
Under review as submission to TMLR

Temporal Variational Implicit Neural Representations

Anonymous authors
Paper under double-blind review

Abstract

We introduce Temporal Variational Implicit Neural Representations (TV-INRs), a probab-
ilistic framework for modeling irregular multivariate time series that enables efficient and
accurate individualized imputation and forecasting. By integrating implicit neural repres-
entations with latent variable models, TV-INRs learn distributions over time-continuous
generator functions conditioned on signal-specific covariates. Unlike existing approaches that
require extensive training, fine-tuning or meta-learning, our method achieves accurate indi-
vidualized predictions through a single forward pass. Our experiments demonstrate that with
a single TV-INRs instance, we can accurately solve diverse imputation and forecasting tasks,
offering a computationally efficient and scalable solution for real-world applications. TV-
INRs performs particularly well in low-data regimes, where on several datasets it achieves
substantially lower imputation error, including order-of-magnitude improvements.

1 Introduction
Time series are a key way to represent data in many domains, from energy consumption to finance, and they
frequently contain missing values and irregularities due to sensor malfunctions, collection errors, or resource
constraints (Che et al., 2018; Du et al., 2023; Proietti & Pedregal, 2023). These challenges are particularly
pronounced in clinical datasets, which often exhibit extreme sparsity (80-90% missingness) and noisy, irregular
sampling due to human involvement in non-automated measurements (Silva et al., 2012). In order to impute
missing values and forecast future time points, effective solutions must handle these challenges while utilizing
available covariates to capture unique temporal dynamics.
Current methods relying on Recurrent Neural Networks (RNNs) (Chung et al., 2015; Che et al., 2018) and
Transformers (Bansal et al., 2023; Liu et al., 2023) are generally tailored for regular, dense time series data
and require placeholders for missing observations. They also operate in discrete time, and careful design is
necessary for continuous time settings (Chen et al., 2024). Alternatively, there exist continuous time series
models which use Implicit Neural Representations (INRs) (Sitzmann et al., 2020) to handle irregular time
series data (Naour et al., 2024; Cho et al., 2024). By learning a unique continuous function to represent
each time series, INRs have great potential for individualization by capturing the unique activity patterns of
each subject. However, existing approaches are inflexible, and often require training multiple models, fine-
tuning, or meta-learning to handle variations in data availability, prediction length, and individualization. For
example, the method presented in Naour et al. (2024) requires the training of separate models for different
missingness ratios or horizon lengths, and performs gradient-based meta-learning during inference, resulting
in a data-hungry model. Such approaches are impractical in real-world applications where scalability and
generalization are crucial, as computational resources may be limited during deployment.
To address these shortcomings, we introduce Temporal Variational Implicit Neural Representations (TV-
INRs), a novel probabilistic model for multivariate time series with INRs. We use INRs as generator
functions for continuous time series modeling, effectively handling the challenge of irregular sampling. By
also integrating latent variable models and amortized variational inference, TV-INRs learns distributions over
INRs conditioned on individual signals and their covariates through a learned latent space. This approach is
therefore scenario and sample agnostic, accommodating varying levels of missingness or time series length
and eliminating the need for task-specific retraining or per-sample optimization. In short, we preserve the
benefits of INRs for time series while making them scalable and efficient.

1

Under review as submission to TMLR

Our model pushes forward multivariate time series analysis with several key contributions:

• We introduce a fully probabilistic framework for multivariate time series based on implicit neural repres-
entations.

• TV-INRs achieves competitive accuracy to gradient-based meta-learning approaches and improves imputa-
tion performance in low-data scenarios, while avoiding per-sample optimization during inference.

• We demonstrate successful generalization across multiple data settings, including missingness and forecasting
horizon length, with a single training. This significantly reduces training requirements relative to comparable
models.

• Our results show that the inclusion of covariates enables effective individualization and further increases
our model’s accuracy with sparse data, demonstrating suitability for real-world applications with extreme
missingness, such as healthcare.

2 Related work

2.1 Learning implicit neural representations
Hypernetworks denoted as gϕ, are neural networks that generate parameters θ = gϕ(·) for another neural
network fθ(·) (Ha et al., 2016). Hypernetworks can generate task-specific model parameters, making them
suitable for meta-learning scenarios that require quick adaptation to new tasks. Zhao et al. (2020) showed
that meta-learning a hypernetwork effectively modulates inner-loop optimization and adapts features task-
dependently using model-agnostic meta-learning. Nguyen et al. (2022) proposed to generate parameters of
the approximate posterior and likelihood of a Variational Autoencoder (VAE) model to perform multiple
tasks. Recent works have shown hypernetworks to be useful for generating parameters for implicit neural
representations (Dupont et al., 2021; Koyuncu et al., 2023).

Implicit neural representations (INRs) offer a novel approach to data representation and modeling complex
continuous signals using the weight space (Sitzmann et al., 2020). This formulation is supported by
strong theoretical guarantees and makes the model inherently resolution-agnostic and robust to irregular
sampling (Sitzmann et al., 2020). By leveraging neural networks, particularly multi-layer perceptrons
(MLPs), represented as fθ(·), INRs effectively map coordinates to features like color, occupancy, or amplitude.
Therefore INRs enable continuous representation of high-dimensional data, offering significant advantages in
various domains, including images, 3D shape modeling, spatio-temporal data (Dupont et al., 2021; 2022a;
Koyuncu et al., 2023; Park et al., 2024) and geometric structures (Vetsch et al., 2022; Niemeyer et al., 2022),
because predictions are not constrained by input range or resolution. Recent works are actively exploring
parameterization strategies for INRs. For example, approaches by Dupont et al. (2022b); Strümpler et al.
(2022) have used compressed representations of the data as inputs to hypernetworks gϕ, which then generate
weights θ of the INRs fθ(·). Peis et al. (2025) uses latent diffusion models to generate a latent variable model
to model the weights of INRs via a transformer network. And Park et al. (2024) proposed to learn sample-
specific dynamic positional embeddings, rather than modeling INRs weights.

Meta-learning is a learning approach where algorithms are designed to improve their learning efficiency and
adaptability across different tasks and domain shifts. In model-agnostic meta-learning (MAML), the aim
is to fine-tune the trained model using test instances with gradient updates (Finn & Levine, 2017; Wang
et al., 2020). This is particularly relevant in scenarios when adaptation of the model is needed for unseen
data during inference. MAML is widely used to update INR weights (Dupont et al., 2022a; Jeong & Shin,
2022; Niemeyer et al., 2022; Bamford et al., 2023), however, its reliance on a test-time optimization step for
each sample introduces computational overhead scaling with the number of test instances.

2.2 Time series imputation and forecasting
RNNs are frequently used for time series forecasting, due of their ability to capture sequential dependencies
(Chung et al., 2015; Hewamalage et al., 2021; Che et al., 2018; Guo et al., 2016). However, they assume
fixed frequencies and struggle with long-term dependencies. To address these limitations, LSTM networks
incorporate memory cells that retain relevant historical information while discarding irrelevant data (Hochreiter,
1997; Hua et al., 2019; Chen et al., 2022). Recent advancements have also embraced transformer-based
architectures for time series modeling. Models such as SAITS (Du et al., 2023), PatchTST (Nie et al., 2023)

2

Under review as submission to TMLR

Time T (i)

t
(i)
1

t
(i)
2

t
(i)
3

...

t
(i)
L

T
im

es
te

ps

Feature Matrix Y (i)

y(i)
1,1

y(i)
2,1

y(i)
3,1

...

y(i)
L,1

. . .

. . .

. . .

. . .

. . .

y(i)
1,d

y(i)
2,d

y(i)
3,d

...

y(i)
L,d

Channels
Mask Ω(i)

...

1 . . . 1

1 . . . 0

0 . . . 1

...
.

1 . . . 1

Masked Features Ỹ (i)

...

y(i)
1,0

y(i)
2,0

0

y(i)
4,0
...

y(i)
5,0y(i)
L,0 · · · y(i)

L,d

0. . .

y(i)
2,1

. . .

y(i)
3,1

. . .

y(i)
4,1
...

. . .

0y(i)
L,0 · · · y(i)

L,d
. . .

y(i)
1,d

0

y(i)
3,d

y(i)
4,d
...

y(i)
5,dy(i)

L,0 · · · y(i)
L,d

Static Covariates C(i)

c(i)
1

... c(i)
k

Observed Value

Missing Value
(Zero-filled)

Figure 1: Visualization of temporal stamps T , features Y , mask Ω, and static covariates C. T and Y represent
the input signal, Ω indicates missing values with binary entries, and C contains time-invariant covariates.

and iTransformer (Liu et al., 2023) leverage attention and embedding strategies to capture both short- and
long-term time dependencies within time series. Despite their strengths, transformers are inherently discrete
and may fail to interpolate between time steps unless they are carefully redesigned for this task (Chen et al.,
2024). Moreover, they may have trouble identifying and preserving key information when attending to large
inputs (Wen et al., 2022). Likewise, conditional diffusion models like CSDI operate on fixed temporal grids
and rely on architectural workarounds to manage irregular observations (Tashiro et al., 2021).

Recently, INRs have been used in continuous modeling of time series data for imputation and forecasting
tasks (Naour et al., 2024; Fons et al., 2022; Cho et al., 2024), and for anomaly detection (Jeong & Shin, 2022).
Fons et al. (2022) use a set-encoder approach to generate latent representations to parameterize INRs through
hypernetworks for time series generation. Similarly, Bamford et al. (2023) adopt this approach for time
series imputation, utilizing an auto-decoding strategy that requires back-propagation to learn these latent
representations. Naour et al. (2024); Cho et al. (2024); Woo et al. (2023) use gradient-based meta-learning
approaches to learn per instance modulations on INRs to perform imputation and forecasting on test data.
Therefore, these methods encounter scalability challenges with an increasing number of test instances, since
each requires per-instance optimization, and they may underperform in scenarios characterized by limited
data availability.

3 Temporal variational implicit neural representations

In this section, we introduce Temporal Variational Implicit Neural Representations (TV-INRs). Our approach
is motivated by representing time series as continuous functions using Implicit Neural Representations (INRs).
Leveraging the amortized inference framework of Variational Autoencoders (Kingma, 2013; Rezende et al.,
2014), TV-INRs learns distributions over INR parameters through encoder networks, eliminating per-sample
optimization during inference while enabling efficient scaling to large datasets (Cremer et al., 2018; Hoffman
et al., 2013; Mnih & Gregor, 2014). This approach maintains competitive performance for time series modeling
tasks such as imputation and forecasting while facilitating personalized modeling through latent variables.

Notation. Let [L] = {1, . . . , L} denote the set of positive integers from 1 to L and d denote the total number
of feature dimensions. We consider a dataset of N samples {(T (i),Y (i),C(i))}N

i=1, where each sample i ∈ [N]
as shown in Fig. 1 includes:

• Temporal stamps: A point cloud of Li temporal stamps (i.e. temporal coordinates), T (i) = {t(i)
l }Li

l=1, with
t ∈ R.

• Feature vectors: Corresponding feature vectors Y (i) = {y(i)
l }Li

l=1, where y(i)
l ∈ Rd

(i)
l with d

(i)
l ≤ d

representing the number of observed channels at index l. The set A(i) identifies indexes (l) where channels
(j) are absent in the original dataset.

• Static covariates: Static covariates C(i) = {c(i)}, where c ∈ Rk, which are constant for all stamps in the
sample.

3

Under review as submission to TMLR

c

z
gϕ θ

gϕ(z, c) = θ

tl

fθ

yl

L

fθ(tl) = yl

(a) Generative Model

z ψz

Cond. Prior
tl

yl
Lobs

z

Approx.
Posterior

γz

tl

yl

L

(b) Conditional Prior and Inference Model

Figure 2: Graphical models for generative and inference tasks.

We denote the multichannel i-th time series as a tuple X(i) = (T (i),Y (i)), consisting of Li (irregular) temporal
stamps and their corresponding features. To effectively handle missing data, we distinguish between three
sets of indices. The observed indices O(i) represent available data points in our dataset, which we input to
the model. The masked indices M(i) correspond to entries we artificially mask during training to facilitate
self-supervised learning and improve generalization to missing data scenarios (Moreno-Muñoz et al., 2023).
Finally, the absent indices A(i) are inherent to the data and represent entries of missing channels due to partial
observations or limitations in data collection which we exclude from the training process as they represent
inherent data incompleteness rather than synthetic masks. We define a binary mask Ω(i) to formalize this as:

Ω(i)
l,k =


1 if (l, k) ∈ O(i)

0 if (l, k) ∈ M(i)

0 if (l, k) ∈ A(i)
(1)

where O(i),M(i),A(i) ⊆ [Li] × [d] with O(i) ∩ M(i) = ∅. Finally, we denote by τ the percentage of observed
indices in the available data, i.e., τ = |O(i)|

|O(i)∪M(i)| .

3.1 Model description
Generative model. To ease readability, we consider the model for a single sample and omit the use of the
superscript (i). TV-INRs is generative model for the feature set Y given timestamps T . For now, we assume
that (T ,Y) is a timeseries with L elements and d channels without any absence, e.g. A = ∅. The observed
data Yobs indexed by O(i) and corresponding timestamps Tobs are given as context to the model, while Ym
indexed by M(i) represents the masked values to predict at given timestamps Tm. Together, they form the
complete datasets: Y = Ym ∪ Yobs and T = Tm ∪ Tobs with the assumption of A = ∅. The joint distribution
can be written in a general form

p(Ym,Yobs, z|Yobs,T , c) = pψz (z|Yobs,Tobs)
L∏

l=1

pθ(z,c)(yl|tl) (2)

where z represents a latent variable and c denotes covariates. To generate such a signal, the process
begins by sampling a continuous latent variable z from a conditional prior distribution, pψz(z|Yobs,Tobs) =
N (z|fψz(Yobs,Tobs)), which is parameterized by ψz using a Transformer encoder. The resulting vector z,
concatenated with random variable c , acts as input to the hypergenerator. Here, the hypergenerator is an
MLP-based hypernetwork gϕk

(z, c), with input [z, c] that outputs a set of parameters θk = gϕk
(z, c); and,

a data generator, fθ, parametrized by the output of the hypernetwork. Thus, both z and θ encode the
information shared among the stamps in the data (e.g., features) generation process as shown in Fig. 2a.
Moreover, we refer to TV-INRs as C-TV-INRs when covariates are available and used.

4

Under review as submission to TMLR

Inference model. We approximate posterior distribution as qγz
(z|Y ,T) = N (z|fγz

(Y ,T)), parameterized
by γz. It’s important to note that this distribution is shared among the complete instance (e.g., time series
signal), thus z contains global information as shown in Fig. 2b.

Training. We employ masked training by maximizing the evidence lower bound (ELBO) of the proposed
model, which is given by

L(T ,Y ,C) = Eqγ

[
log pθ(z,c)[Y | T]

]
−DKL (qγz

(z | Y ,T)∥pψz(z|Yobs,Tobs)) (3)

where pψz and qγz
are Gaussian distributions, and we model pθ(z,c) with a Laplace distribution as it

demonstrates better performance in capturing high-frequency components.

3.2 Implementation details

We model the conditional prior and approximate posterior with Transformer encoders. To handle heterogeneity
in the input data, we augment the input features by concatenating them with a binary mask, (Ω(i) ∈ 0, 1Li×d),
which indicates observed entries across both temporal and feature dimensions.

Input processing. For each sample i ∈ [N], we process the input tuple (T (i),Y (i),C(i)) to handle missing
values. We construct the input representation using the binary mask (Ω(i)) as follows:

1. Fill masked values in Y (i) with zeros:

Ỹ
(i)

l,k =
{
Y

(i)
l,k if (l, k) ∈ O(i)

0 if (l, k) ∈ U (i) (4)

where Ỹ (i) ∈ RLi×d, in case for the input of the posterior encoder we give full available data.
2. Concatenate the mask along the feature dimension and transform the processed features with a linear

layer for spatial encoding, which captures relationships among different channels, yielding E(i)
spatial =

flinear(Ȳ (i)) ∈ RLi×dmodel , where Ȳ (i) = [Ỹ (i); Ω(i)] ∈ RLi×2d.
3. Expand temporal coordinates with channel indices vd = [0, ..., d−1] and encode them with Fourier Features

(FoF) (Dupont et al., 2021): E(i)
temporal = FoF(T̄ (i)) ∈ RLi×dmodel , where T̄ (i) = T (i) ⊗ vd ∈ RLi×d.

The final embedding E(i) = E
(i)
spatial +E(i)

temporal is element-wise summed and then fed into the encoder.

Encoding. The embedded input E(i) is processed through a transformer encoder to model the conditional
distributions pψz(z|Yobs,Tobs) and qγz

(z|Y ,T). The encoder takes E(i), transforms the input through self-
attention, applies pooling (POOL) over temporal dimension, and a feed-forward network (FFN) generates
parameters to model the latent features z:

z ∼ N (µ,Σ) where µ,σ = FFN(POOL(H)), and H = Transformer(E(i)) (5)

where Σ = diag(σ2). Here, we make sure masked values are not used during attention computation.

Decoding. The latent representation (z) is combined with conditional variables to construct the decoder
input through the following steps:

1. The conditional variables C(i) are first binned and then transformed by a feed-forward network into
c̄ = FFN(C(i)) ∈ Rdc , which is subsequently concatenated with the latent representation to form the
decoder input hdec = [z; c̄].

2. The resulting hdec is passed through a hypernetwork gϕ to generate the parameters θ = gϕ(hdec) for the
implicit neural representation (INR), fθ, which is continuous over t (Sitzmann et al., 2020).

3. The INR, fθ, models the output feature values as ŷl ∼ Laplace(µl, bl), where the distribution’s parameters
(µl, bl) = fθ(el) are the output of mapping the encoded time point el.

5

Under review as submission to TMLR

4 Experiments
Baselines. We thoroughly tested TV-INRs framework across imputation and forecasting tasks in full and
limited data regimes with uni- and multi-variate datasets. We compare our model with TimeFlow (Naour
et al., 2024), an INR-based time series model. It requires training separate models for different missingness
ratios or horizon lengths, and performs gradient-based meta-learning during inference (details in App. A.8).
We include two baselines specifically designed for time series imputation: SAITS (Du et al., 2023), which is
based on self-attention, and CSDI (Tashiro et al., 2021), a conditional diffusion model that operates on a fixed
temporal grid. For the forecasting task, we compare with DeepTime (Woo et al., 2023), which learns deep time-
index models specifically designed for time series forecasting. Potential baselines HyperTime (Fons et al., 2022)
and MADS (Bamford et al., 2023) were not available as open-source models, and were therefore not tested.
Univariate datasets. We conducted experiments on four univariate datasets (App. A.2 Table 4), and compared
our approach to Timeflow (Naour et al., 2024), DeepTime (Woo et al., 2023), SAITS (Du et al., 2023), and
CSDI (Tashiro et al., 2021). Each dataset comprises one-dimensional signals originating from various locations
or sources, and is available at the Monash Time Series Forecasting repository (Godahewa et al., 2021).
Multivariate datasets. While some datasets contain regular sampling (e.g., electricity), others are irregular,
and have multiple sensors with unique temporal patterns. TV-INRs is the first temporal INR model to handle
such multivariate signals, leading us to exclude Timeflow from these comparisons. We conducted experiments
on two multivariate datasets, namely, HAR and The PhysioNet Challenge 2012 (P12), and compared our
method with SAITS (Du et al., 2023) and CSDI (Tashiro et al., 2021). Additional details on the datasets,
including missingness patterns, are provided in App. A.2.
Next, we describe the imputation and forecasting tasks. Let the i-th sample, T (i) = {t(i)

j }Li
j=1, contain Li

stamps. For both tasks, we compare predicted values against the ground truth for test data using Mean
Squared Error (MSE) and Mean Absolute Error (MAE).
Imputation task. We partition the data based on an observed ratio τ . Given the observed stamps T (i)

obs, the
goal is to predict features at the unobserved stamps T (i)

unobs, where

T (i) = T
(i)
obs ∪ T (i)

unobs, Y (i) = Y
(i)

obs ∪ Y (i)
unobs, Ŷunobs ∼ pθ(z,c)(Yunobs | Tunobs). (6)

The task’s difficulty increases as τ decreases. For prediction, we use the conditional prior distribution
pψz(z|Yobs,Tobs) and covariates c (if available).
Forecasting task. We partition data at a horizon thorizon into history and forecast sets. Given the observed
historical data Y (i)

hist, our task is to predict Y (i)
forecast. We use our conditional prior pψz(z|Yhist,Thist) and

covariates c (if available) to generate predictions:

T
(i)
hist = {t(i)

j ∈ T (i) | t(i)
j ≤ thorizon}, T (i)

forecast = {t(i)
j ∈ T (i) | t(i)

j > thorizon} (7)

Ŷforecast ∼ pθ(z,c)(Yforecast | Tforecast). (8)

4.1 Results
In Sections 4.1.1 and 4.1.2, we explore TV-INRs performance in imputation and forecasting on univariate
datasets in comparison with the baseline models Timeflow (Naour et al., 2024), SAITS (Du et al., 2023),
CSDI (Tashiro et al., 2021) and DeepTime (Woo et al., 2023). We comment on the training efficiency in
Sections 4.1.3 and App. A.10. In Section 4.1.4, we report TV-INRs performance on multivariate datasets
including the conditional version of our model, C-TV-INRs, compared with SAITS (Du et al., 2023) and CSDI
(Tashiro et al., 2021). Statistical significance (p < 0.05) was assessed using independent t-tests performed on
results from non-overlapping test windows and three different seeds of model training. Ablation studies on
the number of Fourier Features and our INR-based decoder are in App. A.12 and A.13, respectively. The
code will be accessible in our repository.
4.1.1 Imputation on univariate datasets
For imputation, we compared TV-INRs against the selected baselines across varying signal lengths L. We
used L = 2000 (2K) time points to match published baseline experiments, and L = 200 time points to evaluate

6

https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://physionet.org/content/challenge-2012/1.0.0/

Under review as submission to TMLR

Table 1: Univariate imputation results with signal lengths L, training/testing observation rates τtrain,test,
and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold values indicate
significantly better results, while underlined values denote results that are comparable.

Electricity Traffic Solar-10
Model L τTrain τTest MSE MAE MSE MAE L MSE MAE

SAITS 2K 0.80
0.50 0.569 ± 0.048 0.542 ± 0.022 0.251 ± 0.028 0.246 ± 0.015

10K
1.086 ± 0.005 0.648 ± 0.022

0.30 0.793 ± 0.055 0.654 ± 0.023 0.337 ± 0.033 0.306 ± 0.015 1.087 ± 0.009 0.651 ± 0.024
0.05 1.318 ± 0.051 0.902 ± 0.025 0.824 ± 0.040 0.619 ± 0.014 1.126 ± 0.061 0.676 ± 0.062

CSDI 2K ∼ U
0.50 2.070 ± 0.194 1.033 ± 0.023 1.150 ± 0.029 0.773 ± 0.144

10K
1.275 ± 0.382 0.699 ± 0.781

0.30 2.287 ± 0.157 1.045 ± 0.012 1.146 ± 0.103 0.773 ± 0.165 1.285 ± 0.191 0.703 ± 0.749
0.05 1.742 ± 0.265 1.050 ± 0.013 1.139 ± 0.111 0.773 ± 0.171 1.279 ± 0.020 0.700 ± 0.737

TimeFlow 2K
0.50 0.50 0.131 ± 0.011 0.252 ± 0.010 0.346 ± 0.036 0.369 ± 0.017

10K
0.710 ± 0.040 0.617 ± 0.056

0.30 0.30 0.166 ± 0.012 0.288 ± 0.011 0.390 ± 0.042 0.388 ± 0.018 0.812 ± 0.128 0.658 ± 0.121
0.05 0.05 0.378 ± 0.034 0.458 ± 0.025 0.590 ± 0.048 0.496 ± 0.020 0.833 ± 0.010 0.663 ± 0.096

TV-INRs 2K ∼ S
0.50 0.249 ± 0.019 0.331 ± 0.012 0.546 ± 0.022 0.401 ± 0.015

10K
0.955 ± 0.059 0.645 ± 0.038

0.30 0.250 ± 0.017 0.332 ± 0.012 0.551 ± 0.029 0.403 ± 0.017 0.954 ± 0.074 0.646 ± 0.050
0.05 0.289 ± 0.019 0.360 ± 0.015 0.570 ± 0.019 0.415 ± 0.013 1.104 ± 0.265 0.688 ± 0.132

SAITS 200 0.80
0.50 0.124 ± 0.014 0.223 ± 0.010 0.230 ± 0.015 0.245 ± 0.008

200
0.066 ± 0.035 0.140 ± 0.021

0.30 0.231 ± 0.025 0.317 ± 0.017 0.345 ± 0.019 0.320 ± 0.009 0.099 ± 0.060 0.168 ± 0.030
0.05 0.937 ± 0.040 0.743 ± 0.018 0.904 ± 0.020 0.641 ± 0.016 0.564 ± 0.107 0.502 ± 0.037

CSDI 200 ∼ U
0.50 1.380 ± 0.216 0.944 ± 0.035 1.169 ± 0.204 0.787 ± 0.187

200
1.010 ± 0.261 0.602 ± 0.122

0.30 1.399 ± 0.144 0.945 ± 0.021 1.167 ± 0.183 0.789 ± 0.194 1.052 ± 0.209 0.625 ± 0.109
0.05 1.226 ± 0.065 0.911 ± 0.011 1.158 ± 0.200 0.795 ± 0.194 1.196 ± 0.716 0.700 ± 0.124

TimeFlow 200
0.50 0.50 0.163 ± 0.009 0.240 ± 0.007 0.233 ± 0.009 0.230 ± 0.006

200
0.330 ± 0.046 0.223 ± 0.032

0.30 0.30 0.331 ± 0.014 0.396 ± 0.010 0.419 ± 0.015 0.370 ± 0.009 0.518 ± 0.057 0.331 ± 0.038
0.05 0.05 0.963 ± 0.019 0.811 ± 0.011 1.303 ± 0.103 0.830 ± 0.028 0.877 ± 0.077 0.707 ± 0.098

TV-INRs 200 ∼ S
0.50 0.113 ± 0.018 0.212 ± 0.015 0.188 ± 0.041 0.212 ± 0.027

200
0.038 ± 0.031 0.089 ± 0.035

0.30 0.135 ± 0.027 0.232 ± 0.021 0.214 ± 0.042 0.228 ± 0.028 0.051 ± 0.051 0.098 ± 0.042
0.05 0.318 ± 0.063 0.368 ± 0.041 0.453 ± 0.074 0.368 ± 0.042 0.244 ± 0.226 0.234 ± 0.099

performance in lower-data regimes. We define the rate of observed data points during testing as τT est. The low-
data regime is characterized by conditions of data scarcity, which includes all scenarios with a limited training
set (L = 200) and sparse test-time observations τT est ∈ {0.5, 0.3, 0.05}) as well as the experiments with a
larger training set but very sparse test-time observations (L = 2000, τT est = 0.05). In contrast, the high-data
regime represents scenarios with a relative abundance of data, specifically when a larger training set is available
(L = 2000) and the observation rates at test time are higher (τT est ∈ {0.5, 0.3}) or when L = 10000 and τTest ∈
{0.5, 0.3, 0.05}. To improve robustness under low observation rates, we sample the observed fraction at random
during training, e.g. τTrain ∼ S = {0.05, 0.30, 0.50, 0.75, 0.90, 1.0}. TimeFlow requires separate training for
each τTest value, while SAITS fixes τTrain = 0.80 and CSDI uses a uniform distribution τTrain ∼ U(0, 1).
The results in Table 1 demonstrate the advantages of our approach over gradient-based meta-learning,
particularly in low-data regimes. With shorter signals (L = 200) and lower observation percentages τTest,
TV-INRs consistently performs on par or better than all baselines, achieving up to 88% improvement in MSE
scores. In Solar-10 at (L = 200) specifically, TV-INRs achieves substantially lower error rates, with a MSE
of 0.0383 compared to TimeFlow’s 0.3304, SAITS’ 0.0660 and CSDI’s 1.010 at τTest = 0.50. At the highest
missingness setting, τTest = 0.05, TV-INRs also performs best on average, though it is only comparable to
TimeFlow on the Solar-10 dataset. As Solar-10 has significantly longer time series (L = 10K) and thus a
larger number of training observations, results indicate that TV-INRs excels primarily in low-data regimes.
For longer signal lengths (L = 2K, 10K), TimeFlow shows stronger performance on the Electricity and Traffic
datasets at higher τTest values. Overall, TV-INRs maintains competitive performance across all scenarios
while offering two crucial advantages: it provides a unified model that handles all cases without requiring per-
case training, and enables efficient inference through gradient-free meta-learning that requires only a forward
pass. These results highlight how our variational framework effectively balances performance with practical

7

Under review as submission to TMLR

Table 2: Univariate forecasting results with history length H, training/testing forecasting lengths Ftrain,test,
and MSE/MAE evaluated for forecasting. Bold values indicate significantly better results, while underlined
values denote results that are comparable.

Electricity Traffic Solar-H
Model H Ftrain Ftest MSE MAE MSE MAE MSE MAE

DeepTime 512

96 96 0.436 ± 0.020 0.503 ± 0.016 0.419 ± 0.103 0.411 ± 0.047 0.641 ± 0.183 0.651 ± 0.089
192 192 0.551 ± 0.157 0.525 ± 0.055 0.382 ± 0.056 0.372 ± 0.027 0.432 ± 0.121 0.514 ± 0.081
336 336 0.793 ± 0.046 0.689 ± 0.037 0.446 ± 0.107 0.397 ± 0.058 0.821 ± 0.013 0.804 ± 0.002
720 720 10.178 ± 0.218 0.970 ± 0.178 0.485 ± 0.059 0.406 ± 0.014 0.793 ± 0.041 0.741 ± 0.001

TimeFlow 512

96 96 0.425 ± 0.057 0.318 ± 0.050 0.289 ± 0.113 0.281 ± 0.064 0.503 ± 0.424 0.336 ± 0.142
192 192 0.498 ± 0.078 0.362 ± 0.060 0.324 ± 0.076 0.298 ± 0.050 0.476 ± 0.191 0.352 ± 0.077
336 336 1.347 ± 0.210 0.389 ± 0.065 0.407 ± 0.122 0.329 ± 0.057 0.364 ± 0.106 0.301 ± 0.055
720 720 9.422 ± 0.217 0.525 ± 0.150 0.413 ± 0.050 0.327 ± 0.020 0.353 ± 0.092 0.325 ± 0.032

TV-INRs 512 ∼ F

96 0.336 ± 0.068 0.296 ± 0.040 0.383 ± 0.143 0.305 ± 0.082 0.346 ± 0.303 0.325 ± 0.123
192 0.446 ± 0.107 0.415 ± 0.036 0.377 ± 0.094 0.294 ± 0.056 0.469 ± 0.125 0.389 ± 0.031
336 0.544 ± 0.216 0.442 ± 0.040 0.373 ± 0.073 0.292 ± 0.049 0.451 ± 0.140 0.383 ± 0.039
720 9.515 ± 0.218 0.535 ± 0.162 0.448 ± 0.088 0.313 ± 0.043 0.509 ± 0.194 0.404 ± 0.061

efficiency, and excels in scenarios where data availability is limited. In App. B.1, Figures 4-5 show sample
outputs generated by TV-INRs.
4.1.2 Forecasting on univariate datasets
For forecasting, we compare TV-INRs with TimeFlow and DeepTime using the same experimental settings
as in their original publications. The historical length H is set to the first 512 elements, and forecasting
performance is evaluated over forecasting lengths F of 96, 192, 336, and 720. TV-INRs is trained by sampling
forecasting lengths FTrain ∈ F = {96, 192, 336, 720}. Since H is fixed, the binary mask has the same number
of observed indices; however, the total length of the mask is adapted to different lengths of F . As shown
in Table 2, both TimeFlow and DeepTime require separate training for each forecasting length, while our
approach uses a single model for all horizons. For TV-INRs and TimeFlow, there is a dramatic increase in
MSE for long-range forecasting (F = 720) in the Electricity dataset, reaching ≈ 9.5 and ≈ 9.4 respectively,
while maintaining relatively moderate MAE (≈ 0.53), which strongly indicates the presence of significant
outlier errors in the predictions. DeepTime shows even higher errors in this scenario (MSE = 10.18). For
shorter forecasting horizons (F = {96, 192}), our method demonstrates competitive or superior performance,
notably achieving a MSE of 0.3359 versus TimeFlow’s 0.4250 and DeepTime’s 0.4359 for F = 96 in the
Electricity dataset. Our approach significantly outperforms DeepTime on the Solar-H dataset, with MSE
of 0.3456 versus 0.6410 at F = 96. TimeFlow achieves lower errors in specific scenarios (Traffic at F = 96,
Solar-H at F = {336, 720}), but requires separate training per horizon and gradient-based meta-learning for
each test sample. Similarly, DeepTime needs individual models for each forecast length. Our approach’s key
advantage is handling multiple forecasting horizons with a single trained model while maintaining competitive
performance. Sample outputs are shown in App. B.1 (Fig.6).
4.1.3 Explanation over generalization claims
We assess model generalization by its robust performance across a range of distinct tasks, each applied to N
unique time series. For imputation, these tasks are defined by varying the observation rate τ , challenging the
model under different levels of data scarcity. For forecasting, we measure generalization by the model’s ability
to maintain accuracy over increasingly long forecasting windows, F ∈ {96, 192, 336, 720}. TV-INRs uses a
unified model capable of imputation with different observed ratios and forecasting across all horizon lengths,
which significantly reduces or eliminates the need for additional fine-tuning or multiple-model optimizations,
enhancing its overall efficiency. To illustrate this, we show that TimeFlow has to be trained per scenario,
e.g. different observed ratios and horizon lengths, in Table 19 in App.A.6. We report the training times for
TV-INRs and TimeFlow across all experiments in App. A.10. Our findings indicate that TV-INRs achieves
notable improvements in cumulative training efficiency: it requires between 2.41× to 3.70× less training
time than TimeFlow for forecasting tasks, and between 1.30× to 2.81× less training time for imputation
tasks. These results are shown in App. A.10 - Table 20, and demonstrate that TV-INRs offers substantial

8

Under review as submission to TMLR

advantages in computational efficiency and generalization by handling multiple tasks with a single training.
We also provide the memory and time complexity analysis of TV-INR in App. A.9.
4.1.4 Imputation on multivariate datasets
In the HAR dataset, motion data from a single smartphone presents simultaneous missing values across
all channels at specific timestamps due to device failures. Formally, given X(i) = X

(i)
obs ∪X(i)

unobs, where
X

(i)
unobs = X

(i)
l : l ∈ U (i), any missing timestamp l ∈ (U (i)) affects all d channels.

For the P12 dataset, we evaluate TV-INRs on patient-specific time series imputation from eight measurements
(urine output, SysABP, DiasABP, MAP, HR, NISysABP, NIDiasABP, NIMAP) and four covariates (gender,
age, height, weight). The dataset has irregular missingness across timestamps and channels, which makes the
imputation task more challenging (details in App. A.2).

Table 3: Multivariate imputation results with signal lengths L, training/testing observation rates τtrain,test,
and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold values indicate
significantly better results, while underlined values denote results that are comparable.

HAR (L=128) P12 (L=48)

Model τTrain τTest MSE MAE τTrain τTest MSE MAE

SAITS 0.80
0.50 0.998 ± 0.003 0.793 ± 0.006

0.80
0.50 0.985 ± 0.128 0.746 ± 0.070

0.30 1.001 ± 0.004 0.793 ± 0.007 0.30 0.998 ± 0.092 0.760 ± 0.067
0.05 1.004 ± 0.001 0.793 ± 0.007 0.10 0.970 ± 0.048 0.746 ± 0.052

CSDI ∼ U
0.50 1.083 ± 0.062 0.821 ± 0.067

∼ U
0.50 0.861 ± 0.174 0.691 ± 0.070

0.30 1.084 ± 0.060 0.823 ± 0.063 0.30 0.930 ± 0.146 0.724 ± 0.067
0.05 1.090 ± 0.015 0.826 ± 0.054 0.10 1.024 ± 0.093 0.765 ± 0.057

TV-INRs ∼ S
0.50 0.382 ± 0.067 0.414 ± 0.041

∼ S
0.50 0.822 ± 0.171 0.660 ± 0.074

0.30 0.533 ± 0.050 0.505 ± 0.031 0.30 0.892 ± 0.146 0.692 ± 0.071
0.05 0.995 ± 0.070 0.722 ± 0.034 0.10 0.980 ± 0.118 0.739 ± 0.058

C-TV-INRs ∼ S
0.50 0.379 ± 0.065 0.412 ± 0.041

∼ S
0.50 0.824 ± 0.175 0.662 ± 0.076

0.30 0.523 ± 0.047 0.502 ± 0.029 0.30 0.883 ± 0.141 0.690 ± 0.073
0.05 0.976 ± 0.058 0.708 ± 0.022 0.10 0.963 ± 0.099 0.733 ± 0.052

• Conditional vs. unconditional. We test C-TV-INRs conditional formulation (Equation 2) on HAR by
incorporating activity labels alongside latent codes, and on P12 by including patient (age, gender, height,
weight). On HAR, Table 3 shows C-TV-INRs significantly outperforms TV-INRs at higher missingness rates
(τTest = 0.05). For P12, both variants perform comparably at higher observation rates (τTest = 0.50, 0.30).
But at extreme sparsity (τTest = 0.10), C-TV-INRs significantly outperforms with MSE=0.9627 versus
SAITS’s 0.9704, CSDI’s 1.024, and TV-INRs’s 0.9795, with the lowest MAE (0.7326). This confirms
conditional models’ advantage with sparse time series data. Overall, both the conditional and non-conditional
versions of TV-INRs outperform baselines for multivariate imputation.

• Downstream classification. To assess the impact of imputation on classification, we trained an XGBoost
classifier (Chen & Guestrin, 2016) on HAR data, testing across varying observation ratios by removing
random timepoints and imputing using our methods, baselines, and mean imputation. Fig. 3 shows both TV-
INRs variants substantially outperforming baselines, with the conditional model showing increasing advantage
as missingness grows, demonstrating the value of covariates for individualized predictions. Complete AUC-
ROC values are in Table 11.

5 Conclusion
We have introduced TV-INRs, demonstrating its effectiveness in imputation and forecasting across various time
series domains and data conditions. Our results highlight superior performance in low-data regimes and robust
handling of varying observation patterns. Furthermore, the amortization of INR weights in our probabilistic
setting enables adaptation to unseen data without fine-tuning or per-sample optimization, a key advantage over
traditional hypernetwork-based methods that rely on meta-learning. We have also illustrated the potential of

9

Under review as submission to TMLR

Figure 3: Classification performance (AUC-ROC) at various missingness levels; a higher value indicates better
performance.

TV-INRs for downstream tasks with improved classification on HAR data. While baseline methods TimeFlow
and DeepTime showed stronger performance in specific scenarios, TV-INRs frequently produced comparable
or superior results while offering substantial practical benefits: unified model training across multiple tasks,
individualization without meta-learning, significantly improved cumulative training and fixed inference time,
independent of gradient adaptation. The ability to handle multiple forecasting horizons with a single model
represents a considerable advantage in real-world applications where computational resources may be limited.
To further enhance our model, future directions may include reducing hypernetwork complexity with
transformer-based architectures (Chen & Wang, 2022), or modeling per-sample positional embeddings rather
than weights directly (Park et al., 2024). The variational framework could also be extended to incorporate
additional forms of domain knowledge. These improvements could strengthen its potential, particularly in
healthcare domains such as personalized medicine and patient monitoring, where efficiency and the ability to
model highly sparse data are especially critical.

6 Broader Impact
This paper presents work that aims to increase the efficiency and scalability of generative models in Machine
Learning. There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

Bibliography
Tom Bamford, Elizabeth Fons, Yousef El-Laham, and Svitlana Vyetrenko. Mads: Modulated auto-decoding

siren for time series imputation. arXiv preprint arXiv:2307.00868, 2023.

Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value imputation on multidimensional
time series, 2023. URL https://arxiv.org/abs/2103.01600.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
785–794, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi:
10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785.

Wenhao Chen, Guangjie Han, Hongbo Zhu, and Lyuchao Liao. Short-term load forecasting with an ensemble
model based on 1d-ucnn and bi-lstm. Electronics, 11(19):3242, 2022.

Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations. In
European Conference on Computer Vision, pp. 170–187. Springer, 2022.

10

https://arxiv.org/abs/2103.01600
https://doi.org/10.1145/2939672.2939785

Under review as submission to TMLR

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer: Continuous-
time transformer for irregular time series modeling. Advances in Neural Information Processing Systems,
36, 2024.

Woojin Cho, Minju Jo, Kookjin Lee, and Noseong Park. NeRT: Implicit neural representation for time series,
2024. URL https://openreview.net/forum?id=FpElWzxzu4.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent neural
networks. In International conference on machine learning, pp. 2067–2075. PMLR, 2015.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders. In
International conference on machine learning, pp. 1078–1086. PMLR, 2018.

Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert Systems
with Applications, 219:119619, 2023.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions. CoRR,
abs/2102.04776, 2021. URL https://arxiv.org/abs/2102.04776.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you can treat it like one. In 39th International Conference on
Machine Learning (ICML), 2022a.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and Arnaud Doucet.
Coin++: Neural compression across modalities. arXiv preprint arXiv:2201.12904, 2022b.

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradient descent
can approximate any learning algorithm. arXiv preprint arXiv:1710.11622, 2017.

Elizabeth Fons, Alejandro Sztrajman, Yousef El-laham, Alexandros Iosifidis, and Svitlana Vyetrenko. Hyper-
time: Implicit neural representation for time series, 2022. URL https://arxiv.org/abs/2208.05836.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-Manso.
Monash time series forecasting archive. In Neural Information Processing Systems Track on Datasets and
Benchmarks, 2021.

Tian Guo, Zhao Xu, Xin Yao, Haifeng Chen, Karl Aberer, and Koichi Funaya. Robust online time series
prediction with recurrent neural networks. In 2016 IEEE international conference on data science and
advanced analytics (DSAA), pp. 816–825. Ieee, 2016.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time series
forecasting: Current status and future directions. International Journal of Forecasting, 37(1):388–427, 2021.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 2013.

Yuxiu Hua, Zhifeng Zhao, Rongpeng Li, Xianfu Chen, Zhiming Liu, and Honggang Zhang. Deep learning with
long short-term memory for time series prediction. IEEE Communications Magazine, 57(6):114–119, 2019.

Kyeong-Joong Jeong and Yong-Min Shin. Time-series anomaly detection with implicit neural representation,
2022. URL https://arxiv.org/abs/2201.11950.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Batuhan Koyuncu, Pablo Sanchez-Martin, Ignacio Peis, Pablo M Olmos, and Isabel Valera. Variational
mixture of hypergenerators for learning distributions over functions. arXiv preprint arXiv:2302.06223, 2023.

11

https://openreview.net/forum?id=FpElWzxzu4
https://arxiv.org/abs/2102.04776
https://arxiv.org/abs/2208.05836
https://arxiv.org/abs/2201.11950

Under review as submission to TMLR

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons, 2019.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer:
Inverted transformers are effective for time series forecasting. arXiv preprint arXiv:2310.06625, 2023.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In International
Conference on Machine Learning, pp. 1791–1799. PMLR, 2014.

Pablo Moreno-Muñoz, Pol Garcia Recasens, and Søren Hauberg. On masked pre-training and the marginal
likelihood. Advances in Neural Information Processing Systems, 36:79781–79791, 2023.

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, patrick
gallinari, and Vincent Guigue. Time series continuous modeling for imputation and forecasting with
implicit neural representations. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=P1vzXDklar.

Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, and Svetha Venkatesh. Variational
hyper-encoding networks, 2022. URL https://arxiv.org/abs/2005.08482.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/2211.14730.

M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and N. Radwan. Regnerf: regularizing
neural radiance fields for view synthesis from sparse inputs. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. doi: 10.1109/cvpr52688.2022.00540.

Dogyun Park, Sihyeon Kim, Sojin Lee, and Hyunwoo J Kim. Ddmi: Domain-agnostic latent diffusion models
for synthesizing high-quality implicit neural representations. In The Twelfth International Conference on
Learning Representations, 2024.

Ignacio Peis, Batuhan Koyuncu, Isabel Valera, and Jes Frellsen. Hyper-transforming latent diffusion models,
2025. URL https://arxiv.org/abs/2504.16580.

Tommaso Proietti and Diego J. Pedregal. Seasonality in high frequency time series. Econometrics and
Statistics, 27:62–82, 2023. ISSN 2452-3062. doi: https://doi.org/10.1016/j.ecosta.2022.02.001. URL
https://www.sciencedirect.com/science/article/pii/S2452306222000090.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital mortality
of icu patients: The physionet/computing in cardiology challenge 2012. In 2012 computing in cardiology,
pp. 245–248. IEEE, 2012.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020.

Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural represent-
ations for image compression. In European Conference on Computer Vision, pp. 74–91. Springer, 2022.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. Advances in neural information processing systems, 33:7537–7547,
2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in neural information processing systems, 34:
24804–24816, 2021.

12

https://openreview.net/forum?id=P1vzXDklar
https://arxiv.org/abs/2005.08482
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2504.16580
https://www.sciencedirect.com/science/article/pii/S2452306222000090

Under review as submission to TMLR

M. Vetsch, S. Lombardi, M. Pollefeys, and M. R. Oswald. Neuralmeshing: differentiable meshing of implicit
neural representations. Lecture Notes in Computer Science, pp. 317–333, 2022. doi: 10.1007/978-3-031-167
88-1_20.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On the global optimality of model-agnostic
meta-learning. In International conference on machine learning, pp. 9837–9846. PMLR, 2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers
in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Learning deep time-index models
for time series forecasting. In International Conference on Machine Learning, pp. 37217–37237. PMLR, 2023.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and Johannes von Oswald. Meta-learning via hypernet-
works. In 4th Workshop on Meta-Learning at NeurIPS 2020 (MetaLearn 2020). NeurIPS, 2020.

13

Under review as submission to TMLR

Appendix
A Appendix A

A.1 Reproducibility Statement
Our work is fully reproducible, and all the necessary resources are provided below.
Code. The full implementation of our method, including training and evaluation scripts, will be made publicly
available upon publication (anonymous link provided for review https://anonymous.4open.science/r/TV
INR-codebase-8C08).
Data. Instructions for obtaining the raw data are included with the code repository. A detailed description of
the datasets, preprocessing, and normalization steps is provided in Appendix-A.2.
Model and Training. The model architecture, training protocol, and evaluation procedure are described in
Sections 3.2 and 4. Hyperparameter choices and tuning procedures are reported in Appendix A.6.
Hardware and Software. All experiments were run on a single NVIDIA V100 GPU. A complete list of
dependencies and environment details is provided in our codebase.

A.2 Datasets

Table 4: Dataset Descriptions. #Series denotes the number of distinct timeseries signals with corresponding
lenghts and covariates if available.

Dataset Domain Freq. #Dims #Series Length Cov.

Electricity R0
+ Hourly 1 321 26304 ✗

Traffic [0,1] Hourly 1 862 17544 ✗

Solar-10 R0
+ 10 Mins 1 137 52560 ✗

Solar-H R0
+ Hourly 1 137 8760 ✗

HAR R 50Hz 3 30 43940 ✓

P12 R0
+ Hourly 8 3938 48 ✓

In this section, we provide more details about the datasets we have used. We start with the list of uni-variate
datasets:
Electricity Dataset records hourly electricity consumption from 321 customers in Portugal for the period
2012 to 2014, displaying both daily and weekly seasonality.
Traffic Dataset includes hourly road occupancy rates from 862 locations in San Francisco during 2015 and
2016, and exhibits similar daily and weekly seasonal patterns.
Solar Dataset The Solar-10 dataset comprises measurements of solar power production from 137 photovoltaic
plants in Alabama, captured every 10 minutes in 2006. Additionally, there is an hourly version of this dataset,
known as Solar-Hourly.
For some datasets, the feature vectors Y (i) = {y(i)

l }Li

l=1 expand from univariate (d = 1) to multivariate
(d > 1), with each dimension representing a unique sensor used to collect observations {y(i)

l } ∈ Rd. For these
purposes, we experiment with two multi-variate datasets, namely:
HAR Dataset. Here, we experiment with the Human Activity Recognition (HAR) dataset from the UC
Irvine ML Repository, which is dense with regular time points at 2.56 second intervals, enabling quantitative
imputation assessment through random removal. It contains 10,299 samples of accelerometer measurements
across x, y, and z axes.
P12 Dataset. The PhysioNet Challenge 2012 (P12) dataset contains ICU stay measurements including sensor
readings and lab results. After outlier removal, it comprises 11,817 visits across 37 channels with maximum
215 time points over 48 hours. We use eight measurements urine output, systolic arterial blood pressure

14

https://anonymous.4open.science/r/TVINR-codebase-8C08
https://anonymous.4open.science/r/TVINR-codebase-8C08
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://physionet.org/content/challenge-2012/1.0.0/

Under review as submission to TMLR

(SysABP), diastolic arterial blood pressure (DiasABP), mean arterial pressure (MAP), heart rate (HR),
and their non-invasive counterparts (NISysABP, NIDiasABP, NIMAP). We also incorporate patient-specific
covariates including gender, age, height, and weight. Conditional TV-INRs use covariates Unlike HAR, P12
is highly sparse (X(i)

obs is 15.68% of X on average) with irregularity across times and sensors, where T (i) may
be unique for each time series i.
Missingness Patterns of the Datasets. To ensure a comprehensive evaluation, our experiments address diverse
data missingness patterns, including both random and non-random scenarios. For Missing Completely at
Random (MCAR) patterns, we adhere to standard literature practices by introducing artificial missingness
(Little & Rubin, 2019) during training across the Electricity, Traffic, and Solar datasets. This methodology
aligns with the protocols used by the baseline models we compare against. Furthermore, we assess performance
on Missing Not at Random (MNAR) patterns, which are prevalent in real-world applications. Our analysis
includes the P12 dataset, which exhibits MNAR characteristics where clinical data is informatively missing;
here, we evaluate imputation quality indirectly via a downstream classification task. To create a controlled
non-random evaluation, we also synthetically modified the fully-observed HAR dataset by dropping entire
channels at random timestamps to mimic sensor failures, a scenario where the missingness mechanism depends
on unobserved factors.

A.3 Data-preprocessing
We apply channel-wise standardization to each time series. For each channel d in a time series with length L,
we compute the channel-wise mean µd, standard deviation σc, and normalize signal x̂(i)

l,d as follows:

x̂
(i)
l,d =

x
(i)
l,d − µ

(i)
d

σ
(i)
d

(9)

where x(i)
l,d represents the value of channel d at time l for sample i.

A.4 Analysis for statistical differences
To compare the performance of TV-INRs and baseline models, we conducted a systematic statistical analysis
using Welch’s t-test which accounts for potentially unequal variances between the two models. For each
configuration defined by sequence length L and sampling ratio τ , we evaluated both mean squared error
(MSE) and mean absolute error (MAE). The statistical significance was assessed at α = 0.05.
In classification experiments, the HAR dataset was normalized independently per channel but not per
individual, ensuring consistency across subjects and allowing XGBoost to learn global patterns. This differs
from the normalization procedure used for TV-INRs, which normalized data at both the channel and individual
level in order to model data on a per-user basis. When mentioned, we computed the relative performance
difference as ∆ = (µTimeFlow − µTV-INRs)/µTimeFlow × 100%.

A.5 Training, validation, and test splits for all experiments
Here, we give information about all datasplits for all experiments in Tables 5, 6, 7. For univariate datasets,
test windows are extracted sequentially from the end of each time series. Moreover, training data precedes
validation data.

1NO: Non-overlapping, FE: From end of the series

15

Under review as submission to TMLR

Table 5: Dataset splitting details for univariate imputation experiments. Training and validation sets has 5:1
ratio.

Dataset Series Count Window Length Test Windows Training/Val.
(L) (NO & FE) 1 Stride

Electricity 321 200 50 50
2000 5 500

Traffic 862 200 20 50
2000 2 500

Solar-10 137 200 100 50
10000 2 250

Table 6: Dataset splitting details for univariate forecasting experiments. Training and validation sets has 5:1
ratio. Training and validation series are constructed with using offsetting from the available data points.

Dataset Series Count History Forecast Window Length Test Windows Training/Val.
(H) (F) (L) (NO & FE) 2 Offset

Electricity 321 512 [96,192,336,720] 1232 7 ✓

Traffic 862 512 [96,192,336,720] 1232 7 ✓

Solar-H 137 512 [96,192,336,720] 1232 3 ✓

Table 7: Dataset splitting details for HAR imputation experiments. The dataset is split by users, with 24
users for training and 6 users for testing. From the training users, we further split into training and validation
sets using a 4:1 ratio of users.

Dataset Series Count Window Length (L) #Classes #Train Users #Test Users
HAR 30 128 6 24 6
P12 11817 48 NA 9454 2363

A.6 Hyperparameters for all experiments
Hyperparameters for all TV-INR experiments on an NVIDIA V100 GPU can be seen in Tables 8-9. In case
of HAR dataset, C-TV-INRs extra parameters of feed forward encoder of covariates with layers [8, 8] and
dim_c = 4. The details of the hyperparameter grid search space are provided in Table 10.

Table 8: Hyperparameter details of TV-INRs for imputation task.

Electricity Traffic Solar-10 HAR
L 200 2000 200 2000 200 10000 128

dim_z 32 64 32 64 32 64 32
epochs 2000 4000 2000 4000 2000 4000 3000

bs 256 64 256 64 256 32 128
lr 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Transformer Enc.
dmodel 128 128 128 128 128 128 128

#heads 2 4 2 4 2 4 4
#layers 2 2 2 2 2 2 4

Hypernetwork layers [128,256]
Generator layers [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64,64]

RFF m = 256, σ = 2

16

Under review as submission to TMLR

Table 9: Hyperparameter details of TV-INRs for forecasting task.

Electricity Traffic Solar-H
dim_z 32 64 32

max epochs 2000 4000 2000
bs 256 64 256
lr 1e-4 1e-4 1e-4

Transformer Enc.
dmodel 128 128 128

#heads 2 4 2
#layers 2 2 2

Hypernetwork layers [128,256]
Generator layers [64,64,64] [64,64,64,64] [64,64,64]

Random Fourier Features m = 256, σ = 2

Table 10: Hyperparameter Grid Search Configuration

Hyperparameter Search Range
General Parameters
Learning rate (lr) [1e-5, 1e-4, 5e-4]
Latent dimension (dim_z) [16, 32, 64]
Dropout rate [0.0, 0.1, 0.2]
Transformer Encoder
d_model [64, 128, 256]
Attention layers [2, 4, 6]
Number of heads [2, 4, 8]
Causal attention [True, False]
Hypernetwork
Layers [[32,64], [64,128], [128,256], [256,512]]
Activation [’relu’, ’lrelu_01’, ’gelu’]
Generator (INR)
dim_inner [32,64,128]
num_layers [2, 3, 4]
Activation [’relu’, ’lrelu_01’, ’gelu’]
Random Fourier Features
m [128, 256, 512]
σ [1, 2, 4]

For classification with XGBoost, all hyperparameters used were the default in Chen & Guestrin (2016)’s
XGBoost library, with the following exceptions; early stopping was set to 10 rounds, and categorical features
were enabled to preserve channel identity as nonordinal.

A.7 Classifer results
We present the AUC-ROC scores for different models across varying levels of missingness in Table 11, where
higher scores indicate better classification performance.

A.8 TimeFlow results for different missingness rates
To thoroughly demonstrate TV-INRs’s capability to handle different missing data scenarios, we conducted
extensive experiments by training and testing with various observed ratios (τ), further supporting our claims
regarding its efficiency and its ability to serve as a single model for all cases. It is important to note that in
the TimeFlow GitHub repository3, the missing data rate (“draw_ratio”) can be set as a training argument,
with options including {0.05, 0.10, 0.20, 0.30, 0.50}. Although this may appear to be a hyperparameter choice,
it affects the task itself, as the model is optimized for a specific level of missingness.

3https://github.com/EtienneLnr/TimeFlow/blob/main/experiments/training/inr_imputation.sh

17

https://github.com/EtienneLnr/TimeFlow/blob/main/experiments/training/inr_imputation.sh

Under review as submission to TMLR

Table 11: AUC-ROC scores for different models across varying levels of missingness. Higher scores indicate
better performance. All values are rounded to three decimal places.

Model 50% Missingness 70% Missingness 95% Missingness

C-TV-INR 0.969 ± 0.012 0.968 ± 0.012 0.882 ± 0.028
TV-INR 0.967 ± 0.013 0.963 ± 0.016 0.868 ± 0.025
SAITS 0.906 ± 0.040 0.831 ± 0.036 0.719 ± 0.039
CSDI 0.928 ± 0.023 0.900 ± 0.035 0.847 ± 0.037
Mean Imputation 0.894 ± 0.039 0.818 ± 0.036 0.784 ± 0.030

As shown in Table 12, TimeFlow’s performance varies significantly across different training and testing τ
combinations, requiring separate model instances for each scenario, and although we implemented a version of
TimeFlow that can be trained using random observed fractions, this has not yet led to improved results. In
contrast, TV-INRs has comparable or better performance when compared with Timeflow with a single trained
model. These results align with the observation stated in Table 10 of the original TimeFlow paper (Naour
et al., 2024) that while higher sampling rates simplify the imputation task, they complicate optimization,
making it challenging for the model to generalize effectively across different sparsity levels.

Table 12: TimeFlow model performance at different training and testing missing ratios (τ), including random
sampling from set S. MSE and MAE metrics are reported for electricity dataset.

Test τ

MSE MAE

Model L Train τ 0.05 0.3 0.5 0.05 0.3 0.5

TimeFlow 2K

1.00 108812.06 0.18195 0.13066 26.16919 0.28272 0.25284
0.95 22579.357 0.15164 0.1275 15.57548 0.27184 0.24665
0.50 56.5905 0.14723 0.13238 1.88119 0.26775 0.25075
0.30 2.58694 0.16536 0.15019 0.85563 0.28756 0.27291
0.05 0.37793 0.22935 0.21811 0.45838 0.34629 0.33603
∼ S 0.32549 0.16117 0.13834 0.38618 0.26933 0.25845

TV-INRs 2K ∼ S 0.2889 0.2502 0.2491 0.3595 0.3317 0.3311

TimeFlow 200

1.00 605909.85 7.77814 0.44302 358.39774 1.87872 0.49501
0.95 2611667.2 145.28325 0.33257 587.75934 2.32136 0.42111
0.50 350.9098 0.34692 0.16299 11.31193 0.43012 0.23984
0.30 18.90844 0.32993 0.20594 2.99975 0.39625 0.30289
0.05 0.96294 0.74811 0.6934 0.81073 0.71435 0.69580
∼ S 0.82365 0.33733 0.16998 0.73533 0.3999 0.255559

TV-INRs 200 ∼ S 0.3175 0.1352 0.1132 0.3681 0.2320 0.2123

A.9 Complexity analysis for TV-INR
This section provides the time and memory complexity analysis for the TV-INR model, broken down by its
core components: the Transformer-based encoder and the MLP-based decoder (hypernetwork).
Notation. To facilitate the analysis, we define the following notation: L is the input sequence length; C is the
number of input channels; E is the embedding dimension; Dp is the hidden dimension of the projection layer;
Z is the latent dimension; N and M are the number of layers and attention heads in the encoder, respectively;
N ′ and Dh are the number of layers and hidden dimensions of the hypernetwork; and R is the total flattened
dimension of the INR parameters being modeled. Typically, the sequence length is the dominant factor, such
that L ≫ E ≫ Z.
Time complexity. The overall time complexity is determined by the sum of the model’s parts. The Transformer-
based encoder has a complexity of O(N · L2 · E), which is quadratic with respect to the sequence length L
due to the self-attention mechanism. The subsequent projection layer has a complexity of O(E ·Dp). The
MLP-based hypernetwork’s complexity is O(Z ·Dh + (N ′ − 1) ·D2

h +Dh ·R), which depends on its depth

18

Under review as submission to TMLR

and width. Given that L is the largest dimension, the encoder is the computational bottleneck, making the
model’s overall time complexity O(N · L2 · E).
Memory complexity. The memory complexity during a forward pass is also dominated by the encoder. The
Transformer requires O(M · L2) memory to store the attention score matrix. The memory requirements for
the projection layer and the MLP-based hypernetwork are O(max(E,Z)) and O(max(Z,Dh, R)), respectively,
as they are determined by the largest linear layer within each component. Consequently, the overall memory
complexity is dictated by the encoder, resulting in O(M · L2).

A.10 Training times comparison
In this part, we are reporting the cumulative training times in hours (h) of TV-INRs and Timeflow per task. All
training times are rounded to 5-minute intervals and were acquired using an NVIDIA V100 GPU and reported
in Tables 13,14,15 and 17,18,19 for imputation and forecasting tasks, respectively. As training times of C-TV-
INRs are in the same order with TV-INRs, we omit them to include them in the tables. SAITS demonstrates
moderate training times ranging from 1h45m to 13h35m across various datasets, offering a reasonable
compromise between efficiency and performance. A drawback of CSDI (Tashiro et al., 2021) is its extended
training duration, primarily due to the iterative optimization process inherent in diffusion model training.
DeepTime (Woo et al., 2023) is very fast to train due to number of epochs selected in the original work; however
it also has the worst performance among the baselines as shown in Table 2. Our primary baseline, TimeFlow,
demands significantly greater computational resources, with cumulative training durations consistently
exceeding those of TV-INR across most experimental scenarios. Efficiency analyses reveal TimeFlow requires
up to 3.70× longer training periods, particularly pronounced in forecasting applications as shown in Table 20.

Table 13: Training times for imputation task, TV-INRs.

Model Name Dataset L Max Epochs Training Time
TV-INR Electricity 200 2000 8h45m
TV-INR Electricity 2000 4000 12h55m
TV-INR Traffic 200 2000 10h35m
TV-INR Traffic 2000 4000 15h50m
TV-INR Solar-10 200 2000 10h25m
TV-INR Solar-10 10000 4000 19h15m
TV-INR HAR 128 3000 6h45m
TV-INR P12 128 1000 4h05m

19

Under review as submission to TMLR

Table 14: Training times for imputation task, TimeFlow.

Model Name Dataset L τ Max Epochs Training Time
TimeFlow Electricity 200 0.05 40000 6h35m
TimeFlow Electricity 200 0.30 40000 6h40m
TimeFlow Electricity 200 0.50 40000 6h35m
TimeFlow Electricity 2000 0.05 40000 5h35m
TimeFlow Electricity 2000 0.30 40000 5h30m
TimeFlow Electricity 2000 0.50 40000 5h40m
TimeFlow Traffic 200 0.05 40000 9h45m
TimeFlow Traffic 200 0.30 40000 9h50m
TimeFlow Traffic 200 0.50 40000 10h10m
TimeFlow Traffic 2000 0.05 40000 8h30m
TimeFlow Traffic 2000 0.30 40000 8h30m
TimeFlow Traffic 2000 0.50 40000 8h45m
TimeFlow Solar-10 200 0.05 40000 6h45m
TimeFlow Solar-10 200 0.30 40000 6h30m
TimeFlow Solar-10 200 0.50 40000 6h35m
TimeFlow Solar-10 10000 0.05 40000 12h5m
TimeFlow Solar-10 10000 0.30 40000 11h50m
TimeFlow Solar-10 10000 0.50 40000 12h15m

Table 15: Training times for imputation task, SAITS.

Model Name Dataset L Max Epochs Training Time
SAITS Electricity 200 10000 3h45m
SAITS Electricity 2000 10000 3h35m
SAITS Traffic 200 10000 3h25m
SAITS Traffic 2000 10000 7h45m
SAITS Solar-10 200 10000 1h45m
SAITS Solar-10 10000 10000 6h05m
SAITS HAR 128 10000 13h35m
SAITS P12 48 10000 10h40m

Table 16: Training times for imputation task, CSDI.

Model Name Dataset L Max Epochs Training Time
CSDI Electricity 200 200 2h55m
CSDI Electricity 2000 200 6h
CSDI Traffic 200 200 3h20m
CSDI Traffic 2000 200 7h20m
CSDI Solar-10 200 200 1h30m
CSDI Solar-10 10000 200 12h
CSDI HAR 128 200 8h5m
CSDI P12 48 200 16h10m

20

Under review as submission to TMLR

Table 17: Training times for forecasting task, TV-INRs.

Model Name Dataset H Max Epochs Training Time
TV-INR Electricity 512 2000 5h25m
TV-INR Traffic 512 4000 11h05m
TV-INR Solar-H 512 2000 5h15m

Table 18: Training times for forecasting task, TimeFlow.

Model Name Dataset H F Max Epochs Training Time
TimeFlow Electricity 512 96 40000 4h25m
TimeFlow Electricity 512 192 40000 4h30m
TimeFlow Electricity 512 336 40000 4h40m
TimeFlow Electricity 512 720 40000 4h30m
TimeFlow Traffic 512 96 40000 10h10m
TimeFlow Traffic 512 192 40000 10h15m
TimeFlow Traffic 512 336 40000 10h20m
TimeFlow Traffic 512 720 40000 10h15m
TimeFlow Solar-H 512 96 40000 3h25m
TimeFlow Solar-H 512 192 40000 2h55m
TimeFlow Solar-H 512 336 40000 3h05m
TimeFlow Solar-H 512 720 40000 3h15m

Table 19: Training times for forecasting task, DeepTime.

Model Name Dataset H F Max Epochs Training Time
DeepTime Electricity 512 96 50 5m
DeepTime Electricity 512 192 50 5m
DeepTime Electricity 512 336 50 5m
DeepTime Electricity 512 720 50 10m
DeepTime Traffic 512 96 50 10m
DeepTime Traffic 512 192 50 10m
DeepTime Traffic 512 336 50 15m
DeepTime Traffic 512 720 50 15m
DeepTime Solar-H 512 96 50 5m
DeepTime Solar-H 512 192 50 5m
DeepTime Solar-H 512 336 50 5m
DeepTime Solar-H 512 720 50 5m

21

Under review as submission to TMLR

Table 20: Training Time Efficiency Ratio: TV-INR vs TimeFlow in hours (h).

Forecasting Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)

Dataset H Training Time (h) Cumulative Time (h) Absolute Multiplier

Electricity 512 5.42 18.08 12.66 3.34×
Traffic 512 11.08 41.00 29.92 3.70×
Solar 512 5.25 12.67 7.42 2.41×

Imputation Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)

Dataset L Training Time (h) Cumulative Time (h) Absolute Multiplier

Electricity 200 8.75 19.83 11.08 2.27×
Electricity 2000 12.92 16.75 3.83 1.30×

Traffic 200 10.58 29.75 19.17 2.81×
Traffic 2000 15.83 25.75 9.92 1.63×
Solar 200 10.42 19.83 9.41 1.90×
Solar 10000 19.25 36.17 16.92 1.88×

A.11 Inference times comparison
We evaluated the computational efficiency of TV-INRs against TimeFlow by measuring inference times on an
NVIDIA V100 GPU. Under identical conditions with a batch size of 1, we recorded forward pass execution
times in seconds for both models. TimeFlow was configured to use 3 gradient steps during meta-learning, as
specified in the original paper (Naour et al., 2024). A key advantage of TV-INRs is that its inference time
remains constant, unlike TimeFlow, which exhibits linear scaling with the number of gradient steps performed
during meta-learning. This makes TV-INRs particularly attractive for applications requiring consistent and
predictable inference latency.

Table 21: Comparison of inference time of TV-INRs and SAITS in seconds for imputation task.

Electricity Traffic Solar-10

Model L τTrain τTest Time (s) Time (s) L Time (s)

TimeFlow 2K
0.50 0.50 0.017 ± 0.001 0.016 ± 0.001

10K
0.038 ± 0.001

0.30 0.30 0.016 ± 0.001 0.016 ± 0.001 0.037 ± 0.001
0.05 0.05 0.016 ± 0.001 0.016 ± 0.001 0.037 ± 0.001

TimeFlow 200
0.50 0.50 0.013 ± 0.001 0.015 ± 0.001

200
0.015 ± 0.001

0.30 0.30 0.012 ± 0.001 0.015 ± 0.001 0.015 ± 0.001
0.05 0.05 0.012 ± 0.001 0.015 ± 0.001 0.015 ± 0.001

TV-INRs 2K ∼ S
0.50 0.016 ± 0.001 0.017 ± 0.001

10K
0.060 ± 0.001

0.30 0.017 ± 0.001 0.017 ± 0.001 0.059 ± 0.001
0.05 0.017 ± 0.001 0.017 ± 0.001 0.059 ± 0.001

TV-INRs 200 ∼ S
0.50 0.014 ± 0.001 0.013 ± 0.001

200
0.014 ± 0.001

0.30 0.014 ± 0.002 0.013 ± 0.001 0.014 ± 0.001
0.05 0.014 ± 0.001 0.013 ± 0.001 0.014 ± 0.001

A.12 Ablation study on the number of Fourier Frequencies
To empirically quantify the contribution of Fourier Features to the performance of TV-INR, we conduct
an ablation study analyzing the model’s performance with different numbers of Fourier frequencies (NFF).
The experiment is conducted on Electricity dataset for imputation task, and the results are reported, with
performance statistics—mean and standard deviation—computed over multiple non-overlapping test windows.
The table below presents the Mean Squared Error (MSE) on the imputed values for configurations with
NFF ∈ {256, 128, 32, 0}. The results clearly demonstrate that incorporating Fourier Features provides a
significant performance benefit, which aligns with findings in the broader literature (Tancik et al., 2020;
Dupont et al., 2021). Across all sequence lengths and observation rates, performance degrades substantially
as the number of frequencies is reduced, with the best results consistently achieved for NFF = 256.

22

Under review as submission to TMLR

Table 22: Comparison of inference time of TV-INRs and Timeflow in seconds for forecasting task.

Electricity Traffic Solar-H

Model H Ftrain Ftest Time (s) Time (s) Time (s)

TimeFlow 512

96 96 0.016 ± 0.001 0.017 ± 0.001 0.016 ± 0.001
192 192 0.016 ± 0.001 0.019 ± 0.001 0.015 ± 0.001
336 336 0.016 ± 0.001 0.020 ± 0.001 0.015 ± 0.001
720 720 0.016 ± 0.001 0.020 ± 0.001 0.015 ± 0.001

TV-INRs 512 ∼ F 720 0.016 ± 0.001 0.018 ± 0.001 0.017 ± 0.002

Table 23: Ablation study on the effect of Fourier Features. We report MSE on the Electricity dataset for
different numbers of Fourier Feature frequencies (NFF). The best performing configuration for each row is in
bold.

Number of Fourier Feature Frequencies (NFF)

Model L τ 256 128 32 0 (None)

TV-INRs 200
0.50 0.1213 ± 0.0131 0.1391 ± 0.0140 0.1523 ± 0.0186 0.8099 ± 0.0522
0.30 0.1359 ± 0.0265 0.1756 ± 0.0211 0.2711 ± 0.0386 0.8587 ± 0.0502
0.05 0.3312 ± 0.0968 0.4655 ± 0.1198 0.8643 ± 0.1206 1.2215 ± 0.1335

TV-INRs 2000
0.50 0.2555 ± 0.0280 0.3563 ± 0.0236 1.0414 ± 0.0233 1.0542 ± 0.0239
0.30 0.2423 ± 0.0276 0.3444 ± 0.0095 1.0341 ± 0.0503 1.0531 ± 0.0221
0.05 0.3142 ± 0.0742 0.4984 ± 0.0390 1.0687 ± 0.0400 1.1004 ± 0.0278

A.13 Comparison with standard VAE baseline
To empirically validate the contribution of our Implicit Neural Representation (INR) based decoder, we
conduct an ablation study comparing TV-INR against a baseline with a standard decoder, which we term
TV-VAE. This baseline is designed to isolate the impact of the INR by replacing the hypernetwork decoder
with a conventional MLP. Specifically, the TV-VAE decoder processes a direct concatenation of the learned
latent representation z and the time encoding t. To ensure a fair comparison, the MLP architecture for the
TV-VAE decoder is constructed from the same building blocks as the hypernetwork in TV-INR.
We performed a thorough hyperparameter search for the TV-VAE model, evaluating various MLP depths and
multiple configurations of Fourier Features for the time encoding. All other experimental settings, including
the AdamW optimizer, followed the protocol used for the main TV-INR experiments as detailed in App. A.6.
The results, presented in App. [Reference to the new tables], show that TV-INR consistently and significantly
outperforms all tested variants of TV-VAE on the electricity dataset for sequence lengths L = 200, 2000 and
across all observation rates (τ). This consistent superiority demonstrates that the INR-based architecture is
more effective at modeling the continuous temporal structure of time series signals than a standard decoder
that treats time as a concatenated input feature, thereby justifying our architectural choice.

23

Under review as submission to TMLR

Table 24: Ablation study on the Electricity dataset (L=200). We compare TV-INR with TV-VAE variants
using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (NFF). Best results are
in bold.

τ = 0.05 τ = 0.3 τ = 0.5

Model D NFF MSE MAE MSE MAE MSE MAE

TV-VAE 5 256 0.98 ± 0.22 0.78 ± 0.10 0.44 ± 0.10 0.48 ± 0.06 0.34 ± 0.07 0.41 ± 0.05
TV-VAE 5 128 1.00 ± 0.21 0.80 ± 0.01 0.48 ± 0.12 0.51 ± 0.08 0.35 ± 0.08 0.42 ± 0.05
TV-VAE 5 32 1.11 ± 0.39 0.83 ± 0.16 0.52 ± 0.16 0.52 ± 0.09 0.36 ± 0.10 0.42 ± 0.06
TV-VAE 5 0 1.24 ± 0.14 0.83 ± 0.06 0.52 ± 0.05 0.50 ± 0.02 0.43 ± 0.05 0.45 ± 0.02
TV-VAE 4 256 0.90 ± 0.14 0.74 ± 0.07 0.32 ± 0.05 0.39 ± 0.04 0.23 ± 0.04 0.33 ± 0.03
TV-VAE 4 128 1.07 ± 0.14 0.84 ± 0.06 0.57 ± 0.08 0.59 ± 0.05 0.43 ± 0.07 0.51 ± 0.04
TV-VAE 4 32 0.65 ± 0.12 0.61 ± 0.07 0.25 ± 0.04 0.34 ± 0.03 0.20 ± 0.04 0.30 ± 0.02
TV-VAE 4 0 1.41 ± 0.11 0.91 ± 0.04 0.59 ± 0.10 0.54 ± 0.05 0.45 ± 0.07 0.47 ± 0.03
TV-VAE 3 256 0.62 ± 0.16 0.59 ± 0.08 0.21 ± 0.04 0.31 ± 0.03 0.18 ± 0.03 0.28 ± 0.02
TV-VAE 3 128 0.50 ± 0.12 0.43 ± 0.07 0.19 ± 0.04 0.28 ± 0.03 0.17 ± 0.03 0.27 ± 0.02
TV-VAE 3 32 0.66 ± 0.13 0.62 ± 0.08 0.25 ± 0.05 0.34 ± 0.03 0.20 ± 0.03 0.30 ± 0.02
TV-VAE 3 0 1.58 ± 0.27 0.97 ± 0.08 0.63 ± 0.09 0.59 ± 0.04 0.51 ± 0.06 0.53 ± 0.03
TV-VAE 2 256 0.88 ± 0.13 0.78 ± 0.07 0.45 ± 0.06 0.53 ± 0.05 0.34 ± 0.06 0.44 ± 0.04
TV-VAE 2 128 0.87 ± 0.12 0.78 ± 0.06 0.41 ± 0.05 0.51 ± 0.04 0.30 ± 0.05 0.42 ± 0.04
TV-VAE 2 32 0.79 ± 0.20 0.70 ± 0.10 0.30 ± 0.05 0.40 ± 0.04 0.23 ± 0.04 0.34 ± 0.03
TV-VAE 2 0 1.59 ± 0.51 0.97 ± 0.11 0.84 ± 0.08 0.71 ± 0.03 0.76 ± 0.08 0.67 ± 0.03
TV-VAE 1 256 0.39 ± 0.10 0.43 ± 0.07 0.21 ± 0.05 0.30 ± 0.03 0.20 ± 0.04 0.29 ± 0.03
TV-VAE 1 128 0.41 ± 0.06 0.43 ± 0.08 0.21 ± 0.05 0.30 ± 0.03 0.20 ± 0.04 0.30 ± 0.03
TV-VAE 1 32 0.39 ± 0.06 0.44 ± 0.05 0.23 ± 0.05 0.32 ± 0.03 0.22 ± 0.04 0.31 ± 0.03
TV-VAE 1 0 1.37 ± 0.12 0.93 ± 0.04 1.13 ± 0.05 0.84 ± 0.02 1.09 ± 0.07 0.82 ± 0.02

TV-INRs 3 256 0.32 ± 0.06 0.37 ± 0.04 0.14 ± 0.03 0.23 ± 0.02 0.11 ± 0.02 0.21 ± 0.02

Table 25: Ablation study on the Electricity dataset (L=2000). We compare TV-INR with TV-VAE variants
using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (NFF). Best results are
in bold.

τ = 0.05 τ = 0.3 τ = 0.5

Model D NFF MSE MAE MSE MAE MSE MAE

TV-VAE 6 256 0.92 ± 0.11 0.78 ± 0.05 0.51 ± 0.04 0.51 ± 0.03 0.43 ± 0.03 0.46 ± 0.02
TV-VAE 6 128 0.43 ± 0.06 0.46 ± 0.03 0.37 ± 0.04 0.42 ± 0.03 0.36 ± 0.04 0.42 ± 0.03
TV-VAE 6 32 0.94 ± 0.02 0.74 ± 0.01 0.89 ± 0.03 0.71 ± 0.01 0.89 ± 0.02 0.71 ± 0.01
TV-VAE 6 0 1.17 ± 0.03 0.84 ± 0.01 1.06 ± 0.02 0.80 ± 0.01 1.06 ± 0.02 0.80 ± 0.01
TV-VAE 5 256 1.06 ± 0.23 0.83 ± 0.11 0.61 ± 0.07 0.59 ± 0.05 0.46 ± 0.03 0.48 ± 0.02
TV-VAE 5 128 0.44 ± 0.05 0.46 ± 0.04 0.38 ± 0.04 0.43 ± 0.03 0.37 ± 0.04 0.42 ± 0.02
TV-VAE 5 32 0.92 ± 0.03 0.72 ± 0.01 0.86 ± 0.03 0.70 ± 0.01 0.86 ± 0.03 0.70 ± 0.01
TV-VAE 5 0 1.16 ± 0.03 0.84 ± 0.01 1.05 ± 0.02 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 4 256 0.33 ± 0.02 0.39 ± 0.02 0.28 ± 0.02 0.36 ± 0.01 0.26 ± 0.02 0.35 ± 0.01
TV-VAE 4 128 0.35 ± 0.03 0.41 ± 0.02 0.32 ± 0.02 0.39 ± 0.01 0.32 ± 0.02 0.39 ± 0.01
TV-VAE 4 32 0.75 ± 0.02 0.67 ± 0.02 0.72 ± 0.02 0.65 ± 0.02 0.72 ± 0.03 0.65 ± 0.02
TV-VAE 4 0 1.10 ± 0.01 0.83 ± 0.01 1.04 ± 0.02 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 3 256 0.37 ± 0.02 0.43 ± 0.02 0.33 ± 0.02 0.40 ± 0.02 0.32 ± 0.03 0.40 ± 0.02
TV-VAE 3 128 0.43 ± 0.05 0.48 ± 0.04 0.40 ± 0.04 0.46 ± 0.03 0.40 ± 0.04 0.46 ± 0.03
TV-VAE 3 32 0.98 ± 0.01 0.80 ± 0.01 0.91 ± 0.01 0.77 ± 0.01 0.91 ± 0.01 0.76 ± 0.01
TV-VAE 3 0 1.09 ± 0.01 0.82 ± 0.01 1.04 ± 0.03 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 2 256 0.34 ± 0.03 0.41 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.30 ± 0.02 0.38 ± 0.01
TV-VAE 2 128 0.56 ± 0.08 0.58 ± 0.05 0.53 ± 0.07 0.56 ± 0.05 0.53 ± 0.08 0.56 ± 0.05
TV-VAE 2 32 1.05 ± 0.01 0.82 ± 0.01 1.01 ± 0.03 0.79 ± 0.01 1.01 ± 0.02 0.79 ± 0.01
TV-VAE 2 0 1.08 ± 0.01 0.81 ± 0.01 1.06 ± 0.03 0.80 ± 0.01 1.06 ± 0.02 0.80 ± 0.01

TV-INRs 4 256 0.29 ± 0.02 0.36 ± 0.02 0.25 ± 0.02 0.33 ± 0.01 0.25 ± 0.02 0.33 ± 0.01

24

Under review as submission to TMLR

B Appendix B

B.1 Visuals from experiments

(a) Imputation task for Electricity dataset L = 200, τ = 0.05.

(b) Imputation task for Electricity dataset L = 200, τ = 0.5.

Figure 4: TV-INRs imputation predictions for Electricity dataset (L = 200). Solid lines denote the posterior
mean and shaded regions correspond to the 5th–95th percentile intervals.

25

Under review as submission to TMLR

(a) Imputation task for Electricity dataset L = 2000, τ = 0.05.

(b) Imputation task for Electricity dataset L = 2000, τ = 0.5.

Figure 5: TV-INRs imputation predictions for Electricity dataset (L = 2000). Solid lines denote the posterior
mean and shaded regions correspond to the 5th–95th percentile intervals.

26

Under review as submission to TMLR

(a) Forecasting task for Traffic dataset, H = 512, F = 196.

(b) Forecasting task for Traffic dataset, H = 512, F = 720.

Figure 6: TV-INRs forecasting predictions for Traffic dataset. Solid lines denote the posterior mean and
shaded regions correspond to the 5th–95th percentile intervals.

27

Under review as submission to TMLR

(a) HAR Sample with τ = 0.05

(b) HAR Sample with τ = 0.5

Figure 7: TV-INRs imputations for HAR dataset. Solid lines denote the posterior mean and shaded regions
correspond to the 5th–95th percentile intervals.

28

	Introduction
	Related work
	Learning implicit neural representations
	Time series imputation and forecasting

	Temporal variational implicit neural representations
	Model description
	Implementation details

	Experiments
	Results

	Conclusion
	Broader Impact
	 Appendix
	Appendix A
	Reproducibility Statement
	Datasets
	Data-preprocessing
	Analysis for statistical differences
	Training, validation, and test splits for all experiments
	Hyperparameters for all experiments
	Classifer results
	TimeFlow results for different missingness rates
	Complexity analysis for TV-INR
	Training times comparison
	Inference times comparison
	Ablation study on the number of Fourier Frequencies
	Comparison with standard VAE baseline

	Appendix B
	Visuals from experiments

