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Abstract

Generative protein language models are a natural way to design new proteins
with desired functions. However, current models are either difficult to direct to
produce a protein from a specific family of interest, or must be trained on a large
multiple sequence alignment (MSA) from the specific family of interest, making
them unable to benefit from transfer learning across families. To address this, we
propose Protein Evolutionary Transformer (PoET), an autoregressive generative
model of whole protein families that learns to generate sets of related proteins as
sequences-of-sequences across tens of millions of natural protein sequence clusters.
PoET can be used as a retrieval-augmented language model to generate and score
arbitrary modifications conditioned on any protein family of interest, and can
extrapolate from short context lengths to generalize well even for small families.
This is enabled by a unique Transformer layer; we model tokens sequentially
within sequences while attending between sequences order invariantly, allowing
PoET to scale to context lengths beyond those used during training. In extensive
experiments on deep mutational scanning datasets, we show that PoET outperforms
existing protein language models and evolutionary sequence models for variant
function prediction across proteins of all MSA depths. We also demonstrate PoET’s
ability to controllably generate new protein sequences. 1

1 Introduction

Proteins carry out most of the biological functions at the molecular level of life. The function of
a protein is encoded by its specific amino acid sequence and the three-dimensional structure that
the sequence folds into. Engineering proteins for novel and enhanced function is a key problem in
pharmaceuticals and biotechnology and involves designing novel sequences or modifying existing
natural proteins for these purposes. Deep mutational scans and directed evolution experiments have
been used to successfully design novel proteins [1–3], but can be costly and difficult to implement,
which makes these experimental methods inapplicable for many proteins and functions of interest.
Accurate computational models of sequence-function relationships can narrow down the protein
sequence search space, reduce the need for expensive experiments, and enable the design of more
novel proteins and functions.

Protein language models have emerged as promising methods for understanding and designing
protein sequences [4–7]. In particular, generative models offer a natural way to produce new protein
designs. By training on large corpuses of natural protein sequences, these models learn evolutionary
constraints on sequence space. They can then be used either to generate realistic sequences directly
by sampling [8, 9], or to identify promising protein sequence variants by predicting the relative fitness
of the variants of interest using the sequence likelihoods as a proxy [4, 10, 11].

1Code and pre-trained model weights are available at https://github.com/OpenProteinAI/PoET.
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Traditionally, family-specific models learn evolutionary constraints specific to the protein family of
interest by training on a multiple sequence alignment (MSA) of homologous sequences [12, 13].
However, this is ineffective for protein families with few sequences due to the lack of sufficient
training data and inability to exploit information across families. These models also assume that
MSAs are accurate, and cannot model novel insertions or deletions (indels) not present in the training
MSA. More recently, unconditional large protein language models [5, 10, 11] have been developed.
Trained on all known natural protein sequences, unconditional protein language models generalize
across protein families. However, these unconditional single-sequence models cannot be easily
directed to generate a protein from a specific family of interest, and underperform family-specific
models for relative fitness prediction. Hybrid models such as Tranception [11] and TranceptEVE
[14] combine unconditional language models with family-specific models to enable specialization to
protein families. Nonetheless, it is unclear how to use these models to generate sequences with novel
indels, and predictions from the family-specific models do not directly benefit from transfer learning
across families.

Here, we propose the Protein Evolutionary Transformer (PoET), an autoregressive generative model
of whole protein families that addresses these limitations. By learning to generate sets of related
proteins as sequences-of-sequences across tens of millions of natural protein sequence clusters, PoET
is able to generalize about evolutionary processes across protein families, and avoids issues related to
conditioning on MSAs. In order to capture conditioning between sequences in an order independent
manner (the order of sequences within a family is arbitrary) and to generalize to large context lengths,
we propose a novel Transformer layer (§3.1.2) that models order-dependence between tokens within
sequences and order-independence between sequences. PoET has the following properties:

• PoET can be used as a retrieval-augmented protein language model by conditioning the
model on sequences from any family of interest. This also allows PoET to be used with any
sequence database and to incorporate new sequence information without retraining.

• PoET is a fully autoregressive generative model, able to generate and score novel indels
in addition to substitutions, and does not depend on MSAs of the input family, removing
problems caused by long insertions, gappy regions, and alignment errors.

• By learning across protein families, PoET is able to extrapolate from short context lengths
allowing it to generalize well even for small protein families.

• PoET can be sampled from and can be used to calculate the likelihood of any sequence
efficiently.

We demonstrate these properties and show that PoET outperforms existing protein language models
and evolutionary sequence models for variant effect prediction in extensive experiments on the 94
deep mutational scanning datasets in ProteinGym. PoET improves substitution effect prediction
across proteins of all MSA depths, and also improves effect prediction of indels. A simple weighted
average ensemble of PoET with existing methods further improves performance both across MSA
depths and in sequences with large numbers of mutations. Furthermore, when used for generation,
PoET controllably produces diverse, novel sequences that more closely match natural statistical
constraints, resulting in better folding pLDDTs, than other generative protein language models. We
expect PoET to become integral to future protein mutagenesis efforts.

2 Related Work

Evolutionary sequence models are well established methods in biological sequences analysis.
To model protein families, these models search large protein sequence databases for homologs,
align the positions of these homologs in an MSA, and then fit statistical sequence models to the
MSA. Common models include site independent models [15], profile HMMs [16], and coupling
models [17]. Newer variants incorporate higher order correlations between sequence positions by
training a VAE [13] or by building phylogentic trees [12]. These approaches are often referred to as
"alignment-based" and must be fit on a family-by-family basis, requiring large numbers of members
to generalize. A significant limitation of these models is that they assume the MSA is an accurate
model of the evolutionary process generating the sequences, when in fact, MSA algorithms inevitably
make alignment errors; regions with long insertions or lots of gaps can be particularly problematic.
Furthermore, they cannot model novel insertions or deletions (indels) that are not present in the
training MSA.
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Unconditional protein language models that do not condition on homologs at inference have
emerged as powerful methods for understanding and generating protein sequences. Both bidirectional
models [4, 6, 18–20] and autoregressive generative models [5, 10, 11] have demonstrated competitive
performance for variant function prediction. The latter type of model has the advantage of being
able to score indels, but both cannot integrate evolutionary context not present in the trained model
parameters. In contrast to family-specific evolutionary sequence models trained on sequences derived
from a specific protein family [13, 17, 21], these models are trained on large protein databases
[22, 23] that span all known sequences. This enables them to learn evolutionary constraints that
generalize across families to improve predictions for small families with few homologs, but they
generally underperform family-specific models for larger families.

Conditional protein language models fit between the unconditional and family-specific paradigms.
Only a few works have explored this direction to date. Masked language models of whole MSAs are
able to integrate evolutionary context directly for conditioning site predictions [24], but are unable
to model insertions in the alignment. Ram and Bepler [25] use an encoder-decoder framework to
generate new sequences conditioned on an MSA, which removes the insertion limitation of Rao et al.
[24], but still requires conditioning on aligned input sequences. Notin et al. [11] combine predictions
from an unconditional language model and an alignment-based model and show that integrating
retrieval-based methods with protein language models can improve variant function prediction
performance. However, the reliance on an alignment-based model means that the combined model is
still limited by the constraints of MSAs.

Retrieval-augmented language models have shown impressive results in natural language pro-
cessing, especially on Question Answering tasks. These models incorporate a database search as
part of the text generation process in order to generate new text conditioned on prototypes found
in the database [26–32]. In this way, they are conceptually similar to the conditional protein lan-
guage models above. Retrieval-augmented approaches have the advantage of not requiring the entire
training corpus to be encoded within the model parameters and the ability to easily integrate new
data without retraining by simply adding it to the retrieval database. We adopt a similar approach
with PoET in order to realize similar benefits. However, we build on well-established, fast, and
accurate protein search tools for retrieval and frame the protein sequence generation problem as a
sequence-of-sequences problem to incorporate retrieved-sequence conditioning, a fundamentally
different paradigm than that employed by current retrieval-augmented models in natural language
processing.

3 The Protein Evolutionary Transformer (PoET)

PoET is an autoregressive generative model of the distribution over protein families, where each
family is generated as a sequence-of-sequences. Specifically, it models the distribution P (X = x),
where x = s1, s2, ..., sn is the concatenation of n sequences si from the same family, and each
sequence si = si,1, si,2, ..., si,Li

is a sequence of Li amino acids padded by a start and end token.
For example, below is a sequence of three protein sequences of lengths 4, 6, and 5 with start token
denoted by $ and stop token denoted by *:

$ M K * $ M H I P * $ M P V *
s11 s12 s13 s14 s21 s22 s23 s24 s25 s26 s31 s32 s33 s34 s35︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

s1 s2 s3

When referring to a sequence-of-sequences, si, which has one index i, refers to a sequence of tokens -
the ith sequence in the sequence-of-sequences, whereas si,j , which has two indices i, j, refers to one
token, the jth token of the ith sequence. We use x to denote the full sequence-of-sequences.

PoET generates each token in a sequence x one at a time, decomposing the probability of x as

P (x) = P (s1, s2, ..., sn) =

n∏
i=1

P (si|s<i) =

n∏
i=1

Li∏
j=1

P (si,j |s<i, si,<j) (1)

The order of the individual sequences in a sequence-of-sequences is arbitrary, and we propose a novel
Transformer-based architecture to exploit this order invariance.
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(a) PoET generates sets of homologous proteins as sequences-of-sequences. The equation in red demonstrates
how to compute the conditional probability of a sequence given homologous sequences.

(b) Inter-sequence relative position encoding scheme used in sequence-of-sequences self-attention that is invariant
to sequence ordering. (Left) Relative positions between tokens in a sequence-of-sequences composed of two
sequences. (Right) Tokens associated with absolute positions.

Figure 1: PoET Architecture

3.1 Model Architecture

We propose a variant of the common Transformer decoder layer (Figure 1a) to capture order invari-
ance between sequences while preservering order-dependence between tokens within sequences. We
accomplish this using two attention modules: (1) a within-sequence module in which the representa-
tion at each position of each sequence is updated based on attending only to the other tokens within
this sequence, and (2) a between-sequence module in which the representation at each position of
each sequence is updated based on attending to other sequences within the sequence-of-sequences
(§3.1.2). This tiered approach is critical for capturing long-range dependencies between sequences
and uniquely allows our model to extrapolate to much longer context lengths than used during training
(§5.2.2), improving sequence generation and performance on downstream tasks (Appendix H). Our
full PoET model is a stack of these layers with causal self-attention.

3.1.1 Input Embedding

The input sequence x = si,j , i ∈ 1..n, j ∈ 1..Li of amino acids and start/stop tokens is first converted
into a sequence of continuous embeddings hi,j by mapping each token to its learned embedding:

hi,j = Wsi,j , si,j ∈ AA ∪ {START, STOP} (2)

W ∈ R|AA∪{START,STOP}|×d
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where AA is the set of 20 standard amino acids, and W is a matrix of learnable embeddings of
dimension d.

3.1.2 Tiered Transformer Decoder Layers

Next, the embeddings hi,j are transformed by N layers of TieredTransformerDecoderLayers
(Appendix Algorithm 1), a novel layer for processing a sequence-of-sequences that is invariant to the
order of the individual sequences, and extrapolates to context lengths substantially longer than the
training context length.

The TieredTransformerDecoderLayer is composed of two phases. In the first phase, causal
self-attention is applied independently to each sequence hi of the input sequence-of-sequences,
transforming them into new sequences fi = PerSequenceSelfAttn(hi). Relative positional
information is encoded by applying Rotary Positional Encodings (RoPE) [33] to the queries and keys
before applying self-attention in the standard manner; the absolute position for fi,j is j.

The second phase applies causal self-attention to the entire sequence-of-sequences by concate-
nating the individual fi from the previous layer into one sequence before applying self-attention:
gi,j = SequenceOfSequencesSelfAttn([f<i; fi,<j ]). In order to make self-attention in this phase
invariant to sequence order, we adopt a simple but novel inter-sequence relative positional encoding
scheme (Figure 1b): for gi,j the absolute position is j. Just as in the first phase, the absolute position
for tokens in the ith sequence gi is independent of the position i of the sequence in the sequence-of-
sequences. Thus, the positional information encoded by RoPE in this layer alone does not distinguish
between the positions of tokens in different sequences. For example, the relative position between the
first token of the first sequence f1,1 and the first token of the second sequence f2,1 is 0. The fact that
these two tokens come from two different sequences is encoded by the first phase, which operates on
the two sequences independently. This inter-sequence relative positional encoding scheme has two
useful properties:

1. it encodes the fact that amino acids at similar absolute positions in homologous proteins are
more likely to be drawn from the same distribution

2. it limits the maximum relative position encoding needed to the number of tokens in an
individual protein sequence2, rather than the number of tokens in a sequence-of-sequences,
allowing the model to generalize to longer sequences-of-sequences than seen during training

3.1.3 Decoded Probabilities

Lastly, the output from the last TieredTransformerDecoderLayer, gi,j , is decoded into token
probabilities by applying a linear transformation P (si,j |s<i, si,<j) = pi,j(si,j) = Linear(gi,j).
Here, pi,j is a vector of probabilities, one for each distinct token ∈ AA∪{START, STOP}, and pi,j(si,j)
is the probability of the token si,j according to pi,j .

3.2 Training Data

Models were trained on 29 million sets of homologous sequences. Each set corresponds to a sequence
in UniRef50 Version 2103, and contains all its homologs in UniRef50 found using Diamond [34].
We removed any sets with fewer than 10 homologs. To avoid overfitting on promiscuous sequences
which may belong to a large number of sets, we sample each set with weight inversely proportional
to the size of the set ("inverse count" sequence weighting). The order of sequences within a sequence-
of-sequences is randomized to promote order invariance. See Appendix B for more details.

4 Protein Variant Fitness Prediction

Protein variant fitness prediction is the task of assigning a score to each sequence in a set of variants
{v1, v2, ..., vn} of a target sequence t that accurately reflects the relative fitness of the variants. A
protein variant vi can be any sequence with a limited number of substitutions, insertions, and/or
deletions relative to the target t that the experimenter believes may have improved fitness. Fitness

2While the length of a protein is unbounded (but finite), in practice, the vast majority (> 99%) of proteins
are less than 1024 amino acids long [11].
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Figure 2: Illustration of evaluating PoET for variant fitness prediction on a DMS dataset

refers to the value of any property of a protein sequence related to function that the experimenter is
interested in optimizing e.g. thermostability, enzymatic activity, etc.

Benchmarking using deep mutational scans Deep mutational scanning (DMS) is a method for
measuring the fitness properties of thousands to millions of variants of a protein using next-generation
sequencing techniques [1]. Data from these experiments have been used to evaluate fitness prediction
methods. We evalaute PoET on ProteinGym [11], the largest collection of such data yet, containing
87 datasets with substitution variants and 7 datasets with indel variants. We use the same validation
set as Notin et al. [11] for tuning hyperparameters.

Fitness Prediction with PoET PoET predicts the fitness of a variant as the conditional log-
likelihood of the variant vi given a set of sequences S homologous to the target t:

F̂i(S = {s1, ..., sm}) = logP (vi|s1, s2, ..., sm) =

Li∑
j=1

logP (vi,j |s1, s2, ..., sm, vi,<j) (3)

The set S is retrieved by searching a large database of proteins such as UniRef100 [23] for sequences
homologous to t. The homologs form a diverse set of sequences that define the protein family of
interest. By conditioning on these sequences, PoET can infer evolutionary constraints on the protein
family to improve fitness prediction. The sequences are conditioned on in an arbitrary order. Figure 2
illustrates the evaluation of PoET for variant fitness prediction on one DMS dataset.

Based on validation set performance, we selected the best method for (1) retrieving homologous
sequences (Appendix C), (2) subsampling and filtering the homologous sequences to a reasonable
context length for efficient inference (Appendix D), and (3) ensembling conditional log-likelihoods
computed from different subsamples of homologous sequences. We present results with the best
settings in the main results (§5). Our final approach uses the ColabFold protocol [35] for retrieving ho-
mologs, and the final fitness prediction score is obtained by averaging the conditional log-likelihoods
across subsamples of the full set of retreived homologous sequences:

F̂ensemble,i(S) =
1

Nensemble

Nensemble∑
j=1

F̂i(Sj ⊂ S) (4)

The subsets Sj are drawn by sampling with sequence weights [17], maximum sequence identity to the
target t in {1.0, 0.95, 0.90, 0.70, 0.50}, and total tokens (i.e. context length) in {6144, 12288, 24576}.
All combinations of these parameters are used, for a total of Nensemble = 15.
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Table 1: Average Spearman correlation between model scores and experimental measurements
on ProteinGym by MSA depth, and # of parameters in language models. MSA depth measures
the amount of sequence information the MSA of the homologous sequences defining a protein family
contains about the target protein (Appendix E). N/A indicates not applicable, whereas a dash (-)
indicates applicable, but not computed.

Substitutions by MSA Depth

Model
Type Model name

#
Param Low Medium High All Indels

Align-
ment-
based

Site independent N/A 0.417 0.404 0.411 0.408 N/A
GEMME N/A 0.445 0.449 0.522 0.463 N/A
EVE (ensemble) N/A 0.414 0.441 0.498 0.448 N/A

Uncond-
itional
PLM

ESM-1v (ensemble) 3.25B 0.356 0.372 0.510 0.398 N/A
ProGen2 (ensemble) 10.8B 0.357 0.416 0.448 0.411 0.407
Tranception L (no retrieval) 700M 0.377 0.399 0.429 0.401 0.430

Cond-
itional

MSA Transformer (ens.) 100M 0.372 0.421 0.477 0.423 N/A
PoET (ensemble) 201M 0.476 0.466 0.542 0.484 0.510

Hybrid

Tranception L 700M 0.441 0.437 0.472 0.445 0.464
TranceptEVE M 300M - - - - 0.516
TranceptEVE L 700M 0.454 0.463 0.508 0.471 0.466

PoET (ensemble)
+ TranceptEVE L 901M 0.479 0.480 0.537 0.492 0.521

5 PoET achieves state-of-the-art performance in variant fitness prediction

We evaluate PoET’s ability to predict the relative fitness of protein variants by measuring the
average Spearman correlation ρ̄ between the predicted fitness and the measured fitness across the
DMS datasets in ProteinGym. We compare PoET to the best existing alignment-based models,
unconditional and conditional protein language models, and hybrid models that combine multiple
approaches (Results Summary: Table 1, Per Dataset: Figures S1, S2 ). A brief overview of the
baseline methods is provided in Appendix F. Statistical significance was assessed using a paired t-test.
For a fair comparison, we ran the relevant baselines with all homologous sequence retrieval methods
considered for use with PoET (Appendix C), and present the results for each baseline method paired
with its best retrieval method. We do not tune parameters for ensembling the same method with
different subsamples of the set of retrieved homologs (Equation 4) because these parameters need
to be considered and defined on a per method basis, and many baselines already have their own
ensembling strategy as defined by their authors [4, 12, 14].

5.1 Comparison to baselines

Substitutions Benchmark On the substitutions benchmark, PoET performs comparably to Tran-
ceptEVE L, the best performing baseline method (Table 1). PoET improves average Spearman
correlation ∆ρ̄ = 0.013, but the difference falls just short of statistical significance p = 0.05029.
Although the methods perform similarly, PoET offers a number of advantages. Inference with PoET
is substantially faster when considering on the order of tens to hundreds of thousands of variants
(Appendix J), which allows users to more quickly accomplish common tasks such as computing
the fitness of all single site substitutions. By avoiding the costly step of training a new model for
each protein family, users can more easily experiment with different ways of defining the protein
family. For example, users can retrieve the homologous sequences using different sequence search
programs and settings, and prior knowledge can be incorporated by selecting the subset of most
relevant homologous sequences e.g. sequences from the taxon of interest, or that are known to be
functional (Appendix K). Since PoET is able to generalize across protein families, whereas the EVE
component of TranceptEVE L cannot, it is less critical that the protein family of interest is defined by
a large number of homologous sequences (Appendix C).
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On the other hand, if one is willing to spend more time on inference and the protein family is well
defined a priori, better fitness predictions can be obtained by ensembling PoET with TranceptEVE L
(Results: Table 1, Methods: Appendix G). An ensemble of PoET with TranceptEVE L performs sig-
nificantly better than TranceptEVE L alone (∆ρ̄ = 0.021, p < 7e-6). The performance improvement
is consistent across subsets of the substitutions benchmark broken down by MSA depth (Table 1),
mutation depth (Appendix Table S2), and taxon (Appendix Table S3).

We also considered ensembles of PoET with other baselines methods (Appendix Table 7). The
ensemble of PoET with GEMME is also notable as it performs similarly to the ensemble with
TranceptEVE L on the substitutions benchmark, and requires very little additional time to compute;
GEMME is thousands of times faster than either PoET or TranceptEVE L [12]. The main disadvantage
is that GEMME is unable to score indels.

Indels Benchmark On the indels benchmark, the best performing baseline model is TranceptEVE M,
a variation of TranceptEVE L that uses a protein language model with fewer parameters (∆ρ̄ = 0.05).
PoET and the ensemble of PoET with TranceptEVE L both outperform TranceptEVE L (∆ρ̄ ∈
[0.044, 0.055]), and perform comparably to TranceptEVE M (∆ρ̄ ∈ [−0.006, 0.005]). However, no
differences between the aforementioned models are statistically significant. One advantage of PoET
is that it is able to not only score indels, but also generate sequences with indels (§6). It is also able
to score and generate insertions not present in the MSA.

5.2 Characterizing the PoET architecture

5.2.1 Training Distribution and Model Size

We train variations of PoET with different training distributions and model sizes and investigate their
effect on fitness prediction (Figure 3).

Context Length We trained 57M parameter versions of PoET for up to 3 days on 7 x A100 GPUs
with three context lengths: 4K, 8K, and 16K. Notably, these context lengths far exceed the 1K or 2K
context lengths typically used to train other protein and natural language models [5, 11, 24, 36, 37].
We reason that longer context lengths are needed for the model to observe a sufficient number of
homologs; even with a context length of 8K, for a sequence of length 500, which is the length of
the typical human protein in ProteinGym, the model would only observe ~16 of possibly thousands
of homologs. Interestingly, while a context length of 8K performs better than a context length of
4K, increasing the context length further to 16K had a neutral or negative effect on variant effect
prediction. It does improve perplexity of heldout sequences.

Sequence Set Weighting Next, we trained an 8K context length model using the naive strategy
of sampling UniRef50 sequence sets uniformly instead of using our “inverse count” strategy that
weights sequence sets based on their size (§3.2). We find that the "inverse count" sampling strategy
substantially outperforms the naive strategy. Other methods that also train on sequence sets like MSA
Transformer [24] may also benefit from this sampling strategy.

Model Size Lastly, using the optimal parameters found thus far, we trained 57M, 201M, and 604M
parameter models to explore the effect of model size. Models were trained until validation perfor-
mance plateaued. Increasing the model size to 201M parameters signficantly improves performance,
but increasing the size further to 604M appears to have a neutral effect. We chose the 201M version
as the standard PoET model.

5.2.2 Model Architecture

To determine the importance of using TieredTransformerDecoderLayers (§3.1.2) instead of
regular Transformer layers, we trained, on the same task, a regular 201M parameter RoPE-based
Transformer that ignores the sequence-of-sequences structure of the input. We compared the genera-
tive capabilities of PoET and the Transformer by measuring the perplexity at context lengths both
within and beyond the training the context length (Figure 4).

We trained both models with a context length of 8K for 500K steps. As expected based on previous
studies[38], the RoPE-based Transformer does not generalize to context lengths beyond the training
context length. In contrast, PoET generalizes to ~8x the training context length (61K), which is the
longest we tested. PoET also performs better on context lengths within the training context length,
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Figure 3: Performance of PoET on the ProteinGym validation set when trained with (left) various
training distributions and (right) model sizes.

Figure 4: Comparison of the perplexity of a regular Transformer and PoET when generating a protein
sequence conditioned on a fixed number of tokens from other sequences in the same protein family.
Protein families consist of UniRef50 sequences, and both models perform much better than a profile
HMM baseline (Appendix Figure 12).

but by a smaller margin. Next, we finetuned both models with 16K and 32K context lengths for
50K and 30K steps respectively. While the perplexity of the Transformer improved significantly
at the 16K and 32K context lengths, the Transformer still does not generalize to context lengths
beyond the training context length, and underperforms all variants of PoET at all context lengths. The
Transformer also underperforms PoET for variant fitness prediction (Appendix H).

6 PoET generates novel sequences that preserve structure within a protein
family

PoET’s state-of-the-art performance on variant fitness prediction demonstrates that it assigns higher
likelihood to regions of sequence space with high fitness variants. This suggests that PoET can be
used to directly generate high fitness variants belonging to a protein family by conditioning PoET on
sequences from the protein family and sampling from the resulting conditional distribution. Direct
generation of variants makes the exploration of higher order mutants computationally tractable as
sequence space grows exponentially large with number of mutations, making it impossible to explore
this space by scoring all such variants.

To evaluate PoET’s ability to generate sequences from specific protein families, we sampled 1,000
sequences each from PoET conditioned on homologs from two protein families, phage lysozymes
(PF00959) and chorismate mutases with activity in E. coli (Appendix K.2), and examined the
novelty of the generated sequences and their predicted structural conservation. Sequence novelty was
measured as the max sequence identity to any natural sequence (of the same protein family). Predicted
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Figure 5: Sequence novelty and predicted structural conservation of (A) functional chorismate
mutases generated by PoET and (B) phage lysozymes generated by PoET and ProGen. PoET
generates diverse sequences (50-100% seq id to a natural sequence) while preserving 3D structure
within the protein family (TM-score > 0.8 to a structure of a natural sequence and pLDDT > 90).

structural conservation was measured as the max TM-score between the predicted AlphaFold2 [39]
structure of the generated sequence and the solved structure of any natural sequence. For both protein
families, PoET generates high diversity sequences that are predicted with high confidence to be
structurally similar, supporting the quality of sequences generated by PoET (Figure 5).

Furthermore, when tasked to generate phage lysozymes, we find that sequences generated by PoET
are more diverse and better preserve structure at similar levels of sequence novelty than sequences
generated by ProGen [8] (Figure 5B), a 1.2B parameter model fine-tuned specifically for generating
phage lysozymes. As many sequences generated by ProGen have been experimentally confirmed to
be functional phage lysozymes, these results suggest that PoET generates functional sequences with
even greater diversity even without fine-tuning. Since fine-tuning ProGen is critical for achieving
good variant effect prediction [8], and a version of ProGen fine-tuned on chorismate mutases is not
available, we did not compare PoET and ProGen for generating novel chorismate mutases.

7 Conclusion

PoET is a Transformer-based autoregressive generative model of whole protein families. By framing
family generation as a sequence-of-sequences generation problem, we are able to train across tens
of millions of protein sequence clusters to encode fundamental rules of protein evolution into the
PoET model. This enables the model to generalize to protein families unseen during training
and extrapolate from small numbers of conditioned-upon sequences. The sequence-of-sequences
generative framework allows PoET to be used as a retrieval-augmented language model, generating
new sequences conditioned on a set of sequences representing the family or other properties of
interest. We demonstrate that PoET improves over other protein language models and evolutionary
sequence models for variant fitness prediction across a wide range of deep mutational scanning
datasets. PoET also enables efficient sequence generation and the generative distribution can be
controlled via conditioning. Phage lysozyme- and chorismate mutase-like sequences sampled from
PoET are novel and predicted to fold with high confidence. PoET can be backed by other sequence
databases and naturally improves as databases grow without the need for retraining. We anticipate
that PoET will become a fundamental component of ML-enabled protein design in the future.
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A Detailed description of TieredTransformerDecoderLayer

Algorithm 1 TieredTransformerDecoderLayer

Require: representations for a sequence of sequences hi,j ∈ Rd, i ∈ 1..N, j ∈ 1..Li

First, apply causal self-attention to each sequence individually
f ← LayerNorm(h)
qi,j ← RoPE(Linear(fi,j), j) ∀i, j
ki,j ← RoPE(Linear(fi,j), j) ∀i, j
v ← Linear(f)
fi ← fi + CausalAttention(qi, ki, vi) ∀i
Next, apply causal self-attention to all sequences together
gi,j ← fi,j ∀i, j
g ← LayerNorm(g)
qi,j ← RoPE(Linear(gi,j), j) ∀i, j
ki,j ← RoPE(Linear(gi,j), j) ∀i, j
v ← Linear(g)
g ← g + CausalAttention(q, k, v)
Finally, the feedforward layer
g′ ← LayerNorm(g)
h′ ← GELU(Linear(g′)), h′ ∈ R4d

g′ ← g + Linear(h′)
output g′ ∈ Rd

B Additional Training Details

B.1 Data

To find homologs in UniRef50 using Diamond, we used the following command, which defines an
all-against-all search:

diamond blastp -q uniref50.fasta -d diamond/uniref50 -f 6 –header -k 200000
–max-hsps 1 -e 0.001 -p 96 -o output.tab

The command returns, for each sequence in UniRef50, a set containing all its putative homologs in
UniRef50. We call each such set a “Diamond-UniRef50 Cluster”. Diamond was used over other
homology search tools due to its high performance (>100x speed of BLAST).

To form a training example, sequences are sampled without replacement from a “Diamond-UniRef50
Cluster” until the total number of tokens reaches a predetermined limit, and then concatenated to form
a sequence-of-sequences. Each sampled UniRef50 sequence is replaced with a UniRef100 sequence
by sampling a random UniRef100 sequence from the same UniRef50 cluster as the UniRef50
sequence being replaced. The UniRef100 sequences are randomly sampled with weight inversely
proportional to the size of the UniRef90 clusters they belong to. Each UniRef100 sequence is sampled
at most once in each sequence-of-sequences.

As a final data augmentation, the order of the tokens in a sequence-of-sequences is reversed with
probability 50% (i.e. all sequences in a sequence-of-sequences are ordered from either N-terminus to
C-terminus only or C-terminus to N-terminus only). This augmentation has been shown to improve
the performance of other protein language models [11] .

Following this sampling procedure, the order of sequences in a sequence-of-sequneces is random,
which promotes order invariance. To evaluate the sensitivity of PoET to the order of sequences, we
compare heldout sequence perplexities after conditioning on 10 sequences ordered either 1) randomly
as described above, 2) shortest-to-longest, or 3) longest-to-shortest. We also compare the full joint
log likelihoods of these sequences of 10 sequences with the same orderings (Table 2).

We find that sequence ordering has little-to-no effect on next sequence perplexity and joint log
likelihoods. Ordering sequences shortest-to-longest changes next sequence perplexity by only
0.00753 on average and has a relative difference of < 0.5% from random for both next sequence
perplexity and joint log likelihood.
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Table 2: Comparison of (a) next sequence perplexities and (b) joint log likelihoods
log p(s1, s2, . . . , sn), of sequences of 10 sequences with different orderings from heldout Uniref50
sequence clusters. We report mean perplexity and joint log likelihood as well as mean difference
from random and relative difference from random for shortest-to-longest and longest-to-shortest
orderings with the standard deviation across clusters in parenthesis. Relative difference is calculated
as (a− r)/r where a is the ordered value and r is the value with random ordering.

(a) Perplexity of Next Sequence N=9184

Sequence Order Mean
Perplexity

Mean Difference
from Random

Mean Relative Difference
from Random

Random 7.44075 - -
Shortest-to-Longest 7.44828 +0.00753 (0.07686) +0.00109 (0.01033)
Longest-to-Shortest 7.44410 +0.00336 (0.07608) +0.00055 (0.01030)

(b) Joint Log Likelihood N=9184

Sequence Order Mean Joint
Log Likelihood

Mean Difference
from Random

Mean Relative Difference
from Random

Random -8099.74973 - -
Shortest-to-Longest -8123.18167 -23.43149 (55.76313) -0.00335 (0.00838)
Longest-to-Shortest -8091.89462 +7.85511 (52.92428) +0.00105 (0.00746)

B.2 Optimizer and learning rate

We used the AdaFactor optimizer [40] with initial learning rate 1e-2, square root learning rate decay,
and otherwise default parameters.

B.3 Hyperparameters

Hyperparameters for PoET variations used in ablation experiments (§5.2.1) are summarized in Table
3.

Table 3: Hyperparameters for PoET models of different sizes.

# Parameters NLayers Hidden Dim NHead Batch Size (# Tokens)

57M 6 768 12 500k
201M 12 1024 16 250k
604M 16 1536 24 250k

C Homologous Sequence Retrieval Methods

We experimented with two methods for retrieving homologous sequences from UniRef100, JackHM-
Mer [41] and MMseqs2 [42]. Both programs return an MSA of homologs. For JackHMMer, we used
the MSAs provided by ProteinGym [11], which were constructed from UniRef100 Version 2104. For
MMseqs2, we used the protocol defined by ColabFold [35], and retrieved homologs from UniRef100
Version 2202. The main advantage of the ColabFold protocol is that it is substantially faster than
the ProteinGym protocol (minutes vs up to hours), whereas the ProteinGym protocol may be more
sensitive.

We evaluated all relevant baselines and PoET with homologs retrieved by both protocols (Table 4).
Note that in the main result table (Table 1), we report the results of each method with the best protocol
based on validation set performance. We replicate the findings of Laine et al. [12], who show that
GEMME performs similarly with both protocols, and also find that most models perform similarly
regardless of the protocol. The notable exception is EVE, which performs significantly worse. This is
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Figure 6: Redundancy, as measured by N/Neff, of homologous sequence sets retrieved by the
ProteinGym and ColabFold retrieval methods for target proteins in ProteinGym.

most likely because the MSAs returned by the ColabFold protocol are substantially less redundant
(Figure 6). Thus they do not contain enough sequences to properly train EVE models, which are
trained from scratch for each protein family and can contain millions of parameters. Removing
redundancy filters in the protocol could improve results for EVE; we leave this to further research.

Given the poor performance of EVE with the ColabFold protocol, we did not also evaluate the EVE
ensemble or TranceptEVE M/L with ColabFold, presuming that the performance of both would also
be worse with ColabFold because they both depend on EVE. Furthermore, we did not evaluate the
performance of Tranception with ColabFold because Tranception relies on homologs via the site
independent model, which performs similarly with both protocols.

Table 4: Average Spearman correlation on ProteinGym subsets of baseline models and PoET using
different methods for retrieving homologs.

Model
Retrieval
Method Val Subst.

Site
independent

ProteinGym 0.386 0.408
ColabFold 0.371 0.404

GEMME ProteinGym 0.416 0.457
ColabFold 0.418 0.463

EVE ProteinGym 0.423 0.443
ColabFold 0.268 0.342

MSA Trans-
former (ens.)

ProteinGym 0.427 0.431
ColabFold 0.440 0.423

PoET
(ens.)

ProteinGym 0.463 0.474
ColabFold 0.481 0.484

D Subsampling and Filtering of Retrieved Homologous Sequences

Even with their high sensitivity and specificity, homologous sequence retrieval methods are imperfect,
and inevitably run into at least the following issues:
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1. some sequences will be retrieved that do not share function with the target sequence, either
due to false positives (i.e. sequences found that do not in fact share common ancestry), or
because sequences have diverged in function despite their common ancestry [43]

2. the set of sequences retrieved will be biased towards those that have been chosen to be
sequenced by humans, or by natural processes that may not reflect relative fitness [17]

To resolve the second issue, we adopt the sequence weighting scheme used by Hopf et al. [17], which
has been shown to work well in many previous studies [4, 11, 13, 40]. The weighting scheme is
detailed in Appendix D.5.

To address the first issue, existing methods have used sequence identity as a simple heuristic for
filtering out irrelevant or misleading sequences. Laine et al. [12] apply a max dissimilarity filter of
0.8 sequence identity to remove sequences that are less likely to be homologous, and a max similarity
filter of 0.98 sequence identity to remove sequences that are redundant with the target. Meier et al. [4]
explore using a variety of max similarity filter thresholds and find that a threshold of 0.9 or 0.75 tends
to be optimal, depending on the target. Both Laine et al. [12] and Meier et al. [4] also limit the total
number of sequences in a subsample, which helps to limit the computational cost of inference, and
ensemble the results from applying their model to multiple subsamples to obtain better predictions.

To determine the best way to subsample and filter homologous sequences for PoET, we evaluate the
performance of the model on the ProteinGym validation set with (1) various max dissimilarity and
(2) similarity thresholds for filtering, and (3) various context lengths (i.e. total number of tokens used
to compute the conditional log-likelihood (Equation 3), including the tokens of the variant sequence
being scored) for limiting the computational cost of inference.

D.1 Maximum Sequence Dissimilarity

First, we explored the impact of the maximum sequence dissmilarity threshold. We evaluate PoET
with (1) homologous sequences retrieved using either the ProteinGym or the ColabFold protocol, (2)
a context length of 8192, and (3) various max sequence dissimilarity thresholds (Figure 7). When
retrieving homologous sequences using the ProteinGym protocol, a threshold of 0.7 is optimal for
both the validation and substitution benchmarks, and is significantly better than no filtering i.e. using
a threshold of 1.0 (substitutions benchmark: ∆ρ̄ = 0.024, p < 0.01). Interestingly, filtering was
particularly helpful for prokaryotic datasets, suggesting that the ProteinGym protocol may be prone
to finding false positives in this taxon. In contrast, for the ColabFold protocol, no filtering based on
max dissimilarity is necessary; there is essentially no difference in performance when filtering with a
threshold of 0.7.

D.2 Maximum Sequence Similarity and Context Length

Next, using the optimal maximum sequence dissimilarity thresholds, we evaluated PoET while
jointly varying the max similarity threshold ∈ {1.0, 0.95, 0.90, 0.70, 0.50} and context length ∈
{6144, 12288, 24576} (Figure 8). When averaged across datasets, we found that PoET generally
performed better when some sequences are filtered i.e. max similarity threshold < 1.0, and with
smaller context lengths (6144 or 12288). However, when looking at individual datasets (Figure 9),
we find a wide variety of behaviors. On some datasets, increasing the context length consistently
improves performance across max similarity thresholds and the optimal max similarity threshold
is 1.0 (no filtering), whereas for others the opposite is true, and yet for others the behavior lies
somewhere in between.

From these observations, we draw two main conclusions. First, although the average performance is
lower at higher context lengths, the ability of PoET to improve in performance with increased context
length on some datasets suggests that PoET is able to generalize to context lengths much longer than
the training context length, and that decreased average performance at higher context lengths may
be due to factors other than the model’s ability to handle long context lengths. Weinstein et al. [44]
suggest that optimal modeling of the sequences in an observed protein family may be detrimental to
protein fitness prediction due to biases in the sequences we observe. Consequently, protein fitness
prediction based on evolutionary models perform better when they do not or cannot model the family
exactly e.g. via model misspecification. In the context of PoET then, limiting the max sequence
similarity and context length when sampling sequences from the full set of retrieved homologs may
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(a) Performance using ProteinGym protocol for retrieving homologous sequences

(b) Performance using ColabFold protocol for retrieving homologous sequences

Figure 7: Optimal threshold for filtering homologous sequences by max dissimilarity to target
sequence differs depending on retrieval method Left: performance as a function of max dissim-
ilarity threshold when using the ProteinGym protocol (top) and the ColabFold protocol (bottom).
For ProteinGym, a threshold of 0.7 is optimal and significantly better than no filtering i.e. using a
threshold of 1.0 (paired t-test on full substitutions benchmark: p < 0.01, effect size: ∆ρ̄ = 0.024).
For ColabFold, no filtering is necessary and there is no essentially no difference in performance
when filtering with a threshold of 0.7. Right: comparison of Spearman correlations on datasets when
filtering homologous sequences to 0.7 max dissimilarity vs not filtering, broken down by taxon. For
ProteinGym (top), filtering improves performance particularly on Prokaryotic datasets, whereas for
ColabFold (bottom), there is no clear pattern.

help avoid some of these biases while still providing the model information about the specific protein
family of interest. Second, the large variance in the optimal max similarity threshold and context
length on a per dataset level suggests that better sampling approaches, possibly dataset specific, may
be an avenue for further improving protein fitness prediction.

D.3 Ensemble over subsamples

Given the variance in best max sequence similarity and context length parameters on the validation
datasets, we explored ensembling (Equation 4) over subsamples where the subsamples are drawn
with different values for max similarity and context length. Table 5 compares (1) not ensembling, (2)
ensembling with Nensemble = 15 subsamples where the max sequence similarity and context length
parameters are fixed to the best values on the validation set (Figure 8), and (3) ensembling subsamples
with varied parameters (max similarity threshold ∈ {1.0, 0.95, 0.90, 0.70, 0.50} and context length
∈ {6144, 12288, 24576}; 15 combinations in total). On the validation and substitutions benchmarks,
we find that both types of ensembling improve performance. On the validation benchmark, the two
ensembling methods perform similarly; fixed has a slight edge when using the ProteinGym protocol
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(a) Performance using ProteinGym protocol for retrieving homologous sequences

(b) Performance using ColabFold protocol for retrieving homologous sequences

Figure 8: Averaged across datasets, PoET performs best with some filtering based on max
similarity and at moderate context lengths. Each line plot shows the performance of PoET on
ProteinGym as the max similarity threshold and context length is varied. Left: Performance on the
validation set. Right: Performance on the full substitutions benchmark.

Table 5: Average Spearman correlation between model scores and experimental measurements on
ProteinGym for PoET when the homologous sequence subsampling parameters are fixed or varied
across the ensemble, broken down by retrieval and sampling methods.

Retrieval Method Max Similarity and Context Length Parameters Val Substitutions Indels

ProteinGym
Fixed (no ensemble) 0.442 0.445 0.474
Fixed (15x ensemble) 0.464 0.467 0.521

Varied (15 combinations) 0.463 0.474 0.498

ColabFold
Fixed (no ensemble) 0.451 0.445 0.485
Fixed (15x ensemble) 0.478 0.469 0.512

Varied (15 combinations) 0.481 0.484 0.510

for retrieving homologs, and varied has a slight edge when using the ColabFold protocol. On the full
substitutions benchmark, the varied method consistently performs better, and by a larger margin; this
result may be less biased than the validation benchmark result because the parameters for the fixed
method are tuned on the validation benchmark.

D.4 Summary

Based on validation benchmark performance of the PoET variants explored in the above sections, for
our final PoET model, we choose the following parameters

21



Figure 9: Optimal max similarity threshold and context length varies across ProteinGym
datasets. Each line plot shows the performance on a validation dataset as the max similarity threshold
and context length is varied. Datasets are grouped based on the effect of increasing context length for
that dataset. A: Datasets for which increasing the context length tends to improve performance. B:
Datasets for which increasing the context length tends to have a neutral effect on performance. C:
Datasets for which increasing the context length tends to have a negative effect on performance.
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1. Retrieve homologous sequences using the ColabFold protocol
2. Do not filter homologous sequences by max dissimilarity when subsampling the set of

homologous sequences
3. Ensemble the predictions of PoET across subsamples of the full set of homologous se-

quences with max similarity thresholds ∈ {1.0, 0.95, 0.90, 0.70, 0.50} and context lengths
∈ {6144, 12288, 24576} (15 combinations total)

D.5 Sequence Weighting During Homologous Sequence Sampling

We sampled homologous sequences using the sequence weighting scheme described in Hopf et al. [17].
Specifically, sequences are sampled from a probability distribution where a sequence’s probability is
inversely proportional to its number of neighbors in the MSA of the homologous sequences. A target
sequence is considered a neighbor of a query sequence if the sequence identity to the query is greater
than 0.8. The sequence identity is computed based on the alignment in the MSA, and gaps in the
query sequence are ignored.

D.6 Full length sequences vs aligned fragments

In the subsampling and filtering of homologous sequences experiments above, we condition on only
the amino acids in the homologous sequences that are aligned to a position of the target sequence in
the MSA of the homologous sequences i.e. a sequence in a subset Sj (Equation 4) may not be the
full length sequence as recorded in UniRef100, rather it is potentially a non-contiguous subsequence
of the UniRef100 sequence. We find that using only these “aligned fragments” performs similarly
to using the full length sequences (Table 6), and use the former over the latter as the former can be
derived directly from the MSA.

Table 6: Average Spearman’s rank correlation on the validation and substitutions benchmarks using
full length sequences vs aligned fragments sampled from MSAs of homologous sequences generated
by the ColabFold protocol.

Method Val Substitutions

Full Length Sequences 0.464 0.474
Aligned Fragments 0.466 0.479

E MSA Depth

MSA depth measures the amount of sequence information the MSA contains about the target protein.
We use the same definition and low/medium/high categorization as Notin et al. [11]. At a high
level, the MSA depth Neff/L is computed as the number of non-redundant sequences Neff (at 0.8
sequence identity for non-viral proteins, and at 0.99 sequence identity for viral proteins) divided
by the sequence length L. The MSA depth categories thresholds are - Low: Neff/L < 1; Medium:
1 < Neff/L < 100; High: Neff/L < 100.

Although the MSA depth changes based on the method used to retrieve homologous sequences, we
categorize proteins/datasets using the ProteinGym MSAs (1) in order to maintain consistency with
the categorizations in the ProteinGym benchmark, which allows for easier comparison with existing
work, and (2) because the MSA depth is highly correlated between the retrieval methods considered
in this paper (Figure 10).

F Protein Variant Fitness Prediction Baselines

F.1 Overview of Baselines

We compare PoET to the following baseline models for protein variant fitness prediction, which
includes the best existing alignment-based models, unconditional and conditional protein language
models, and hybrid models that combine multiple approaches models:
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Figure 10: Comparison of MSA depth (Neff) of MSAs of homologous sequences retrieved by the
ProteinGym and ColabFold protocols for target proteins in ProteinGym (ρ = 0.4, p < 0.001, n = 72).

F.1.1 Alignment-based Models

Alignment-based models first compute a MSA of homologous sequences of a given protein family,
and compute sequence likelihoods based on MSA statistics or models trained on the MSA.

Site Independent Model The simplest alignment-based model; sequence likelihoods are computed
from the frequency of amino acids at each position of the MSA, considered independently from other
positions of the MSA.

GEMME [12] is a fast, scalable, and simple algorithm for predicting variant effect that models the
interpendencies between different positions in the MSA by considering the evolutionary tree relating
the sequences in the MSA. It is among the best performing baseline models while also requiring
substantially less compute than comparably performing alternatives, but it cannot score indels.

EVE [13] (ensemble) is an ensemble of five Bayesian variational autoencoder trained on the MSA.

F.1.2 Unconditional PLMs

Unconditional PLMs are large language models trained on protein databases spanning many protein
families e.g. UniRef [23], using either the causal or masked language modeling objective.

ESM-1v [4] (ensemble) is an ensemble of five 650M parameter Transformer-based masked lan-
guage models trained on UniRef90.

ProGen2 [5] (ensemble) is an ensemble of five Transformer-based causal language models ranging
between 150M and 6.4B parameters and trained on UniRef90 and BFD [45].

Tranception L (no retrieval) [11] is a 700M parameter Transformer-based causal language model
trained on UniRef100.

F.1.3 Conditional PLMs

Conditional PLMs are large language models trained on sets of homologous protein sequences
spanning many protein families.

MSA Transformer [24] (ensemble) is a 100M parameter masked language model trained on
MSAs of all UniRef50 sequences. MSAs are generated using HHblits [46].
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F.1.4 Hybrid

Hybrid models combine predictions from different types of models.

Tranception L [11] combines predictions from Tranception L (no retrieval) and a site independent
model in a manner that allows novel indels to be scored by aligning the sequence to be scored to the
MSA used by the site independent model.

TranceptEVE [14] combines predictions from Tranception and EVE in a manner that allows novel
indels to be scored by using EVE to “define a family-specific prior distribution over amino acids
at each sequence position that is independent from the particular protein sequence”. It is the best
performing baseline method.

F.2 Methodology

We run all baselines using the same methodology as Notin et al. [11, 14], with two exceptions:

1. Homologous Sequence Retrieval Method We explored using two methods, the Prote-
inGym and ColabFold protocols, for retrieving the homologous sequences used by baselines
(Appendix C, Table 4), and compare all methods using the best homologous sequence
retrieval method (Table 1).

2. Site Independent Model We present results for the site independent model using sequence
weighting (Appendix D.5) and filtering sequences with more than 0.8 (in terms of sequence
identity) dissimilarity to the target sequence. These are common preprocessing steps used to
improve the performance of other models for protein variant fitness prediction (Appendix
D), and are the same parameters used to define the retrieval-based site independent prior
in Tranception [11] and TranceptEVE [14]. We believe that this variation of the site
independent model better reflects the model class’s ability to predict protein variant fitness.

G Ensembling PoET with Baseline Methods for Protein Variant Fitness
Prediction

To ensemble PoET with a baseline method for protein variant fitness prediction, we compute a
weighted sum of the score predicted by PoET and by the baseline method i.e.

F̂PoET+Baseline,i = F̂PoET,i + α× F̂Baseline,i (5)

where F̂Baseline,i is the score predicted by the baseline method, F̂PoET,i is the score predicted by PoET,
and F̂PoET+Baseline,i is the ensemble prediction score.

The weight α is determined by optimizing performance over the ProteinGym validation set using
ternary search over the range [1e-3, 1e4].
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Table 7: Average Spearman correlation between model scores and experimental measure-
ments on ProteinGym for various ensembles of PoET and baseline methods. Performance of
TranceptEVE L, the best baseline method, and PoET alone are also shown for reference.

Model A Model B Val Substitutions Indels

TranceptEVE L N/A 0.470 0.471 0.466
PoET (ens., ProteinGym Protocol) N/A 0.463 0.474 0.498
PoET (ens., ColabFold Protocol) N/A 0.481 0.484 0.510

PoET (ens., ProteinGym Protocol)

GEMME 0.477 0.488 N/A
EVE (ens.) 0.485 0.487 N/A
Tranception L (no retrieval) 0.471 0.473 0.512
MSA Transformer (ens.) 0.476 0.472 N/A
Tranception L 0.480 0.475 0.510
TranceptEVE L 0.488 0.486 0.504

PoET (ens., ColabFold Protocol)

GEMME 0.487 0.496 N/A
EVE (ens.) 0.495 0.493 N/A
Tranception L (no retrieval) 0.485 0.484 0.525
MSA Transformer (ens.) 0.487 0.484 N/A
Tranception L 0.489 0.483 0.525
TranceptEVE L 0.494 0.492 0.521
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H Effect of Architecture on Protein Variant Fitness Prediction

Figure 11 compares the performance of the regular RoPe-based Transformer and PoET on the
ProteinGym validation benchmark. We use homologous sequences retrieved using the ColabFold
protocol, and explore various max similarity thresholds and context lengths as in Appendix D.2.
PoET consistently outperforms the Transformer. It also extrapolates to context lengths longer than
the training context length (8K), whereas the Transformer does not.

(a) Performance using regular Transformer. (b) Performance using PoET.

Figure 11: Performance of regular RoPE-based Transformer and PoET on ProteinGym validation
benchmark with homologous sequences retrieved using the ColabFold protocol and various max
similarity thresholds and context lengths.

I Comparison of Models for Generating Sequences From a Protein Family

To benchmark PoET’s ability to generate sequences from a protein family, we evaluated the mean
perplexity of a protein sequence conditioned on a fixed number of tokens from other sequences in
the same protein family across all “Diamond-UniRef50 clusters” (Appendix B) in the validation
set. PoET significantly outperforms two baseline models, a profile HMM and a regular Transformer
(Figure 12).

Figure 12: Comparison of the perplexity of a profile HMM, regular Transformer trained with
8K context length, and PoET trained with 8K context length when generating a protein sequence
conditioned on a fixed number of tokens from other sequences in the same protein family. Protein
families consist of UniRef50 sequences. The profile HMM is trained on MSAs inferred using mafft
[47].

PoET effectively models indel rich protein families The UniRef50 clusters in the validation set
for perplexity evaluation are highly indel rich. An alignment for an exemplar cluster shows that there
are large insertions and high diversity between sequences (Figure 13a). A histogram of the columns
by percent gap shows that highly gappy columns are the most common (Figure 13b, left). Across
all of the validation clusters (Figure 13b, right), this trend remains true, with alignments becoming
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more indel rich when more sequences (longer context lengths) are considered. PoET achieves low
perplexities on these heldout sequences, showing that it is a good generative model of indel rich
families.

(a) Typical example of a MSA of a UniRef50 cluster. Bar plot above the MSA shows the percentage
of gaps in each corresponding MSA column.

(b) (Left) Distribution of percentage of gaps in MSA columns for the example MSA above. (Right)
Same distribution for all MSAs of UniRef50 clusters in the validation set with <4096 tokens (top)
and <61440 tokens (bottom). Larger MSAs have more novel indels.

Figure 13: MSAs of UniRef50 protein clusters reveal that these families contain many novel
indels

J Inference Speed of PoET vs TranceptEVE L

In the section, we compare the time it takes for PoET and TranceptEVE to predict the fitness of a
set of protein variants on A100 GPUs. We begin by outlining the major steps required to perform
inference for each method. For PoET, there are two main steps:

1. Retrieve homologs of the target protein using the ColabFold protocol
2. Compute the conditional log-likelihood of each variant given subsamples of the homologs.

Do this for 15 subsamples and ensemble the results.

For TranceptEVE, there are five main steps:

1. Retrieve an MSA of homologs of the target protein using the ProteinGym protocol
2. Use the MSA to compute the site independent log prior
3. Train 5 EVE models on the MSA
4. Use the 5 EVE models to compute the EVE log prior
5. Compute the likelihood of each variant by combining scores from the Tranception protein

language model, the site independent log prior, and the EVE log prior

Since TranceptEVE requires training new models and PoET does not, PoET can score many variants
before TranceptEVE even finishes training. For simplicity of analysis, we establish a lower bound
on the number of variants that can be scored by PoET before a single variant can be scored by
TranceptEVE by computing the number of variants that can be scored by PoET in the time it takes to
train one of the EVE models required for TranceptEVE. The homolog retrieval time is irrelevant for
this analysis since both methods require a homolog retrieval step, although we note that the ColabFold
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protocol used to retrieve homologs by PoET is substantially faster than the ProteinGym protocol used
by TranceptEVE.

We find that independent of sequence length, on a single A100 GPU, PoET is able to score approxi-
mately 50,000 variants in the time it takes to train one EVE model. Furthermore, since variant scoring
with PoET can be parallelized whereas training an EVE model cannot, inference with PoET can be
sped up further by a factor of the number of A100 GPUs available. This allows up to hundreds of
thousands of variants to be scored by PoET with a reasonable amount of compute before TranceptEVE
is able to score a single variant.

K Function-specific variant fitness prediction and sequence generation via
prompt engineering

K.1 Function-specific variant fitness prediction

Thus far, we have evaluated the ability of PoET to predict the “general” fitness of a protein variant,
where “general” fitness can refer to any property that is related to the function of the protein. But
in practice, we are generally interested in optimizing specific properties of a protein. Since many
properties of interest are correlated and together contribute to the general fitness of a protein (e.g.
a more thermostable variant is also more likely to have higher expression or enzyme activity),
optimizing general fitness is likely to optimize the true properties of interest, albeit indirectly. PoET
is a useful tool for protein engineering because it is able to successfully predict general fitness by
conditioning on and inferring evolutionary constraints from a diverse set of homologs of the target
protein. This raises a natural question - can PoET be used to optimize specific properties of interest
by conditioning on only the subset of relevant homologs that are known to or are predicted to display
the specific properties of interest? It is difficult to answer this question in its full generality, since the
process of selecting the subset of relevant homologs must be tailored to the specific target protein of
interest, and there is an inevitable trade-off between learning from a smaller set of homologs that are
more relevant, and a larger set of homologs from which there is more data to learn.

As a proof of concept, we demonstrate that PoET is able to learn function-specific evolutionary
constraints for the target protein and property of interest in the chorismate mutase indels dataset
[9] from ProteinGym. The dataset contains measurements of the catalytic activity, in E. coli, of
1130 natural chorismate mutase sequences, and 1618 designed chorismate mutase variants. The
natural sequences are comprised of the target protein, a chorismate mutase found in E. coli, and
homologs of the target protein found using the PSI-BLAST program for sequence search. The
designed variants were selected by Monte Carlo sampling from a Potts model trained on an MSA of
the natural sequences. This data presents an ideal scenario for selecting the subset of most relevant
homologs; we can simply select the subset of natural homologs that are measured to be functional.
In the absence of such data, we could instead use predictions from another model, or other relevant
known attributes of the sequences e.g. if we would like to optimize for activity at high temperatures,
we may select only the homologs from thermophiles.

On the chorismate mutase dataset, we find that the catalytic activity of designed chorismate mutase
variants is better predicted when PoET is conditioned on only the subset of functional natural
sequences rather than all natural sequences (∆ρ = 0.2, Figures 14b, 14d). In fact, PoET conditoned
on functional natural sequences even outperforms fully supervised methods, including a Gaussian
process trained on mean embeddings from a BERT-like protein masked language model (∆ρ = 0.06,
Table 8). Such embeddings have been shown to be highly predictive of a variety of protein properties
[20, 48, 49] and provide a strong baseline. These fully supervised methods are trained on more data
than PoET because they train on the measured catalytic activities of all the natural sequences, whereas
PoET is simply conditioned on positively labeled natural sequences and does not have access to the
measured activities. This enables PoET to be used with assays that only measure binary endpoints
rather than continuous values.
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Table 8: Spearman correlation between measured and predicted fitness of designed chorismate mutase
variants.

Method Spearman Correlation

Ridge regression trained on one hot encodings 0.45173
Gaussian process trained on mean embeddings
from a BERT-like masked protein language model

0.53658

PoET conditoned on functional natural sequences 0.56772
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(a) Predicted fitness using Potts model trained on natural sequences from Russ et al. [9].

(b) Predicted fitness using PoET conditioned on natural sequences. Natural sequences were retrieved
using PSI-BLAST to search for homologs of the target protein [9].

(c) Predicted fitness using PoET conditioned on homologs of the target protein retrieved by the
ColabFold protocol.

(d) Predicted fitness using PoET conditoned on functional natural sequences. Natural sequences with
measured fitness >0.42 are considered functional by Russ et al. [9].

Figure 14: Measured fitness vs predicted fitness of (left) natural and (right) designed chorismate
mutase enzymes from Russ et al. [9].
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K.2 Function-specific sequence generation

Conditioned on the functional natural sequences, we used PoET to generate 1000 novel putative
chorismate mutases using nucleus sampling [50] with p = 0.9.

Figure 17 visualizes the sequence space spanned by natural chorismate mutases, chorismate mutases
functional in E. coli, and sequences sampled from PoET when conditioned on the latter sequences.
We find that the sequences sampled from PoET are concentrated in clusters around the known
functional sequences, suggesting that the generated sequences sample from the functional subspace.
The generated sequences are highly diverse and not simply a recapitulation of the natural sequences;
the maximum sequence identity to any natural sequence is between 0.4 and 1.0, with a mode around
0.55 (Figure 15a). Nevertheless, the entropy at each position of an MSA of the functional natural
sequences and an MSA of the generated sequence are closely matched (Figure 15b), indicating that
the generated sequences reflect at least the first order evolutionary constraints of functional chorismate
mutases.

High confidence (pLDDT>90) AlphaFold2 [35] predicted structures of generated sequences aligned
to the experimentally solved structure of the target chorismate mutase (PDB: 1ECM) show that
structure is preserved despite significant divergences in sequence identity; two examples are shown in
Figure 16 and the full distributions of pLDDTs and TM-scores are shown in Figure 5A.

(a) Distribution of max seq id between gener-
ated and natural sequences

(b) Per position entropy of natural and gener-
ated sequences

Figure 15: Statistics of natural and generated sequences.

L Sampling methods for sequence generation experiments

When sampling sequences from PoET, we used nucleus sampling [50] with p = 0.90. When sampling
sequences from ProGen, we tried nucleus sampling with p ∈ {0.25, 0.50, 0.75}, which are the three
sampling strategies used by the authors of ProGen for lysozyme sequence generation. We found
that when p < 0.75, the resulting libraries had low diversity (> 50% of generated sequences were
duplicates). Therefore, we only present results with p = 0.75; under this setting, almost all generated
sequences were unique.

M Limitations

Orphan Proteins While ProteinGym includes DMS data on some proteins with low MSA depth,
it does not include any orphan proteins that have no homologs. Simulating orphan proteins by
e.g. removing all homologs from the training set is computationally intractable as it would require
retraining large models and may be sensitive to homology search parameters. As a result, our
experiments are inconclusive with respect to orphan proteins.

Exhaustive scoring of all high order mutants Some methods such as GEMME can achieve
similar albiet lower performance than PoET with substantially lower compute. However, no method
is efficient enough to exhaustively score all variants with more than a couple of mutations. For
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(a) Structure alignment with the
highest scoring (according to
PoET) generated sequence with
maximum sequence identity of
0.8 to a natural sequence.

(b) Structure alignment with the
highest scoring (according to
PoET) generated sequence with
maximum sequence identity of
0.5 to a natural sequence.

Figure 16: AlphaFold2 predicted structures of generated sequences aligned to the target chorismate
mutase (PDB: 1ECM). Both alignments have RMSD ≤ 1.02 and TM Score ≥ 0.9.

exploring the space of higher order mutants, direct generation is far more effective, and is enabled by
PoET via sampling.

Limited compute for ablation studies Our ability to conduct ablations is ultimately constrained
by compute resources. Ablation models were trained until validation set performance plateaued, but
further training may have changed the results.
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Figure 17: UMAP of natural chorismate mutases (blue), chorismate mutases functional in E. coli
(orange), and sequences sampled from PoET when conditioned on the latter sequences (green).
Sequences are compared using the Hamming distance metric.
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N Supplementary Tables

Table S1: Average Spearman correlation between model scores and experimental measurements
on ProteinGym by MSA depth. This is an extended version of the main result table (Table 1) that
includes performance on the validation benchmark.

Substitutions by MSA Depth

Model type Model name Val Low Medium High All Indels

Alignment-
based
model

Site independent 0.386 0.417 0.404 0.411 0.408 N/A
GEMME 0.418 0.445 0.449 0.522 0.463 N/A
EVE (ens.) 0.435 0.414 0.441 0.498 0.448 N/A

Uncond-
itional
PLM

ESM-1v (ens.) 0.355 0.356 0.372 0.510 0.398 N/A
ProGen2 (ens.) 0.397 0.357 0.416 0.448 0.411 0.407
Tranception L (no retrieval) 0.396 0.377 0.399 0.429 0.401 0.430

Cond-
itional

MSA Transformer (ens.) 0.440 0.372 0.421 0.477 0.423 N/A
PoET 0.481 0.476 0.466 0.542 0.484 0.510

Hybrid

Tranception L 0.447 0.441 0.437 0.472 0.445 0.464
TranceptEVE M - - - - - 0.516
TranceptEVE L 0.470 0.454 0.463 0.508 0.471 0.466

PoET
+TranceptEVE L 0.494 0.479 0.480 0.537 0.492 0.521

Table S2: Average Spearman correlation between model scores and experimental measurements
on ProteinGym by mutation depth. Mutation depth is the number of substitutions a variant sequence
has compared to the target sequence. Bolded values indicate the highest value in each column, with
values above and below the double-line considered separately.

Substitutions by Mutation Depth

Model type Model name Val 1 2 3 4 5+ All

Alignment-
based
model

Site independent 0.386 0.408 0.325 0.306 0.316 0.409 0.408
GEMME 0.418 0.459 0.412 0.394 0.353 0.440 0.463
EVE (ens.) 0.435 0.449 0.409 0.405 0.351 0.429 0.448

Uncond-
itional
PLM

ESM-1v (ens.) 0.355 0.396 0.309 0.203 0.165 0.253 0.398
ProGen2 (ens.) 0.397 0.409 0.312 0.233 0.228 0.282 0.411
Tranception L (no retrieval) 0.396 0.392 0.398 0.418 0.334 0.422 0.401

Cond-
itional

MSA Transformer (ens.) 0.440 0.426 0.381 0.444 0.374 0.431 0.423
PoET 0.481 0.483 0.456 0.473 0.404 0.449 0.484

Hybrid

Tranception L 0.447 0.441 0.427 0.440 0.370 0.461 0.445
TranceptEVE M - - - - - - -
TranceptEVE L 0.470 0.471 0.445 0.456 0.389 0.464 0.471

PoET
+ TranceptEVE L 0.494 0.492 0.465 0.478 0.411 0.471 0.492
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Table S3: Average Spearman correlation between model scores and experimental measurements on
ProteinGym by taxon.

Substitutions by Taxon

Model type Model name Val Human
Other

Eukary. Prokary. Virus All

Alignment-
based
model

Site independent 0.386 0.383 0.471 0.402 0.414 0.408
GEMME 0.418 0.434 0.514 0.507 0.438 0.463
EVE (ens.) 0.435 0.403 0.499 0.500 0.435 0.448

Uncond-
itional
PLM

ESM-1v (ens.) 0.355 0.417 0.441 0.502 0.256 0.398
ProGen2 (ens.) 0.397 0.394 0.459 0.462 0.364 0.411
Tranception L (no retrieval) 0.396 0.359 0.436 0.450 0.395 0.401

Cond-
itional

MSA Transformer (ens.) 0.440 0.352 0.455 0.494 0.441 0.423
PoET 0.481 0.445 0.524 0.526 0.479 0.484

Hybrid

Tranception L 0.447 0.413 0.503 0.478 0.429 0.445
TranceptEVE M - - - - - -
TranceptEVE L 0.470 0.436 0.518 0.514 0.454 0.471

PoET
+ TranceptEVE L 0.494 0.450 0.538 0.536 0.486 0.492
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Figure S1: Model performance for each dataset in the ProteinGym substitutions benchmark.
PT

EN
_H

UM
AN

_M
ig

he
ll_

de
le

tio
ns

18
HI

S7
_Y

EA
ST

_P
ok

us
ae

va
_in

de
ls1

9
CA

PS
D_

AA
V2

S_
Si

na
i_i

nd
el

s2
1

BL
AT

_E
CO

LX
_G

on
za

le
z_

in
de

ls1
9

P5
3_

HU
M

AN
_K

ot
le

r_
de

le
tio

ns
18

B1
LP

A6
_E

CO
SM

_R
us

s2
0

A0
A1

J4
YT

16
_9

PR
OT

_D
av

id
i2

0

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 rh
o

Tranception L
TranceptEVE L
TranceptEVE M
PoET
PoET + TranceptEVE L

Figure S2: Model performance for each dataset in the ProteinGym indels benchmark.
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