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Abstract

We introduce Temporal Variational Implicit Neural Representations (TV-INRs), a probab-
ilistic framework for modeling irregular multivariate time series that enables efficient and
accurate individualized imputation and forecasting. By integrating implicit neural repres-
entations with latent variable models, TV-INRs learn distributions over time-continuous
generator functions conditioned on signal-specific covariates. Unlike existing approaches that
require extensive training, fine-tuning or meta-learning, our method achieves accurate indi-
vidualized predictions through a single forward pass. Our experiments demonstrate that with
a single TV-INRs instance, we can accurately solve diverse imputation and forecasting tasks,
offering a computationally efficient and scalable solution for real-world applications. TV-
INRs performs particularly well in low-data regimes, where on several datasets it achieves
substantially lower imputation error, including order-of-magnitude improvements.

1 Introduction

Time series are a key way to represent data in many domains, from energy consumption to finance, and they
frequently contain missing values and irregularities due to sensor malfunctions, collection errors, or resource
constraints (Che et al., |2018} [Du et al.l 2023} [Proietti & Pedregall |2023)). These challenges are particularly
pronounced in clinical datasets, which often exhibit extreme sparsity (80-90% missingness) and noisy, irregular
sampling due to human involvement in non-automated measurements (Silva et al.l |2012). In order to impute
missing values and forecast future time points, effective solutions must handle these challenges while utilizing
available covariates to capture unique temporal dynamics.

Current methods relying on Recurrent Neural Networks (RNNs) (Chung et all [2015; |Che et al., |2018]) and
Transformers (Bansal et al., 2023} |Liu et al} |[2023) are generally tailored for regular, dense time series data
and require placeholders for missing observations. They also operate in discrete time, and careful design is
necessary for continuous time settings (Chen et al. 2024). Alternatively, there exist continuous time series
models which use Implicit Neural Representations (INRs) (Sitzmann et al.| [2020]) to handle irregular time
series data (Naour et al. 2024} [Cho et al., 2024)). By learning a unique continuous function to represent
each time series, INRs have great potential for individualization by capturing the unique activity patterns of
each subject. However, existing approaches are inflexible, and often require training multiple models, fine-
tuning, or meta-learning to handle variations in data availability, prediction length, and individualization. For
example, the method presented in Naour et al.|(2024) requires the training of separate models for different
missingness ratios or horizon lengths, and performs gradient-based meta-learning during inference, resulting
in a data-hungry model. Such approaches are impractical in real-world applications where scalability and
generalization are crucial, as computational resources may be limited during deployment.

To address these shortcomings, we introduce Temporal Variational Implicit Neural Representations (TV-
INRs), a novel probabilistic model for multivariate time series with INRs. We use INRs as generator
functions for continuous time series modeling, effectively handling the challenge of irregular sampling. By
also integrating latent variable models and amortized variational inference, TV-INRs learns distributions over
INRs conditioned on individual signals and their covariates through a learned latent space. This approach is
therefore scenario and sample agnostic, accommodating varying levels of missingness or time series length
and eliminating the need for task-specific retraining or per-sample optimization. In short, we preserve the
benefits of INRs for time series while making them scalable and efficient.
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Our model pushes forward multivariate time series analysis with several key contributions:

e We introduce a fully probabilistic framework for multivariate time series based on implicit neural repres-
entations.

e TV-INRs achieves competitive accuracy to gradient-based meta-learning approaches and improves imputa-
tion performance in low-data scenarios, while avoiding per-sample optimization during inference.

o We demonstrate successful generalization across multiple data settings, including missingness and forecasting
horizon length, with a single training. This significantly reduces training requirements relative to comparable
models.

e Our results show that the inclusion of covariates enables effective individualization and further increases
our model’s accuracy with sparse data, demonstrating suitability for real-world applications with extreme
missingness, such as healthcare.

2 Related work

2.1 Learning implicit neural representations

Hypernetworks denoted as g4, are neural networks that generate parameters § = g4(-) for another neural
network fy(-) (Ha et al., |2016). Hypernetworks can generate task-specific model parameters, making them
suitable for meta-learning scenarios that require quick adaptation to new tasks. |Zhao et al.| (2020]) showed
that meta-learning a hypernetwork effectively modulates inner-loop optimization and adapts features task-
dependently using model-agnostic meta-learning. Nguyen et al.| (2022)) proposed to generate parameters of
the approximate posterior and likelihood of a Variational Autoencoder (VAE) model to perform multiple
tasks. Recent works have shown hypernetworks to be useful for generating parameters for implicit neural
representations (Dupont et al., 2021} [Koyuncu et al.| 2023)).

Implicit neural representations (INRs) offer a novel approach to data representation and modeling complex
continuous signals using the weight space (Sitzmann et al., 2020). This formulation is supported by
strong theoretical guarantees and makes the model inherently resolution-agnostic and robust to irregular
sampling (Sitzmann et all [2020). By leveraging neural networks, particularly multi-layer perceptrons
(MLPs), represented as fy(-), INRs effectively map coordinates to features like color, occupancy, or amplitude.
Therefore INRs enable continuous representation of high-dimensional data, offering significant advantages in
various domains, including images, 3D shape modeling, spatio-temporal data (Dupont et al., [2021; 2022a;
Koyuncu et al., 2023} [Park et al.l|2024) and geometric structures (Vetsch et all 2022; |Niemeyer et al.l 2022,
because predictions are not constrained by input range or resolution. Recent works are actively exploring
parameterization strategies for INRs. For example, approaches by [Dupont et al.| (2022bl); Strimpler et al.
(2022)) have used compressed representations of the data as inputs to hypernetworks g4, which then generate
weights 6 of the INRs fy(-). [Peis et al.| (2025]) uses latent diffusion models to generate a latent variable model
to model the weights of INRs via a transformer network. And [Park et al.| (2024) proposed to learn sample-
specific dynamic positional embeddings, rather than modeling INRs weights.

Meta-learning is a learning approach where algorithms are designed to improve their learning efficiency and
adaptability across different tasks and domain shifts. In model-agnostic meta-learning (MAML), the aim
is to fine-tune the trained model using test instances with gradient updates (Finn & Levine, [2017; Wang
et al., 2020)). This is particularly relevant in scenarios when adaptation of the model is needed for unseen
data during inference. MAML is widely used to update INR weights (Dupont et al., [2022a; |Jeong & Shin)
2022} Niemeyer et al 2022} Bamford et al. 2023]), however, its reliance on a test-time optimization step for
each sample introduces computational overhead scaling with the number of test instances.

2.2 Time series imputation and forecasting

RNNS5 are frequently used for time series forecasting, due of their ability to capture sequential dependencies
(Chung et al.| 2015; [Hewamalage et al., |2021; |Che et al.; 2018} |Guo et al.l 2016). However, they assume
fixed frequencies and struggle with long-term dependencies. To address these limitations, LSTM networks
incorporate memory cells that retain relevant historical information while discarding irrelevant data (Hochreiter,
1997 Hua et al., [2019; |Chen et al., 2022)). Recent advancements have also embraced transformer-based
architectures for time series modeling. Models such as SAITS (Du et al., |2023), PatchTST (Nie et al., 2023])
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Figure 1: Visualization of temporal stamps T', features Y, mask ), and static covariates C. T and Y represent
the input signal, € indicates missing values with binary entries, and C' contains time-invariant covariates.

and iTransformer (Liu et al., [2023) leverage attention and embedding strategies to capture both short- and
long-term time dependencies within time series. Despite their strengths, transformers are inherently discrete
and may fail to interpolate between time steps unless they are carefully redesigned for this task (Chen et al.|
2024)). Moreover, they may have trouble identifying and preserving key information when attending to large
inputs (Wen et al., 2022). Likewise, conditional diffusion models like CSDI operate on fixed temporal grids
and rely on architectural workarounds to manage irregular observations (Tashiro et al., [2021)).

Recently, INRs have been used in continuous modeling of time series data for imputation and forecasting
tasks (Naour et al., 2024; [Fons et al., 2022} |Cho et al.,|2024), and for anomaly detection (Jeong & Shin, 2022).
Fons et al.| (2022) use a set-encoder approach to generate latent representations to parameterize INRs through
hypernetworks for time series generation. Similarly, Bamford et al. (2023|) adopt this approach for time
series imputation, utilizing an auto-decoding strategy that requires back-propagation to learn these latent
representations. [Naour et al.| (2024)); |Cho et al.| (2024); Woo et al.| (2023) use gradient-based meta-learning
approaches to learn per instance modulations on INRs to perform imputation and forecasting on test data.
Therefore, these methods encounter scalability challenges with an increasing number of test instances, since
each requires per-instance optimization, and they may underperform in scenarios characterized by limited
data availability.

3 Temporal variational implicit neural representations

In this section, we introduce Temporal Variational Implicit Neural Representations (TV-INRs). Our approach
is motivated by representing time series as continuous functions using Implicit Neural Representations (INRs).
Leveraging the amortized inference framework of Variational Autoencoders (Kingmay, 2013; |Rezende et al.,
2014), TV-INRs learns distributions over INR, parameters through encoder networks, eliminating per-sample
optimization during inference while enabling efficient scaling to large datasets (Cremer et al., |2018; [Hoffman
et al.l 2013; Mnih & Gregor}, |2014)). This approach maintains competitive performance for time series modeling
tasks such as imputation and forecasting while facilitating personalized modeling through latent variables.

Notation. Let [L] = {1,..., L} denote the set of positive integers from 1 to L and d denote the total number
of feature dimensions. We consider a dataset of N samples {(T), Y@ C®)}¥ | where each sample i € [N]
as shown in Fig. [1] includes:

« Temporal stamps: A point cloud of L; temporal stamps (i.e. temporal coordinates), T) = {tl(i)}lL:il, with
teR.

« Feature vectors: Corresponding feature vectors Y (¥ = {yll)}lL:i17 where yl(l) € R4 with dl(l) <d
representing the number of observed channels at index I. The set A® identifies indexes (1) where channels
(j) are absent in the original dataset.

« Static covariates: Static covariates C*) = {c(¥}, where ¢ € R¥, which are constant for all stamps in the
sample.
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Figure 2: Graphical models for generative and inference tasks.

We denote the multichannel i-th time series as a tuple X () = (T Y ), consisting of L; (irregular) temporal
stamps and their corresponding features. To effectively handle missing data, we distinguish between three
sets of indices. The observed indices O) represent available data points in our dataset, which we input to
the model. The masked indices M correspond to entries we artificially mask during training to facilitate
self-supervised learning and improve generalization to missing data scenarios (Moreno-Munoz et al. 2023)).
Finally, the absent indices A(®) are inherent to the data and represent entries of missing channels due to partial
observations or limitations in data collection which we exclude from the training process as they represent
inherent data incompleteness rather than synthetic masks. We define a binary mask Q) to formalize this as:

. 1 if (1, )E(’)()
O =L 0 if (I,k) e MD (1)
0 if (I,k) e A®

where O, M@ AW C [L;] x [d] with O N M@ = . Finally, we denote by 7 the percentage of observed
oW

indices in the available data, i.e., 7 = OO UM

3.1 Model description

Generative model. To ease readability, we consider the model for a single sample and omit the use of the
superscript (7). TV-INRs is generative model for the feature set Y given timestamps T'. For now, we assume
that (T',Y) is a timeseries with L elements and d channels without any absence, e.g. A = (). The observed
data Y,ps indexed by O and corresponding timestamps T, are given as context to the model, while Y,
indexed by M represents the masked values to predict at given timestamps T},. Together, they form the
complete datasets: Y = Yy, U Y, and T = T, U Typ with the assumption of A = (). The joint distribution
can be written in a general form

L
P(Ym, Yobs, 2| Yobs: T's €) = Py, (2| Yobs Tobs) H Po(z, c)(YZ|tl (2)

where z represents a latent variable and c denotes covariates. To generate such a signal, the process
begins by sampling a continuous latent variable z from a conditional prior distribution, pey, (z|Yobs; Tobs) =

N (2| fy, Yobs, Tobs)), which is parameterized by ), using a Transformer encoder. The resulting vector z,
concatenated with random variable c , acts as input to the hypergenerator. Here, the hypergenerator is an
MLP-based hypernetwork g, (z,c), with input [z, c| that outputs a set of parameters 6, = g4, (z,c); and,
a data generator, fy, parametrized by the output of the hypernetwork. Thus, both z and @ encode the
information shared among the stamps in the data (e.g., features) generation process as shown in Fig.
Moreover, we refer to TV-INRs as C-TV-INRs when covariates are available and used.
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Inference model. We approximate posterior distribution as ¢4, (z|Y,T) = N (z|f,.(Y,T)), parameterized
by ~.. It’s important to note that this distribution is shared among the complete instance (e.g., time series
signal), thus z contains global information as shown in Fig.

Training. We employ masked training by maximizing the evidence lower bound (ELBO) of the proposed
model, which is given by

L(T,Y.C) =Eqy, [l0gpe(sc)[Y | T|] — Dxr (4. (2 | Y. T)||py, (2| Yobs, Tons)) 3)

where py, and ¢, are Gaussian distributions, and we model pg(,) with a Laplace distribution as it
demonstrates better performance in capturing high-frequency components.

3.2 Implementation details

We model the conditional prior and approximate posterior with Transformer encoders. To handle heterogeneity
in the input data, we augment the input features by concatenating them with a binary mask, (Q(l) € 0,15ixd),
which indicates observed entries across both temporal and feature dimensions.

Input processing. For each sample ¢ € [N], we process the input tuple (_T(i)7 Y ® C®) to handle missing
values. We construct the input representation using the binary mask (Q®) as follows:

1. Fill masked values in Y with zeros:

p ) AT (4)

e ()
: 0 if (I,k) e U™

where Y € RLi%d i case for the input of the posterior encoder we give full available data.

2. Concatenate the mask along the feature dimension and transform the processed features with a linear
(@) —

layer for spatial encoding, which captures relationships among different channels, yielding ESpatial =

Finear(¥0) € REXdmote | where ¥ — [F0); 00)] € REX24,
3. Expand temporal coordinates with channel indices v4 = [0, ..., d — 1] and encode them with Fourier Features
(FoF) (Dupont et al, 2021): EY) = FoF(T®) € REi*dmoact where T = T @ vy € RExd,

tempora

The final embedding E(®) = EY 4+ EY

spatial temporal 15 element-wise summed and then fed into the encoder.

Encoding. The embedded input E(® is processed through a transformer encoder to model the conditional
distributions py, (2| Yobs, Tobs) and ¢4 (z|Y, T). The encoder takes E(¥, transforms the input through self-
attention, applies pooling (POOL) over temporal dimension, and a feed-forward network (FFN) generates
parameters to model the latent features z:

z ~ N(p, X) where p, 0 = FEN(POOL(H)), and H = Transformer(E") (5)
where ¥ = diag(o?). Here, we make sure masked values are not used during attention computation.

Decoding. The latent representation (z) is combined with conditional variables to construct the decoder
input through the following steps:

1. The conditional variables C*) are first binned and then transformed by a feed-forward network into
c = FFN(C(“) € R, which is subsequently concatenated with the latent representation to form the
decoder input hqec = [2;C].

2. The resulting hqec is passed through a hypernetwork g4 to generate the parameters 8 = gg(hgec) for the
implicit neural representation (INR), fg, which is continuous over ¢ (Sitzmann et al., [2020)).

3. The INR, fp, models the output feature values as ¢; ~ Laplace(u, b;), where the distribution’s parameters
(11, b1) = fo(e;) are the output of mapping the encoded time point e;.
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4 Experiments

Baselines. We thoroughly tested TV-INRs framework across imputation and forecasting tasks in full and
limited data regimes with uni- and multi-variate datasets. We compare our model with TimeFlow (Naour
et al.l [2024)), an INR-based time series model. It requires training separate models for different missingness
ratios or horizon lengths, and performs gradient-based meta-learning during inference (details in App. [A.8)).
We include two baselines specifically designed for time series imputation: SAITS (Du et al., 2023)), which is
based on self-attention, and CSDI (Tashiro et al.,|2021)), a conditional diffusion model that operates on a fixed
temporal grid. For the forecasting task, we compare with DeepTime (Woo et al., |2023)), which learns deep time-
index models specifically designed for time series forecasting. Potential baselines HyperTime (Fons et al., |2022])
and MADS (Bamford et al.| [2023) were not available as open-source models, and were therefore not tested.

Univariate datasets. We conducted experiments on four univariate datasets (App. Table 4], and compared
our approach to Timeflow (Naour et al 2024), DeepTime (Woo et al., [2023), SAITS (Du et al 2023)), and
CSDI (Tashiro et al.l|2021)). Each dataset comprises one-dimensional signals originating from various locations
or sources, and is available at the Monash Time Series Forecasting repository (Godahewa et al.l [2021)).

Multivariate datasets. While some datasets contain regular sampling (e.g., electricity), others are irregular,
and have multiple sensors with unique temporal patterns. TV-INRs is the first temporal INR model to handle
such multivariate signals, leading us to exclude Timeflow from these comparisons. We conducted experiments
on two multivariate datasets, namely, HAR and [The PhysioNet Challenge 2012 (P12), and compared our
method with SAITS (Du et al., |2023)) and CSDI (Tashiro et al., 2021). Additional details on the datasets,
including missingness patterns, are provided in App.

Next, we describe the imputation and forecasting tasks. Let the i-th sample, T = {tg-i)}f;’l, contain L;
stamps. For both tasks, we compare predicted values against the ground truth for test data using Mean
Squared Error (MSE) and Mean Absolute Error (MAE).

Imputation task. We partition the data based on an observed ratio 7. Given the observed stamps To(é)s, the

goal is to predict features at the unobserved stamps Téfl)obs, where
10 =10 U, YO =YD 0V e~ oo Yoo | T (6)

The task’s difficulty increases as 7 decreases. For prediction, we use the conditional prior distribution
Dap,, (2] Yobs; Tons) and covariates c (if available).

Forecasting task. We partition data at a horizon tyoriz0n into history and forecast sets. Given the observed
historical data Yh(ils)t? our task is to predict Y}(l)

orecast
covariates ¢ (if available) to generate predictions:

We use our conditional prior py, (z|Yhist, Thist) and

Tkglls)t = {ty) € T(l) | t§7) S thOTiZOH}’ Tf(oir)ecast = {ty) € T(’L) | tgz) > thorizon} (7)
i}forecast ~ Po(z,c) ()fforecast ‘ Tforecast)- (8)

4.1 Results

In Sections and we explore TV-INRs performance in imputation and forecasting on univariate
datasets in comparison with the baseline models Timeflow (Naour et all 2024), SAITS (Du et al., [2023),
CSDI (Tashiro et al., 2021)) and DeepTime (Woo et al., [2023). We comment on the training efficiency in
Sections and App. In Section we report TV-INRs performance on multivariate datasets
including the conditional version of our model, C-TV-INRs, compared with SAITS (Du et al.,|2023) and CSDI
(Tashiro et al., 2021). Statistical significance (p < 0.05) was assessed using independent t-tests performed on
results from non-overlapping test windows and three different seeds of model training. Ablation studies on
the number of Fourier Features and our INR-based decoder are in App. [A12 and [A:T3] respectively. The
code will be accessible [in our repository}

4.1.1 Imputation on univariate datasets

For imputation, we compared TV-INRs against the selected baselines across varying signal lengths L. We
used L = 2000 (2K) time points to match published baseline experiments, and L = 200 time points to evaluate
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Table 1: Univariate imputation results with signal lengths L, training/testing observation rates Tirain test,
and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold values indicate
significantly better results, while underlined values denote results that are comparable.

Electricity Traffic Solar-10

Model L TTrain TTest MSE MAE MSE MAE L MSE MAE
0.50 0.569 4 0.048 0.542 4 0.022 0.251 4 0.028 0.246 + 0.015 1.086 + 0.005 0.648 + 0.022
SAITS 2K 0.80 0.30 0.793 £ 0.055 0.654 £ 0.023 0.337 4 0.033 0.306 & 0.015 10K 1.087 + 0.009 0.651 + 0.024
0.05 1.318 +0.051 0.902 4 0.025 0.824 4 0.040 0.619 + 0.014 1.126 £ 0.061 0.676 + 0.062
0.50 2.070 4 0.194 1.033 & 0.023 1.150 = 0.029 0.773 + 0.144 1.275 4+ 0.382 0.699 + 0.781
CSDI 2K ~U 0.30 2.287£0.157 1.045 £ 0.012 1.146 £ 0.103 0.773 £ 0.165 10K 1.285 £ 0.191 0.703 £ 0.749
0.05 1.74240.265 1.050 +0.013 1.1394+0.111 0.773 £ 0.171 1.279 +0.020 0.700 + 0.737
0.50 0.50 0.131 4 0.011 0.252 + 0.010 0.346 + 0.036 0.369 + 0.017 0.710 £ 0.040 0.617 4 0.056
TimeFlow 2K 0.30 0.30 0.166 & 0.012 0.288 & 0.011 0.390 + 0.042 0.388 + 0.018 10K 0.812 + 0.128 0.658 £ 0.121
0.05 0.05 0.378 4 0.034 0.458 4 0.025 0.590 + 0.048 0.496 + 0.020 0.833 £ 0.010 0.663 £ 0.096
0.50 0.249 4 0.019 0.331 4 0.012 0.546 4 0.022 0.401 + 0.015 0.955 £ 0.059 0.645 4 0.038
TV-INRs 2K ~ S 0.30 0.250 £0.017 0.332 4 0.012 0.551 £ 0.029 0.403 4 0.017 10K 0.954 £ 0.074 0.646 £ 0.050
0.05 0.289 +0.019 0.360 & 0.015 0.570 £ 0.019 0.415 + 0.013 1.104 4+ 0.265 0.688 £ 0.132
0.50 0.124 4 0.014 0.223 4 0.010 0.230 & 0.015 0.245 + 0.008 0.066 £ 0.035 0.140 £ 0.021
SAITS 200 0.80 0.30 0.231 £ 0.025 0.317 £ 0.017 0.345 4 0.019 0.320 £ 0.009 200 0.099 + 0.060 0.168 % 0.030
0.05 0.937 4 0.040 0.743 4 0.018 0.904 + 0.020 0.641 +0.016 0.564 £+ 0.107 0.502 £ 0.037
0.50 1.38040.216 0.944 4 0.035 1.169 4 0.204 0.787 & 0.187 1.010 +0.261 0.602 £ 0.122
CSDI 200 ~U 0.30 1.39940.144 0.945 £0.021 1.167 £ 0.183 0.789 4 0.194 200 1.052 = 0.209 0.625 £ 0.109
0.05 1.226 4+ 0.065 0.911 4 0.011 1.158 4 0.200 0.795 + 0.194 1.196 + 0.716 0.700 + 0.124
0.50 0.50 0.163 4 0.009 0.240 4 0.007 0.233 4 0.009 0.230 % 0.006 0.330 £ 0.046 0.223 £ 0.032
TimeFlow200 0.30 0.30 0.331 4 0.014 0.396 & 0.010 0.419 % 0.015 0.370 % 0.009 200 0.518 £ 0.057 0.331 £ 0.038
0.05 0.05 0.963 &+ 0.019 0.811 4+ 0.011 1.303 = 0.103 0.830 % 0.028 0.877 £0.077 0.707 £+ 0.098
0.50 0.113 4+ 0.018 0.212 £ 0.015 0.188 4 0.041 0.212 4 0.027 0.038 £ 0.031 0.089 £ 0.035
TV-INRs 200 ~S 0.30 0.135 £ 0.027 0.232 £ 0.021 0.214 + 0.042 0.228 £ 0.028 200 0.051 & 0.051 0.098 + 0.042
0.05 0.318 +0.063 0.368 & 0.041 0.453 + 0.074 0.368 & 0.042 0.244 £ 0.226 0.234 £ 0.099

performance in lower-data regimes. We define the rate of observed data points during testing as 7r.s:. The low-
data regime is characterized by conditions of data scarcity, which includes all scenarios with a limited training
set (L = 200) and sparse test-time observations 7.5+ € {0.5,0.3,0.05}) as well as the experiments with a
larger training set but very sparse test-time observations (L = 2000, 7r.st = 0.05). In contrast, the high-data
regime represents scenarios with a relative abundance of data, specifically when a larger training set is available
(L = 2000) and the observation rates at test time are higher (7r.s: € {0.5,0.3}) or when L = 10000 and 7res; €
{0.5,0.3,0.05}. To improve robustness under low observation rates, we sample the observed fraction at random
during training, e.g. Tin ~ S = {0.05,0.30,0.50,0.75,0.90,1.0}. TimeFlow requires separate training for
each Tresy value, while SAITS fixes Tryain = 0.80 and CSDI uses a uniform distribution 7y, ~ U(0, 1).

The results in Table [1] demonstrate the advantages of our approach over gradient-based meta-learning,
particularly in low-data regimes. With shorter signals (L = 200) and lower observation percentages Trest,
TV-INRs consistently performs on par or better than all baselines, achieving up to 88% improvement in MSE
scores. In Solar-10 at (L = 200) specifically, TV-INRs achieves substantially lower error rates, with a MSE
of 0.0383 compared to TimeFlow’s 0.3304, SAITS’ 0.0660 and CSDI’s 1.010 at 7res;s = 0.50. At the highest
missingness setting, 7rest = 0.05, TV-INRs also performs best on average, though it is only comparable to
TimeFlow on the Solar-10 dataset. As Solar-10 has significantly longer time series (L = 10K) and thus a
larger number of training observations, results indicate that TV-INRs excels primarily in low-data regimes.

For longer signal lengths (L = 2K, 10K), TimeFlow shows stronger performance on the Electricity and Traffic
datasets at higher 7ot values. Overall, TV-INRs maintains competitive performance across all scenarios
while offering two crucial advantages: it provides a unified model that handles all cases without requiring per-
case training, and enables efficient inference through gradient-free meta-learning that requires only a forward
pass. These results highlight how our variational framework effectively balances performance with practical
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Table 2: Univariate forecasting results with history length H, training/testing forecasting lengths Fiyain test,
and MSE/MAE evaluated for forecasting. Bold values indicate significantly better results, while underlined
values denote results that are comparable.

Electricity Traffic Solar-H
Model H Fiain Frest MSE MAE MSE MAE MSE MAE

96 96 0.436 £0.020 0.503 £0.016 0.419 £0.103 0.411 £ 0.047 0.641 +0.183 0.651 = 0.089
192 192 0.551 £0.157 0.525 £0.055 0.382 £+ 0.056 0.372 £ 0.027 0.432 4 0.121 0.514 + 0.081
336 336 0.793 £ 0.046 0.689 & 0.037 0.446 +0.107 0.397 £ 0.058 0.821 £ 0.013 0.804 £ 0.002
720 72010.178 £0.218 0.970 £0.178 0.485 4 0.059 0.406 £ 0.014 0.793 4 0.041 0.741 £ 0.001

96 96 0.425+0.057 0.318 £0.050 0.289 £ 0.113 0.281 £ 0.064 0.503 4= 0.424 0.336 = 0.142
192 192 0.498 £0.078 0.362 £ 0.060 0.324 £ 0.076 0.298 4 0.050 0.476 +0.191 0.352 + 0.077
336 336 1.347 £ 0.210 0.389 & 0.065 0.407 4+0.122 0.329 + 0.057 0.364 £ 0.106 0.301 £ 0.055
720 720 9.422 £ 0.217 0.525 4 0.150 0.413 4 0.050 0.327 & 0.020 0.353 £ 0.092 0.325 £ 0.032

96 0.336 & 0.068 0.296 & 0.040 0.383 £ 0.143 0.305 £ 0.082 0.346 £ 0.303 0.325 £ 0.123
192 0.446 £ 0.107 0.415 4 0.036 0.377 4+0.094 0.294 + 0.056 0.469 £ 0.125 0.389 £ 0.031
336 0.544 £0.216 0.442 £0.040 0.373 £ 0.073 0.292 £ 0.049 0.451 4= 0.140 0.383 +0.039
720 9.51540.218 0.535+0.162 0.448 £ 0.088 0.313 £ 0.043 0.509 £ 0.194 0.404 £ 0.061

DeepTime 512

TimeFlow 512

TV-INRs 512 ~ F

efficiency, and excels in scenarios where data availability is limited. In App. [B1] Figures [}{5] show sample
outputs generated by TV-INRs.

4.1.2 Forecasting on univariate datasets

For forecasting, we compare TV-INRs with TimeFlow and DeepTime using the same experimental settings
as in their original publications. The historical length H is set to the first 512 elements, and forecasting
performance is evaluated over forecasting lengths F' of 96, 192, 336, and 720. TV-INRs is trained by sampling
forecasting lengths Fry,in € F = {96,192, 336,720}. Since H is fixed, the binary mask has the same number
of observed indices; however, the total length of the mask is adapted to different lengths of F'. As shown
in Table [2| both TimeFlow and DeepTime require separate training for each forecasting length, while our
approach uses a single model for all horizons. For TV-INRs and TimeFlow, there is a dramatic increase in
MSE for long-range forecasting (F' = 720) in the Electricity dataset, reaching ~ 9.5 and = 9.4 respectively,
while maintaining relatively moderate MAE (= 0.53), which strongly indicates the presence of significant
outlier errors in the predictions. DeepTime shows even higher errors in this scenario (MSE = 10.18). For
shorter forecasting horizons (F = {96,192}), our method demonstrates competitive or superior performance,
notably achieving a MSE of 0.3359 versus TimeFlow’s 0.4250 and DeepTime’s 0.4359 for F' = 96 in the
Electricity dataset. Our approach significantly outperforms DeepTime on the Solar-H dataset, with MSE
of 0.3456 versus 0.6410 at ' = 96. TimeFlow achieves lower errors in specific scenarios (Traffic at F' = 96,
Solar-H at F' = {336, 720}), but requires separate training per horizon and gradient-based meta-learning for
each test sample. Similarly, DeepTime needs individual models for each forecast length. Our approach’s key
advantage is handling multiple forecasting horizons with a single trained model while maintaining competitive
performance. Sample outputs are shown in App. (Fig@.

4.1.3 Explanation over generalization claims

We assess model generalization by its robust performance across a range of distinct tasks, each applied to N
unique time series. For imputation, these tasks are defined by varying the observation rate 7, challenging the
model under different levels of data scarcity. For forecasting, we measure generalization by the model’s ability
to maintain accuracy over increasingly long forecasting windows, F € {96,192, 336, 720}. TV-INRs uses a
unified model capable of imputation with different observed ratios and forecasting across all horizon lengths,
which significantly reduces or eliminates the need for additional fine-tuning or multiple-model optimizations,
enhancing its overall efficiency. To illustrate this, we show that TimeFlow has to be trained per scenario,
e.g. different observed ratios and horizon lengths, in Table[I9]in App[AZ6] We report the training times for
TV-INRs and TimeFlow across all experiments in App. [A7I0] Our findings indicate that TV-INRs achieves
notable improvements in cumulative training efficiency: it requires between 2.41x to 3.70x less training
time than TimeFlow for forecasting tasks, and between 1.30x to 2.81x less training time for imputation
tasks. These results are shown in App. - Table and demonstrate that TV-INRs offers substantial
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advantages in computational efficiency and generalization by handling multiple tasks with a single training.
We also provide the memory and time complexity analysis of TV-INR in App.

4.1.4

In the HAR dataset, motion data from a single smartphone presents simultaneous missing values across
(@)

unobs?

Imputation on multivariate datasets

all channels at specific timestamps due to device failures. Formally, given X () = X égs U X where

XLEQobs
For the P12 dataset, we evaluate TV-INRs on patient-specific time series imputation from eight measurements
(urine output, SysABP, DiasABP, MAP, HR, NISysABP, NIDiasABP, NIMAP) and four covariates (gender,
age, height, weight). The dataset has irregular missingness across timestamps and channels, which makes the

imputation task more challenging (details in App. [A.2]).

= Xl(i) 1€ UD | any missing timestamp I € (U?) affects all d channels.

Table 3: Multivariate imputation results with signal lengths L, training/testing observation rates Tirain test,
and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold values indicate

significantly better results, while underlined values denote results that are comparable.

HAR (L=128) P12 (L=48)
Model TTrain TTest MSE MAE TTrain TTest MSE MAE
0.50 0.998 4+ 0.003 0.793 + 0.006 0.50 0.985 4+ 0.128 0.746 + 0.070
SAITS 0.80 0.30 1.001 +0.004 0.793 £0.007 0.80 0.30 0.998 +0.092 0.760 £ 0.067
0.05 1.004 +0.001 0.793 + 0.007 0.10 0.970 +0.048 0.746 + 0.052
0.50 1.083 +0.062 0.821 £ 0.067 0.50 0.861 +0.174 0.691 £ 0.070
CSDI ~U 0.30 1.084 +0.060 0.823 £0.063 ~U 0.30 0.930 +0.146 0.724 £+ 0.067
0.05 1.090 £ 0.015 0.826 £ 0.054 0.10 1.024 £0.093 0.765 £ 0.057
0.50 0.382 4+ 0.067 0.414 £ 0.041 0.50 0.822 +0.171 0.660 £ 0.074
TV-INRs ~8 0.30 0.533 +0.050 0.505+0.031 ~S 0.30 0.892 +0.146 0.692 + 0.071
0.05 0.995 + 0.070 0.722 £ 0.034 0.10 0.980 +0.118 0.739 £ 0.058
0.50 0.379 +0.065 0.412 + 0.041 0.50 0.824 +0.175 0.662 £ 0.076
C-TV-INRs ~S 0.30 0.523 4+0.047 0.502 +0.029 ~ S 0.30 0.883 +0.141 0.690 + 0.073
0.05 0.976 = 0.058 0.708 + 0.022 0.10 0.963 = 0.099 0.733 + 0.052

o Conditional vs. unconditional. We test C-TV-INRs conditional formulation (Equation on HAR by
incorporating activity labels alongside latent codes, and on P12 by including patient (age, gender, height,
weight). On HAR, Table [3| shows C-TV-INRs significantly outperforms TV-INRs at higher missingness rates
(Trest = 0.05). For P12, both variants perform comparably at higher observation rates (7rest = 0.50,0.30).
But at extreme sparsity (7rest = 0.10), C-TV-INRs significantly outperforms with MSE=0.9627 versus
SAITS’s 0.9704, CSDI’s 1.024, and TV-INRs’s 0.9795, with the lowest MAE (0.7326). This confirms
conditional models’ advantage with sparse time series data. Overall, both the conditional and non-conditional
versions of TV-INRs outperform baselines for multivariate imputation.

¢ Downstream classification. To assess the impact of imputation on classification, we trained an XGBoost
classifier (Chen & Guestrinl [2016)) on HAR data, testing across varying observation ratios by removing
random timepoints and imputing using our methods, baselines, and mean imputation. Fig. [3]shows both TV-
INRs variants substantially outperforming baselines, with the conditional model showing increasing advantage
as missingness grows, demonstrating the value of covariates for individualized predictions. Complete AUC-
ROC values are in Table [11}

5 Conclusion

We have introduced TV-INRs, demonstrating its effectiveness in imputation and forecasting across various time
series domains and data conditions. Our results highlight superior performance in low-data regimes and robust
handling of varying observation patterns. Furthermore, the amortization of INR weights in our probabilistic
setting enables adaptation to unseen data without fine-tuning or per-sample optimization, a key advantage over
traditional hypernetwork-based methods that rely on meta-learning. We have also illustrated the potential of
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Figure 3: Classification performance (AUC-ROC) at various missingness levels; a higher value indicates better
performance.

TV-INRs for downstream tasks with improved classification on HAR data. While baseline methods TimeFlow
and DeepTime showed stronger performance in specific scenarios, TV-INRs frequently produced comparable
or superior results while offering substantial practical benefits: unified model training across multiple tasks,
individualization without meta-learning, significantly improved cumulative training and fixed inference time,
independent of gradient adaptation. The ability to handle multiple forecasting horizons with a single model
represents a considerable advantage in real-world applications where computational resources may be limited.

To further enhance our model, future directions may include reducing hypernetwork complexity with
transformer-based architectures (Chen & Wang, [2022), or modeling per-sample positional embeddings rather
than weights directly (Park et al., [2024)). The variational framework could also be extended to incorporate
additional forms of domain knowledge. These improvements could strengthen its potential, particularly in
healthcare domains such as personalized medicine and patient monitoring, where efficiency and the ability to
model highly sparse data are especially critical.

6 Broader Impact

This paper presents work that aims to increase the efficiency and scalability of generative models in Machine
Learning. There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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Appendix

A Appendix A

A.1 Reproducibility Statement
Our work is fully reproducible, and all the necessary resources are provided below.

Code. The full implementation of our method, including training and evaluation scripts, will be made publicly
available upon publication (anonymous link provided for review https://anonymous.4open.science/r/TV
INR-codebase-8C08).

Data. Instructions for obtaining the raw data are included with the code repository. A detailed description of
the datasets, preprocessing, and normalization steps is provided in Appendix{A.2]

Model and Training. The model architecture, training protocol, and evaluation procedure are described in
Sections and [d] Hyperparameter choices and tuning procedures are reported in Appendix

Hardware and Software. All experiments were run on a single NVIDIA V100 GPU. A complete list of
dependencies and environment details is provided in our codebase.

A.2 Datasets

Table 4: Dataset Descriptions. #Series denotes the number of distinct timeseries signals with corresponding
lenghts and covariates if available.

Dataset Domain Freq. #Dims #Series Length Cov.

Electricity Ro™ Hourly 1 321 26304 X
Traffic [0,1] Hourly 1 862 17544 X
Solar-10  Ro* 10 Mins 1 137 52560 X
Solar-H Rot Hourly 1 137 8760 X
HAR R 50Hz 3 30 43940 v
P12 Rot Hourly 8 3938 48 v

In this section, we provide more details about the datasets we have used. We start with the list of uni-variate
datasets:

Electricity Dataset records hourly electricity consumption from 321 customers in Portugal for the period
2012 to 2014, displaying both daily and weekly seasonality.

Traffic Dataset includes hourly road occupancy rates from 862 locations in San Francisco during 2015 and
2016, and exhibits similar daily and weekly seasonal patterns.

Solar Dataset The Solar-10 dataset comprises measurements of solar power production from 137 photovoltaic
plants in Alabama, captured every 10 minutes in 2006. Additionally, there is an hourly version of this dataset,
known as Solar-Hourly.

For some datasets, the feature vectors Y (¥ = {yl(i)}l]‘:i1 expand from univariate (d = 1) to multivariate
(d > 1), with each dimension representing a unique sensor used to collect observations {yl(l)} € R, For these
purposes, we experiment with two multi-variate datasets, namely:

HAR Dataset. Here, we experiment with the Human Activity Recognition (HAR) dataset from the [UC
Irvine ML Repositoryl, which is dense with regular time points at 2.56 second intervals, enabling quantitative
imputation assessment through random removal. It contains 10,299 samples of accelerometer measurements
across X, y, and z axes.

P12 Dataset. The PhysioNet Challenge 2012 (P12)| dataset contains ICU stay measurements including sensor

readings and lab results. After outlier removal, it comprises 11,817 visits across 37 channels with maximum
215 time points over 48 hours. We use eight measurements urine output, systolic arterial blood pressure
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(SysABP), diastolic arterial blood pressure (DiasABP), mean arterial pressure (MAP), heart rate (HR),
and their non-invasive counterparts (NISysABP, NIDiasABP, NIMAP). We also incorporate patient-specific
covariates including gender, age, height, and weight. Conditional TV-INRs use covariates Unlike HAR, P12
(gf))q is 15.68% of X on average) with irregularity across times and sensors, where T® may
be unique for each time series 1.

is highly sparse (X

Missingness Patterns of the Datasets. To ensure a comprehensive evaluation, our experiments address diverse
data missingness patterns, including both random and non-random scenarios. For Missing Completely at
Random (MCAR) patterns, we adhere to standard literature practices by introducing artificial missingness
(Little & Rubinl [2019)) during training across the Electricity, Traffic, and Solar datasets. This methodology
aligns with the protocols used by the baseline models we compare against. Furthermore, we assess performance
on Missing Not at Random (MNAR) patterns, which are prevalent in real-world applications. Our analysis
includes the P12 dataset, which exhibits MNAR, characteristics where clinical data is informatively missing;
here, we evaluate imputation quality indirectly via a downstream classification task. To create a controlled
non-random evaluation, we also synthetically modified the fully-observed HAR dataset by dropping entire
channels at random timestamps to mimic sensor failures, a scenario where the missingness mechanism depends
on unobserved factors.

A.3 Data-preprocessing

We apply channel-wise standardization to each time series. For each channel d in a time series with length L,
we compute the channel-wise mean pg4, standard deviation o., and normalize signal :i:l(l; as follows:
(@) (&)
(@) Tid— Ha 9
Lia= @ 9)
P

where xl(zc)l represents the value of channel d at time [ for sample i.

A.4 Analysis for statistical differences

To compare the performance of TV-INRs and baseline models, we conducted a systematic statistical analysis
using Welch’s t-test which accounts for potentially unequal variances between the two models. For each
configuration defined by sequence length L and sampling ratio 7, we evaluated both mean squared error
(MSE) and mean absolute error (MAE). The statistical significance was assessed at o = 0.05.

In classification experiments, the HAR dataset was normalized independently per channel but not per
individual, ensuring consistency across subjects and allowing XGBoost to learn global patterns. This differs
from the normalization procedure used for TV-INRs, which normalized data at both the channel and individual
level in order to model data on a per-user basis. When mentioned, we computed the relative performance
difference as A = ({TimeFlow — LTV-INRs)/ L TimeFlow X 100%.

A.5 Training, validation, and test splits for all experiments

Here, we give information about all datasplits for all experiments in Tables 5] [6] [/} For univariate datasets,
test windows are extracted sequentially from the end of each time series. Moreover, training data precedes
validation data.

INO: Non-overlapping, FE: From end of the series
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Table 5: Dataset splitting details for univariate imputation experiments. Training and validation sets has 5:1
ratio.

Dataset Series Count Window Length Test Windows Training/Val.

(L) (NO & FE )] Stride
Electricity 321 2200000 550 55000
Traffic 862 2200000 220 55000
Solar-10 137 13880 1(2)0 25500

Table 6: Dataset splitting details for univariate forecasting experiments. Training and validation sets has 5:1
ratio. Training and validation series are constructed with using offsetting from the available data points.

Dataset  Series Count History Forecast Window Length  Test Windows Training/Val.
(H) (F) (L) (NO & FE )P Offset
Electricity 321 512 [96,192,336,720] 1232 7 v
Traffic 862 512 [96,192,336,720] 1232 7 v
Solar-H 137 512 [96,192,336,720] 1232 3 v

Table 7: Dataset splitting details for HAR imputation experiments. The dataset is split by users, with 24
users for training and 6 users for testing. From the training users, we further split into training and validation
sets using a 4:1 ratio of users.

Dataset  Series Count Window Length (L) #Classes #Train Users #Test Users

HAR 30 128 6 24 6
P12 11817 48 NA 9454 2363

A.6 Hyperparameters for all experiments

Hyperparameters for all TV-INR experiments on an NVIDIA V100 GPU can be seen in Tables Bl In case
of HAR dataset, C-TV-INRs extra parameters of feed forward encoder of covariates with layers [8, 8] and
dim_ ¢ = 4. The details of the hyperparameter grid search space are provided in Table

Table 8: Hyperparameter details of TV-INRs for imputation task.

ELECTRICITY TRAFFIC SOLAR-10 HAR
L 200 2000 200 2000 200 10000 128
dim_z 32 64 32 64 32 64 32
epochs 2000 4000 2000 4000 2000 4000 3000
bs 256 64 256 64 256 32 128
Ir le-4 le-4 le-4 le-4 le-4 le-4 le-4
dmodel 128 128 128 128 128 128 128
Transformer Enc. #heads 2 4 2 4 2 4 4
#layers 2 2 2 2 2 2 4
Hypernetwork layers [128,256]
Generator layers [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64,64]
RFF m = 256,0 =2
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Table 9: Hyperparameter details of TV-INRs for forecasting task.

ELECTRICITY TRAFFIC SOLAR-H

dim_z 32 64 32
max epochs 2000 4000 2000
bs 256 64 256
Ir le-4 le-4 le-4
dmodel 128 128 128
Transformer Enc. #heads 2 4 2
#layers 2 2 2
Hypernetwork layers [128,256]
Generator layers  [64,64,64]  [64,64,64,64] [64,64,64]
Random Fourier Features m = 256,00 =2

Table 10: Hyperparameter Grid Search Configuration

Hyperparameter Search Range

General Parameters

Learning rate (Ir) [le-5, le-4, He-4]

Latent dimension (dim_z) [16, 32, 64]

Dropout rate [0.0, 0.1, 0.2]
Transformer Encoder

d_model (64, 128, 2506]

Attention layers 2, 4, 6]

Number of heads 2, 4, 8]

Causal attention [True, False]
Hypernetwork

Layers (132,64], [64,128], [128,256], [256,512]]
Activation [relu’, relu_ 01, *gelu’]
Generator (INR)

dim__inner [32,64,128]

num_ layers (2, 3, 4]

Activation [relw’, ’lrelu_ 017, ’gelu’]

Random Fourier Features

m [128, 256, 512]
o 1, 2, 4]

For classification with XGBoost, all hyperparameters used were the default in |Chen & Guestrin/ (2016))’s
XGBoost library, with the following exceptions; early stopping was set to 10 rounds, and categorical features
were enabled to preserve channel identity as nonordinal.

A.7 Classifer results

We present the AUC-ROC scores for different models across varying levels of missingness in Table where
higher scores indicate better classification performance.

A.8 TimeFlow results for different missingness rates

To thoroughly demonstrate TV-INRs’s capability to handle different missing data scenarios, we conducted
extensive experiments by training and testing with various observed ratios (7), further supporting our claims
regarding its efficiency and its ability to serve as a single model for all cases. It is important to note that in
the TimeFlow GitHub repositoryﬂ the missing data rate (“draw_ratio”) can be set as a training argument,
with options including {0.05,0.10,0.20,0.30,0.50}. Although this may appear to be a hyperparameter choice,
it affects the task itself, as the model is optimized for a specific level of missingness.

Shttps://github.com/Etiennelnr/TimeFlow/blob/main/experiments/training/inr_imputation.sh
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Table 11: AUC-ROC scores for different models across varying levels of missingness. Higher scores indicate
better performance. All values are rounded to three decimal places.

Model 50% Missingness 70% Missingness 95% Missingness
C-TV-INR 0.969 4+ 0.012 0.968 + 0.012 0.882 + 0.028
TV-INR 0.967 4+ 0.013 0.963 + 0.016 0.868 + 0.025
SAITS 0.906 + 0.040 0.831 + 0.036 0.719 + 0.039
CSDI 0.928 +0.023 0.900 £ 0.035 0.847 £+ 0.037
Mean Imputation 0.894 4+ 0.039 0.818 £+ 0.036 0.784 + 0.030

As shown in Table TimeFlow’s performance varies significantly across different training and testing 7
combinations, requiring separate model instances for each scenario, and although we implemented a version of
TimeFlow that can be trained using random observed fractions, this has not yet led to improved results. In
contrast, TV-INRs has comparable or better performance when compared with Timeflow with a single trained
model. These results align with the observation stated in Table 10 of the original TimeFlow paper (Naour
et al., |2024)) that while higher sampling rates simplify the imputation task, they complicate optimization,
making it challenging for the model to generalize effectively across different sparsity levels.

Table 12: TimeFlow model performance at different training and testing missing ratios (7), including random
sampling from set S. MSE and MAE metrics are reported for electricity dataset.

Test T
MSE MAE
Model L Train 7 0.05 0.3 0.5 0.05 0.3 0.5

1.00 108812.06 0.18195 0.13066 26.16919 0.28272 0.25284

0.95 22579.357 0.15164 0.1275 15.57548 0.27184 0.24665

TimeFlow 2K 0.50  56.5905 0.14723 0.13238 1.88119 0.26775 0.25075
W 0.30 2.58694 0.16536 0.15019 0.85563 0.28756 0.27291

0.05 0.37793 0.22935 0.21811 0.45838 0.34629 0.33603

~S 0.32549 0.16117 0.13834 0.38618 0.26933 0.25845

TV-INRs 2K ~ S 0.2889 0.2502 0.2491 0.3595 0.3317 0.3311
1.00 605909.85 7.77814 0.44302 358.39774 1.87872 0.49501

0.95 2611667.2 145.28325 0.33257 587.75934 2.32136 0.42111

TimeFlow 200 0.50 350.9098 0.34692 0.16299 11.31193 0.43012 0.23984
0.30 18.90844 0.32993 0.20594 2.99975 0.39625 0.30289

0.05  0.96294 0.74811 0.6934 0.81073 0.71435 0.69580

~S 0.82365 0.33733 0.16998 0.73533 0.3999 0.255559

TV-INRs 200 ~ S 0.3175 0.1352 0.1132 0.3681 0.2320  0.2123

A.9 Complexity analysis for TV-INR

This section provides the time and memory complexity analysis for the TV-INR model, broken down by its
core components: the Transformer-based encoder and the MLP-based decoder (hypernetwork).

Notation. To facilitate the analysis, we define the following notation: L is the input sequence length; C' is the
number of input channels; E is the embedding dimension; D,, is the hidden dimension of the projection layer;
Z is the latent dimension; N and M are the number of layers and attention heads in the encoder, respectively;
N’ and D), are the number of layers and hidden dimensions of the hypernetwork; and R is the total flattened
dimension of the INR parameters being modeled. Typically, the sequence length is the dominant factor, such
that L > E > Z.

Time complexity. The overall time complexity is determined by the sum of the model’s parts. The Transformer-
based encoder has a complexity of O(N - L? - E), which is quadratic with respect to the sequence length L
due to the self-attention mechanism. The subsequent projection layer has a complexity of O(E - Dp). The
MLP-based hypernetwork’s complexity is O(Z - D, + (N’ — 1) - D7 + Dy, - R), which depends on its depth
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and width. Given that L is the largest dimension, the encoder is the computational bottleneck, making the
model’s overall time complexity O(N - L? - E).

Memory complexity. The memory complexity during a forward pass is also dominated by the encoder. The
Transformer requires O(M - L?) memory to store the attention score matrix. The memory requirements for
the projection layer and the MLP-based hypernetwork are O(max(E, Z)) and O(max(Z, Dy, R)), respectively,
as they are determined by the largest linear layer within each component. Consequently, the overall memory
complexity is dictated by the encoder, resulting in O(M - L?).

A.10 Training times comparison

In this part, we are reporting the cumulative training times in hours (h) of TV-INRs and Timeflow per task. All
training times are rounded to 5-minute intervals and were acquired using an NVIDIA V100 GPU and reported
in Tables [T3|[T4)[15] and 7T TII for imputation and forecasting tasks, respectively. As training times of C-TV-
INRs are in the same order with TV-INRs, we omit them to include them in the tables. SAITS demonstrates
moderate training times ranging from 1h45m to 13h35m across various datasets, offering a reasonable
compromise between efficiency and performance. A drawback of CSDI (Tashiro et al, 2021) is its extended
training duration, primarily due to the iterative optimization process inherent in diffusion model training.
DeepTime (Woo et al., [2023)) is very fast to train due to number of epochs selected in the original work; however
it also has the worst performance among the baselines as shown in Table 2} Our primary baseline, TimeFlow,
demands significantly greater computational resources, with cumulative training durations consistently
exceeding those of TV-INR across most experimental scenarios. Efficiency analyses reveal TimeFlow requires
up to 3.70x longer training periods, particularly pronounced in forecasting applications as shown in Table

Table 13: Training times for imputation task, TV-INRs.

Model Name Dataset L Max Epochs Training Time
TV-INR Electricity 200 2000 8h45m
TV-INR Electricity 2000 4000 12h55m
TV-INR Traffic 200 2000 10h35m
TV-INR Traffic 2000 4000 15h50m
TV-INR Solar-10 200 2000 10h25m
TV-INR Solar-10 10000 4000 19h15m
TV-INR HAR 128 3000 6h45m
TV-INR P12 128 1000 4h05m
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Table 14: Training times for imputation task, TimeFlow.

Model Name Dataset L T Max Epochs Training Time
TimeFlow Electricity 200 0.05 40000 6h35m
TimeFlow Electricity 200 0.30 40000 6h40m
TimeFlow Electricity 200 0.50 40000 6h35m
TimeFlow Electricity 2000  0.05 40000 5h35m
TimeFlow Electricity 2000  0.30 40000 5h30m
TimeFlow Electricity 2000  0.50 40000 5h40m
TimeFlow Traffic 200 0.05 40000 9h45m
TimeFlow Traffic 200 0.30 40000 9h50m
TimeFlow Traffic 200 0.50 40000 10h10m
TimeFlow Traffic 2000  0.05 40000 8h30m
TimeFlow Traffic 2000  0.30 40000 8h30m
TimeFlow Traffic 2000  0.50 40000 8h45m
TimeFlow Solar-10 200 0.05 40000 6h45m
TimeFlow Solar-10 200 0.30 40000 6h30m
TimeFlow Solar-10 200 0.50 40000 6h35m
TimeFlow Solar-10 10000 0.05 40000 12h5m
TimeFlow Solar-10 10000 0.30 40000 11h50m
TimeFlow Solar-10 10000 0.50 40000 12h15m

Table 15: Training times for imputation task, SAITS.

Model Name Dataset L Max Epochs Training Time
SAITS Electricity 200 10000 3h45m

SAITS Electricity 2000 10000 3h35m

SAITS Traffic 200 10000 3h25m

SAITS Traffic 2000 10000 Th4bm

SAITS Solar-10 200 10000 1h45m

SAITS Solar-10 10000 10000 6h05m

SAITS HAR 128 10000 13h35m
SAITS P12 48 10000 10h40m

Table 16: Training times for imputation task, CSDI.

Model Name Dataset L Max Epochs Training Time
CSDI Electricity 200 200 2h55m

CSDI Electricity 2000 200 6h

CSDI Traffic 200 200 3h20m

CSDI Traffic 2000 200 7h20m

CSDI Solar-10 200 200 1h30m

CSDI Solar-10 10000 200 12h

CSDI HAR 128 200 8hb5m

CSDI P12 48 200 16h10m
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Table 17: Training times for forecasting task, TV-INRs.

Model Name Dataset H Max Epochs Training Time

TV-INR Electricity 512 2000 5h25m
TV-INR Traffic 512 4000 11h05m
TV-INR Solar-H 512 2000 5h15m

Table 18: Training times for forecasting task, TimeFlow.

Model Name Dataset H F Max Epochs Training Time

TimeFlow Electricity 512 96 40000 4h25m
TimeFlow Electricity 512 192 40000 4h30m
TimeFlow Electricity 512 336 40000 4h40m
TimeFlow Electricity 512 720 40000 4h30m
TimeFlow Traffic 512 96 40000 10h10m
TimeFlow Traffic 512 192 40000 10h15m
TimeFlow Traffic 512 336 40000 10h20m
TimeFlow Traffic 512 720 40000 10h15m
TimeFlow Solar-H 512 96 40000 3h25m
TimeFlow Solar-H 512 192 40000 2h55m
TimeFlow Solar-H 512 336 40000 3h05m
TimeFlow Solar-H 512 720 40000 3h15m

Table 19: Training times for forecasting task, DeepTime.

Model Name Dataset H F Max Epochs Training Time

DeepTime Electricity 512 96 50 5m
DeepTime Electricity 512 192 50 5m
DeepTime Electricity 512 336 50 Sm
DeepTime Electricity 512 720 50 10m
DeepTime Traffic 512 96 50 10m
DeepTime Traffic 512 192 50 10m
DeepTime Traffic 512 336 50 15m
DeepTime Traffic 512 720 50 15m
DeepTime Solar-H 512 96 50 om
DeepTime Solar-H 512 192 50 5m
DeepTime Solar-H 512 336 50 5m
DeepTime Solar-H 512 720 50 Sm
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Table 20: Training Time Efficiency Ratio: TV-INR vs TimeFlow in hours (h).

Forecasting Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)
Dataset H  Training Time (h) Cumulative Time (h) Absolute Multiplier
Electricity 512 5.42 18.08 12.66 3.34%
Traffic 512 11.08 41.00 29.92 3.70x
Solar 512 5.25 12.67 7.42 2.41x
Imputation Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)

Dataset L  Training Time (h) Cumulative Time (h) Absolute Multiplier

Electricity 200 8.75 19.83 11.08 2.27Tx
Electricity 2000 12.92 16.75 3.83 1.30x
Traffic 200 10.58 29.75 19.17 2.81x
Traffic 2000 15.83 25.75 9.92 1.63 %
Solar 200 10.42 19.83 9.41 1.90x
Solar 10000 19.25 36.17 16.92 1.88x

A.11 Inference times comparison

We evaluated the computational efficiency of TV-INRs against TimeFlow by measuring inference times on an
NVIDIA V100 GPU. Under identical conditions with a batch size of 1, we recorded forward pass execution
times in seconds for both models. TimeFlow was configured to use 3 gradient steps during meta-learning, as
specified in the original paper (Naour et al., |2024). A key advantage of TV-INRs is that its inference time
remains constant, unlike TimeFlow, which exhibits linear scaling with the number of gradient steps performed
during meta-learning. This makes TV-INRs particularly attractive for applications requiring consistent and
predictable inference latency.

Table 21: Comparison of inference time of TV-INRs and SAITS in seconds for imputation task.

Electricity Traffic Solar-10

Model L TTrain TTest Time (s) Time (s) L Time (s)
0.50 0.50 0.017+0.001 0.016 £ 0.001 0.038 £+ 0.001
TimeFlow 2K 0.30 0.30 0.016 £0.001 0.016 £0.001 10K 0.037 £ 0.001
0.05 0.05 0.016+0.001 0.016 £ 0.001 0.037 £ 0.001
0.50 0.50 0.013+0.001 0.015=+0.001 0.015 + 0.001
TimeFlow 200 0.30 0.30 0.012+0.001 0.015+0.001 200 0.015=+ 0.001
0.05 0.05 0.012+0.001 0.015=+0.001 0.015 £ 0.001
0.50 0.016 +0.001 0.017 £ 0.001 0.060 £ 0.001
TV-INRs 2K ~S& 030 0.017+£0.001 0.017+£0.001 10K 0.059 =+ 0.001
0.05 0.017 +£0.001 0.017 £ 0.001 0.059 £ 0.001
0.50 0.014 +£0.001 0.013 £ 0.001 0.014 £ 0.001
TV-INRs 200 ~S 0.30 0.014+0.002 0.013+£0.001 200 0.014 +0.001
0.05 0.014 +£0.001 0.013 £ 0.001 0.014 £ 0.001

A.12 Ablation study on the number of Fourier Frequencies

To empirically quantify the contribution of Fourier Features to the performance of TV-INR, we conduct
an ablation study analyzing the model’s performance with different numbers of Fourier frequencies (Ngr).
The experiment is conducted on Electricity dataset for imputation task, and the results are reported, with
performance statistics—mean and standard deviation—computed over multiple non-overlapping test windows.
The table below presents the Mean Squared Error (MSE) on the imputed values for configurations with
Npp € {256,128,32,0}. The results clearly demonstrate that incorporating Fourier Features provides a
significant performance benefit, which aligns with findings in the broader literature (Tancik et al., |2020;
Dupont et al., [2021). Across all sequence lengths and observation rates, performance degrades substantially
as the number of frequencies is reduced, with the best results consistently achieved for Npp = 256.
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Table 22: Comparison of inference time of TV-INRs and Timeflow in seconds for forecasting task.

Electricity Traffic Solar-H

Model H Firain  Flest Time (s) Time (s) Time (s)
96 96 0.016 +0.001 0.017 +0.001 0.016 + 0.001
TimeFlow 512 192 192 0.016 £0.001 0.019 +0.001 0.015 £ 0.001
336 336 0.016 +0.001 0.020 £+ 0.001 0.015 + 0.001
720 720 0.016 £0.001 0.020 +0.001 0.015 =4 0.001
TV-INRs 512 ~F 720 0.016+£0.001 0.018 +0.001 0.017 4 0.002

Table 23: Ablation study on the effect of Fourier Features. We report MSE on the Electricity dataset for
different numbers of Fourier Feature frequencies (Npr). The best performing configuration for each row is in
bold.

Number of Fourier Feature Frequencies (Ngr)

Model L T 256 128 32 0 (None)
0.50 0.1213 + 0.0131 0.13914+0.0140 0.1523 +0.0186 0.8099 % 0.0522

TV-INRs 200 0.30 0.1359 4+ 0.0265 0.1756 +0.0211 0.2711 +0.0386 0.8587 &+ 0.0502
0.05 0.3312 + 0.0968 0.4655 +0.1198 0.8643 +0.1206 1.2215+0.1335
0.50 0.2555 %+ 0.0280 0.3563 +0.0236 1.0414 +0.0233 1.0542 + 0.0239

TV-INRs 2000 0.30 0.2423 4 0.0276 0.3444 +0.0095 1.0341 +0.0503 1.0531 + 0.0221
0.05 0.3142 4+ 0.0742 0.4984 +0.0390 1.0687 4+ 0.0400 1.1004 + 0.0278

A.13 Comparison with standard VAE baseline

To empirically validate the contribution of our Implicit Neural Representation (INR) based decoder, we
conduct an ablation study comparing TV-INR against a baseline with a standard decoder, which we term
TV-VAE. This baseline is designed to isolate the impact of the INR by replacing the hypernetwork decoder
with a conventional MLP. Specifically, the TV-VAE decoder processes a direct concatenation of the learned
latent representation z and the time encoding ¢. To ensure a fair comparison, the MLP architecture for the
TV-VAE decoder is constructed from the same building blocks as the hypernetwork in TV-INR.

We performed a thorough hyperparameter search for the TV-VAE model, evaluating various MLP depths and
multiple configurations of Fourier Features for the time encoding. All other experimental settings, including
the AdamW optimizer, followed the protocol used for the main TV-INR experiments as detailed in App.
The results, presented in App. [Reference to the new tables], show that TV-INR consistently and significantly
outperforms all tested variants of TV-VAE on the electricity dataset for sequence lengths L = 200, 2000 and
across all observation rates (7). This consistent superiority demonstrates that the INR-based architecture is
more effective at modeling the continuous temporal structure of time series signals than a standard decoder
that treats time as a concatenated input feature, thereby justifying our architectural choice.
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Table 24: Ablation study on the Electricity dataset (L=200). We compare TV-INR with TV-VAE variants
using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (Npg). Best results are
in bold.

7 =0.05 T=0.3 T7=20.5

Model D Ngp MSE MAE MSE MAE MSE MAE

TV-VAE 5 256 0.98+0.22 0.78+0.10 0.44+0.10 0.48£0.06 0.34+0.07 0.41 +0.05
TV-VAE 5 128 1.00+0.21 0.80+0.01 0.48+0.12 0.51+0.08 0.35+0.08 0.42+0.05
TV-VAE 5 32 1.11+£0.39 0.83+0.16 0.524+0.16 0.52+0.09 0.36 +£0.10 0.42 4+ 0.06
TV-VAE 5 0 1.244+0.14 0.83+0.06 0.524+0.05 0.50=+0.02 0.43+£0.05 0.4540.02
TV-VAE 4 256 0.90+0.14 0.744+0.07 0.324+0.05 0.39£0.04 0.23+0.04 0.33+0.03
TV-VAE 4 128 1.07+£0.14 0.84+0.06 0.574+0.08 0.59=+0.05 0.43+0.07 0.51+0.04
TV-VAE 14 32 0.65+£0.12 0.61+0.07 0.254+0.04 0.34+0.03 0.20£0.04 0.30=+0.02
TV-VAE 4 0 1.41+0.11 0.914+0.04 0.59+£0.10 0.54+0.05 0.454+0.07 0.47£0.03
TV-VAE 3 256 0.62+0.16 0.59+0.08 0.21+0.04 0.31+0.03 0.18+0.03 0.28 £0.02
TV-VAE 3 128 0.50+£0.12 0.43+0.07 0.194+0.04 0.28£0.03 0.17+0.03 0.27 +0.02
TV-VAE 3 32 0.66+£0.13 0.62+0.08 0.254+0.05 0.34£0.03 0.20£0.03 0.30+0.02
TV-VAE 3 0 1.58 +£0.27 0.97+0.08 0.63£0.09 0.59+0.04 0.514+0.06 0.53 £0.03
TV-VAE 2 256 0.88+0.13 0.78 +£0.07 0.454+0.06 0.53£0.05 0.34+0.06 0.44+0.04
TV-VAE 2 128 0.87+£0.12 0.78+0.06 0.414+0.05 0.51£0.04 0.30+0.05 0.424+0.04
TV-VAE 2 32 0.794+0.20 0.70£0.10 0.30+0.05 0.40+£0.04 0.234+0.04 0.34+0.03
TV-VAE 2 0 1.59+0.51 0.974+0.11 0.84£0.08 0.71+£0.03 0.76 +0.08 0.67 £ 0.03
TV-VAE 1 256 0.39+£0.10 0.43+0.07 0.214+0.05 0.30£0.03 0.20+0.04 0.29 +0.03
TV-VAE 1 128 0.414+0.06 0.43+0.08 0.21+0.05 0.30+0.03 0.20+0.04 0.30=+£0.03
TV-VAE 1 32 0.39+£0.06 0.44+0.05 0.234+0.05 0.32£0.03 0.22+0.04 0.31+0.03
TV-VAE 1 0 1.374+0.12 0.93+0.04 1.13£0.05 0.84+0.02 1.09-+0.07 0.8240.02
TV-INRs 3 256 0.32+0.06 0.37+0.04 0.14+0.03 0.23+0.02 0.11+0.02 0.21+0.02

Table 25: Ablation study on the Electricity dataset (L=2000). We compare TV-INR with TV-VAE variants
using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (Npr). Best results are
in bold.

7 =0.05 T=0.3 =05

Model D Ngpp MSE MAE MSE MAE MSE MAE

TV-VAE 6 256 0.92+£0.11 0.78£0.05 0.51£0.04 0.51£0.03 0.43+£0.03 0.46 & 0.02
TV-VAE 6 128 0.43£0.06 0.46+0.03 0.37+0.04 0.42+0.03 0.36 +0.04 0.42+0.03
TV-VAE 6 32 094+£0.02 0.74£0.01 0.89£0.03 0.71£0.01 0.89£0.02 0.71£0.01
TV-VAE 6 0 1.17+0.03 0.84£0.01 1.06+0.02 0.80£0.01 1.06=+0.02 0.80=+0.01
TV-VAE 5 256 1.06+£0.23 0.83£0.11 0.61£0.07 0.59£0.05 0.46 £0.03 0.48 +0.02
TV-VAE 5 128 0.44+0.05 0.46+0.04 0.38+0.04 0.43+£0.03 0.374+0.04 0.42+0.02
TV-VAE 5 32 0.92£0.03 0.72+0.01 0.86+0.03 0.70£0.01 0.86+0.03 0.70+0.01
TV-VAE 5 0 1.16+0.03 0.84£0.01 1.05+0.02 0.80£0.01 1.05+0.02 0.80=+0.01
TV-VAE 4 256 0.33£0.02 0.39+0.02 0.28+0.02 0.36 £0.01 0.26+0.02 0.35+0.01
TV-VAE 4 128 0.35£0.03 0.41+£0.02 0.32£0.02 0.39£0.01 0.32£0.02 0.39£0.01
TV-VAE 4 32 0.75£0.02 0.67+0.02 0.724+0.02 0.65+£0.02 0.724+0.03 0.65=+0.02
TV-VAE 4 0 1.10+£0.01 0.83£0.01 1.04+0.02 0.80£0.01 1.05+0.02 0.80+0.01
TV-VAE 3 256 0.37£0.02 0.43+0.02 0.33+0.02 0.40+£0.02 0.324+0.03 0.40+£0.02
TV-VAE 3 128 0.43£0.05 0.48+0.04 0.40+0.04 0.46+£0.03 0.40+0.04 0.46+£0.03
TV-VAE 3 32 098£0.01 0.80+0.01 0.91£0.01 0.77+£0.01 0.914+0.01 0.76 £0.01
TV-VAE 3 0 1.09+0.01 0.82£0.01 1.04+0.03 0.80£0.01 1.05+0.02 0.80=+0.01
TV-VAE 2 256 0.34£0.03 0.41+£0.02 0.31£0.02 0.38£0.01 0.30£0.02 0.38=+0.01
TV-VAE 2 128 0.56=£0.08 0.58+0.05 0.53+0.07 0.56 £0.05 0.534+0.08 0.56+0.05
TV-VAE 2 32 1.05£0.01 0.82+0.01 1.01£+0.03 0.79+£0.01 1.014+0.02 0.79+£0.01
TV-VAE 2 0 1.08+0.01 0.81£0.01 1.06+0.03 0.80+0.01 1.06=+0.02 0.80=+0.01
TV-INRs 4 256 0.29+0.02 0.36+0.02 0.25+0.02 0.33+0.01 0.25+0.02 0.33+0.01
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B Appendix B

B.1 Visuals from experiments
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(a) Imputation task for Electricity dataset L = 200, 7 = 0.05.
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(b) Imputation task for Electricity dataset L = 200, 7 = 0.5.

Figure 4: TV-INRs imputation predictions for Electricity dataset (L = 200). Solid lines denote the posterior
mean and shaded regions correspond to the 5th—-95th percentile intervals.
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(a) Imputation task for Electricity dataset L = 2000, 7 = 0.05.
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(b) Imputation task for Electricity dataset L = 2000, 7 = 0.5.
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Figure 5: TV-INRs imputation predictions for Electricity dataset (L = 2000). Solid lines denote the posterior

mean and shaded regions correspond to the 5th-95th percentile intervals.
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(a) Forecasting task for Traffic dataset, H = 512, F = 196.
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(b) Forecasting task for Traffic dataset, H = 512, F' = 720.

Figure 6: TV-INRs forecasting predictions for Traffic dataset. Solid lines denote the posterior mean and
shaded regions correspond to the 5th-95th percentile intervals.
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(a) HAR Sample with 7 = 0.05
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(b) HAR Sample with 7 = 0.5

Figure 7: TV-INRs imputations for HAR dataset. Solid lines denote the posterior mean and shaded regions
correspond to the 5th-95th percentile intervals.
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