All custom attention kernels are implemented
in Triton. For all methods, we adopt a question-agnostic compression setup to ensure generality and

’The chunk size can be configured as any integer multiple of the compression ratio during prefilling.

Method ‘ RAG Rerank LongQA ICL Synthetic ~ Summ. Average

Llama-3.1-8B-Instruct

Full Attention 74.5 55.1 43.5 81.8 99.3 28.9 63.9
Full Attention (FT) 72.7 48.4 43.8 79.5 97.4 26.8 61.4
StreamingLLM 58.5 28.4 33.1 36.0 18.6 12.2 31.1
SnapKV 60.3 11.8 40.4 29.6 19.8 12.6 29.1
PyramidKV 60.9 9.3 41.3 22.4 21.7 12.7 28.0
AdaKV 61.1 14.0 40.5 37.6 31.6 12.5 329
AutoCompressors 64.7 20.9 36.4 40.1 232 16.5 33.6
Activation Beacon 67.9 344 40.6 79.2 61.8 21.0 51.8
UniGist (Ours) 71.3 45.5 45.5 85.8 91.3 229 60.4
Llama-3.2-3B-Instruct
Full Attention 68.6 17.5 38.6 79.6 78.9 28.2 51.9
Full Attention (FT) 66.3 16.9 39.1 77.1 85.6 27.7 52.1
StreamingLLM 52.3 10.9 13.2 5.8 15.1 11.5 18.1
SnapKV 52.8 3.0 29.4 8.6 16.2 12.3 20.4
PyramidKV 52.5 32 31.5 7.8 12.6 11.6 20.0
AdaKV 53.8 3.1 30.5 6.6 28.6 12.4 22.5
AutoCompressors 55.7 7.2 26.3 31.2 7.9 15.2 23.9
Activation Beacon 58.4 114 36.5 57.4 47.1 16.8 37.9
UniGist (Ours) 63.6 15.6 41.7 73.8 82.3 21.6 47.8

Table 1: Evaluation results of various context compression methods under two base models across
long-context tasks. “FT” denotes to the fine-tuned full attention model. Bolded numbers indicate the
best results among compression methods.

difficulty. Greedy decoding is used for all tasks. For UniGist, the sink size is set to 128, and the local
window corresponds to 128 raw tokens. The main results reported use a compression ratio of 4. All
training and inference experiments are conducted using the Huggingface framework. More details
about data composition and training setup are introduced in Appendix A.

5.2 Main Results
Method | MMLU-Pro GSM8K HellaSwag

Long Context Evaluation. We evaluate mod- Full 47.7 83.6 60.2

els’ long-context understanding using the HEL- EUII'FT j;; gj; Zg?
: : cacon . . .
MET benchmark [48], which includes a broad UniGist 476 239 60.1

range of long-context tasks, including retrieval-
augmented generation (RAG), summarization,
and synthetic recall. HELMET incorporates
several representative datasets such as Inf-
Bench [55] and RULER [19], offering a com-
prehensive assessment of model performance
across diverse long-context scenarios. For each task, we report the average score over its datasets.
Detailed task configurations are provided in Appendix B.

Table 2: Performance on three widely-used short-
context datasets. The “Full” and “FT” denote to
full attention and fine-tuning, respectively.

Table 1 presents the overall evaluation results. We highlight three key observations: (1) UniGist
achieves the best performance among all compression methods across both model sizes. On the
synthetic tasks such as RULER MK-3, it is the only method that performs close to full attention. (2)
UniGist shows clear improvements over prior methods with similar architectures (e.g., Beacon).
This suggests that our unified attention pattern design plays a key role in helping the model read
compressed context effectively. (3) The effect of compression varies by task. In tasks like RAG,
many methods still perform reasonably well. In contrast, many-shot ICL is much more sensitive,
especially for training-free approaches. This may be because compression disrupts the parallel
structure required for in-context learning. Gist token-based methods show better robustness under
these conditions.

Loss (Steps 50-100) Gradient Norm (Steps 50-100) Performance vs. Local Window Size

24 240 ’ 681 & §: \ g8.5
£ .

; AR T

e g0 S 6 \ \] §: \ A\
. “ N N N N
g | - mEE 7

18 10 . O RN N %\ %\ %\
- rt et | TNANANRDNAN

Global Step Global Step Local Window Size

Figure 6: Left & Middle: Loss and gradient norm curves of Llama-3.1-8B-Instruct during training
steps 50-100. Using 128 sink tokens leads to more stable training, with lower loss and smaller
gradient fluctuations. Right: Performance of two long-context tasks of Llama-3.2-3B-Instruct after
4B-token continual pretraining and then supervised finetuning under different local window sizes.

Basic Short-context Capability. To assess whether context compression compromises the model’s
core capabilities, we further evaluate all methods on a set of standard short-context benchmarks,
including MMLU-Pro [39] (knowledge and reasoning), GSM8K [7] (math), and HellaSwag [52]
(commonsense inference) with 3-shot demonstration, as shown in Table 2. These tasks do not involve
long contexts and thus serve as a proxy to measure whether compression-specific training introduces
undesirable side effects on general performance. We find that all gist token-based methods maintain
performance comparable to the full attention baseline across all tasks. Differences between methods
are within the range of natural variance, and no consistent degradation is observed. This suggests that
continued pretraining with the compression target does not impair the model’s ability to perform basic
tasks. The gains in long-context understanding come without sacrificing short-context capabilities.

Boundary Effect Test. As shown in Section 3.2, chunk- 172
based training tends to introduce boundary effects, where
a token’s performance depends on its position within
the chunk. We evaluate UniGist under the same setting
and compare it with full attention. Figure 5 shows that
UniGist maintains nearly uniform perplexity across po-
sitions, closely matching full attention. This confirms
that UniGist avoids position-related bias caused by the

chunk-wise training scheme. " Token postion within cach chunk (log scale)

9
3

o
&

Average Loss

‘\’\/././‘\.\

—e— Full Attention
Compression Model

o
8

2
2

o
S

Figure 5: Boundary Effect Test. The
compression model exhibits a similar
trend to full attention, showing no degra-
dation near chunk boundaries.

5.3 Ablation Study

The core mechanism of UniGist is the unified attention
layout, which is designed for learning better compression.
Its effectiveness is already evident in the main results
through the performance comparison with Beacon’s chunk-wise training. In this section, we focus on
two additional components that contribute to UniGist’s performance: the use of sink tokens and the
choice of local window size.

Sink tokens for Stable Learning. To understand their impact, we compare training behaviors
between models with and without sink tokens during the first 50 to 100 training steps. As shown
in the left of Figure 6, the model with sink tokens achieves consistently lower loss and smoother
gradient norms. In contrast, the model without sink tokens shows frequent gradient spikes, which slow
down convergence. One possible reason is that, without sink tokens, the model fails to consistently
attend to the initial tokens in the sequence because of progressive compression. This may break the
autoregressive pattern and weaken early-stage learning signals.

Effect of Local Window Size. We further examine how the size of the local attention window
affects the trade-off between language modeling and compression learning. A small window limits
the model’s access to raw tokens, forcing it to rely more heavily on gist tokens. This encourages the
model to learn to extract compressed representations, but also increases the difficulty of language
modeling due to reduced contextual continuity. In contrast, a large window gives the model easy

Il Full Attention [UniGist (Compression ratio=4) I UniGist (Compression ratio=8)
Peak Memory Usage Forward Speed-up Backward Speed-up

I} w IS IS
& S S &
Speed-up Ratio

Peak Memory Usage (GB)
w
=3
Speed-up Ratio

)
=]

0
16K 32K 64K 128K 16K 32K 64K 128K 16K 32K 64K 128K
Context Length Context Length Context Length

Figure 7: Comparison of efficiency between UniGist and standard full attention. Left: Peak memory
usage increases steeply with context length for full attention, while UniGist maintains significantly
lower memory consumption. Middle & Right: UniGist delivers substantial forward and backward
attention speed-up, with higher gains under longer sequences and larger compression ratios.

access to raw tokens, which weakens the pressure to use gist tokens and may cause the model to
bypass the compression path altogether. To quantify this trade-off, we evaluate UniGist with different
window sizes on two long context tasks. As shown on the right of Figure 6, performance on both
the RAG and synthetic recall tasks exhibits a non-monotonic pattern, initially improving and then
declining. Notably, both tasks achieve peak performance when the window size is set to 128. This
suggests that a moderate window provides sufficient local context for stable language modeling,
while still encouraging the model to rely on gist tokens for global understanding.

5.4 Efficiency Comparison

UniGist is primarily designed to reduce the memory occupation of the KV cache, while also providing
substantial speed-ups during both training and inference. We evaluate the quantitative benefits from
two perspectives: memory usage and computation speed.

Memory Usage. Long-context modeling places heavy demands on memory resources, often
becoming a bottleneck for deployment. We evaluate peak GPU memory usage under compression
ratios of 4 and 8, comparing UniGist with full attention on the Llama-3.1-8B-Instruct model. As
shown in the left of Figure 7, UniGist achieves a substantial reduction in memory usage in both
settings, with more pronounced savings under ratio=8. These results demonstrate that UniGist can
effectively alleviate memory bottlenecks while preserving modeling performance. The benefits grow
with longer contexts, making UniGist a strong choice for scaling to ultra-long sequences.

Speed-up Evaluation. To isolate the speed-up benefit of the attention mechanism itself, we measure
the forward and backward pass latency of a single attention layer. This avoids confounding factors
from other components of the model. As shown in the right of Figure 7, the speed-up achieved by
UniGist grows with context length and gradually approaches the theoretical upper bound, which
equals the compression ratio (e.g., 4 x speed-up under compression ratio=4)3. This confirms that the
sparse attention path introduced by UniGist leads to a real acceleration in real scenarios, especially in
long sequences where the quadratic cost of full attention becomes prohibitive.

6 Conclusion

This work presents UniGist, a sequence-level compression framework for long-context language
modeling without relying on hybrid strategies. By removing chunk-wise training and introducing
a unified gist attention layout, UniGist enables effective learning over compressed sequences. We
design a gist shift trick and a block-table-free sparse attention kernel that improve training efficiency
and are fully reusable during inference. UniGist also supports flexible chunking at inference time for
adaptive context processing. Experiments across a broad range of tasks demonstrate that UniGist

*We provide the original data and experimental details in Appendix C.

achieves solid performance across a range of tasks, and proves particularly effective at retaining
details in long context scenarios. It also improves efficiency over full attention, with faster runtime
and lower memory usage during inference.

7 Acknowledgments

This work was supported by Beijing Municipal Science and Technology Project No.
7231100010323009, National Natural Science Foundation of China No. 62272467, Beijing Natural
Science Foundation No. L.233008. The work was partially done at the Engineering Research Center
of Next-Generation Intelligent Search and Recommendation, MOE.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. GQA: training generalized multi-query transformer models from multi-head checkpoints. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 4895—
4901. Association for Computational Linguistics, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. CoRR,
abs/2004.05150, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-Kelley.
Reducing transformer key-value cache size with cross-layer attention. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic KV cache compression based on pyramidal
information funneling. CoRR, abs/2406.02069, 2024.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. In The Tielfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December
6-10, 2023, pages 3829-3846. Association for Computational Linguistics, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The Twelfth
International Conference on Learning Representations, 2024.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flashdecoding. https://crfm.stanford.
edu/2023/10/12/flashdecoding.html.

Deepseek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
CoRR, abs/2405.04434, 2024.

Chenlong Deng, Zhisong Zhang, Kelong Mao, Shuaiyi Li, Xinting Huang, Dong Yu, and Zhicheng Dou.
A silver bullet or a compromise for full attention? A comprehensive study of gist token-based context
compression. CoRR, abs/2412.17483, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing KV cache eviction
by adaptive budget allocation for efficient LLM inference. CoRR, abs/2407.11550, 2024.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter: A

head-level KV cache compression method with integrated retrieval and reasoning. CoRR, abs/2410.19258,
2024.

10

https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]
[29]

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language models
(effectively), 2025.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Hayden Kwok-Hay So, Ting Cao, Fan Yang, and Mao
Yang. Seerattention: Learning intrinsic sparse attention in your llms. CoRR, abs/2410.13276, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
CoRR, abs/2312.10997, 2023.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and Boris
Ginsburg. RULER: What'’s the real context size of your long-context language models? In First Conference
on Language Modeling, 2024.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference 1.0: Accelerating
pre-filling for long-context llms via dynamic sparse attention. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev. BOOK-
SUM: A collection of datasets for long-form narrative summarization. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang, editors, Findings of the Association for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022, pages 6536—6558. Association for Computational
Linguistics, 2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are looking for before generation. In
Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang, Chenchen
Zhang, Ge Zhang, Jiebin Zhang, Yuanxing Zhang, Zhuo Chen, Hangyu Guo, Shilong Li, Zigiang Liu, Yong
Shan, Yifan Song, Jiayi Tian, Wenhao Wu, Zhejian Zhou, Ruijie Zhu, Junlan Feng, Yang Gao, Shizhu He,
Zhoujun Li, Tianyu Liu, Fanyu Meng, Wenbo Su, Yingshui Tan, Zili Wang, Jian Yang, Wei Ye, Bo Zheng,
Wangchunshu Zhou, Wenhao Huang, Sujian Li, and Zhaoxiang Zhang. A comprehensive survey on long
context language modeling, 2025.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He, Enming
Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru Chen, Huabin
Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Neo Y. Zhang, Zhilin Yang, Xinyu Zhou, Mingxing Zhang, and
Jiezhong Qiu. Moba: Mixture of block attention for long-context llms. CoRR, abs/2502.13189, 2025.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context length for
transformers. CoRR, abs/2305.16300, 2023.

Jesse Mu, Xiang Li, and Noah D. Goodman. Learning to compress prompts with gist tokens. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

NVIDIA. Kvpress. https://github.com/NVIDIA/kvpress.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

11

https://github.com/NVIDIA/kvpress

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(371

(38]

(391

(40]

[41]

[42]

[43]

[44]

[45]

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil Rao, and Benjamin Van Durme. Nugget 2d: Dynamic
contextual compression for scaling decoder-only language models. CoRR, abs/2310.02409, 2023.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150, 2019.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024,
2024.

Gemma 2 Team. Gemma 2: Improving open language models at a practical size. CoRR, abs/2408.00118,
2024.

Gemma 3 Team. Gemma 3 technical report. CoRR, abs/2503.19786, 2025.
Llama 3 Team. The llama 3 herd of models, 2024.

MiniMax Team. Minimax-01: Scaling foundation models with lightning attention. CoRR, abs/2501.08313,
2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ¥. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing
Xiong, and Mi Zhang. D20: dynamic discriminative operations for efficient generative inference of large
language models. CoRR, abs/2406.13035, 2024.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang
Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language understanding
benchmark. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang, editors, Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive KV
cache merging for llms on long-context tasks. CoRR, abs/2407.08454, 2024.

Wei Wu, Zhuoshi Pan, Chao Wang, Liyi Chen, Yunchu Bai, Kun Fu, Zheng Wang, and Hui Xiong.
Tokenselect: Efficient long-context inference and length extrapolation for llms via dynamic token-level KV
cache selection. CoRR, abs/2411.02886, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and
Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient context memory.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. CoRR, abs/2503.16428, 2025.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and Bill Yuchen
Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms with nothing. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28,
2025. OpenReview.net, 2025.

12

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

(561

(571

(58]

(591

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li,
Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang
Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru
Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 3258-3270. Association for Computational Linguistics,
2024.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat, and
Dangi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, Y. X. Wei,
Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang, and Wangding Zeng.
Native sparse attention: Hardware-aligned and natively trainable sparse attention. CoRR, abs/2502.11089,
2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontafién,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurlPS 2020, December 6-12, 2020, virtual, 2020.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontafién,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez, editors, Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 4791-4800. Association for Computational Linguistics,
2019.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any model inference. CoRR, abs/2502.18137, 2025.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Long context
compression with activation beacon. arXiv preprint arXiv:2401.03462, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han, Zhen Leng
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. cobench: Extending long context evaluation beyond
100k tokens, 2024.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-Chih Yao.
Tensor product attention is all you need. CoRR, abs/2501.06425, 2025.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji. Cam:
Cache merging for memory-efficient llms inference. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O: heavy-hitter oracle for
efficient generative inference of large language models. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of
large language models. CoRR, abs/2303.18223, 2023.

13

[60] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. Large language models for information retrieval: A survey. CoRR, abs/2308.07107, 2023.

14

Category Tasks Metrics

NQ SubEM
TriviaQA SubEM
RAG PopQA SubEM
HotpotQA SumEM
Rerank MS Marco NDCG@5
ooBench QA ROUGE Recall
Long-doc QA ocoBench MC Accuracy
TREC Coarse Accuracy
TREC Fine Accuracy
Many-shot ICL NLU Accuracy
BANKING77 Accuracy
CLINIC150 Accuracy
JSON KV SubEM
Synthetic recall RULER MK Needle SubEM
y RULER MK UUID SubEM
RULER MV SubEM

ooBench Sum ROUGE-Sum F1

Summ. Multi-LexSum ROUGE-Sum F1

Table 3: Data Composition and metrics of the used HELMET benchmark.

A Model and Training Details

A.1 Baseline Configuration

For training-free compression methods, we adopt the implementation based on the KVPress frame-
work [28] to ensure consistency. For chunk-wise training methods, we divide sequences into 2K-
length chunks and continue pretraining and fine-tuning on 32K-length samples. To ensure fairness, all
trainable methods are fine-tuned with full-parameter updates. As for vanilla LLaMA models, given
their extensive pretraining on approximately 15T tokens, we skip additional pretraining and apply
supervised fine-tuning directly.

A.2 Hyper-parameters

For continued pretraining, we use a batch size of 2M tokens and set the learning rate to le-5. The
learning rate is warmed up linearly from O over 256 steps and then decayed to 50% of its peak
using cosine scheduling. The AdamW optimizer is used for our experiments. The compression
ratio and local window size remain fixed throughout training. During fine-tuning, we retain most
hyperparameters but reduce the warm-up steps to 128.

A.3 Training Data Processing

For continued pretraining, we use the 64K-length dataset from Prolong [14] and restructure it into
32K-length samples. Specifically, we split all 64K-length samples into two 32K segments. The
original data includes two types of samples: those consisting of a single long document, and those
formed by concatenating multiple shorter documents. For single-document samples, we apply
no additional processing beyond the split. For multi-document samples, we pad each document
individually so that its length is divisible by the compression ratio, ensuring compatibility with our
attention pattern.

For supervised fine-tuning, we use the Magpie-Llama-3.1-Pro-MT-300K-Filtered dataset [45] as the
main source. Then, we refer to the Beacon’s [54] setup to further augment it with samples from
LongAlpaca [5], BookSum [21], and 500 RULER-like synthetic data designed for long-context tasks.
In total, the fine-tuning data comprises approximately 1B tokens.

15

Direction | Method | Ratio | 16K 32K 64K 128K

Causal - 13.8 527 2069 8639
Forward | UniGist 4 6.45 205 72.9 271.8
UniGist 8 410 116 37.3 130.9
Causal - 574 2256 8715 3586.8
Backward | UniGist 4 243 809 2947 1116.8
UniGist 8 149 445 1479 5389

Table 4: Forward and backward time (ms) under different context lengths. UniGist is evaluated at
compression ratios (CR) of 4 and 8.

B Evaluation Details

Long Context Evaluation. We evaluate on six tasks from the HELMET benchmark. The datasets
and metrics are listed in Table 3. We use a chat template for all prompts. For the LongQA task, we
use a 2-shot demonstration to ensure an exact match in multi-choice questions. Since most models
are trained with a 32K context length, we use the corresponding 32K configuration files. For tasks
like Rerank, we append a brief reminder after the question to reinforce the expected output format
and task objective.

C More Experiments

Speed-up Details We report the raw measurements of speed-up under a controlled setting with
batch size 1, 32 attention heads, and a head dimension of 128. All methods are implemented with
Triton to ensure a fair comparison. Each result is averaged over five runs, as shown in Table 4.

D Limitations

Model Scale and Context Length Our experiments are limited to models with at most 8B pa-
rameters and a context length of 32K due to computational constraints. Although this setup enables
controlled and efficient experiments, it does not fully capture the potential of larger models to
learn and benefit from compression. Understanding how model scale and context length influence
compression quality remains an open question for future research.

Training Protocol In this work, we adapt existing language models to our attention pattern through
continued pretraining. While we do not train from scratch, the UniGist architecture is fully compatible
with end-to-end training. Training from scratch may allow the model to better internalize the structure
and inductive biases of our compression pattern, without being influenced by pre-existing attention
mechanisms. However, such training typically requires hundreds of billions of tokens to yield
meaningful insights, which is beyond our current computational budget. We leave a comprehensive
investigation of scratch training for future work, especially to understand how compression-aware
architectures behave during early-stage pertaining.

E Ethical Discussion

UniGist aims to reduce the computational and memory overhead of large language models by
introducing efficient context compression. This brings tangible benefits: it lowers the cost of
inference, reduces carbon footprint, and facilitates the deployment of long-context models in resource-
constrained environments. However, compression may inevitably alters model behavior. Compared to
full attention baselines, compressed models may yield less accurate or misleading outputs in certain
edge cases, especially when critical information is omitted or distorted during compression. This
poses a risk in high-stakes applications where incorrect responses can have real-world consequences.
We urge users to carefully evaluate reliability when applying UniGist in downstream tasks and to
consider human oversight when appropriate.

16

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We claim our contributions and scope in these two sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitation statement in Appendix D.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details in Section 5.1, Appendix A and Appendix B.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer:
Justification: we plan to release our code in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details in Section 5.1, Appendix A and Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We report the average scores for most of our experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include this details in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We don’t volate the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss these potential impacts in Appendix E.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

20

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We discuss these in Appendix E.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets are explicitly mentioned and respected.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21

paperswithcode.com/datasets

14.

15.

16.

Answer:

Justification: We don’t publish new assets until submission, but we plan to release in
accordance with regulations.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

22

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Why Does Typical Gist-based Compression Fail in Details?
	Preliminary
	Analysis

	Method
	Unified Gist Context-based Language Modeling
	Hardware-aligned Kernel Design
	One-pass Training and Flexible Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Efficiency Comparison

	Conclusion
	Acknowledgments
	Model and Training Details
	Baseline Configuration
	Hyper-parameters
	Training Data Processing

	Evaluation Details
	More Experiments
	Limitations
	Ethical Discussion

