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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have paved the way for Vision003
Large Language Models (VLLMs) capable of004
performing a wide range of visual understand-005
ing tasks. While LLMs have demonstrated006
impressive performance on standard natural007
images, their capabilities have not been thor-008
oughly explored in cluttered datasets where009
there is complex environment having deformed010
shaped objects. In this work, we introduce a011
novel dataset specifically designed for waste012
classification in real-world scenarios, character-013
ized by complex environments and deformed014
shaped objects. Along with this dataset, we015
present an in-depth evaluation approach to rig-016
orously assess the robustness and accuracy of017
VLLMs. The introduced dataset and compre-018
hensive analysis provide valuable insights into019
the performance of VLLMs under challenging020
conditions. Our findings highlight the critical021
need for further advancements in VLLM’s ro-022
bustness to perform better in complex environ-023
ments. The dataset and code for our experi-024
ments will be made publicly available.025

1 Introduction026

In recent years, Large Language Models (LLMs)027

(Chung et al., 2024; Achiam et al., 2023; Touvron028

et al., 2023) have demonstrated remarkable capa-029

bilities in understanding, reasoning, and generating030

text for a diverse range of open-ended tasks. Mod-031

els such as PaLM 2 (Anil et al., 2023) and Falcon032

(Penedo et al., 2023) have showcased exceptional033

performance in commonsense reasoning, multilin-034

gual applications, and various Natural Language035

Processing (NLP) tasks. Building on their success,036

Vision-Language Large Models (VLLMs) (Fang037

et al., 2023; Touvron et al., 2023; Zheng et al.,038

2023) have emerged, extending these capabilities039

to multimodal domains by integrating visual and040

textual data. Notable examples, including multi-041

modal GPT-4 and open-source models like LLaVA042

(Achiam et al., 2023; Liu et al., 2023, 2024), ex- 043

cel in a variety of multimodal tasks, demonstrating 044

their versatility in real-world applications (Hu et al., 045

2023; Vinyals et al., 2015; Chou et al., 2020). 046

Despite advancements in Vision-Language Mod- 047

els (VLLMs), their application in complex, clut- 048

tered environments remains underexplored. Tra- 049

ditional object detectors, such as Faster R-CNN 050

(Ren, 2015) and YOLO (Redmon, 2016), are ef- 051

fective for visual localization and classification 052

tasks. Traditional models are confined to fixed la- 053

bels and cannot handle open-ended, context-aware 054

questions. Vision-language models, by aligning im- 055

ages with text, can answer queries such as “Which 056

items are recyclable under this lighting?” or “How 057

many soft-plastic items overlap metal objects?”, 058

a capability essential for cluttered waste-sorting 059

scenes. To address these challenges, we propose 060

Waste-Bench, a benchmark designed to evaluate the 061

robustness and reasoning capabilities of VLLMs 062

in the context of waste classification. Unlike ex- 063

isting benchmarks, such as SEED-Bench (Li et al., 064

2023) and MV-Bench (Li et al., 2024), which fo- 065

cus primarily on general visual comprehension, 066

Waste-Bench targets the unique complexities of 067

real-world waste management scenarios, includ- 068

ing cluttered scenes, deformed objects, and am- 069

biguous visual cues. By systematically evaluat- 070

ing pre-trained VLLMs, Waste-Bench highlights 071

their baseline capabilities and limitations, offering 072

actionable insights to guide the improvement of 073

future VLLMs. 074

Furthermore, Waste-Bench is intended to com- 075

plement existing datasets, enriching them with 076

challenging scenarios that encourage greater ro- 077

bustness and adaptability in models. By incor- 078

porating diverse data distributions into training 079

pipelines, models can achieve better trade-offs 080

between task-specific robustness and generaliza- 081

tion. This approach aligns with robust learning 082

paradigms, which suggest that exposure to diverse, 083
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challenging data distributions can enhance model084

generalization while minimizing the risks of perfor-085

mance degradation on simpler tasks (Havrilla et al.,086

2024). To improve VLLMs in such environments,087

techniques like domain adaptation and adversarial088

training (Ganin and Lempitsky, 2016; Sun et al.,089

2019) can be employed to expose the models to090

more realistic, noisy, and cluttered data. Addition-091

ally, incorporating multi-modal learning, including092

multispectral data, and using data augmentation093

strategies during training (Madry et al., 2018) can094

help VLLMs better adapt to complex, cluttered en-095

vironments. Fine-tuning models on Waste-Bench’s096

diverse and complex scenarios ensures that they097

become more robust to variations in visual cues,098

allowing them to handle the unique challenges of099

waste classification tasks effectively.100

Models trained on simpler datasets often ex-101

perience a performance drop when evaluated in102

cluttered environments, primarily due to insuffi-103

cient exposure to noise, occlusions, and ambigu-104

ities during training. To address this challenge,105

Waste-Bench exposes models to more complex106

and realistic waste classification scenarios. By107

training models on these challenging conditions,108

Waste-Bench helps to reduce the performance gap109

between regular and cluttered environments, im-110

proving model generalization without sacrificing111

accuracy. Although the performance discrepancy112

between regular and cluttered environments has113

not been extensively studied in VLLMs, this issue114

is well-known in traditional vision tasks. In liter-115

ature, various waste classification methods have116

been proposed (Xia et al., 2024; Mao et al., 2021;117

Feng et al., 2022; Meng et al., 2022), they pose118

limitations in the presence of complex scenarios119

where there exists an unclear boundary informa-120

tion. Waste-Bench aims to mitigate this gap by121

training models on more challenging, real-world122

data, making them more adaptable and robust. Our123

contributions are as follows:124

• A Waste-Bench designed to evaluate the ro-125

bustness and reasoning capabilities of VLLMs126

in waste classification, addressing the com-127

plexities of real-world applications.128

• We evaluate VLLMs, uncovering significant129

challenges, especially in reasoning within clut-130

tered scenes with deformed objects.131

• We identify that VLLMs struggle with various132

tasks on Waste-Bench, guiding future waste133

management improvements. 134

2 Related Work 135

Vision Large Language Models (VLLMs) (Zhu 136

et al., 2024; Shao et al., 2023) have demonstrated 137

remarkable capabilities in engaging with visual 138

content, offering a wide range of potential applica- 139

tions. Notable models in this domain include Qwen 140

(Bai et al., 2023), which has consistently demon- 141

strated superior performance across various down- 142

stream tasks. Gemini-Pro and GPT-4o (Reid et al., 143

2024; OpenAI, 2024) exemplifies state-of-the-art 144

performance with its advanced reasoning and inter- 145

action capabilities, paving the way for the devel- 146

opment of versatile multimodal conversational as- 147

sistants. All these models perform extremely well 148

on wide range of image understanding tasks like 149

caption generation, visual question answering and 150

so on. These models accept both visual and textual 151

inputs and generate textual responses. From an ar- 152

chitectural perspective, VLLMs typically combine 153

pre-trained vision backbones (Fang et al., 2023) 154

with large language models (Touvron et al., 2023; 155

Zheng et al., 2023) using connector modules such 156

as MLP adapters, Q-former (Dai et al., 2024), and 157

gated attention (Alayrac et al., 2022). 158

Benchmarking VLLMs With the growing num- 159

ber of VLLMs emerging in the research commu- 160

nity, several benchmarks have been proposed to 161

evaluate and quantify these models for benchmark- 162

ing and analysis purposes. Notable benchmarks in 163

this domain include SEED-Bench (Li et al., 2023), 164

which evaluates the visual capabilities of both im- 165

age and video LMMs across multiple dimensions, 166

and MV-Bench (Li et al., 2024), which curates 167

challenging tasks to evaluate the spatial and tempo- 168

ral understanding of VLLMs. While these bench- 169

marks provide effective insights into model per- 170

formance, they primarily focus on general visual 171

comprehension metrics. However, none of them 172

specifically target complex cluttered environments 173

and deformed shaped objects. In contrast, Waste- 174

Bench is a comprehensive benchmark designed to 175

assess the robustness and reasoning capabilities of 176

VLLMs in waste classification. 177

3 Waste-Bench 178

In this work, our objective is to develop a com- 179

prehensive benchmark to evaluate the robustness 180

and reasoning capabilities of VLLMs in various 181

complex and cluttered visual environments, span- 182
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Figure 1: Waste-Bench comprises of 11 diverse complex question categories encompassing a variety of waste
images context.

ning diverse scenarios. To achieve this, we intro-183

duce Waste-Bench. Initially, we offer a holistic184

overview of Waste-Bench and outline the diversity185

of questions it contains. Following this, we detail186

the creation process of Waste-Bench in Section 3.2.187

Performance evaluation including experiments and188

results are given in Section 4 and 5 respectively.189

3.1 Waste-Bench Dataset190

Waste-Bench encompasses 11 different question191

categories and 9,520 high-quality open-ended192

question-answer (QA) pairs, spanning 952 high-193

quality images with an average of 10 questions per194

image. These questions cover diverse categories195

related to real-world waste classification scenarios,196

including individual classification of waste classes,197

multi-class classification, shapes of objects, and198

colors. This comprehensive dataset is designed to199

rigorously test the capabilities of VLLMs in han-200

dling complex and cluttered visual environments.201

The question types and word cloud of frequent key-202

words is given in Appendix A.2.203

3.1.1 Waste-Bench Different Question Types204

To assess the robustness and reasoning capabili-205

ties of VLLMs in the Waste-Bench benchmark,206

we ensure it contains various question types to207

encompass a wide range of real-world complex208

and cluttered visual environments within each im-209

age. Below, we provide a detailed definition of the210

Waste-Bench as given in Figure 1.211

• Single Class Classification (Cardboard, Metal,212

Soft Plastic, Rigid Plastic): This category in-213

cludes questions that require the model to 214

classify individual waste items into one of 215

the specified single classes. The questions 216

aim to determine whether the model can ac- 217

curately identify and distinguish between dif- 218

ferent types of materials commonly found in 219

waste. 220

• Multiclass Categorization: In this category, 221

the models are challenged with images con- 222

taining multiple deformed waste items that 223

need to be classified into more than one cat- 224

egory. The goal is to assess the model’s abil- 225

ity to handle complex scenes where multiple 226

waste types are present and need to be accu- 227

rately categorized. 228

• Counting: This category involves tasks where 229

the model must count the number of specific 230

items or categories within an image. For 231

example, counting the number of cardboard 232

pieces or the number of recyclable items in 233

a cluttered environment. The questions are 234

designed to evaluate the model’s precision in 235

quantifying objects in a scene. 236

• Color Diversity: This question type tests the 237

model’s ability to distinguish and identify 238

items based on color. Tasks in this category 239

include identifying objects of a specific color 240

or categorizing items by color diversity. It as- 241

sesses the model’s capability to utilize color 242

as a key feature in classification. 243
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• Geometric Shape Analysis: This category of244

questions focuses on the model’s ability to rec-245

ognize and categorize objects based on their246

geometric shapes. Questions involve identify-247

ing items with specific shapes, such as cylin-248

drical, circular or rectangular objects, which249

are common in waste sorting processes.250

• Complex and Cluttered Environment: This251

category includes questions to evaluate the252

model’s performance in recognizing and rea-253

soning about the environment in which waste254

is found. Model evaluates whether waste is255

in an indoor or outdoor setting. It includes256

questions that require comprehensive image257

analysis.258

• Condition Evaluation: In this category, the259

model must evaluate the condition of waste260

items. This includes assessing whether items261

are intact, twisted, clean or dirty. The ques-262

tions are designed to test the model’s ability263

to make nuanced judgments about the state of264

objects.265

• Similarity Metric: These questions require the266

model to compare and determine the similarity267

between different waste items. For example,268

identifying items that belong to the same cate-269

gory or have similar features. It assesses the270

model’s ability to draw comparisons and make271

associations based on visual features, robust-272

ness in recognizing objects in challenging set-273

tings, and adaptability to varying conditions.274

• Combined Classification and Counting: This275

category merges classification and counting276

tasks, requiring the model to not only clas-277

sify multiple items in a scene but also provide278

accurate counts for each category. This com-279

bined approach tests the model’s capability to280

perform multiple reasoning tasks simultane-281

ously.282

These question types present in our dataset help283

to rigorously test the capabilities of VLLMs in284

handling the intricacies of waste classification in285

complex and cluttered environments.286

3.2 Building Waste Bench Benchmark287

The Waste-Bench benchmark is carefully con-288

structed through a four-step process using a dataset289

of 952 images. Initially, 11,424 Question/Answer290

(Q/A) pairs are generated, capturing information291

from the images. With filtering process given in 292

Stage 1, this number is reduced to 9,520, ensuring 293

relevance and quality. A focused refinement filtered 294

out 1,920 Q/A pairs, representing approximately 295

20% of the original set. Each step is presented in 296

detail below, and can be visually explored in Figure 297

2. 298

Stage 1: Data Collection and Annotation We 299

thoroughly reviewed various datasets and used Ze- 300

roWaste (Bashkirova et al., 2022) with waste im- 301

ages in cluttered environment. We pre-processed 302

the metadata provided with the images to ensure ac- 303

curate representation of the categories assigned to 304

each image. Following image collection, descrip- 305

tive captions were generated with GEMINI-PRO 306

v1.5 (captioning) and GEMINI-PRO v1.0 (49.45 307

% precision, classification baseline). Two expert 308

annotators independently reviewed each caption; 309

only captions in which both agreed every class men- 310

tion was correct were retained, otherwise they were 311

corrected or discarded. Inter-rater reliability was 312

substantial (Cohen’s κ = 0.78, 95 % CI 0.73–0.83), 313

confirming the consistency of the process. 314

• Semantic relevance. Caption must refer only 315

to objects actually present; any incorrect or 316

missing class label triggered correction or re- 317

jection. 318

• Clarity and fluency. Language was edited 319

for succinct, unambiguous description. 320

• Technical accuracy. Quantities, materials 321

and spatial relations were verified against the 322

image. 323

This human-in-the-loop filtering produced con- 324

cise, context-rich descriptions that remain competi- 325

tive with state-of-the-art systems. 326

The prompt used to generate captions is pro- 327

vided in Figure 2. These prompts included ground- 328

truth information (e.g., class names, categories, and 329

masks) from the dataset’s JSON annotations to 330

guide LLMs in producing contextually accurate 331

outputs. 332

Stage 2: Generation of questions and answers 333

Inspired by human interaction in day-to-day life, 334

we aim to simulate a similar style of interaction 335

with VLLMs by curating open-ended QA pairs to 336

evaluate these models for robustness and reasoning. 337

We feed detailed ground-truth image captions to 338

GPT-3.5, which are utilized to generate open-ended 339

questions covering both reasoning and robustness 340

aspects. 341
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An image of  crumpled 
waste with plastic , papers 

and cardboard.

Prompts for Question Generation

You are a helpful and intelligent AI assistant which can curate
high-quality and challenging questions and corresponding 
answers. Given an image depicting waste materials in a 

cluttered environment, with the following detailed 
caption explaining the scene: The caption is: {caption content}. 

Formulate 10 diverse questions …

An Image of Cluttered dataset

GPT-4 Evaluation Waste-Bench

I

II

Caption

 You are a smart image-understanding agent for image captioning. The 
given image depicts various waste materials.
{my-string}. Describe their physical appearance and overall scene 
environment. Make sure to provide information only for the items given in 
the context. Now proceed with providing the detailed caption using the 
given context.'''

Caption Generation Prompt

Human Verification

“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image

 “Q”  What is the overall environment in the image?
“A” The overall environment depicted in the image is one of 
waste”
…..

La
rg

e 
La

ng
ua

ge
 

M
od
el

(L
LM

)

Gemini-Pro

Question Answers

Human-Verification 
“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image
….

Question Answers

Figure 2: Step I: Gemini-Pro generates detailed waste image captions, verified by human annotators. Step II: Nearly
10k diverse questions are generated from these captions, evaluated by GPT-4, and verified by humans.

messages=[  role:  system,

           "content": (  "You are a helpful and intelligent AI assistant which can curate " high-quality and challenging questions

 and corresponding answers "used to test the image understanding capabilities of an AI image system.”),

 

             {  role: user,  

                      “content": ( Given an image depicting waste materials in a cluttered environment, with the following detailed caption explaining 

the scene:  The caption is: {caption_content}. Formulate 10 diverse questions to test whether the model can correctly identify the objects and 

context based on the waste image provided.  Additionally, these inquiries should assess the model's ability to accurately recognize and 

differentiate between different types of waste materials and the cluttered environment depicted in the image.  Generate questions comprising 

interrogative and declarative sentences, utilizing different language styles, and explain each.  Your response should be presented as a list of 

dictionary strings with keys 'Q' for questions and 'A' for the answer. 

          “ Follow these rules while generating questions and answers: "

            1. Do not provide answers to the question itself. 

            2. Ensure the questions are concrete and can be addressed using the provided caption. 

            3. Do not ask questions whose answers cannot be obtained in the caption. 

            4. Do not formulate questions whose answer is not specified in the image and caption. 

             For example, format your response as follows: “

            [{\"Q\": 'Your first question here...', \"A\": 'Your first answer here...'}, 

             {\"Q\": 'Your second question here...', \"A\": 'Your second answer here...'}, 

              {\"Q\": 'Your third question here...', \"A\": 'Your third answer here...'}].”   }]

         

Figure 3: Prompts Used for Generating Question-
Answer Pairs.

The questions designed go beyond basic image342

comprehension, requiring complex logical infer-343

ence and contextual understanding. These ques-344

tions test the model’s ability to classify objects by345

recognition, color, shape, and other relevant as-346

pects in complex settings, ensuring accurate and347

appropriate responses. Prompt used for curating348

QA pairs is mentioned in Figure 3.349

Stage 3: QA Pairs Filtration350

After generating QA pairs, a human-in-the-loop351

review involving two human assistants identified352

approximately 20% of the pairs as noisy. These353

noisy pairs included irrelevant, unanswerable, or354

repetitive questions, such as those with answers355

embedded within the questions. To address these is-356

sues, an exhaustive filtering process was conducted,357

ensuring that the QA pairs met the relevance and358

alignment criteria based on the image evaluation.359

For the review process, we applied similar rules 360

as those used for caption generation. Two human 361

assistants reviewed the question-answer pairs based 362

on the following criteria: 363

• QA pairs needed to be related to verified cap- 364

tions, both assistants agreeing that the content 365

was relevant to the image 80%. We now re- 366

port Cohen’s = 0.78 (95 % CI [0.73 – 0.83], 367

n = 1000), in a random sample of 1000 Q / A 368

pairs that indicate substantial agreement be- 369

tween the two annotators. (Landis and Koch, 370

1977). The reliability of the interannotator on 371

a subset of 1 000 items was substantial (k = 372

0.78) given in Appendix A.1. 373

• The language was checked for clarity. 374

• The accuracy and relevance of the responses 375

was verified. 376

This process ensured that only relevant, accurate, 377

and clear question-answer pairs were retained, re- 378

sulting in a curated set of 9,552 high-quality QA 379

pairs. These pairs provide a robust foundation for 380

the Waste-Bench benchmark. Appendix A.1 pro- 381

vides a quantitative overview of the results. 382

Stage 4: Evaluation Procedure Previous meth- 383

ods like MM-VET(Yu et al., 2023) and SEED- 384

BENCH (Li et al., 2023) have used LLMs as judges 385
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"You are an intelligent chatbot designed for evaluating the correctness of AI assistant predictions for question-answer pairs. Your 

task is to compare the predicted answer with the ground-truth answer and determine if the predicted answer is correct or not. 

Here’s  how you can accomplish the task:  "------”,

    

INSTRUCTIONS: 

- Focus on the correctness and accuracy of the predicted answer with the ground truth.

- Consider predictions with less specific details as correct evaluation, unless such details are explicitly asked in the questi on.

Please evaluate the following question-answer pair:

Question: {question}, Ground truth correct Answer: {ground truth}, Predicted Answer: {predicted}

Provide your evaluation as a correct/incorrect prediction along with the score where the score is an integer value between 0 (fully 

wrong) and 5 (fully correct). The middle score provides the percentage of correctness.

Please generate the response in the form of a Python dictionary string with keys 'predicted', 'score', and 'reason', where th e value 

of 'predicted' is a string of 'correct' or 'incorrect', the value of 'score' is in INTEGER, not STRING, and value of 'reason'  should 

provide the reason behind the decision.

Only provide the Python dictionary string. For example, your response should look like this: {'predicted': 'correct', 'score' : 4.8, 

'reason': reason}."

Figure 4: Evaluation prompt used.

for open-ended QA benchmarks. We follow a simi-386

lar approach, employing GPT-4 to evaluate the cor-387

rectness of VLLM predictions against ground-truth388

answers. VLLMs generate predictions based on389

image-question pairs, which are then assessed by390

GPT-4 through binary judgments, with reasoning391

provided for each decision. The evaluation prompt392

as given in Figure 4, used in our study was designed393

to guide the LLMs in assessing the accuracy and394

quality of the responses generated by VLLMs on395

the Waste-Bench dataset. This prompt provided396

the LLMs with specific instructions to compare397

the model-generated answers with ground-truth an-398

swers, make binary correctness judgments. The399

prompt also emphasized the importance of provid-400

ing reasoning for each evaluation, ensuring that401

the judgments were not only accurate but also inter-402

pretable and consistent. To ensure accuracy, two as-403

sistants reviewed the evaluation results. To validate404

the performance across all models, we observed a405

high consistency between GPT-4 and human evalu-406

ations, as given in Table 1 below.407

GPT Human

Model CogVLM InstructBLIP InstructBLIP CogVLM
Performance 45% 59% 63% 46%

Table 1: Comparison of model performance between
GPT and Human evaluations across different models.

4 Performance Evaluation on408

Waste-Bench409

Both open-source and closed-source models were410

explored and selected for evaluation. In total, seven411

models were evaluated. Among the open-source412

models, five recent VLLMs were included: In-413

structBLIP, LLaVA-1.6, CogVLM, Qwen-VL, and414

MiniGPT-4. For closed-source models, GPT-4o415

and Gemini-Pro were used. Our work focuses on416

evaluating existing VLLMs to highlight their limi-417

tations in cluttered environments. While VLLMs418

are costly to train, our evaluation reveals key chal-419

lenges, and future work will address issues like hal-420

lucination and robustness for better performance in 421

complex tasks. 422

4.1 Main Experiments on Waste-Bench 423

All models were used in their pre-trained state to 424

ensure a fair comparison across different architec- 425

tures, detail given in in Appendix Table 6. Given 426

the diversity of the models employed, specific hy- 427

perparameter tuning was not performed for individ- 428

ual models; instead, the focus was on evaluating 429

their inherent capabilities. Each model was as- 430

sessed under consistent conditions, using a single 431

NVIDIA 24GB GPU to run the experiments, ensur- 432

ing uniformity in computational resources across 433

the tasks. 434

In Table 2, we present the evaluation results of 435

diverse range of models including five open source, 436

two closed source and human upper bound to pro- 437

vide comprehensive benchmark . All evaluations 438

were conducted according to the settings specified 439

officially as discussed in Appendix A.3 and Table 440

6. VLLMs find it challenging to perform well and 441

thus show inferior performance when evaluated on 442

the Waste-Bench dataset, particularly in cluttered 443

scenes with deformed shaped objects. Interestingly, 444

the performance of models like LLaVA-1.6, and In- 445

structBLIP is relatively higher compared to models 446

such as Qwen-VL and MiniGPT-4. For instance, 447

Gemini achieves an accuracy of 49.45% , how- 448

ever MiniGPT-4 suffers severely with these partic- 449

ularly challenging conditions and thus under per- 450

form. The Gpt-4o model surpasses the performance 451

of all models and achieves high gains compared to 452

other models. However, it still remains at the lower 453

end of performance for this type of dataset, with 454

an accuracy around 57%. GPT-4o handles clut- 455

tered scenes with deformed shaped objects, better 456

than others, indicating a more sophisticated under- 457

standing of complex visual contents. The Table 458

3 compares the performance of various VLLMs 459

across different waste classification tasks. GPT- 460

4 performs well in most categories, especially in 461

Counting (60.00) and Condition Evaluation (60.00), 462

while MiniGPT-4 shows weaker results, particu- 463

larly in Single Class Classification (22.00). Models 464

like Gemini and LLAVA exhibit moderate perfor- 465

mance, with LLAVA excelling in Condition Eval- 466

uation (58.00). The values are rounded to whole 467

numbers for simplicity and clarity. 468

Using the accuracies in Table 3, we compute the 469
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Model Version LLM Accuracy (%)

GPT-4 GPT-4o Proprietary LLM 57.52
Gemini Gemini-1.0 Pro Proprietary LLM 49.45
InstructBLIP BLIP-2_Vicuna_Instruct Vicuna-7B 48.58
LLaVA LLaVA-1.6 Vicuna-7B 47.45
Qwen-VL Qwen-VL-Chat Qwen-7B 41.30
CogVLM CogVLM-chat-v1.1 Vicuna-7B 41.58
MiniGPT-4 MiniGPT-4 Vicuna-7B 36.40

Human Upper Bound N/A N/A 81.20

Table 2: Evaluation results VLLMs highlighting open-source and closed-source models.

Question Category GPT-4 Gemini InstructBLIP LLAVA Qwen-VL CogVLM MiniGPT-4
Single Class Classification 49.00 38.00 46.00 35.00 28.50 36.50 22.00
Multiclass Categorization 54.00 44.00 36.50 37.00 34.00 30.50 32.00
Counting 60.00 52.00 50.00 45.50 43.00 40.50 31.00
Color Diversity 42.00 35.00 39.00 48.00 38.00 27.50 30.00
Geometric Shape Analysis 55.00 49.00 44.00 41.50 45.50 39.00 36.50
Complex and Cluttered Environment 38.00 42.00 52.00 58.00 51.00 47.00 39.00
Condition Evaluation 60.00 57.00 48.50 49.50 38.00 33.00 35.00
Similarity Metric 53.50 47.00 38.50 56.00 44.50 50.50 29.00
Combined Classification and Counting 44.00 48.00 53.00 44.50 39.00 41.00 36.00

Table 3: Comparison of different models across question categories using weighted average scores, highlighting the
relative performance of open-source and closed-source models.

number of errors for each question category c as470

errorsc = 952
(
1− accuracyc100

)
,471

where 952 is the number of questions in that cate-472

gory. Summing the resulting counts over the seven473

evaluated VLMs gives: colour mis-identification =474

4 194 (12.2%), single-class slips = 4236 (12.3%),475

multiclass confusion = 4113 (12.0%), complex-476

scene reasoning = 3551 (10.3%), geometric-shape477

confusion = 3708 (10.8%), counting mismatches478

= 3599 (10.5%), condition mis-classification479

= 3608 (10.5%), similarity errors = 3627480

(10.5%), and combined class + count errors =481

3 756 (10.9%), for a grand total of 34 391 errors.482

5 Key Highlights and Qualitative Results483

The evaluation of VLLMs on the Waste-Bench484

benchmark reveals critical insights valuable for fu-485

ture model development, focusing on model perfor-486

mance under various conditions and highlighting487

strengths and areas for improvement.488

Real-World Waste Classification Challenges:489

Models that perform well on simplified environ-490

ments often struggle with the complexities of491

Waste-Bench, particularly when it comes to count-492

ing irregularly shaped objects or accurately iden-493

tifying colors in cluttered scenes. For instance, as494

illustrated in Figure ??, Q2, a model incorrectly 495

predicted the color of a plastic bag due to a col- 496

ored paper beneath it, highlighting challenges of 497

real-world waste classification, where objects are 498

frequently stacked or partially obscured to make it 499

difficult to predict. Models often struggle with cor- 500

rectly identifying colors in cluttered scenes due to 501

the lack of real-world complexity in their training 502

data. Enhancing training with diverse and realistic 503

samples could help improve their accuracy and ro- 504

bustness in complex environment. 505

Challenges in Rare Class Recognition: Models 506

often struggle to accurately recognize and classify 507

less frequent categories in cluttered scenes, partic- 508

ularly when objects are deformed. As seen in Q3, 509

models mislocate or miss the metal, highlighting 510

the need for improved training on diverse variety 511

of deformed object shapes in cluttered environment 512

which are often encountered in real world streams. 513

Weak Classification in Cluttered Environments: 514

The responses in Question 1 highlight key chal- 515

lenges in accurate material identification, particu- 516

larly in scenes where objects are partially obscured. 517

For example, while some models like GPT-4o cor- 518

rectly identify a range of materials, others like 519

LLaVA and Qwen-VL struggled, with differenti- 520

ating between visually similar objects, leading to 521
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Can you identify the types of waste
materials present in the image?

The types of waste materials present in the

image are paper, plastic,metal, glass, and 

organic waste.

The waste items in the image appear to be made

of various types of paper, possibly including

newspapers, magazines, receipts, or other
printed materials.

There are various types of waste materials 

present, including plastic bags, newspapers, and

other debris.

CogVLM

LLaVA The waste items are made of paper 

and cardboard. Instruct-BLIP

The waste items in the image are made

from newspaper and cardboard.

Qwen-VL

Yes,  I can identify the type of waste materials, 

which appear to be paper waste, plastic waste, 
and crumpled newspaper.

The materials used to make the waste items 

in the image are newspapers, paper scraps,

and some tape.

GPT-4o

What is the color of the plastic bag located
in the middle of the image?

The plastic bag in the middle of the image

is pink.

The middle plastic bag exists. The bag is

pink.

The plastic bag located in the middle of the

image is pink.

Gemini CogVLM

The color of the plastic bag located in

the middle of the image is white.
LLa VA The color of the plastic bag is green.Instruct-BLIP

The plastic bag located in the middle of

the image is pink.
Qwen-VL

MiniGPT-4The plastic bag located in the center of

the image is transparent.GPT-4o

Where is the metal can located in the
image?

In the upper left-hand corner.Gemini

  LLaVA

The can is on the floor.CogVLM

The metal can is located on the ground

in the image. The metal can is located on top of trash.

Qwen-VL

   GPT-4o

There is no existence of metal can in the

image.

There is no metal can in the image.The metal can is located near the top right

corner

of the image.

MiniGPT-4

Instruct-BLIP

Gemini

MiniGPT-4

Figure 5: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

incomplete or incorrect classifications. This incon-522

sistency underscores the need for further refine-523

ment of VLLMs to improve their robustness in524

real-world applications, such as automated waste525

management, where precise identification is criti-526

cal. Further insights are given in Appendix A.4.527

Potential Data Leakage: This is dataset which is528

maintained by independent research group and can-529

not be obtained by using web crawling techniques530

which VLLMS use to curate their datasets.531

6 Validation and Comparison Across532

Other BenchMarks533

The Table 4 compares the accuracy of various534

VLLMs across various benchmarks. Notably, the535

table illustrates the diverse challenges posed by536

each benchmark, with Waste-Bench offering a537

unique set of difficulties due to its focus on clut-538

tered scenes with deformed objects. The perfor-539

mance of models such as LLaVA, InstructBLIP,540

and Qwen-VL shows a noticeable drop in accuracy541

on Waste-Bench compared to SEED-Bench and542

MV-Bench. This highlights the increased complex-543

ity and difficulty in real-world waste classification544

scenarios and need to optimize current models for545

the unique challenges of waste classification.546

7 Conclusion547

In this paper, we evaluated various VLLMs in com-548

plex environments with deformed objects, reveal-549

ing significant weaknesses in the identification of 550

shapes, colors, and locations. We introduced the 551

Waste-Bench benchmark, which features multiple 552

categories to enable a comprehensive validation of 553

these models. The Waste-Bench benchmark pro- 554

vides a robust framework for assessing VLLMs 555

in challenging conditions, aiding in the develop- 556

ment of more resilient and accurate models for 557

real-world applications like waste segregation and 558

autonomous waste management. 559

Model MM-VET MV-Bench SEED-Bench Waste-Bench

GPT-4 - - - 57.5
Gemini - - - 49.4
InstructBLIP 69.9 51.0 61.7 48.6
LLaVA 46.6 53.0 66.7 47.4
Qwen-VL - 73.0 54.8 41.3
CogVLM - - - 41.6
MiniGPT-4 47.9 29.5 49.2 36.4
Human Upper Bound - - - 81.2

Table 4: Comparison of VLLM recognition perfor-
mance across different benchmarks in terms of accu-
racy.

Note: In this table, – values indicate results not provided.

Limitations Our study, though comprehensive, 560

has some limitations. The scope of our evaluation 561

was limited to a specific set of cluttered environ- 562

ments, which may not fully represent the variety 563

of real-world scenarios. In addition, the models 564

were tested under controlled conditions and their 565

performance in more dynamic and unpredictable 566

settings remains to be explored. We tested models 567

on a variety of questions to ensure robust testing 568

for our evaluation purposes, accuracy and score 569

8



were calculated and seemed sufficient, showcasing570

the robustness of our approach. Incorporating ad-571

ditional evaluation methods in future work could572

provide a more complete understanding. Despite573

these limitations, our findings offer valuable insight574

and a strong foundation to advance research in this575

area.576

Ethics Statement We constructed this dataset577

based on images given in the zwaste-f dataset578

(Bashkirova et al., 2022). We constructed this data579

set based on images provided in the Zerowaste-F580

dataset (Bashkirova et al., 2022). This data set581

includes various images of waste in cluttered envi-582

ronments to simulate real-world conditions. Some583

images contain identifiable objects, but we ensured584

that no personal identification details are included.585

When used properly, our image and annotation586

dataset provides significant value for evaluating587

waste classification models.588
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A Appendix 761

A.1 Data Filtration 762

Table 5 presents an overview of the dataset statis- 763

tics, including the total number of images and 764

question-answer (Q/A) pairs. The dataset initially 765

contains 952 images and 11,424 Q/A pairs. How- 766

ever, approximately 20% of the Q/A pairs (1,904 767

pairs) were filtered out, leaving a total of 9,520 up- 768

dated Q/A pairs for further analysis. This filtration 769

process ensures that the data used for evaluation is 770

of higher quality and relevance to the task at hand

Images Q/A Filtered Updated

952 11424 ~20% [1904] 9520

Table 5: Dataset Statistics: Overview of Total and Fil-
tered Question-Answer Pairs

771
Two domain experts independently labelled 772

a simple random sample of 1 000 ques- 773

tion–answer pairs (seed = 42) with three nomi- 774

nal categories—Correct, Minor-Error, and Major- 775

Error—and inter-rater reliability was assessed with 776

Cohen’s , yielding = 0.78 (95 % CI 0.73–0.83). 777

The statistic was computed with sklearn, and the 778

confidence interval was obtained from 1 000 strat- 779

ified bootstrap resamples. Following the Landis 780
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Figure 6: Waste-Bench Overview. Left: Most frequent keywords in the answer set, Right: Frequency distribution of
question types.

Figure 7: Q/A generation from Caption

Koch (1977) interpretation, the entire interval lies781

in the “substantial agreement” band ( > 0.60).782

A.2 WasteBench Insights783

Figure A.1 provides two visualizations related to784

the answers in the study. On the left, a word cloud785

is displayed, representing the most common key-786

words found in the responses. This visualization787

highlights the frequency and prominence of key788

terms, offering insights into the main themes and789

concepts discussed in the answers. On the right, a790

bar chart shows the distribution of question types,791

providing an overview of the variety and balance of792

questions posed during the study. Together, these793

figures help to further understand the characteris-794

tics of the responses and the types of questions that795

were most prevalent in the dataset 796

A.3 Experimental Settings 797

As given in Table 6, all models were used in their 798

pre-trained state to ensure a fair comparison across 799

different architectures. Given the diversity of the 800

models employed, specific hyperparameter tuning 801

was not performed for individual models; instead, 802

the focus was on evaluating their inherent capabil- 803

ities. Each model was assessed under consistent 804

conditions, using a single NVIDIA 24GB GPU to 805

run the experiments, ensuring uniformity in com- 806

putational resources across the tasks. 807

A.4 Insights 808

Recognition and Counting Challenge: Models 809

generally struggle with recognizing and classifying 810

objects across all classes in cluttered environments. 811

As illustrated in Figure 8 , the models face signif- 812

icant challenges when dealing with complex and 813

cluttered environments, as shown by the incorrect 814

answers highlighted in red. However, we included 815

a case where the models performed better, such 816

as accurately identifying the dominant color in the 817

image, with few models providing the correct an- 818

swer. This contrast highlights that while models 819

can handle simpler tasks, like recognizing a dom- 820

inant color in scenarios with clear and singular 821

visual cues, they continue to struggle with more 822
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Model Architecture Context Length Evaluation Mode
GPT-4o closed-source 2,048 tokens zeroshot, pre-trained wts
GeminiPro1.5 closed-source 2,048 tokens Caption, QA tasks
GeminiPro1.0 Proprietary closed-source 2,048 tokens zeroshot, pre-trained wts
InstructBLIP BLIP-2_Vicuna_Instruct (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
LLaVA LLaVA-1.6 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
Qwen-VL Qwen-VL-Chat (Qwen-7B) 2,048 tokens zeroshot, pre-trained wts
CogVLM CogVLM-chat-v1.1 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
MiniGPT-4 MiniGPT-4 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts

Evaluation Process Details
Evaluation Method Models were evaluated on Waste-Bench tasks, including classification, counting,

color recognition, and other categories. GPT-4 evaluated model predictions.
Human Verification Two human evaluators verified model predictions, showing high consistency

with GPT-4 evaluations.
Error Handling Default safety mechanisms were employed to prevent out-of-memory errors

and ensure stable performance.

Table 6: Experimental Setup and Model Specifications.

complex tasks that require understanding spatial823

relationships and object classification in cluttered824

environments. Including this case emphasizes that825

while there are areas where models show reason-826

able performance, significant gaps remain in more827

challenging real-world scenarios828

However, the models struggle significantly when829

dealing with more complex tasks, like identifying830

the shape and size of objects or differentiating be-831

tween similar materials in cluttered environments.832

Despite clear instructions regarding the presence833

of only one rigid plastic item, the responses834

varied widely, highlighting ongoing challenges in835

spatial reasoning and object recognition. These836

inconsistencies emphasize that while models can837

handle basic visual tasks, they falter when faced838

with more intricate aspects of real-world scenes,839

such as understanding object relationships or840

accurately assessing size and material properties841

842

A.5 Challenges with Noise, Enhanced843

Lighting and Shaded Degradations844

:845

While not the main focus of our paper, we further846

extended our evaluation to assess the models’ per-847

formance across various degradations. Our experi-848

ments revealed that introducing noise, shading, and849

enhanced lighting conditions in the images exacer-850

bates performance issues in the models, as shown851

in Table 7. For instance, some models experience852

a significant drop in accuracy when noise is intro- 853

duced, highlighting their vulnerability, while others 854

exhibit better noise-handling capabilities. These 855

findings underscore the importance of incorporat- 856

ing environmental factors into future model evalu- 857

ations. To ensure consistency in our experiments, 858

we applied fixed levels of degradation. Specifi- 859

cally, we used a gradient mask for shading with 860

an initial intensity of 0.7, a Gaussian noise with a 861

sigma value of 7, and a brightness factor of 1.2 for 862

enhanced lighting in the HSV color space. Evalu- 863

ating these natural degradations is crucial for un- 864

derstanding the robustness of models in real-world 865

scenarios, where ideal conditions are seldom guar- 866

anteed. By testing models under these challenging 867

conditions, we are able to identify vulnerabilities 868

and areas for improvement, ensuring that models 869

are better equipped to handle diverse and unpre- 870

dictable environments. This is also important in 871

considering the performance measure of VLLMs in 872

applications other than waste such as surveillance, 873

autonomous driving, and environmental monitor- 874

ing, where models need to be resilient to a wide 875

range of environmental factors and disruptions. 876
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The dominant color of the cardboard is 
white.

What is the dominant color of the 
cardboard in the image?

The dominant color of the cardboard is white.

Brown

The dominant color of cardbaord is 
Brown .

The dominant color of the cardboard is white.

The dominant color of the cardboard in the 
image is white.

MiniGPT-4

MiniGPT-4

The rigid plastic item is a black rectangle,

The rigid plastic item is small and 
rectangular.

The rigid plastic  item is square.

It is difficult to determine the exact shape and 
size.

The rigid plastic item is described as small 
and thin.

The rigid plastic item in the image is rectangular 
in shape and appears to be relatively small in size.

What is the shape  and size of the rigid  
plastic item present in the image?

GPT-4o The dominant color of the cardboard in the image is 
brown.

GPT-4o
The rigid plastic item in the image is the black, 
elongated object that resembles footwear. It is 
approximately 10 inches in length.

LLaVA

Gemini

QWEN

InstructBLIP

CogVLMGemini

LLaVA

QWEN

CogVLM

InstructBLIP

Figure 8: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

Figure 9: Performance comparison of various Vision Large Language Models (VLLMs) under different degradation
scenarios. The chart illustrates how models like GPT-4, GEMINI, InstructBLIP, and others struggle with tasks
involving shape recognition, color identification, and classification of rare classes within cluttered scenes, particularly
under conditions of noise, enhanced lighting, and shading. This highlights the challenges VLLMs face in maintaining
accuracy and robustness when subjected to real-world visual distortions.
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Model Normal Noisy Enhanced Shaded

Gpt-4o 57.52 57.04 57.40 56.90

GEMINI 49.45 48.48 48.65 48.20

I.BLIP 48.58 46.29 47.20 46.25

LLaVA 47.45 47.03 46.90 46.16

CogVLM 41.58 40.15 40.50 39.73

Qwen-VL 41.30 39.40 40.58 37.09

MiniGPT4 36.40 36.21 36.90 35.20

Table 7: Evaluation results of various Vision Large Lan-
guage Models (VLLMs) across different degradation
scenarios and accuracy metrics.
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