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ABSTRACT

A novel clustering algorithm for orderable data, called unsupervised order learn-
ing (UOL), is proposed in this paper. First, we develop the ordered k-means to
group objects into ordered clusters by reducing the deviation of an object from
consecutive clusters. Then, we train a network to construct an embedding space,
in which objects are sorted compactly along a chain of line segments, determined
by the cluster centroids. We alternate the clustering and the network training until
convergence. Moreover, we perform unsupervised rank estimation via a simple
nearest neighbor search in the embedding space. Extensive experiments on vari-
ous orderable datasets demonstrate that UOL provides reliable ordered clustering
results and decent rank estimation performances with no supervision. The source
codes are available at https://github.com/seon92/UOL.

1 INTRODUCTION

Clustering aims to partition objects into clusters by finding underlying object classes without any
supervision. It is a fundamental task with multifarious applications, including anomaly detection
(Emadi & Mazinani, 2018), domain adaptation (Tang et al., 2020), community detection (Xing et al.,
2022), and representation learning (Yang et al., 2016). Especially, we can now collect countless
images easily, but it is both time-consuming and expensive to manually annotate such images.
Unsupervised clustering can reduce the annotation burden by providing initial predictions.

Many deep clustering methods (Caron et al., 2018; Van Gansbeke et al., 2020; Tao et al., 2021; Tsai
et al., 2021; Huang et al., 2022) have been developed to provide promising results based on deep
learning. However, most of them are for clustering nominal data for classification (Deng et al., 2009)
or segmentation (Ji et al., 2019), so they may yield suboptimal results on orderable data.

Orderable data — used in many applications such as medical assessment (Yang et al., 2021), facial
age estimation (Ricanek & Tesafaye, 2006), and aesthetic quality assessment (Kong et al., 2016)
— are different from nominal data in that objects can be arranged in an intrinsic order (Lim et al.,
2020). For example, medical images can be sorted according to the severity of illness, and facial
photos according to the subjects’ ages. Compared to nominal data, clustering of orderable data is
more challenging because it is difficult to distinguish adjacent underlying classes; in facial photos, a
20-year-old tends to be very similar to a 19-year-old or a 21-year-old.

Despite its difficulty, the clustering of orderable data has many benefits, just as the clustering of
nominal data does; it can facilitate an initial understanding of data characteristics. Also, in general,
it is costly to obtain reliable annotations for orderable data due to the aforementioned ambiguity
between classes. The clustering of orderable data can reduce the annotation cost, e.g. for medical
assessment datasets.

In this paper, we propose a novel algorithm, called unsupervised order learning (UOL), for clustering
orderable data. It aims to discover underlying classes of objects as well as their ordering relationship
without any supervision.

• To this end, we first develop the ordered k-means by extending the ordinary k-means (Gersho &
Gray, 1991). Whereas the ordinary k-means minimizes the distance of an object to its centroid,
the ordered k-means reduces the deviation of an object from consecutive centroids, thereby
laying out adjacent clusters close to each other in an embedding space. Hence, as illustrated in
Figure 1(a), the clusters of the ordered k-means form a clear sequential order.
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Figure 1: (a) Comparison of the ordinary k-means and the ordered k-means on data samples around
an S curve in the 3D space. (b) Comparison of the embedding spaces for dividing the MORPH II
dataset (Ricanek & Tesafaye, 2006) into six clusters, obtained by IDFD (Tao et al., 2021) and the
proposed UOL algorithm. We group the ground-truth age classes into six age ranges, depicted by
colors from blue to red. (c) Examples in each cluster of UOL on the MORPH II dataset.

• Furthermore, to design an even better space for ordered clustering, we train an embedding
network based on the order desideratum that encourages objects to be arranged according to their
cluster indices. We iterate the ordered k-means clustering and the network training alternately.
For example, in Figure 1(b), the proposed UOL well arranges object instances in a facial dataset,
MORPH II (Ricanek & Tesafaye, 2006), according to their ordered classes in the embedding
space, while the deep clustering algorithm IDFD (Tao et al., 2021) locates the instances in
different classes closely without distinction. Consequently, UOL discovers the underlying age
order with no supervision, as shown in Figure 1(c). In other words, given only facial images,
UOL sorts them roughly according to the ages.

Extensive experiments demonstrate that UOL provides reliable clustering results on various orderable
datasets and also yields promising rank estimation results with no supervision.

The contributions of this paper can be summarized as follows.
• We propose the first deep clustering algorithm for orderable data, which discovers clusters

together with their hidden order relationships.
• We develop the ordered k-means by extending the ordinary k-means. It not only groups object

instances effectively but also sorts the clusters to form a meaningful order. We also prove the
local optimality of the solution.

• The proposed algorithm provides promising clustering results on various types of orderable
data for facial age estimation, medical assessment, facial expression recognition, and speech
evaluation. Also, it shows decent estimation results as an unsupervised rank estimator.

2 RELATED WORK

Deep clustering: In deep clustering, instances are grouped into clusters while a network is trained
to embed them into a better space for clustering. Most deep clustering algorithms (Xie et al., 2016;
Chang et al., 2017; Van Gansbeke et al., 2020; Wu et al., 2019; Yang et al., 2016; Tsai et al., 2021;
Tao et al., 2021; Huang et al., 2022; Niu et al., 2022) adopt the alternate learning framework; they
repeat clustering and network training alternately at regular intervals. Caron et al. (2018) employed
k-means to cluster instances and trained a network to classify instances simply according to their
cluster memberships. Tao et al. (2021) also used k-means, but they trained a network with a feature
decorrelation constraint to construct a better embedding space. Recently, Van Gansbeke et al. (2020);
Huang et al. (2022); Niu et al. (2020); Ji et al. (2019); Tsai et al. (2021) have adopted the contrastive
loss for network training, as self-supervised learning techniques (Chen et al., 2020; He et al., 2020)
have shown promising results for constructing discriminative embedding spaces.

Even though many deep clustering algorithms have been proposed, most of them are designed for
ordinary data. Thus, when applied to orderable data, they may yield sub-optimal clusters because
there is no clear distinction between classes in orderable data. In contrast, the proposed algorithm
provides more reliable clustering results by considering the order — which is unknown but to be
discovered — of underlying classes.
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(a) Embedding space (b) Ordinary 𝑘-means (c) Ordered 𝑘-means
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Figure 2: Instances in an embedding space are clustered by the ordinary k-means and the ordered
k-means, respectively, at k = 5. In (b) and (c), each circle represents the centroid of a cluster. In (b),
each point hx in the embedding space is colorized according to its distance d(hx, µj) from centroid
µj . In (c), hx is colorized according to the deviation δ(hx, µjp , µj , µjn) in equation 1. Here, j = 3.

Also, there are ordinal clustering algorithms (Zhang & Cheung, 2020; Jia & Cheung, 2017; Zhang
& Cheung, 2018), but ordinal clustering is different from the proposed ordered clustering. Ordinal
clustering aims to group instances with provided ordinal attributes, whereas ordered clustering,
without any supervision, aims to discover clusters together with their meaningful order.

Orderable data: There are various types of orderable data. For example, in a video-sharing platform,
videos can be sorted according to the number of views or likes. Similarly, medical images, aesthetic
images, and facial images can be arranged according to illness severity, scores, or ages, respectively.
If the intrinsic order in orderable data is known, they are called ordered data, in which classes (or
ranks) form an ordered set. To estimate the classes of ordered data, several attempts (Lim et al., 2020;
Lee & Kim, 2021; Shin et al., 2022; Lee et al., 2022; Lee & Kim, 2022) based on order learning
have been proposed. Lim et al. (2020) first proposed the notion of order learning, which learns
ordering relationships between objects using a pairwise comparator and determines the rank of an
unseen object by comparing it with references. Lee & Kim (2021) improved the performance of order
learning by finding reliable references via order-identity feature decomposition. Shin et al. (2022)
proposed a regression approach for order learning. Lee et al. (2022) simplified order learning; their
method sorts objects in an embedding space and then uses the k-NN search to estimate the rank of
an object, instead of comparing it with references. Also, Lee & Kim (2022) developed a weakly
supervised training scheme for order learning.

Note that, in (Lim et al., 2020; Lee & Kim, 2021), ordered data are clustered according to order-
unrelated properties, whereas we discover an underlying order in orderable data and cluster the data
according to the discovered order. It is worth pointing out that all existing order learning algorithms
assume that the ground-truth ranks of training objects are completely or partially known. In contrast,
we attempt to cluster orderable data X and estimate the rank of each instance in X without any
supervision. In other words, we propose the first unsupervised algorithm for order learning.

3 PROPOSED ALGORITHM

3.1 ORDERED k-MEANS

Suppose that there are m instances in a training set X = {x1, x2, . . . , xm}. In orderable data, classes
can be arranged in a natural order. Hence, the proposed ordered k-means aims to partition X into k
clusters {Cj}kj=1 where C1 → C2 → · · · → Ck represents a meaningful order.

An encoder h maps each instance x ∈ X into a feature vector hx = h(x) in an embedding space. As
h, we adopt VGG16 (Simonyan & Zisserman, 2015) without fully connected layers. To measure the
dissimilarity in the embedding space, we use the Euclidean distance d. Let µj denote the ‘centroid’
or the representative vector for the instances in cluster Cj . Then, these centroids form a chain
µ1 → µ2 → · · · → µk in the embedding space, as in Figure 2(c). Note that a chain is defined as a
maximal linearly-ordered set (Lim et al., 2020). For x ∈ Cj , the deviation of x from the chain is
defined as

δ(hx, µjp , µj , µjn) = d2(hx, µj) + αd2(hx, µjp) + αd2(hx, µjn) (1)
where α is a positive weight, and jp and jn are the indices for the previous and next clusters;

jp =

{
j − 1 if j ̸= 1

j + 1 if j = 1
, jn =

{
j + 1 if j ̸= k

j − 1 if j = k
. (2)

3



Published as a conference paper at ICLR 2024

Algorithm 1 Unsupervised Order Learning (UOL)
Input: Data X = {x1, x2, . . . , xm}, k = the number of clusters

1: repeat
2: Randomly partition X into C1, C2, . . . , Ck
3: repeat
4: for all j = 1, 2, . . . , k do
5: Update centroid µj via equation 4 ▷ Centroid rule
6: end for
7: for all j = 1, 2, . . . , k do
8: Update cluster Cj via equation 5 ▷ NCC rule
9: end for

10: Permute the cluster indices via equation 6 ▷ Permutation rule
11: until convergence or predefined number of iterations
12: Fine-tune the encoder h and the centroids {µj}kj=1 to minimize ℓtotal in equation 11
13: until predefined number of epochs
Output: Clusters {Cj}kj=1, centroids {µj}kj=1, encoder h

In the case of the first cluster C1, there is no previous cluster. Thus, by defining jp = j + 1, the
deviation in equation 1 becomes d2(hx, µj) + 2αd2(hx, µjn) so that it is balanced with those for
middle clusters. Similarly, for the last cluster Ck, jn = j − 1.

In equation 1, the first term measures the distance of an instance in Cj to its centroid µj as in the
ordinary k-means (Gersho & Gray, 1991). In the ordered k-means, however, the second and third
terms further consider the distances to the adjacent centroids. This is because, in orderable data,
adjacent clusters contain similar instances in general. For example, in facial photos, a 20-year-old
tends to be similar to a 19-year-old or a 21-year-old. Therefore, instances in Cj should be closer to
the adjacent clusters Cjp and Cjn than to the other clusters. Moreover, in orderable data, instances
vary continuously between adjacent clusters in general. For example, although discrete age classes
are defined, there are 19.5-year-olds. Thus, the deviation in equation 1 implies that an instance in Cj
should be concentrated near the line segments µjp → µj → µjn , as illustrated by the color map in
Figure 2(c), not just around the centroid µj .

Next, we measure the overall quality of ordered clustering by

J({Ci}ki=1, {µi}ki=1) =
∑k

j=1

∑
x∈Cj

δ(hx, µjp , µj , µjn). (3)

We attempt to find the optimum clusters and centroids to minimize this objective function J in equa-
tion 3, yet finding the global optimum is NP-complete (Garey et al., 1982). Hence, we propose an
iterative algorithm to find a local optimum, as in the ordinary k-means (Gersho & Gray, 1991).
Centroid rule: After fixing the clusters {Cj}kj=1, we update the centroids {µj}kj=1 to minimize J
in equation 3. For j /∈ {1, 2, k − 1, k}, the optimal centroids are obtained as

µj =

∑
x∈Cj

hx + α
∑

x∈Cjp
hx + α

∑
x∈Cjn

hx

|Cj |+ α|Cjp |+ α|Cjn
|

. (4)

Note that centroid µj is given by a weighted average of the instances in the three consecutive clusters
Cjp , Cj , and Cjn . For j ∈ {1, 2, k − 1, k}, the centroid rule in equation 4 is slightly different due to
endpoint effects. The full centroid rule is derived in Appendix B.1.

NCC rule: On the other hand, after fixing the centroids, we update the membership of each instance
to minimize J in equation 3. As detailed in Appendix B.2, the optimal cluster Cj is given by

Cj =
{
x | δ(hx, µjp , µj , µjn) ≤ δ(hx, µlp , µl, µln) for all 1 ≤ l ≤ k

}
. (5)

Note that the deviation δ(hx, µjp , µj , µjn) in equation 1 computes the distances of hx to three
consecutive centroids. We assign an instance to Cj if its nearest consecutive centroids (NCCs) are
(µjp , µj , µjn).

Permutation rule: The cluster indices should represent a meaningful order. Hence, after fixing the
clusters and the centroids, we apply the permutation rule to rearrange the clusters optimally. Let
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Figure 3: An overview of the proposed UOL algorithm.

σ : {1, . . . , k} → {1, . . . , k} be a bijective permutation function. Then, the optimal permutation σ∗

is determined to minimize J in equation 3,

σ∗ = argmin
σ

J({Cσ(i)}ki=1, {µσ(i)}ki=1). (6)

To find the optimal permutation σ∗, k!
2 cases should be considered, which may be too demanding.

Therefore, for a large k, we develop a greedy scheme for finding σ with O(k3) complexity, which is
described in Appendix B.3.

We apply the centroid rule, the NCC rule, and the permutation rule iteratively until convergence. Since
all three rules monotonically decrease the same objective function J in equation 3, it is guaranteed
that the ordered k-means converges to a local minimum.

If α = 0 in equation 1, the objective function J in equation 3 is equal to that of the ordinary k-means
(Gersho & Gray, 1991). In such a case, the resultant clusters are not ordered in general as illustrated
in Figure 2(b), for the relations between adjacent clusters are not taken into account. In contrast,
the proposed ordered k-means minimizes the average dissimilarity of the instances to their NCCs,
thereby making consecutive clusters close to each other as shown in Figure 2(c).

3.2 UNSUPERVISED ORDER LEARNING (UOL)

We develop the UOL algorithm based on the ordered k-means. Figure 3 is an overview of UOL.
Note that, in a given embedding space, the ordered k-means is applied to data X to yield clusters
{Cj}kj=1. Then, in turn, we fine-tune the encoder or equivalently revamp the embedding space, so
the clusters are better arranged according to their order relationship. In ordered clustering, cluster
indices represent their order, and the index difference between two clusters should be proportional to
the dissimilarity between them. Hence, we fine-tune the encoder h with the following desideratum:

i < j < l ⇔ d(hx, hy) < d(hx, hz) (7)

where instances x ∈ Ci, y ∈ Cj , and z ∈ Cl. In the fine-tuning process, we also optimize the centroids
{µj}kj=1 as learnable parameters to guide the cluster regions in the embedding space.

Straight line loss: To encourage the order desideratum in equation 7, we employ the straight line
(SL) loss. First, let us define the direction vector v(r, s) from point r to point s in the embedding
space as

v(r, s) = (s− r)/∥s− r∥. (8)

Then, we define the SL loss as

ℓSL =
∑k

j=1

∑
x∈Cj

(
1− v(µjp , hx)

tv(µjp , µj)
)
+

(
1− v(µjn , hx)

tv(µjn , µj)
)
. (9)

To minimize the first term, the angle between v(µjp , hx) and v(µjp , µj) should be zero, as illustrated
in Figure 3(b). In other words, µjp , hx, and µj should be on a line in the embedding space. Similarly,
due to the second term, µjn , hx, and µj should be on the same line. Therefore, ℓSL encourages that
hx and its NCCs (µjp , µj , µjn) are arranged linearly on a 1D manifold in the embedding space, and
that hx and µj are located between µjp and µjn . In other words, it helps instances and centroids to be
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Table 1: Comparison of ordered clustering results in settings A and B of MORPH II. The best results
are boldfaced, and the second-best ones are underlined.

Setting A Setting B

SRCC(↑) MAE (↓) SRCC (↑) MAE (↓)
Algorithm k = 6 k = 9 k = 12 k = 6 k = 9 k = 12 k = 6 k = 9 k = 12 k = 6 k = 9 k = 12

DAC (Chang et al., 2017) 0.180 0.216 0.108 1.785 2.734 3.853 0.117 0.147 0.350 1.792 2.748 3.417
DeepCluster (Caron et al., 2018) 0.139 0.107 0.098 2.078 2.871 4.000 0.051 0.049 0.062 2.185 3.075 4.343
IIC (Ji et al., 2019) 0.044 0.135 0.332 2.312 2.959 3.420 0.112 0.120 0.109 1.828 2.672 3.868
MiCE (Tsai et al., 2021) 0.260 0.254 0.409 1.568 2.579 2.935 0.271 0.292 0.339 1.643 2.683 3.372
IDFD (Tao et al., 2021) 0.123 0.136 0.274 1.961 2.867 3.171 0.094 0.178 0.160 1.881 2.586 3.787
ProPos (Huang et al., 2022) 0.167 0.144 0.196 1.755 2.793 3.590 0.129 0.139 0.202 1.795 2.775 3.686

Proposed UOL 0.632 0.506 0.495 1.122 2.093 2.572 0.531 0.473 0.437 1.278 2.114 3.025
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Figure 4: Examples of clustering results in setting A of MORPH II: (a) DeepCluster (Caron et al.,
2018), (b) MiCE (Tsai et al., 2021), (c) IDFD (Tao et al., 2021), (d) ProPos (Huang et al., 2022), and
(e) UOL. For each cluster, the average ground-truth age of its instances is also reported.

sorted according to the index order of the clusters along the 1D manifold in the high-dimensional
embedding space, thereby satisfying the order desideratum in equation 7.

Deviation loss: In addition to ℓSL, we employ the deviation loss ℓD, which aims at reducing the
deviation δ of an instance from its NCCs in equation 1, given by

ℓD =
∑k

j=1

∑
x∈Cj

max(δ(hx, µjp , µj , µjn)− γ, 0) (10)

where γ is a threshold.

Finally, we use the total loss function

ℓtotal = ℓSL + ℓD (11)

to optimize the encoder parameters and the centroids. Algorithm 1 summarizes the proposed UOL.

3.3 UNSUPERVISED RANK ESTIMATION

We can estimate the rank (or class) of an unseen test instance based on the K-NN classification. We
first transform a test instance x to the embedded vector h(x). Then, in the embedding space, we find
the set N of its K NNs among all training instances in X . We then estimate the rank of x by

θ̂(x) = 1
K

∑
y∈N

∑k
j=1 j[y ∈ Cj ] (12)

where [·] is the indicator function.

4 EXPERIMENTS

This section provides various experimental results. More results are available in Appendix C.
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Table 2: Comparison of ordered clustering
results on the CLAP2015 dataset.

SRCC(↑) MAE (↓)
Algorithm k = 6 k = 9 k = 6 k = 9

DAC (Chang et al., 2017) 0.100 0.196 2.031 2.615
DeepCluster (Caron et al., 2018) 0.018 0.042 2.186 3.231
IIC (Ji et al., 2019) 0.123 0.102 1.892 2.900
MiCE (Tsai et al., 2021) 0.194 0.198 1.794 2.709
IDFD (Tao et al., 2021) 0.209 0.172 1.733 2.715
ProPos (Huang et al., 2022) 0.030 0.088 1.928 2.875

Proposed UOL 0.302 0.295 1.645 2.496

Table 3: Comparison of ordered clustering results on
the DR and RetinaMNIST datasets at k = 5.

DR RetinaMNIST

Algorithm SRCC (↑) MAE (↓) SRCC (↑) MAE (↓)
DAC (Chang et al., 2017) 0.027 1.502 0.348 1.087
DeepCluster (Caron et al., 2018) 0.099 1.295 0.037 1.394
IIC (Ji et al., 2019) 0.205 1.284 0.165 1.346
MiCE (Tsai et al., 2021) 0.277 1.305 0.495 1.002
IDFD (Tao et al., 2021) 0.018 1.531 0.066 1.401
ProPos (Huang et al., 2022) 0.085 1.490 0.041 1.469

Proposed UOL 0.333 1.219 0.567 0.953

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 5: Examples of clustering results on the FER+ dataset at k = 5.

4.1 IMPLEMENTATION

We initialize the encoder h with VGG16 pre-trained on ILSVRC2012 (Deng et al., 2009). We use
the Adam optimizer (Kingma & Ba, 2015) with a batch size of 32 and a weight decay of 5× 10−4.
We set the learning rate to 10−4. For data augmentation, we do random horizontal flips and random
crops. More implementation details are in Appendix C.1.

4.2 DATASETS

MORPH II (Ricanek & Tesafaye, 2006): It is a dataset for age estimation, composed of 55,134
facial images in the age range [16, 77]. It provides age, gender, and race labels.
CLAP2015 (Escalera et al., 2015): It contains 4,691 facial photos taken in various environments.
For each photo, it provides an age label in the age range [3, 85].
DR (Dugas et al., 2015): It is a dataset for diabetic retinopathy (DR) diagnosis. It provides 35,125
eye images. Each image is annotated with a 5-scale severity score.
RetinaMNIST (Yang et al., 2021): It is a small dataset for DR diagnosis. It contains 1,600 eye
images, annotated with severity scores in a 5-scale.
FER+ (Barsoum et al., 2016): It contains 32,298 grayscale images for facial expression recognition.
Each image is categorized into one of eight emotion classes.

4.3 CLUSTERING

Metrics: In orderable data, classes can form an order. Without loss of generality, let us assume
that the ordered classes are the first k natural numbers. For instances x, y, and z, suppose that
θ(x) = i, θ(y) = j, and θ(z) = l, where θ(·) is a class function and i < j < l. Then, misclustering
x with z is a severer error than misclustering it with y. Thus, to evaluate the clustering performance
of orderable data, the order between classes should be considered. We hence use the Spearman’s rank
correlation coefficient (SRCC) and mean absolute error (MAE) metrics. Specifically, SRCC is the
correlation coefficient between two rankings, given by

SRCC = 1−
6
∑k

j=1

∑
x∈Cj

(j−θ(x))

k(k2−1) . (13)

MAE is the average absolute error, defined as

MAE = 1
|X |

∑k
j=1

∑
x∈Cj

|j − θ(x)|. (14)

Comparison on age estimation datasets: Table 1 compares the ordered clustering results in settings
A and B of MORPH II. As in (Tsai et al., 2021; Tao et al., 2021; Caron et al., 2018), we assume that
the number k of clusters is known a priori. Also, according to k, the entire age classes are mapped
into k age groups. All algorithms in Table 1 use VGG16 pre-trained on ILSVRC2012 (Deng et al.,
2009) as their encoder backbones. We train these methods using the official source codes.

As done in (Tsai et al., 2021; Tao et al., 2021; Caron et al., 2018), for the conventional algorithms,
the obtained clusters are permuted via the Hungarian method (Kuhn, 1955) to match the ground-truth
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(a) DeepCluster (b) MiCE (c) IDFD (d) ProPos (e) UOL

Class
1 5432

Figure 6: t-SNE visualization of the embedding spaces for the DR dataset at k = 5.

Table 4: Comparison of rank estimation results (MAEs) on the MORPH II, DR, and RetinaMNIST
datasets. For MORPH II, k = 6. For DR and RetinaMNIST, k = 5.

Algorithm MORPH II (setting A) MORPH II (setting B) DR RetinaMNIST

OL (Lim et al., 2020) 0.65 0.69 0.81 0.72
Random guess 1.94 1.94 1.60 1.60
Proposed UOL 1.20 1.31 1.08 1.00

optimally. In contrast, for the proposed UOL algorithm, we do not use the Hungarian method and just
reverse the cluster order if it better matches the ground-truth — the reversed order is fundamentally the
same as the original order. Nevertheless, UOL significantly outperforms all conventional algorithms
in all tests, indicating that it can group instances into meaningfully ordered clusters. Especially, UOL
achieves high SRCCs of 0.632 and 0.531 at k = 6 in settings A and B of MORPH II, respectively,
while the second-best MiCE (Tsai et al., 2021) scores 0.260 and 0.271 only.

Figure 4 compares examples of clustering results in setting A of MORPH II at k = 6. The
conventional algorithms tend to group similar-looking instances, as they focus on reducing intra-class
variance. For example, in cluster 3 in Figure 4(a) or in Figure 4(c), background colors or personal
appearances affect the clustering. Thus, they fail to cluster instances according to their ages. On
the contrary, the proposed UOL groups more diversely looking people in the same cluster, but those
people have similar ages. Also, UOL arranges the clusters well according to the average ages,
indicating that UOL can discover the underlying order of instances without any supervision.

Table 2 shows the results on CLAP2015, which is more challenging than MORPH II because it
consists of natural face shots in diverse environments. Nevertheless, UOL surpasses the conventional
algorithms in all tests.

Comparison on medical assessment datasets: Table 3 compares the results on the DR and Reti-
naMNIST datasets. Note that DeepCluster (Caron et al., 2018), IDFD (Tao et al., 2021), and
ProPos (Huang et al., 2022) exploit the ordinary k-means for clustering. However, for ordered
clustering, the ordinary k-means is not optimal because it does not consider the order of clusters. In
contrast, based on the ordered k-means, the proposed UOL yields the best scores in all tests.

Results on facial expression dataset: We test the proposed UOL on the FER+ dataset, containing
facial images with various emotions. Figure 5 shows clustering examples of the Anger, Fear, and
Disgust images at k = 5. Note that there is no explicit order between these three emotion classes.
Nevertheless, we see that UOL sorts the images from the strongest (cluster 1) to the weakest (cluster 5)
levels of ‘making a face.’ UOL discovers these ordered groups without any supervision. More results
on FER+ are provided in Appendix C.3.

Depending on datasets, UOL may discover different, unexpected orders of clusters. This is a natural
property in unsupervised clustering. As long as a discovered order of clusters is meaningful and
consistent, it is a good clustering result enabling an initial understanding of data characteristics.

Embedding spaces: Figure 6 compares the embedding spaces for DR at k = 5, where t-SNE (Maaten
& Hinton, 2008) is used for the space visualization. In Figure 6(a)∼(d), the conventional algo-
rithms (Caron et al., 2018; Tsai et al., 2021; Tao et al., 2021; Huang et al., 2022) fail to group
instances according to their classes. In contrast, UOL sorts the instances reliably, though not per-
fectly, in Figure 6(e) by employing the SL loss and the deviation loss during the embedding space
construction. More comparison results of embedding spaces are provided in Appendix C.6.
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Table 5: Ablation studies for the loss function in equation 11 on MORPH II, DR, and RetinaMNIST.

MORPH II (A), k = 6 DR, k = 5 RetinaMNIST, k = 5

Method ℓSL ℓD SRCC (↑) MAE (↓) SRCC (↑) MAE (↓) SRCC (↑) MAE (↓)
I ✓ 0.423 1.469 0.304 1.236 0.533 0.994
II ✓ 0.203 1.695 0.085 1.506 0.527 0.994
III ✓ ✓ 0.632 1.122 0.333 1.219 0.567 0.953

Initialization Iteration 1 Iteration 2 Iteration 3
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Figure 7: Illustration of the clustering processes of the ordinary k-means and the ordered k-means.

4.4 UNSUPERVISED RANK ESTIMATION

The proposed UOL can estimate the rank of an unseen test instance via equation 12. Table 4 compares
the rank estimation results, measured by MAEs, on MORPH II, DR, and RetinaMNIST. To the best
of our knowledge, there is no unsupervised rank estimator with reliable source codes. Hence, we
provide the results of OL (Lim et al., 2020), which is one of the state-of-the-art supervised rank
estimators, as the performance upper bounds. Also, we list the results of the random guess scheme as
the lower bounds. We see that UOL provides decent rank estimation results, even though it uses no
annotations for both training and testing.

4.5 ANALYSIS

Ablation study: Table 5 compares ablated methods for the loss function in equation 11. Method I
employs the SL loss ℓSL only, and method II does the deviation loss ℓD only. Compared with III
(UOL), both methods I and II degrade the performances. Especially, by comparing II and III, we see
that ℓSL significantly improves the results. It helps to sort instances and cluster centroids compactly
around a chain of line segments in the embedding space.

Comparison with ordinary k-means: Figure 7 illustrates the clustering processes of the proposed
ordered k-means and the ordinary k-means for a 2D example. As the iteration goes on, the ordinary
k-means updates the clusters so that the variance of instances in each cluster is reduced. Consequently,
instances are located compactly around the centroids, but the clusters are not arranged in an order. In
contrast, the ordered k-means reduces the deviation of instances from their NCCs. Hence, consecutive
clusters are located closely to each other, so they form an order in the embedding space. More result
is provided in Figure 11 in Appendix C.6.

5 CONCLUSIONS

The UOL algorithm for unsupervised clustering and rank estimation of orderable data was proposed
in this work. First, we group instances into ordered clusters via the ordered k-means. Then, using
the SL loss and the deviation loss, we fine-tune the encoder to revamp the embedding space, so that
instances are sorted according to their cluster indexes. The clustering and the feature embedding are
jointly optimized. Furthermore, we estimate the rank of an unseen test instance by performing the
K-NN search in the embedding space without any supervision. Extensive experiments on various
orderable datasets demonstrated that UOL provides promising clustering and rank estimation results.
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A BROADER IMPACTS

Recently, ethical concerns about deep-learning-based systems have been raised (Castelvecchi, 2020;
Roussi, 2020; Noorden, 2020). Although the proposed algorithm groups instances, including faces,
in an unsupervised manner, the results should never be misinterpreted in such a way as to encourage
any kind of discrimination. We recommend using the proposed algorithm for research only.

B ALGORITHM DETAILS

B.1 OPTIMALITY OF CENTROID RULE

After fixing clusters, we update the centroids to minimize the objective function J in equation 3. For
j /∈ {1, 2, k − 1, k}, by differentiating J with respect to µj and setting it to zero, we have

∂J

∂µj
=

∑
x∈Cj

2(µj − hx) + α
∑

x∈Cjp

2(µj − hx) + α
∑

x∈Cjn

2(µj − hx) (15)

= 2
(
|Cj |+ α|Cjp |+ α|Cjn |

)
µj − 2

( ∑
x∈Cj

hx + α
∑

x∈Cjp

hx + α
∑

x∈Cjn

hx

)
(16)

= 0. (17)

Therefore, the optimal centroid is given by

µj =

∑
x∈Cj

hx + α
∑

x∈Cjp
hx + α

∑
x∈Cjn

hx

|Cj |+ α|Cjp |+ α|Cjn
|

for j /∈ {1, 2, k − 1, k}. (18)

For j ∈ {1, 2, k − 1, k}, the centroid rule is slightly different due to endpoint effects. For j = 1,

∂J

∂µj
=

∑
x∈Cj

2(µj − hx) + α
∑

x∈Cjn

2(µj − hx) (19)

= 2
(
|Cj |+ α|Cjn |

)
µj − 2

( ∑
x∈Cj

hx + α
∑

x∈Cjn

hx

)
(20)

= 0. (21)

Different from equation 15, there is no term related to jp in equation 19, since there is no previous
cluster for the first cluster C1. Thus, the optimal centroid is given by

µj =

∑
x∈Cj

hx + α
∑

x∈Cjn
hx

|Cj |+ α|Cjn
|

for j = 1. (22)

Similarly, we have

µj =

∑
x∈Cj

hx + α
∑

x∈Cjp
hx

|Cj |+ α|Cjp
|

for j = k. (23)

For j = 2, we have

∂J

∂µj
=

∑
x∈Cj

2(µj − hx) + 2α
∑

x∈Cjp

2(µj − hx) + α
∑

x∈Cjn

2(µj − hx) (24)

= 2
(
|Cj |+ 2α|Cjp |+ α|Cjn |

)
µj − 2

( ∑
x∈Cj

hx + 2α
∑

x∈Cjp

hx + α
∑

x∈Cjn

hx

)
(25)

= 0. (26)
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Hence, the optimal centroid is

µj =

∑
x∈Cj

hx + 2α
∑

x∈Cjp
hx + α

∑
x∈Cjn

hx

|Cj |+ 2α|Cjp |+ α|Cjn
|

for j = 2. (27)

Similarly,

µj =

∑
x∈Cj

hx + α
∑

x∈Cjp
hx + 2α

∑
x∈Cjn

hx

|Cj |+ α|Cjp |+ 2α|Cjn
|

for j = k − 1. (28)

B.2 OPTIMALITY OF NCC RULE

Suppose that instance x is declared to belong to cluster Cj . It then contributes to the objective function
J in equation 3 by δ(hx, µjp , µj , µjn). If it is assigned to another cluster Cl, then its contribution
becomes δ(hx, µlp , µl, µln). Therefore, to minimize J , x should be assigned to Cj only if

δ(hx, µjp , µj , µjn) ≤ δ(hx, µlp , µl, µln) for all 1 ≤ l ≤ k. (29)

Equivalently, we have the NCC rule in equation 5.

B.3 PERMUTATION RULE

After fixing the clusters and the centroids, we rearrange the clusters by applying the optimal permuta-
tion σ∗ for minimizing J in equation 3. Note that k!

2 permutations should be considered to find the
optimal σ∗, which may require too many computations for a large k. Hence, for k > 6, we use the
following greedy search scheme for σ.

Let σt : {1, . . . , k} → {0, 1, . . . , t} be a partial permutation function. It maps t different indices to
{1, . . . , t} bijectively and maps the other k − t indices to zero. Then, the optimal partial permutation
σ∗
t is determined by

σ∗
t = argmin

σt

J({Cσt(i)}
k
i=1, {µσt(i)}

k
i=1). (30)

After obtaining σ∗
t , we find the optimal σ∗

t+1 : {1, . . . , k} → {0, 1, . . . , t + 1}. To this end, we
consider two extended permutations σn

t+1 and σp
t+1, satisfying the constraints:

σn
t+1(j) = σ∗

t (j) if σ∗
t (j) ̸= 0, (31)

σp
t+1(j) = σ∗

t (j) + 1 if σ∗
t (j) ̸= 0. (32)

Note that σn
t+1 and σp

t+1 preserve the order of the t bijectively mapped indices in σ∗
t . We select

σt+1, which minimizes J among all possible σn
t+1 and σp

t+1, as the optimal σ∗
t+1. Starting with

t = 3, we repeat this process until σ∗
k is obtained. Thus, the number of permutations to consider is

k(k−1)(k−2)
2 + (k − 3)(k − 2), and the complexity is O(k3).

C MORE EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

We do all experiments using PyTorch (Paszke et al., 2019) and an NVIDIA GeForce RTX 3090 GPU.
For the MORPH II dataset, we use settings A and B, which are widely used for evaluation.

• Setting A – 5,492 images of the Caucasian race are selected and then randomly divided into two
disjoint subsets: 80% for training and 20% for testing.

• Setting B – 21,000 images of Africans and Caucasians are selected to satisfy two constraints:
the ratio between Africans and Caucasians should be 1 : 1, and that between females and males
should be 1 : 3. They are split into three disjoint subsets S1, S2, and S3. We use S2 for training
and S1 + S3 for testing.
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For clustering on MOPRH II and CLAP, we partition the entire age range into k consecutive age
groups. Table 6 lists the age groups at different k’s. These age groups are determined so as to contain
similar numbers of instances.

Table 6: Partitioning of the entire age range into age groups. The maximum age of each age group is
reported. For example, at k = 6, the second age group in setting A of MORPH II is (21, 27].

k = 6 k = 9 k = 12

MORPH II (A) 21 / 27 / 34 / 38 / 43 / 77 19 / 22 / 26 / 31 / 34 / 36 / 39 / 42 / 77 18 / 20 / 23 / 26 / 30 / 33 / 35 / 37 / 39 / 41 / 43 / 77
MORPH II (B) 20 / 25 / 32 / 36 / 41 / 77 18 / 21 / 25 / 29 / 33 / 36 / 39 / 42 / 77 18 / 20 / 22 / 24 / 27 / 30 / 33 / 35 / 37 / 39 / 41 / 77
CLAP 20 / 23 / 26 / 30 / 37 / 82 18 / 21 / 23 / 25 / 27 / 29 / 33 / 38 / 82 -

C.2 MORE RESULTS ON MORPH II

Figure 8 shows examples of clustering results in setting B of MORPH II at k = 6. We see that the
proposed UOL algorithm groups the instances according to their ages reliably.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

27.67 28.37 30.56 33.58 39.46 41.77

Figure 8: Examples of clustering results on MORPH II (setting B). For each cluster, the average
ground-truth age of its instances is also reported.

C.3 MORE RESULTS ON FER+

Figure 9 shows clustering examples on the FER+ dataset. As done in Figure 5, Figure 9(a) illustrates
how the Anger, Fear, and Disgust images are sorted according to the levels of ‘making a face.’
Figure 9(b) shows clustering results of the Happy, Neutral, and Sad images, in which the images are
roughly sorted as

Happy → Neutral → Sad

from cluster 1 to cluster 5. It is worth pointing out that the expression labels are not used in the
clustering. Figure 9(c) shows clustering results on the Surprise and Neutral images. They are sorted
from Neutral (cluster 1) to Surprise (cluster 5).

C.4 RESULTS ON LANGUAGE AND SPEECH DATASETS

We evaluate the performances of UOL on simple language and speech datasets.

• French sentiment (Nguyen, 2022): It is a dataset for regressing sentiment levels in sentences. It
offers 944 sentences in French. Each sentence is annotated with a 5-scale sentiment score (1 -
very negative, 2 - negative, 3 - neutral, 4 - positive, and 5 - very positive). Figure 10 shows some
examples. We adopt BERT (Devlin et al., 2019) as the encoder and use no labels for the UOL
training.

• Speechocean762 (Zhang et al., 2021): It is a dataset for scoring English pronunciation. It
contains 5,000 utterances from 250 non-native speakers. Each utterance is annotated with a
10-scale fluency score. We use Wav2Vec2 (Baevski et al., 2020) as the encoder. Only the
utterances are used for training.

Table 7 shows that UOL shows promising ordered clustering results on these language and speech
datasets, as well as the image datasets.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(a) Anger, Fear, and Disgust

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(b) Happy, Neutral, and Sad

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(c) Surprise and Neutral

Figure 9: Examples of clustering results on the FER+ dataset at k = 5.

(a) Very negative (b) Negative (c) Neutral (d) Positive (e) Very positive

Bonjour catastrophique 

le pôle emploi ils 

perdent vos documents 

et après deux mois et 10 

jours toujours pas de 

prestations lamentables 

que font ils avec nos 

documents ?

Se taper un long trajet 

pour se faire remballer 

car tu n'as pas de 

rendez-vous alors que 

tu viens juste pour une 

question. Personne 

m'eillent accueilli très 

tres désagréable.

On ne s’occupe pas de 

vous on vous laisse ce 

n’est que du profit

Écrit ouvert sur internet 

mes toujour fermer 

merci de metre a jour 

vos site pour le bien des 

gens merci

Positif: Bien placé. 

Néanmoins, je vous 

conseille d'éviter les 

heures de pointes où 

vous risquer de faire la 

queue.

Assurez-vous d’avoir 

un rendez-vous si vous 

comptez vous rendre le 

mercredi.. .

Ayant déménagé il y a 

peu, mes prestations 

mettaient du temps à 

arriver, afin d'avoir plus 

d'informations, je me 

suis rendue à la caf.

Jamais eu de problèmes, 

les rdv téléphoniques 

sont toujours courtois et 

professionnels, bien que 

parfois décalés du jour 

prévu.

Mr. Prene est un 

employé et y travaille. 

Il était très gentil et 

nous a beaucoup aidés 

car nous ne parlions pas 

français. .

Super SIP surtout le 

gars avec des lunettes et 

une barbiche il est trop 

cool !

La personne qui m'a 

reçu : royal. Je n'ai rien 

eu à faire pour mon 

colis, elle a tout géré 

avec un grand sourire et 

le tout rapidement. Loin 

des mauvais clichés de 

la poste. 

C'était ma première fois 

et ça s'est très bien 

passé! Le personnel est 

gentil et efficace. Je 

vous remercie. .

Très bon service et 

ambiance ! Merci 

beaucoup beaucoup !

Honteux ! Scandaleux ! 

Au lieu d'aider les gens, 

vous êtes une menace 

pour leur santé mentale.

Ce centre ne vaut même 

pas une étoile.. Un 

numéro de téléphone 

qui ne sert à rien.

Figure 10: Examples in the French sentiment dataset.

Table 7: Ordered clustering results on the French sentiment and Speechocean762 datasets at k = 5.

French sentiment Speechocean762

Algorithm SRCC(↑) MAE (↓) SRCC(↑) MAE (↓)
MiCE (Tsai et al., 2021) 0.196 1.129 0.139 1.314
IDFD (Tao et al., 2021) 0.063 1.258 0.105 1.380
ProPos (Huang et al., 2022) 0.042 1.326 0.107 1.379

Proposed UOL 0.448 0.989 0.672 0.991
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C.5 UNSUPERVISED RANK ESTIMATION

Table 8 is an extended version of the unsupervised rank estimation results in Table 4. We measure the
performances of the conventional algorithms (Caron et al., 2018; Tao et al., 2021; Huang et al., 2022)
using the simple K-NN classification in equation 12, as in UOL. However, since these algorithms
do not arrange the clusters meaningfully, their cluster indices contain no rank information. Thus,
we permute their clusters optimally via the Hungarian method (Kuhn, 1955). On the contrary, the
proposed UOL requires no such supervision. Nevertheless, UOL outperforms the conventional
algorithms meaningfully in all tests.

Table 8: Comparison of rank estimation results (MAEs) on the MORPH II, DR, and RetinaMNIST
datasets. For MORPH II, k = 6. For DR and RetinaMNIST, k = 5.

Algorithm MORPH II (A) MORPH II (B) DR RetinaMNIST

Random guess 1.94 1.94 1.60 1.60
DeepCluster (Caron et al., 2018) 1.59 1.73 1.29 1.16
IDFD (Tao et al., 2021) 1.57 1.84 1.32 1.43
ProPos (Huang et al., 2022) 1.43 1.54 1.25 1.28

Proposed UOL 1.20 1.31 1.08 1.00

C.6 MORE ANALYSIS

Analysis on α: Table 9 compares the clustering results with different α’s. Note that α is a positive
weight to control the influence of adjacent centroids in equation 1. It is reasonable to set α to be less
than 0.5. Otherwise, the distances to adjacent centroids affect the objective function more greatly
than the distance to the corresponding centroid does.

In all tests, we fix α = 0.2, which provides the best results in Table 9. However, at both α = 0.1
and α = 0.3, UOL still shows comparable or better results than the conventional algorithms in
Tables 1 and 3. At α = 0, the ordered k-means becomes the ordinary k-means. In such a case, the
performances degrade severely, for the clustering does not consider the order of clusters.

Table 9: Comparison of ordered clustering results on MORPH II (setting A) and RetinaMNIST
according to α in equation 1. For MORPH II, k = 6. For RetinaMNIST, k = 5.

α = 0 α = 0.1 α = 0.2 α = 0.3

Dataset SRCC (↑) MAE (↓) SRCC (↑) MAE (↓) SRCC (↑) MAE (↓) SRCC (↑) MAE (↓)
MORPH II (A) 0.159 1.673 0.540 1.267 0.632 1.122 0.479 1.339
RetinaMNIST 0.106 1.311 0.544 0.989 0.567 0.953 0.522 1.023

Analysis on γ: Table 10 compares the performances at different γ’s. In equation 10, γ is a threshold
to suppress the deviation δ of an instance from its NCCs to be small. If γ is too small, clusters may
highly overlap with each other in the embedding space. On the other hand, if γ is too large, instances
may not be located compactly around their corresponding centroids. In Table 10, the best results are
achieved at γ = 0.25. Therefore, we fix γ = 0.25 in all tests.

Table 10: Comparison of ordered clustering results on MORPH II (setting A) and RetinaMNIST
according to γ. We set k = 6 and k = 5 for MORPH II and RetinaMNIST, respectively.

γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.35

Dataset SRCC (↑) MAE (↓) SRCC (↑) MAE (↓) SRCC (↑) MAE (↓) SRCC (↑) MAE (↓)
MORPH II (A) 0.543 1.275 0.632 1.122 0.592 1.180 0.567 1.220
RetinaMNIST 0.528 1.002 0.567 0.953 0.532 0.991 0.541 0.970
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More comparison with ordinary k-means: Figure 11 compares the clustering results of the ordinary
k-means and the ordered k-means on 1D manifold data. The data points are sampled around an S
curve in the 3D space. The clusters of the ordinary k-means are not arranged in an explicit order. In
contrast, the ordered k-means groups the data points into sequentially ordered clusters along the 1D
manifold structure.

(a) Ordinary 𝑘-means (b) Ordered 𝑘-means

1 5432 6 7 8

Figure 11: Comparison of clustering results.

Comparison of embedding spaces: Figure 12 is an extended version of Figure 1(b), which compares
the embedding spaces for MORPH II (setting A). The conventional algorithms cluster object instances
in different classes closely without clear distinction; they fail to discover underlying classes reliably.
In contrast, UOL well arranges the instances according to their classes in the embedding space.

(c) ProPos(b) IDFD(a) DeepCluster (d) UOL

Class
1 5432 6

Figure 12: Comparison of the embedding spaces, for dividing MORPH II (setting A) into six clusters,
obtained by (a) DeepCluster (Caron et al., 2018), (b) IDFD (Tao et al., 2021), (c) ProPos (Huang
et al., 2022), and (d) the proposed UOL algorithm. We group the ground-truth age classes into six
age ranges, depicted by colors from blue to red.

Embedding space transition: Figure 13 visualizes the transition of the embedding space for
MORPH II (setting A) at k = 6. As the training step increases, instances are gradually sorted to
satisfy the order desideratum in equation 7. Hence, after the training, the instances in different classes
are more clearly divided in the embedding space.

Step 5000Step 2000Step 500 Step 10000Step 3000

Class
1 5432 6

Figure 13: Embedding space transition for MORPH II (setting A) during the UOL training at k = 6.
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Unordered metrics: In Table 11, we compare clustering results by employing two unordered metrics:
Accuracy and normalized mutual information (NMI). Compared to ordinary classification datasets, it
is more difficult to group instances according to their classes in these orderable datasets of MORPH II
and RetinaMNIST. This is because adjacent classes are not clearly distinguished. For example, 16-
year-olds and 20-year-olds may have similar appearances. Therefore, the overall scores are relatively
low. However, the proposed UOL performs the best in all tests even in terms of the unordered metrics.

Table 11: Comparison of clustering results on MORPH II (setting A) and RetinaMNIST in terms of
two unordered metrics: Accuracy and NMI. For MORPH II, k = 6. For RetinaMNIST, k = 5.

MORPH II (A) RetinaMNIST

Algorithms Accuracy (%) (↑) NMI (↑) Accuracy (%) (↑) NMI (↑)
MiCE (Tsai et al., 2021) 24.1 0.046 32.3 0.104
IDFD (Tao et al., 2021) 21.9 0.007 29.3 0.098
ProPos (Huang et al., 2022) 20.4 0.014 31.2 0.105

Proposed UOL 31.0 0.154 37.9 0.151

Impacts of different backbones: Table 12 lists the ordered clustering results using different back-
bones on the MORPH II (setting A) and RetinaMNIST datasets. UOL also performs well with these
backbones, indicating that it is not affected by the backbones too much.

Table 12: Comparison of ordered clustering results with different backbones on the MORPH II
(setting A) and RetinaMNIST datasets. For MORPH II, k = 6. For RetinaMNIST, k = 5.

MORPH II (A) RetinaMNIST

Backbone SRCC(↑) MAE (↓) SRCC(↑) MAE (↓)
VGG16 0.632 1.122 0.567 0.953
ResNet18 0.540 1.246 0.515 0.989
ResNet50 0.590 1.179 0.559 0.967

Impacts of cluster initialization: In Table 13, we list the SRCC results of five random cluster
initializations. Also, we report the average and standard deviation of the SRCC scores. UOL yields
roughly the same order regardless of the cluster initialization, indicating that it is not very sensitive to
the initialization.

Table 13: Comparison of the SRCC scores with five random initializations on the MORPH II (setting
A) and RetinaMNIST datasets. For MORPH II, k = 6. For RetinaMNIST, k = 5.

1 2 3 4 5 Average

MORPH II(A) 0.632 0.625 0.630 0.634 0.619 0.628±0.005
RetinaMNIST 0.567 0.564 0.552 0.567 0.567 0.563±0.006
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Limitations: In Table 2, UOL fails to yield decent clustering results on the CLAP dataset, even
though it shows good results on the MORPH II dataset. It is because CLAP contains more diverse
face shots in various environments than MORPH II, as illustrated in Figure 14. Also, in addition to
facial age estimation and medical assessment, aesthetic score regression is a popular ranking task.
However, even for UOL, it is hard to learn the aesthetic criteria in an unsupervised manner, which are
often subjective and ambiguous.

Since UOL is the first attempt at ordered clustering, we focus on developing a simple but reasonable
algorithm. Hence, instead of considering all possible cases, UOL assumes that there is a total order of
underlying classes. However, this is not always the case. Therefore, in order to broaden the potential
use cases, it is required to extend the proposed algorithm to the scenarios where there is no total order
e.g. dataset with a partial order. We leave this for future work.

Figure 14: Examples of facial photos in the CLAP dataset.
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