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Abstract

Distribution shift detection is paramount in safety-
critical tasks that rely on Deep Neural Networks
(DNNs). The detection task entails deriving a con-
fidence score to assert whether a new input sam-
ple aligns with the training data distribution of
the DNN model. While DNN predictive uncer-
tainty offers an intuitive confidence measure, ex-
ploring uncertainty-based distribution shift detec-
tion with simple sample-based techniques has been
relatively overlooked in recent years due to com-
putational overhead and lower performance than
plain post-hoc methods. This paper proposes us-
ing simple sample-based techniques for estimat-
ing uncertainty and employing the entropy den-
sity from intermediate representations to detect
distribution shifts. We demonstrate the effective-
ness of our method using standard benchmark
datasets for out-of-distribution detection and across
different common perception tasks with convolu-
tional neural network architectures. Our scope ex-
tends beyond classification, encompassing image-
level distribution shift detection for object detec-
tion and semantic segmentation tasks. Our results
show that our method’s performance is compa-
rable to existing State-of-the-Art methods while
being computationally faster and lighter than other
Bayesian approaches, affirming its practical utility.
Code is available at https://github.com/
CEA-LIST/LaREx.

1 INTRODUCTION

As highly automated systems increasingly rely on DNNs
to perform safety-critical tasks, confidence representation
in DNN predictions has become crucial when deployed in
the open world. Trustworthy DNN models should provide

accurate predictions and detect samples that differ from
those observed in the training distribution. Therefore, cap-
turing information about “what the model does not know”
is not only helpful but essential in safety-critical tasks and
real-world deployment [Sun et al., 2021].

In image classification, multiple methods have been pro-
posed for distribution shift detection by building DNN pre-
diction confidence scores, among which post-hoc methods
stand out mainly by their less-invasive nature and practical
use [Yang et al., 2021, Ruff et al., 2021]. DNN predictive un-
certainty offers a plain confidence representation. Existing
Bayesian deep learning (BDL) methods provide a simple
and principled approach to estimating DNN uncertainty.
DNN predictive uncertainty with BDL methods has been
used for detecting out-of-distribution (OoD) samples under
the assumption that samples far away from the training dis-
tribution provide higher predictive uncertainty than samples
observed in the training data [Ovadia et al., 2019, Kendall
and Gal, 2017].

While BDL sampling-based methods are conceptually
straightforward (e.g. , Monte-Carlo dropout), their practical
implementation is hindered by substantial computational
costs, limiting widespread adoption. Furthermore, recent
works [Yang et al., 2021, Mukhoti et al., 2023] argue that
BDL uncertainty is comparatively less effective for OoD
detection when contrasted with more direct (deterministic)
post-hoc methods. In addition, these problems can scale up
to more complex computer vision tasks. In semantic seg-
mentation, the lack of information on semantic structures
and contexts yields miss-matches between anomaly pixel
masses and pixel uncertainty regions [Di Biase et al., 2021,
Xia et al., 2020]. In object detection, object distance and
occlusion can impact the bounding-box predictive uncer-
tainty for regression and classification [Feng et al., 2021,
Wang et al., 2020]. Therefore, the limitations mentioned
above lead to the open question: Are DNN uncertainty-based
confidence scores, with simple sample-based methods, still
competitive for distribution shift detection?
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In this paper, we propose to use the uncertainty from in-
termediate latent representations (feature maps and embed-
dings) to detect distribution shifts at the image level. We
leverage the latent representation entropy density from the
training dataset and propose two new confidence scores
(fully defined in Section 3.2) that we call LaRED & LaREM
(LaREx for short). Our approach offers compelling benefits:
1) OoD data agnostic, i.e. , the score threshold is estimated
only with in-distribution (InD) data; 2) simple post-hoc
method that requires a single noise layer; 3) reduced runtime
compared to sample-based BDL techniques and compara-
ble to deterministic counterpart methods; 4) the presented
scores can be applied to different CNN-based model archi-
tectures from different tasks. The paper contributions are
summarized below:

1. We present two uncertainty-based confidence scores
(LaREx) for image-level distribution shift detection
that are computationally efficient compared with other
BDL methods. We combine the benefits of simple
sample-based methods for uncertainty estimation with
density and distance-based methods for OoD detection.

2. We demonstrate the applicability of LaREx beyond
image classification with more complex computer vi-
sion tasks, namely semantic segmentation and object
detection tasks. Moreover, we show that image-level
detection still has compelling benefits compared to
more fine-grained detection schemes at the pixel or
object level.

3. We performed extensive experimentation comparing
the proposed confidence scores with standard baselines
and benchmarks. In addition, we performed ablation
studies presenting perspectives on enhancing the prac-
tical effectiveness of LaREx encompassing aspects
such as regularization, dimensionality reduction, and
the DNN layer to collect representations samples.

2 BACKGROUND

2.1 PROBLEM FORMULATION

Data distribution shift detection can be framed as a binary
classification task. The classifier Ω aims at using a confi-
dence score S with a corresponding threshold τ to determine
(at inference time) whether a new input sample x∗ belongs
to the training data distribution or not (OoD, anomalous
samples), as presented in eq. (1):

Ω
(
S(x∗), τ

){
1 InD S(x∗) ≥ τ

0 OoD S(x∗) < τ
(1)

Therefore, following the equation above, the goal is to derive
a confidence score such that–by convention in the literature–
positive InD samples have higher confidence scores and

vice versa for OoD or anomalous input samples. Then, the
classifier Ω uses the confidence score S to get a notion of
trust in the DNN and elicit its verdict.

2.2 RELATED WORK

In distribution shift detection, post-hoc methods aim to cre-
ate confidence scores that have a minimal impact on the
DNN architecture and the training process without altering
the loss function. Post-hoc methods are presented below.

Output-based Methods. These methods aim at devising
confidence scores based on the DNN outputs. Hendrycks
and Gimpel [2016] proposed the first simple baseline
method that uses the maximum softmax probability (MSP)
as an InD membership score. Later work suggests using the
maximum logit to outperform MSP [Hendrycks et al., 2019].
More recently, Liu et al. [2020b] proposed the energy score
by summing up the prediction logits over all classes. In this
line of work, ASH [Djurisic et al., 2022], DICE [Sun and Li,
2022], and ReAct [Sun et al., 2021] have worked on improv-
ing the energy score separability for InD and OoD data by
modifying the activations of the penultimate layer and apply-
ing thresholding and scaling, sparsification, or clipping. In
the context of uncertainty estimation, sample-based approx-
imate Bayesian inference methods [Gal and Ghahramani,
2016, Lakshminarayanan et al., 2017] are used to gener-
ate multiple predictions for the same input sample, from
which the predictive entropy and mutual information can
be used as confidence scores [Kirsch et al., 2021, Mukhoti
et al., 2023]. Unlike these methods, we do not use the DNN
outputs to build our confidence scores.

Density-based Methods. These methods focus on modeling
InD density using probabilistic models. In the context of
discriminative models, deterministic uncertainty estimation
methods Postels et al. [2020], Blum et al. [2021], Mukhoti
et al. [2023] aim to estimate the embedding density while
connecting to the traditional BDL approach. Another line of
work employs generative models to represent the training
data distribution, assuming that high-likelihood values cor-
respond to InD samples and low-likelihood values to OoD
samples. However, Nalisnick et al. [2018] showed that this
assumption does not hold since the typical set of the data
may not intersect with the high-likelihood region and adopt
a typicality test approach using a batch of samples. Choi
et al. [2018] suggests that OoD data may receive higher
likelihoods due to epistemic errors and proposes using an
ensemble of density models to address this issue. Follow-
up work from Morningstar et al. [2021] propose assessing
the typicality through multiple summary statistics from the
model and their corresponding density estimates to build a
score for a single sample. In contrast, our approach incorpo-
rates the ideas from both of the previous lines of work and
uses the entropy density from intermediate representations
to build our confidence scores.



Distance-based Methods. These methods assume that OoD
samples reside in farther locations than InD samples from
the training reference examples. Lee et al. [2018] proposed
using the minimum Mahalanobis distance to all embedding
centroids per class, assuming that the feature space follows
a multivariate normal distribution. Recent work from Sun
et al. [2022] shows promising results by following a non-
parametric approach in the feature space and using the Kth
nearest neighbor (KNN) distance. Other works Techapanu-
rak et al. [2020], Nitsch et al. [2021] use the cosine similarity
between class embeddings and test sample embeddings as a
confidence score. Our proposed scores follow both the para-
metric and the non-parametric approach for entropy density
estimation. The parametric version is used to compute the
Mahalanobis distance.

Detection in complex computer vision tasks. For object
detection, Du et al. [2022] proposed to modify the training
procedure of an RCNN to synthesize virtual outliers in the
feature space so that the energy score behaves differently for
InD or OoD samples. More recently, Wilson et al. [2023]
proposed training an auxiliary network to distinguish hidden
state activations across the backbone of an RCNN for InD
or OoD samples by generating outliers as corrupted images
in the input space. In semantic segmentation, recent bench-
marks Chan et al. [2021] present adapted common post-hoc
methods for detecting anomalies at the pixel level despite
the high execution runtime that hinders its practical utility.
Instead, our approach proposes to detect shifts at the image
level from a standpoint that is previous and complementary
to signal the presence of potential finer anomalies. More on
this discussion is found in Appendix F.

3 METHOD

We propose an uncertainty-based confidence score that lever-
ages the entropy from an intermediate DNN latent represen-
tation. Taking inspiration from Morningstar et al. [2021],
in our formulation, the DNN latent representation entropy
is represented as a random variable Ψ ∼ fΨ(ψ), and we
estimate its density by employing the InD training samples.
Next, we use the estimated representation entropy density
to build a confidence score that enables the detection of
newly shifted samples (OoD samples). Below, we describe
our approach to capture latent representation entropy, the
InD entropy density fΨ(ψ) estimation, and the confidence
scores computation.

3.1 LATENT REPRESENTATIONS UNCERTAINTY

Key to our approach is the estimation of uncertainty from
a DNN latent representation. A simple way to estimate
uncertainty is by applying dropout [Srivastava et al., 2014]
to add multiplicative noise to latent representation z̃, as
presented in eq. (2):

z = m⊙ z̃, where m ∼ B(pm) (2)

where m is the vector of independent Bernoulli random
variables—the dropout mask—and pm is the drop probabil-
ity that has the same dimension as z̃. A vector m is sampled
and multiplied element-wise with the latent code z̃ to pro-
duce a modified “noisy” latent code z, for which we would
like to marginalize out the dropout mask noise as follows:

pθ(z | x) =
∫
pθ(z | x,m) p(m) dm︸ ︷︷ ︸

dropout masks

(3)

Thus, to get the uncertainty of the latent code z, we take mul-
tiple samples from m to generate multiple dropout masks
so that we can produce a set of M samples z, {zi}Mi=1 that
approximate eq. (3). This set of samples, produced with a
DNN with weights θ and input x, help us characterize the
sampling distribution pθ(z | x), whose entropy is presented
in eq. (4).

H(z | x) = −
∫
pθ(z | x) ln pθ(z | x) dz (4)

From a practical point of view, we need a single dropout
layer to get the samples {zi}Mi=1 to approximate the integral
from eq. (3). In addition, during deployment, this situation
allows us to speed up the sampling acquisition since we no
longer need to pass an input sample throughout the whole
DNN. We perform a single forward pass for a given input
sample and capture the latent representation just before the
target dropout layer. Then, we apply different dropout masks
to the captured latent representation.

Our approach to capture the latent representation uncertainty
is akin to the Monte-Carlo dropout (MCD) [Gal and Ghahra-
mani, 2016] method for Bayesian approximation. However,
our method differs since we apply dropout to produce multi-
ple noisy versions of the representation. Thus, to distinguish
with MCD, we use the term z Monte-Carlo dropout (zMCD)
henceforth. We refer the reader to Appendix B for addi-
tional insights between zMCD and MCD from approximate
Bayesian inference.

zMCD on feature maps. Standard dropout is ineffective
when applied to convolutional neural networks (CNNs)
since it does not remove semantic and spatial information
from CNN feature maps. On the other hand, dropping con-
tinuous regions in 2D feature maps with DropBlock can
help remove semantic information and enforce remaining
units to learn features for the assigned task [Ghiasi et al.,
2018]. This effect is also desired for capturing uncertainties
to overcome the standard dropout limitation. Therefore, we
follow the approach from Deepshikha et al. [2021] and use
DropBlock to capture the uncertainty from feature maps.

Feature map processing. CNN feature maps are of the
form z ∈ RC×H×W , where C, H and W denote the fea-
ture map number of channels, height, and width respectively.



We compute the mean of the feature map across the spatial
dimensions (H and W ) so that the latent feature representa-
tion is reduced to a vector:

zµc
=

1

HW

H∑
h=1

W∑
w=1

z(c, h, w), where zµc
∈ RC (5)

3.2 REPRESENTATION ENTROPY DENSITY FOR
DETECTING DISTRIBUTION SHIFTS

To start the entropy computation for detecting shifted sam-
ples, we first assume access to a training dataset Dt =
{xn,yn}Nn=1 with N samples. Now, we generate a set of
zMCD samples {zi}Mi=1 for each training sample xn The
resulting zMCD samples can then be used to approximate
the entropy from eq. (4), using standard entropy estimators
methods [Kozachenko and Leonenko, 1987]:

Ĥn
(
{zi}Mi=1

)
≈ Hn(z | xn) (6)

Consequently, we produce entropy estimation vector sam-
ples {ψn}Nn=1 for the training dataset Dt (InD) samples:

ψ = Ĥ(z | x)

{ψn}Nn=1 = Ĥn(z | xn),∀xn ∈ Dt
(7)

The entropy estimation samples {ψn}Nn=1 from Dt are used
to estimate the InD entropy density function fΨ ≈ f̂Ψ.
fΨ is estimated using Kernel Density Estimation (KDE),
or we assume that fΨ is a multivariate Normal distribution,
parameterized by the estimated mean µ̂ψ and covariance Σ̂ψ
from {ψn}Nn=1, as shown in eq. (8) and eq. (9) respectively.

f̂Ψ = f̂KDE
(
{ψn}Nn=1

)
(8)

f̂Ψ = N
(
µ̂ψ, Σ̂ψ

)
(9)

At test or deployment time, we use the estimated InD en-
tropy density f̂Ψ to produce a confidence score for a new
input sample x∗. To this end, we produce a set of zMCD
samples {z∗

i }Mi=1 to estimate the latent representation z∗

entropy vector for a new input sample x∗:

ψx∗ = Ĥ(z∗ | x∗) (10)

In the case of LaRED—Latent Representation Entropy Den-
sity log-likelihood—score, we compute the log-likelihood
of the entropy estimation ψx∗ for a new input sample x∗,
using the estimated entropy density function from eq. (8):

LaRED(x∗) = log f̂KDE
(
ψx∗

)
(11)

Equation (11) is equivalent to the confidence score from
Morningstar et al. [2021]. However, in our confidence score,
we use a single summary statistic instead of multiple sum-
mary statistics—i.e. ,the latent representation entropy.

For the LaREM—Latent Representation Entropy density Ma-
halanobis distance—score, we compute the negative Maha-
lanobis distance, using the estimated density f̂Ψ parameters
from eq. (9) and the entropy estimation ψx∗ for x∗:

LaREM(x∗) = −
((
ψx∗ − µ̂ψ

)⊤
Σ̂−1
ψ

(
ψx∗ − µ̂ψ

))
(12)

Equation (12) is based on the score from Lee et al. [2018].
However, we do not perform per-class centroid distance
computations. Moreover, the LaREM score uses negative
distance values to align with the convention where InD
samples have higher confidence score values.

Entropy vector dimensionality reduction. Following pre-
vious works [Lee et al., 2018, Postels et al., 2020, Yang et al.,
2023], we apply principal components analysis (PCA) to re-
duce the dimensionality of the obtained entropy vectors ψx∗ .
Entropy vectors have the same dimensions as the latent code
z or zµc . Thus, the goal is to reduce the dimensions from C

to C ′ so that ψx∗ ∈ RC′
, where C ′ < C. Applying PCA is

particularly important for the LaRED score, given the com-
mon limitations of the KDE algorithm in high-dimensional
spaces.

Figure 1 shows our approach to capturing uncertainty from
latent representations (as described in Section 3.1) and
presents an overview of both LaRED & LaREM confidence
score setup and computation during deployment. LaRED &
LaREM computation details are available in Appendix A.

4 EXPERIMENTS & RESULTS

The experimental evaluation in this section aims to an-
swer the following questions: 1) How do LaRED & LaREM
scores perform compared to other post-hoc baseline meth-
ods for distribution shift detection? 2) How do different
design choices affect LaRED & LaREM performance? 3)
Can LaRED & LaREM scale to more complex computer
vision tasks with different DNN architectures?

Evaluation Metrics. We select three common metrics for
detecting misclassified shifted (OoD and anomalous) sam-
ples to evaluate the proposed method. These metrics are:
1) FPR95 measures the false positive rate (FPR) of OoD
samples when the true positive rate (TPR) of InD samples is
95%; 2) the area under the receiving operating characteristic
curve AUROC; and 3) the area under the precision-recall
curve AUPR.

4.1 IMAGE CLASSIFICATION

Experiment setup. For the classification task we use a
standard ResNet-18 [He et al., 2016] DNN trained with
the CIFAR-10 (InD) dataset. For the OoD detection evalu-
ation, we consider SVHN [Netzer et al., 2011], Places365
[Zhou et al., 2017], LSUN-Crop [Yu et al., 2015], LSUN-
Resize [Yu et al., 2015], Textures [Cimpoi et al., 2014],



Figure 1: LaRED & LaREM confidence score overview. The left part of the figure shows the extraction of clean latent feature
maps. In the center, multiple DropBlock masks are applied to the extracted feature map to get the uncertainty from the
latent representation pθ(z | x). The upper part of the figure depicts the score setup computation to get the entropy density
estimates f̂Ψ. The lower part of the figure shows the score computation during deployment.

iSUN [Xu et al., 2015], and Fashion MNIST [Xiao et al.,
2017] datasets. We compare LaREx with common post-hoc
detection methods from the literature that do not require ad-
ditional OoD data. Uncertainty-based detection methods use
16 MC samples, i.e. , predictive entropy and predictive mu-
tual information (MI), and LaREx (using MCD and zMCD,
respectively). Additional experiment details are provided in
Appendix C.

Results. Table 1 presents the average detection performance
results over all the considered OoD datasets and the base-
lines described in Section 2.2. The results show that, in
general, LaREx performance is on par with post-hoc base-
line methods while being faster than other BDL approaches,
as discussed in Section 4.4. In particular, LaRED & LaREM
occupy the second and third positions, respectively, after
KNN [Sun et al., 2022], denoting the benefits of not impos-
ing a distributional assumption for the latent space. For both,
LaRED & LaREM, the best results are obtained without
applying PCA. Interestingly, methods that aim at improving
the Energy score (React [Sun et al., 2021], DICE [Sun and
Li, 2022], and ASH [Djurisic et al., 2022]) have worse per-
formance than the vanilla Energy score [Liu et al., 2020b].
We believe that the drop in performance can be due to a
sub-optimal parameter selection, i.e. , we used the best pa-
rameters proposed by the authors of each baseline without
trying to find if other parameters performed better for this
benchmark. Finally, for the other uncertainty-based methods
(BDL w/MCD), the performance drop is more noticeable,

validating prior work [Kirsch et al., 2021, Mukhoti et al.,
2023] observations.

Where to collect zMCD samples? To answer this question,
we need to add a noise layer (DropBlock or dropout layer)
at different locations of the neural network to enable zMCD
sampling. To this end, we take into account the output of
each residual block of the ResNet-18 as ideal places to take
zMCD samples. We use DropBlock at the outputs of resid-
ual blocks 1 to 3 and a dropout layer for the output of the
residual block 4. The dropout layer is used in the last posi-
tion, given the dimensions of the embedding representation
after the avg. pooling. Figure 2a shows the average detection
performance when samples are taken using DropBlock or
Dropout on different locations of the DNN described above.
For both, LaRED & LaREM, the performance peaks when
DropBlock is placed at the output of residual block-2 to take
zMCD samples.

DropBlock size matters. Figure 2b presents the average
detection performance across all OoD datasets for three
different DropBlock sizes and a fixed drop probability of
0.5. For both methods, the performance is similar for block
sizes of 3x3 and 5x5, with a subtle difference that favors
a block size of 5x5 when inspecting the FPR95 results. A
block size of 8x8 has a more noticeable drop in performance,
affecting both methods. In this case, we attribute this effect
to the fact that bigger DropBlock sizes tend to remove more
relevant information, which can be vital for our methods.



Table 1: Image classification average detection performance
results across seven OoD datasets. All the detection methods
use the same DNN trained with CIFAR-10 (InD) dataset
and with all the regularization options from Figure 3. The
best results are shown in bold, second best are underlined.

Method FPR95 ↓ AUROC ↑ AUPR ↑

MSP 61.80 ± 9.60 84.44 ± 3.49 85.88 ± 3.80
Pred. Entropy 53.76 ± 16.98 88.44 ± 4.76 89.32 ± 4.96
Pred. MI 82.99 ± 9.17 77.29 ± 5.81 79.19 ± 5.38
Energy 47.96 ± 21.56 89.23 ± 7.18 89.27 ± 8.04
ASH 63.96 ± 18.21 80.87 ± 10.03 79.82 ± 12.52
ReAct 93.10 ± 2.58 53.76 ± 4.26 53.06 ± 4.77
DICE 81.51 ± 16.13 64.47 ± 12.10 62.19 ± 11.14
DICE+ReAct 92.31 ± 3.27 54.71 ± 5.73 54.27 ± 6.14
KNN 32.90 ± 20.30 92.65 ± 6.23 92.63 ± 6.32
Mahalanobis 57.35 ± 27.00 80.00 ± 11.45 78.70 ± 11.63
LaRED(ours) 33.16 ± 20.29 90.80 ± 6.50 90.80 ± 6.50
LaREM(ours) 37.33 ± 20.03 89.20 ± 6.62 87.60 ± 7.05

(a) DNN place for zMCD samples

(b) DropBlock size

Figure 2: Impact of LaRED & LaREM design choices on
average detection performance across all OoD data sets.

Regularization improves performance. We consider the
impact of adding an extra dropout (DO) layer and data
augmentation (DA) as simple ways to increase DNN regu-
larization. The additional DO regularization layer is placed
at the output of the ResNet encoder before the last linear
layer. In addition, motivated by prior work on deterministic
uncertainty estimation methods Mukhoti et al. [2023], Liu
et al. [2020a], we also consider Spectral Normalization (SN)
regularization. However, based on the work from Ghosh
et al. [2020], we use SN only with the layers after the output
of the residual block where we placed the DropBlock layer
to regularize the latent space from where we take the zMCD
samples. Figure 3 shows the average detection performance
results across all the OoD datasets. In this figure, it is possi-
ble to observe that regularization impacts the performance
of our method (and of baselines too). DA alone has a higher
positive impact on performance compared to SN or DO. SN
outperforms DO when applied alone. However, when DA
is combined with DO, it outperforms DA+SN, validating

Figure 3: DNN regularization impact on LaRED & LaREM
performance. DO: Dropout, SN: Spectral Normalization,
DA: Data Augmentation.

the importance of noise injection during training. Moreover,
applying all of them seems to be the most beneficial option
for all OoD detection methods. We used a DNN trained with
all the regularization options to compare our approach and
the baseline methods from Table 1. We refer the reader to
Appendix C for further details.

4.2 OBJECT DETECTION

DNN model. For the object detection task, we built on the
work from Du et al. [2022] to detect distribution shifts with
the Faster-RCNN architecture [Ren et al., 2015]. The main
difference between our approach is that VOS [Du et al.,
2022] aims to detect shifts at the object level. We, instead,
aim to detect shifts at the image level. We use the Faster-
RCNN vanilla pre-trained model from Du et al. [2022],
trained on BDD-100K [Yu et al., 2020]. The models are
implemented with the Detectron2 library [Girshick et al.,
2018] with a ResNet-50 [He et al., 2016] backbone.

Experiment setup. We fine-tuned the trained model into
two versions: the first one with a DropBlock layer and fine-
tuned both the RPN and the RoI heads. To fine-tune and
gather zMCD samples from the RPN, the DropBlock layer
had a block size of 4 and a drop probability of 0.5 and was
applied after the first convolutional layer. This layer outputs
256 feature maps of varying sizes (12x21, 24x42, 48x84,
96x168, and 192x336) for a total of 1280 feature maps.
These feature maps are reduced by taking the mean of each
of them as presented in eq. (5) to end up with simplified
representation and entropy vectors of dimension 1280. In



the second version, we added the dropout layer after the
penultimate layer of the network (the Box Head, BH) and
fine-tuned only the RoI heads (Box Head and Box predictor).
To fine-tune and capture zMCD samples from the box head,
we used a drop probability of 0.5. The output of this layer
consists of a tensor of size 1000x1024 corresponding in
the first dimension to the 1000 boxes highest ranked by the
box pooler and the second dimension for the feature map
for each of these boxes. To reduce the dimension of this
feature map, we extracted the mean per box, obtaining an
embedding of 1000 components. For the evaluation, we used
as OoD the same splits provided by Du et al. [2022] of the
MS-COCO [Lin et al., 2014] and OpenImages [Kuznetsova
et al., 2020] datasets. Additional experiment details are
provided in Appendix D from the supplementary material.

Baseline Methods. We implemented and adapted the follow-
ing baselines for the object detection case: MSP [Hendrycks
and Gimpel, 2016], Mutual information [Gal, 2016], Predic-
tive entropy [Gal, 2016], energy score [Liu et al., 2020b],
DICE [Sun and Li, 2022], ReAct [Sun et al., 2021],
DICE+ReAct, and ASH [Djurisic et al., 2022]. For the
energy-based methods, we implemented and evaluated two
versions of each one: using the raw (R) output of the net-
work (of 1000 results per image) and using the filtered (F)
results after non-maximum suppression (NMS) (with vari-
able size, typically of about 10-15 results per InD image).
For MSP, pred. entropy, and mutual information, we took
the output of the network after NMS. For ASH, we used
the 80th percentile for pruning; for DICE, we used the 90th
percentile for sparsifying; and for ReAct, we also used the
90th percentile for clipping. For SAFE [Wilson et al., 2023]
and VOS [Du et al., 2022], we report the results from their
respective papers.

Results. Table 2 summarizes the results for LaREx when
using zMCD samples from the object detector RPN and
the box head. For the version where the samples are col-
lected from the RPN, LaRED w/40-PCA components and
LaREM w/56-PCA components perform better than the ver-
sion where samples are taken from the BH. In the latter,
LaRED w/2-PCA components has better results, presum-
ably thanks to the dimensionality of the latent represen-
tations. This agrees with our previous results for image
classification, where placing the DropBlock layer at a more
intermediate location in the DNN leads to better results than
placing it closer to the output. In general, both LaRED &
LaREM show a competitive performance compared to the
other adapted baselines. In particular, LaRED shows the
best AUROC results. Interestingly, our adapted F-ReAct,
F-DICE, and F-ASH methods improve the F-Energy score
detection performance results, and R-DICE shows the best
results for OpenImages detection. Furthermore, despite not
being a fair comparison, we report the results from VOS and
SAFE showing that image level detection performance, in
general, surpasses object level detection from recent works.

Table 2: Object detection OoD detection results. LaRED is
applied at two different places of the Faster-RCNN DNN
object detector trained with the BDD-100K dataset (InD
dataset). The † symbol denotes the 2nd DNN version that
applies fine-tuning only to the RoI heads. The best results are
in bold for each metric, and the second best are underlined.
The ♣ symbol indicates the results as reported in Du et al.
[2022], Wilson et al. [2023].

Method COCO OpenImages

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

R-Energy 1.27±1.20 99.70±1.02 0.22±0.18 99.87±0.10
F-Energy 18.08±1.28 92.27±1.98 18.17±1.65 90.56±1.03
R-ASH 68.88±1.02 68.98±1.49 80.40±1.47 62.45±0.82
F-ASH 3.35±1.84 99.27±0.96 3.12±1.03 99.25±0.05
R-React 29.68±0.98 94.92±1.74 18.51±1.48 96.92±1.47
F-React 2.18±1.52 99.56±1.38 05.11±1.66 98.90±1.06
R-DICE 32.44±1.48 93.80±1.32 0.01±0.01 99.98±0.02
F-DICE 19.20±1.32 94.78±1.59 20.55±1.21 94.67±1.58
R-DICE+ReAct 24.94±1.74 94.36±1.46 97.55±1.16 52.14±1.98
F-DICE+ReAct 64.99±1.63 63.70±0.99 73.63±1.55 76.03±1.53

MSP 0.21±0.87 99.79±0.68 0.11±0.06 99.88±0.71
Pred. Entropy 68.88±1.02 68.98±1.49 80.40±1.47 62.45±0.82
Pred. MI 54.46±1.14 77.98±1.52 21.35±1.26 85.45±0.97

LaRED RPN (ours) 0.31±0.30 99.81±0.40 0.22±0.21 99.88±0.60
LaREM RPN (ours) 0.74±0.42 99.77±0.29 0.10±0.08 99.91±0.08
LaRED BH † (ours) 12.07 ±0.60 97.48±0.80 10.33±1.20 97.54±0.90

VOS-ResNet50♣ 44.27±2.0 86.87±2.1 35.54±1.7 88.52±1.3
SAFE-ResNet50♣ 32.56±0.8 88.96±0.6 16.04±0.5 94.64±0.3

4.3 SEMANTIC SEGMENTATION

DNN models. For the semantic segmentation task, we con-
centrate on the application of the proposed method with the
DeepLabv3+ [Chen et al., 2018], and U-Net [Ronneberger
et al., 2015] architectures. To apply LaREx, we added a
DropBlock layer at the output of both DeepLabv3+ and U-
Net encoders using a block size of 8x8 and a drop probability
of 0.5 to take zMCD samples. We train both DNNs with
Cityscapes [Cordts et al., 2016] and Woodscape [Yogamani
et al., 2019] datasets. DeepLabv3+ models M1 and M2,
and U-Net models M3 and M4, respectively. Additional
details are provided in Appendix E.

Evaluation Datasets. Motivated by Ahmed and Courville
[2020] who argue that semantically similar samples are of
practical relevance, we consider data with covariate shift
for the experiments. When DNN is trained with Woodscape,
we use Cityscapes data for the evaluation and vice-versa.
Moreover, we consider the Failure Mode Effect Analysis
in perception tasks from Ceccarelli and Secci [2022] and
take into account InD data with perturbations and anomalies.
Therefore, we include Cityscapes and Woodscape datasets
with synthetic anomalies and the Woodscape-soiling [Yoga-
mani et al., 2019] dataset for the evaluation.

Baseline Methods. In this task, we discarded post-hoc meth-
ods based on DNN outputs since we do not target pixel-level
anomaly detection. Instead, we use the Mahalanobis [Lee
et al., 2018] and KNN [Sun et al., 2022] distance as base-



Table 3: Semantic segmentation average distribution shift
detection results for the evaluation datasets in DeepLabv3+
(M1, M2) and U-Net (M3, M4) architectures trained with
Cityscapes (M1, M3) and Woodscape (M2, M4) datasets
respectively. The best results are in bold for each metric.

ID Methods Evaluation Datasets Average Performance

FPR95 ↓ AUROC ↑ AUPR ↑

M1

Mahalanobis 1.07 ± 1.85 99.70 ± 0.46 99.75 ± 0.38
KNN 8.28 ± 13.92 98.37 ± 2.38 98.53 ± 2.19
LaREM 3.00 ± 5.20 99.39 ± 0.98 99.42 ± 0.93
LaRED-58 10.87 ± 18.60 97.04 ± 3.96 97.07 ± 4.16

M2

Mahalanobis 1.59 ± 2.34 99.36 ± 0.48 99.58 ± 0.34
KNN 7.96 ± 9.89 97.72 ± 1.36 96.09 ± 4.24
LaREM 21.27 ± 13.73 93.57 ± 2.64 89.17 ± 5.40
LaRED-50 12.60 ± 8.06 96.24 ± 2.13 95.48 ± 3.01

M3 LaRED-50 17.79 ± 12.04 95.29 ± 3.84 95.02 ± 4.86
M4 LaRED-50 20.15 ± 14.61 95.42 ± 4.09 95.96 ± 4.05

line methods to compare LaRED & LaREM. However, these
distance-based methods are different from those that tar-
get pixel-level anomaly detection [Chan et al., 2021]. Both
methods use the representations from the penultimate layer.
However, since the representations are now 2D feature maps,
we take the mean of the feature maps as presented in eq. (5).
Furthermore, for the Mahalanobis distance, we calculate
a single entropy vector ψ mean for the training (InD) set
instead of dedicated means for each class.

Results. Table 3 presents the results for the models of
both architectures for semantic segmentation. For both
DeepLabv3+ models, LaREM w/o PCA has the best results,
while LaRED w/58 PCA components and LaRED w/50
PCA components show the best results for the DNN mod-
els trained with Cityscapes and Woodscape, respectively.
In all the models, LaREx performance is comparable to
the other distance-based baselines. The reason for LaREx
performance difference can be attributed to a sub-optimal
selection of the parameters (e.g. , DropBlock location and
size, PCA components) and to the presence of “clean” InD
images in the evaluation datasets (in particular the case of
Woodscape soiling dataset) that can be handled by the inher-
ent robustness of the DNN. In contrast to the image classi-
fication case, for semantic segmentation, the Mahalanobis
distance in both Deeplabv3+ models has the best perfor-
mance results across the evaluated datasets, outperforming
the KNN distance method. Presumably, the drop in KNN
performance is due to the sub-optimal selection of the kth
nearest neighbor. Note that we used the parameters proposed
by the authors of each baseline, as in the image classifica-
tion experiments. Next, in both U-Net models, LaRED w/50
PCA components show the best performance results. In gen-
eral, the obtained results further validate the importance and
effectiveness of the feature maps reduction by computing
the mean to get a simplified representation as presented in
eq. (5).

Table 4: Deeplabv3+ uncertainty-based confidence scores
runtime comparison on laptop PC with Intel i7-9750H CPU
and NVIDIA RTX 2080. The best results are in bold.

Method Description Runtime (ms) ↓

Pred. Entropy w/16 MCD samples 416.01 ± 12.16
LaREx sampling only w/16 zMCD samples 25.4 ± 3.22
LaRED score w/16 zMCD samples 225.90 ± 7.00
LaREM score w/16 zMCD samples 227.88 ± 8.91

4.4 LAREX RUNTIME EXECUTION

The runtime results are presented in Table 4 for LaRED
& LaREM and Predictive entropy with MCD-BDL in a
DeepLabv3+ trained with Cityscapes. Although this can
not be considered a completely fair comparison, given that
MCD-BDL provides a pixel-level confidence score with the
predicted uncertainty maps, the runtime results highlight
the benefits of our approach in uncertainty-based distribu-
tion shift detection. For both, LaRED & LaREM, most of
the computation time is dedicated to the score computation
after the zMCD sampling step. LaREx sampling is faster
since there is no need to perform a complete forward pass
of the input samples as in the case of BDL-MCD. Never-
theless, most of LaREx runtime budget can presumably be
attributed to data-transfer operations (GPU-RAM-CPU) for
entropy estimation and the score computation.

4.5 ADDITIONAL INSIGHTS & DISCUSSION

We found that LaREx can work without fine-tuning. It
is possible to just add “by hand” a dropout or DropBlock
layer to take zMCD samples and get the method working.
However, fine-tuning in most cases improves the results (see
Appendix D). Interestingly, this situation puts in evidence an
interesting direction for future work to connect theoretically
LaREx with DICE and ASH.

On LaREx limitations. The most noticeable limitation is
the need to perform sampling. However, it is not necessary
to perform complete forward passes through the network
for the method to work. As mentioned in Section 3.1, dur-
ing deployment, we can speed up sampling by placing a
hook on a desired DNN location to extract the feature rep-
resentation. Then, with the added noise layer (DropBlock
or dropout), we generate multiple noisy samples for the ex-
tracted representation. Another constraint lies in the absence
of a predefined optimal location and size for DropBlock or
dropout for any architecture to take the zMCD samples.
Therefore, experimental iterations are required to find the
best optimal location and parameters tailored to a specific
DNN. However, empirically, we have found that DropBlock
sizes of ∼ 20 − 40% of the original feature map size and
drop probabilities of ∼ 0.5 are useful for capturing the de-
sired variability in zMCD samples and lead to good results
in multiple architectures.



There is no free lunch in post-hoc methods. Through-
out our experiments, it became evident that each post-hoc
method was influenced by stronger regularization and, no-
tably, by data augmentation. Moreover, identifying a sin-
gular post-hoc method that universally outperforms others
across diverse computer vision tasks proved challenging
since the performance differences in the best detection meth-
ods are subtle. Consequently, an interesting line for future
work involves the exploration of strategies to combine differ-
ent confidence scores rather than relying solely on a single
method for all tasks and their corresponding architectures.

5 CONCLUSION

We presented two uncertainty-based confidence scores,
LaREM & LaRED, to detect data distribution shifts at the
image level. The applicability of our confidence scores was
demonstrated beyond simple classification, covering also
the semantic segmentation and object detection tasks and
the corresponding DNN architectures. Besides, our confi-
dence score runtime achieves performance comparable to
SotA methods while being faster than the traditional MCD
method from the BDL framework, becoming an appealing
uncertainty-based confidence score alternative. Finally, we
provided additional insights into our method and extended
the discussion by identifying and proposing different lines
for future work.
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A LAREM & LARED ALGORITHM

The computation details for LaRED & LaREM are available in Algorithm 1.

Algorithm 1 Latent Representation Entropy Density-based Distribution Shift Detection: LaRED & LaREM Confidence
Scores.

Definitions:
• Trained DNN pθ(y | x) with noise layer (dropout or dropblock) layer
• Feature extractor pθ(z | x) (Hook on Dropout or DropBlock layer)
• Training dataset samples Dt = {xn,yn}Nn

procedure: setup_LaREx_score:
for each xn ∈ Dt do

get M zMCD samples {zi}Mi=1 ∼ pθ(z | xn)
ψn← entropy

(
{zi}Mi=1

)
save ψn sample into Ψ

end for

Ψ = {ψn}Nn

if LaRED then
f̂Ψ = f̂KDE

(
Ψ
)

end if
if LaREM then

µ̂Ψ ← mean
(
Ψ
)
; Σ̂Ψ ← covariance

(
Ψ
)

f̂Ψ = N
(
µ̂Ψ, Σ̂Ψ

)
end if

end procedure

function: get_LaREx_score(new sample x∗):
get M zMCD samples {zi}Mi=1 ∼ pθ(z | x∗)
ψx∗ ← entropy

(
{zi}Mi=1

)
if LaRED then
S = log f̂KDE

(
ψx∗

)
end if
if LaREM then
S = −

((
ψx∗ − µ̂Ψ

)⊤
Σ̂−1

Ψ

(
ψx∗ − µ̂Ψ

))
end if
Return S

end function
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Entropy estimation was implemented using the Entropy-Estimators library1. For the KDE, in all the experiments, we used a
Gaussian kernel and bandwidth = 1, and the Scikit-Learn library2.

B ZMCD RELATION WITH MCD FOR APPROXIMATE BAYESIAN INFERENCE

To capture uncertainty, we presented the z Monte-Carlo Dropout (zMCD) to produce noisy versions of a given layer latent
representation. Although zMCD is similar to Monte-Carlo Dropout (MCD) for approximate Bayesian Inference in DNNs, it
can not be considered part of the Bayesian deep learning family. First, we consider the Bayesian Neural Network (BNN) and
its predictions described in Equation (13).

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,θ) p(θ | D) dθ (13)

To approximate the Equation (13), MCD performs a variational inference approximation to the intractable posterior of the
wights p(θ | D). In this case, dropout is still applied to the representation from a given layer, and it does not cancel the
neural network weights by default.

Following the work from Gal and Ghahramani [2016], the neural network weight cancel to perform approximate Bayesian
inference is achieved by arranging the next linear combination between the latent representation z with dropout or dropblock
mask m and the layer weights θ, as shown below:

ŷ = σ
((

z ⊙ m
)
θ + b

)
ŷ = σ

(
z
(
diag(m) · θ

)
+ b

) (14)

In zMCD, we capture the latent (noisy) feature representation samples directly at the output of the DropBlock or Dropout
layers. If we would like to turn our method into the Bayesian framework (MCD), we simply need to collect the activation
samples at least after the next layer to respect the weight canceling presented in Equation (14).

C IMAGE CLASSIFICATION EXPERIMENTS

C.1 DNN TRANING DETAILS

Architecture and training details can be found in Table 5. We used the Pytorch-lightning library for training and inference.
The models with the lowest validation loss were saved and used for subsequent inference and OoD detection evaluation.
Additionally, when we indicate that a model has spectral normalization (SN), we apply it after the position for the DropBlock
layer. For example, for the models with a DropBlock layer after the second residual block, SN was applied in the 3rd and
4th residual blocks and the fully connected layer. Data augmentation methods used during training can be found in Table 5.
The seed for all random generators was 9290.

Table 5: Image classification DNN training details

Architecture ResNet-18
Epochs 300
Batch size 64
Image size 128x128
Loss Focal
Optimizer Adam
Optim. weight decay 1× 10−4

LR scheduler Cosine annealing
LR scheduler ηmin 1× 10−5

In Table 7, it is possible to find all the models we trained and tested for the OoD detection task with their corresponding
validation set accuracy. We tested different DropBlock and Dropout layer locations. Models M0 to M3, vary the location

1https://github.com/paulbrodersen/entropy_estimators
2https://scikit-learn.org/stable/about.html

https://github.com/paulbrodersen/entropy_estimators
https://scikit-learn.org/stable/about.html


Table 6: Image classification DNN training: Data augmentation details

Augmentation Parameters

Random Crop padding: img size / 8
Random Color Jitter: p=0.2
• contrast 10%
• brightness 10%
• saturation 10%
Random grayscale p = 0.1
Random vertical flip p = 0.3
Random affine: p = 0.2
• angle 20°
• translation 20%
• scale 1% to 20%

Table 7: All models trained and tested for image classification with CIFAR10 as InD

ID Dropblock Dropout SN DA Val.
Acc

Loc. Size Prob. Active Prob.

M0 RSB1 10 0.4 No 0 No Yes 89.4
M1(-1-4) RSB2 5 0.4 No 0 No Yes 89.2
M2 RSB3 3 0.4 No 0 No Yes 88.2
M3 No 0 0 Yes 0.3 No Yes 88.7
M1-2 RSB2 8 0.4 No 0 No Yes 88.8
M1-3 RSB2 3 0.4 No 0 No Yes 89.2
M1-1-1 RSB2 5 0.4 No 0 No No 84.2
M1-1-2 RSB2 5 0.4 Yes 0.3 No No 84
M1-1-3 RSB2 5 0.4 No 0 Yes No 86.3
M1-1-4 RSB2 5 0.4 No 0 No Yes 89.2
M1-1-5 RSB2 5 0.4 Yes 0.3 Yes No 86.9
M1-1-6 RSB2 5 0.4 Yes 0.3 No Yes 88.3
M1-1-7 RSB2 5 0.4 No 0 Yes Yes 90
M1-1-8 RSB2 5 0.4 Yes 0.3 Yes Yes 89.7

after every residual block (RSB). After noting that the best location was after the second residual block (M1), we tested
with different DropBlock sizes: 3, 5, and 8. These sizes were chosen due to the size of the feature maps, which for the
second layer were of size 16× 16. The best results were obtained with a DropBlock size of 5. Then, we fixed the DropBlock
size and location, and we proceeded to test combinations of three different regularization techniques: Dropout, Spectral
Normalization (SN), and data augmentation (DA), as described in Section 4.1. In Table 7, note that model M1 and model
M1-1-4 are exactly the same since they share the same parameters. Moreover, note that the nomenclature used in models
from M1-1-1 to M1-1-8 correspond in the same order to the results presented in Figure 3. For example, M1-1-1 corresponds
to “No reg.” and M1-1-8 corresponds to “DA+DO+SN”.

For the evaluation of all the methods, we took samples from the datasets. For CIFAR10 (InD), we took a random sample of
8400 images from the training set. The (InD) sampled images were used to build the entropy density estimation from both
LaRED and LaREM scores. The same set of image samples was used to estimate the thresholds from DICE and ReAct and,
in general, for all the InD score estimators for all the baselines. Then, the evaluation was performed using the test set of all
OoD datasets and CIFAR10 (InD). In this case, we randomly sampled 5000 images from each OoD dataset to perform the
evaluation of all baselines and LaREx. This was done with the intention of building balanced-sized datasets. Note that the
Textures dataset already has a size of 5000 images. In Table 8, we compare the performance of using all the samples from
the datasets and using the samples mentioned above, and we found that the differences are not substantial. Therefore, we
proceeded to perform the evaluation with the set of samples.

C.2 DETAILED RESULTS OOD DETECTION

Table 9 expands Table 7 and shows that the model with all the three additional regularization techniques obtains the best
results. Furthermore, for model M1-1-8 (DA+DO+SN) we present the details of the results for all baselines and all datasets in
Table 10 and Table 11. In both tables, it is possible to observe that KNN presents the best overall performance, and LaRED
comes in second place in performance across all methods, validating the effectiveness of the non-parametric assumption.



Table 8: Image classification average OoD detection performance using the sampled datasets vs using the full datasets

Datasets
size

LaRED LaREM

AUPR ↑ AUROC ↑ FPR95 ↓ AUPR↑ AUROC↑ FPR95↓

Full
datasets 90.29 ± 6.76 91.02 ± 6.46 32.23 ± 19.95 88.22 ± 7.12 89.31 ± 6.59 36.43 ± 19.98

Samples 89.7 ± 6.72 90.80 ± 6.50 33.16 ± 20.29 87.60 ± 7.05 89.20 ± 6.62 37.33 ± 20.03

Table 9: LaREx results for all image classification models trained with CIFAR10 (InD) and all OoD datasets

Model LaRED LaREM

FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑

M0 50.80 ± 22.27 84.01 ± 8.45 82.40 ± 9.09 52.73 ± 21.95 84.45 ± 7.79 83.28 ± 7.99
M1(-1-4) 36.89 ± 22.84 89.56 ± 7.13 88.55 ± 7.36 38.91 ± 20.09 88.41 ± 6.55 86.79 ± 6.93
M2 55.25 ± 26.88 79.68 ± 14.18 78.30 ± 13.09 50.69 ± 24.46 84.03 ± 9.88 82.51 ± 9.82
M3 89.03 ± 12.14 62.60 ± 6.60 60.86 ± 3.97 78.89 ± 6.50 68.75 ± 8.65 65.71 ± 9.51
M1-2 54.89 ± 20.70 81.56 ± 10.97 79.26 ± 12.26 58.22 ± 21.21 80.17 ± 11.43 77.82 ± 12.74
M1-3 38.51 ± 19.22 89.67 ± 5.93 88.98 ± 6.00 40.19 ± 22.75 88.67 ± 7.38 87.68 ± 7.63
M1-1-1 56.89 ± 22.54 82.77 ± 9.04 81.83 ± 9.02 59.79 ± 21.78 80.08 ± 8.85 79.05 ± 8.95
M1-1-2 53.07 ± 22.02 85.24 ± 7.57 84.54 ± 7.42 56.24 ± 21.20 82.44 ± 8.17 81.25 ± 8.05
M1-1-3 45.88 ± 22.83 86.88 ± 8.12 86.02 ± 8.29 49.76 ± 21.31 84.94 ± 8.22 83.48 ± 8.57
M1-1-4 36.89 ± 22.84 89.56 ± 7.13 88.55 ± 7.36 38.91 ± 20.09 88.41 ± 6.55 86.79 ± 6.93
M1-1-5 46.78 ± 23.06 86.62 ± 7.95 85.82 ± 7.78 52.94 ± 20.68 85.06 ± 7.05 84.02 ± 7.04
M1-1-6 36.67 ± 24.80 90.01 ± 7.54 89.18 ± 7.80 38.56 ± 22.26 88.71 ± 7.22 87.25 ± 7.91
M1-1-7 40.61 ± 28.60 87.69 ± 10.22 86.75 ± 10.63 42.70 ± 27.64 86.11 ± 10.70 84.58 ± 11.35
M1-1-8 33.16 ± 20.29 90.80 ± 6.50 89.70 ± 6.72 37.33 ± 20.03 89.20 ± 6.62 87.60 ± 7.05

Table 10: Detailed results for all methods for FMNIST, SVHN, Places and Textures OoD datasets

Method Fashion MNIST SVHN Places 365 Textures

FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑

MSP 52.36 86.94 88.11 74.93 81.90 84.26 58.22 85.11 86.21 73.85 77.66 77.97
Pred. entropy 36.08 91.77 91.85 77.95 84.57 87.27 54.31 88.89 89.65 76.22 79.56 79.10
MI 86.20 78.63 80.36 94.10 69.82 72.71 78.75 79.78 81.48 86.29 73.93 74.98
Energy 25.58 94.71 95.11 85.86 76.06 77.42 47.26 90.70 91.10 66.63 82.67 78.11
ASH 40.86 91.33 91.52 90.40 67.00 68.11 68.45 79.58 77.87 73.95 68.85 58.93
ReAct 91.48 56.68 54.53 93.49 51.42 50.03 94.62 52.60 52.82 92.75 51.63 47.44
DICE 40.28 88.77 83.91 66.48 71.49 61.74 63.02 80.37 75.93 91.44 72.10 77.02
DICE+ReAct 89.96 65.22 66.00 86.90 60.34 58.21 94.98 52.15 52.86 95.34 50.33 46.87
kNN 21.48 95.24 95.21 78.31 78.59 78.40 26.30 94.85 94.73 25.37 94.64 93.91
Mahalanobis 78.40 73.28 74.31 84.27 65.16 63.16 36.38 90.22 88.54 8.65 97.79 96.80
LaRED 66.56 79.29 78.35 18.23 95.53 94.57 22.68 94.70 94.01 5.83 98.63 98.14
LaREM 66.10 79.35 77.76 24.66 93.71 92.27 30.02 92.34 91.02 7.54 98.09 97.24

Note that Table 1 is built based on the results from Tables 10 and 11. To better appreciate the performance of all OoD
detection methods, we present the ROC curves of all baselines and LaREx for each OoD dataset in Figure 4. Finally, in
Figure 5, we can find the density scores for LaRED across all OoD datasets. In such plots, we can appreciate the separation
that LaRED achieves per OoD dataset.

Regarding the baseline methods, from the obtained results, we attribute the performance of ASH [Djurisic et al., 2022],
ReAct [Sun et al., 2021], and DICE+ReAct [Sun and Li, 2022] to a sub-optimal choice of parameters. However, we employed
the same optimal values found in the corresponding papers, i.e. , for ASH, we took the 80th percentile for pruning, for DICE
the 90th percentile for sparsifying, and for ReAct, we also used the 90th percentile for clipping.

C.3 TRAINING REGULARIZATION IMPACTS POST-HOC DETECTION METHODS

In addition to the previous results, we provide evidence for the claim that the performance metrics of all post-hoc methods
were influenced by the regularization of the model during training. We statistically tested the hypothesis that the AUROC, the
AUPR, and the FPR@95 were different for all baselines and LaREx across OoD datasets for two different models: one that
was regularized with data augmentations, dropout, and spectral normalization and one that has none of these regularization
techniques. These models correspond to M1-1-1 (No reg.) and M1-1-8 (DA+DO+SN) of Table 7 and Figure 3. Note that
the training was in no way done with the goal of favoring any OoD detection in particular. Indeed, they are all post-hoc
methods, so no specific training is needed for any of them. For this sake, having 12 OoD detection methods (all 10 baselines



(a) ROC curve Textures as OoD dataset (b) ROC curve SVHN as OoD dataset

(c) ROC curve iSUN as OoD dataset (d) ROC curve Places as OoD dataset

(e) ROC curve LSUN-Crop as OoD dataset (f) ROC curve LSUN-Resize as OoD dataset

(g) ROC curves Fashion-MNIST as OoD dataset

Figure 4: ROC curves for all OoD detection methods and all the OoD evaluation datasets using model M1-1-8 and CIFAR10
as InD. “mi”: Predictive Mutual Information, “pred_h”: Predictive Entropy, and “mdist”: Mahalanobis distance



(a) LaRED score density for Textures dataset (b) LaRED score density for SVHN dataset

(c) LaRED score density for iSUN dataset (d) LaRED score density for Places dataset

(e) LaRED score density for LSUN-C dataset
(f) LaRED scores densities for LSUN-R
dataset

(g) LaRED score densities for FMNIST
dataset

Figure 5: LaRED scores densities in model M1-1-8 for all OoD evaluation datasets



Table 11: Detailed results for all methods for LSUN-C, LSUN-R, and iSUN OoD datasets

Method LSUN-C LSUN-R iSUN

FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑

MSP 50.36 87.44 88.67 60.14 86.34 88.13 62.75 85.73 87.85
Pred. entropy 39.88 92.89 93.86 43.30 91.29 92.13 48.60 90.14 91.40
Pred. MI 92.22 71.09 73.96 70.68 84.82 86.36 72.69 82.99 84.54
Energy 27.68 95.56 96.52 39.70 92.69 93.46 43.02 92.24 93.23
ASH 39.22 92.87 93.40 66.62 83.50 84.67 68.27 83.03 84.27
ReAct 96.08 54.30 55.73 95.04 50.25 50.15 93.82 52.81 52.27
DICE 80.92 70.24 68.97 69.98 72.03 64.88 82.88 64.67 58.27
DICE+ReAct 90.24 51.16 51.77 94.02 52.63 52.81 94.76 51.18 51.42
kNN 21.24 95.98 96.15 26.38 95.14 95.50 31.25 94.17 94.57
Mahalanobis 77.18 70.28 67.76 58.94 82.10 81.31 57.66 81.18 79.08
LaRED 30.94 91.93 90.63 48.32 86.57 85.06 39.62 89.00 87.19
LaREM 30.56 91.94 90.70 56.04 82.85 80.47 46.40 86.14 83.76

Table 12: Shapiro-Wilk normality test results for OoD detection metrics for two models across baselines and across datasets

Model Metric Statistic p Mean Median Std.

M1-1-8

AUPR 0.894 4.48 × 10−6 79.03 83.83 14.96
FPR95 0.9373 4.94 × 10−4 60.68 66.29 26.00
AUROC 0.8976 6.16 × 10−6 79.56 82.92 14.37

M1-1-1

AUPR 0.9036 1.13 × 10−5 78.39 81.71 10.65
FPR95 0.8936 4.18 × 10−6 72.38 75.11 17.62
AUROC 0.9542 4.63 × 10−3 77.91 79.98 9.530

Table 13: Mann-Whitney U test results for OoD detection metrics for two models across baselines and across datasets

Metric Statistic p

AUPR 1.227 0.2195
AUROC 1.836 0.0662
FPR@95 -2.636 0.00838

plus LaRED and LaREM) and 7 OoD datasets, we have a sample of 84 data points per metric and model. We performed a
normality test using the Shapiro-Wilk test, and the results from Table 12 show that it is not likely that the samples follow a
normal distribution. Therefore, we proceeded to apply a non-parametric test: Mann-Whitney’s U. The results of the test can
be seen in Table 13.

From the results from Table 13 it follows that the models have statistically significant differences in their FPR@95, and
near-significant results for the AUROC. The AUPR did not show statistically significant differences between the models.
From this, together with the descriptive statistics in Table 12, it is possible to conclude that the regularization during training
impacts all the tested OoD detection methods in a way that is statistically significant, in the sense that regularization seems
to improve the performance of all tested methods. Also, these results are preliminary since they are not the main goal of our
study, and further research is needed about how training procedures, regularization, and InD dataset characteristics may
affect several OoD detection methods. We hypothesize that all of them have a general influence on the OoD detection task.



D OBJECT DETECTION EXPERIMENTS

D.1 DNN TRANING DETAILS

For the object detection experiments, we took as a starting point the already trained model from Du et al. [2022], for
a Faster-RCNN trained on BDD100K, using the Detectron2 Girshick et al. [2018] library and openly available at their
repository. Since it was not clear from the VOS paper or the code if the models were trained using Dropout, and clearly, they
were not trained to use DropBlock, we ran experiments performing fine-tuning on the pre-trained models. For fine-tuning
the RPN and Box Head, we froze the backbone and unfroze the RPN and subsequent layers completely, using a learning rate
of 1× 10−4, and we kept the rest of the original hyper-parameters of the model (original learing rate was 2× 10−2). The
used DropBlock size was 4, with a drop probability of 0.5. For fine-tuning the Box Heads, the backbone and the RPN were
frozen, and the rest of the layers were trained with the same learning rates as described for the RPN. The dropout layer had a
p = 0.5. All fine-tuning took place for 10 epochs. Moreover, we also tested the method by simply adding the Dropout or
DropBlock layer (without fine-tuning) to the pre-trained network, and the results are shown in the respective section. We
extracted 16 zMCD samples for all runs.

D.2 DIMENSIONALITY REDUCTION

In this case of object detection, since the dimensionality of the extracted samples was high (a vector with 1280 components
for the RPN samples and 1000 for the Box Head samples), we performed PCA before feeding the data to the final Kernel
Density Estimator (KDE) or the Mahalanobis distance estimator. We used a randomly chosen sample of 8000 images
from the training data from which we extracted the 16 zMCD samples per image, which makes up a tensor of dimension
(8000 × 16, Zs), where Zs, the latent space size was either 1280 for the RPN or 1000 for the Box Head. The entropy
was calculated, and we obtained a tensor of size (8000, Zs). We performed and evaluated the performance for several
PCA dimension sizes: {1, 6, 14, 20, 24, 32, 40, 48, 56, 64, 72, 80}. The results of the PCA evaluation for the RPN hook
models can be seen in Figure 6. For LaRED, there is a peak performance for 40 components, whereas for LaREM, the more
components, the better.

D.3 DETAILED RESULTS

For the detailed results of the experiments run on the number of PCA components to use, see Table 14. For all experiments,
the random generators were seeded with the number 42. Based on the PCA results from Figure 6, we chose the 40
components for LaRED and 80 for LaREM. Furthermore, to visualize the separation achieved for our method, we present a
PaCMAP [Wang et al., 2021] projection in 2 dimensions of the entropy scores in Figure 7.

Table 15, presents the results for fine-tuned vs not fine-tuned models. The former models have a better performance, and, in
agreement with the Image classification, the results are better for the RPN, which is a more intermediate layer. Furthermore,
Table 16 presents the impact of the number of zMCD samples in the performance metrics. In general, we observe that
the more samples that are taken, the better. However, even with 5 zMCD samples, the performance drop is not extreme,
which shows the robustness of the presented method and the possibility of experimenting and finding a trade-off with fewer
zMCD samples, which indeed is one of the main limitations of our approach. Finally, Figure 8 presents a visualization of the
performance from the detection methods in terms of ROC curves. We observe that most methods achieve high performance,
validating the separability from both classes (InD and OoD) depicted previously in Figure 7.



Figure 6: LaRED & LaREM evaluation of AUROC for several number of PCA components

(a) BDD100K (InD) vs COCO (OoD) (b) BDD100K (InD) vs OpenImages (OoD)

Figure 7: Faster R-CNN BDD-100K (InD): Entropy vectors 2D projection comparison using PaCMAP

(a) ROR curve COCO as OoD dataset (b) ROC curve OpenImages as OoD dataset

Figure 8: Object Detection with Faster-RCNN: ROC curves for all OoD detection methods for COCO and OpenImages as
OoD datasets, fine-tuned model, LaRED RPN. "mi": Predictive Mutual Information, "pred_h": Predictive Entropy



Table 14: Detailed results for number of PCA components LaREx Object detection InD BDD100k, fine-tuned model

Model
PCA

components
AUPR
COCO

AUPR
OpenImages

AUROC
COCO

AUROC
OpenImages

FPR95
COCO

FPR95
OpenImages

LaRED
RPN

1 63.7 55.05 64.57 53.99 93.03 93.41
6 98.2 99.23 98.06 99.07 8.98 3.8

14 99.34 99.56 99.21 99.44 3.35 1.98
20 99.26 99.41 98.08 99.26 3.85 2.72
24 99.51 99.58 99.43 99.5 2.5 1.93
32 99.78 99.89 99.75 99.88 1.01 0.45
40 99.84 99.89 99.81 99.87 0.32 0.22
48 99.26 99.36 99.01 99.1 1.49 1.02
56 96.36 96.8 95.11 95.55 42.76 38.78
64 87.43 89 84.82 85.89 49.57 50.48
72 77.22 79.86 75.16 76.46 48.88 48.89
80 73.34 77.25 71.14 73.93 50.9 48.32

LaREM
RPN

1 60.62 53.95 60.88 51.55 93.29 93.01
6 96.89 98.51 96.72 98.26 16.38 9.02

14 98.27 98.75 97.9 98.41 10.15 7.55
20 98.11 98.7 97.66 98.32 11.91 8.8
24 99.36 99.62 99.22 99.52 3.29 1.53
32 99.64 99.8 99.59 99.76 1.64 0.85
40 99.7 99.85 99.66 99.82 1.48 0.68
48 99.73 99.87 99.69 99.84 1.11 0.34
56 99.79 99.91 99.77 99.89 0.74 0.17
64 99.78 99.92 99.75 99.9 0.85 0.11
72 99.78 99.92 99.75 99.9 0.9 0.056
80 99.8 99.93 99.76 99.91 0.79 0.012

Table 15: Detailed results for fine-tuned vs not fine-tuned models LaREx Object detection InD BDD100k

Methods OoD: COCO OoD - OpenImages mAPFPR95 AUROC FPR95 AUROC
LaRED RPN
Fine-tuned

0.31±0.3 99.81±0.4 0.22±0.21 99.88±0.6 28.0

LaREM RPN
Fine-tuned

0.79±0.58 99.77±0.26 0.11±0.09 99.91±0.08 28.0

LaRED RPN
No Fine-tune

0.90±0.8 99.79±0.3 0.22±0.4 99.89±0.7 31.21

LaRED FC
Fine-tuned

12.07±0.6 97.48±0.8 10.33±1.2 97.54±0.9 29.6

LaRED FC
No Fine-tune

42.12±0.8 90.50±0.7 31.51±0.7 93.20±0.5 31.21

Table 16: Detailed results for the number of zMCD samples to take LaRED RPN Object detection InD BDD100k, fine-tuned
model

zMCD AUPR
COCO

AUPR
OpenImages

AUROC
COCO

AUROC
OpenImages

FPR95
COCO

FPR95
OpenImages

20 99.84 99.89 99.81 99.87 0.31 0.22
16 99.71 99.87 99.67 99.83 1.48 0.34
10 99.19 99.57 99.07 99.46 4.25 2.04
5 96.45 97.41 96.1 97.02 20.58 16.41



E SEMANTIC SEGMENTATION EXPERIMENTS

E.1 DNN TRAINING DETAILS

For the semantic segmentation task, we consider the DeepLabv3+ [Chen et al., 2018], and U-Net [Ronneberger et al., 2015]
architectures and the Cityscapes and Woodscape datasets for training (InD). In the Deeplabv3+ architecture3, we added a
DropBlock layer at the output of the ResNet encoder using a block size of 8× 8 and drop probability p = 0.5 to take zMCD
samples. The encoder output results in a tensor of shape W/16×H/16× 2048, where W and H represent the input image
width and height, respectively, and the last dimension corresponds to the number of channels. For the U-Net architecture, we
place a DropBlock layer at the output of the encoder using a block size of 8× 8 and drop probability p = 0.5 to take zMCD
samples. For the U-Net DNN trained with the Woodscape dataset, the encoder output has 128 channels. The U-Net DNN
trained with the Cityscapes dataset has an encoder output with 256 channels. Table 17 summarize the used DNN training
hyperparameters for each architecture and dataset.

E.2 EVALUATION DATASETS

As mentioned in Section 4.3, we consider data with covariate shift for the semantic segmentation experiments. We used the
Albumentations4 library to create a synthetic anomalies version of the InD datasets. For the synthetic anomalies, we used
the Random Fog and Random Sun flare transforms, and we implemented a custom transform to add the Mud on lens effect.
Figure 9 shows samples on the (InD) training sets, while Figures 10 to 12 show samples of the datasets with covariate-shift
used for evaluation.

E.3 SEMANTIC SEGMENTATION DETAILED RESULTS

We use all the training dataset samples to set up and compute the InD scores from LaREx and the implemented baselines.
the evaluation is implemented using all the samples from the validation and test sets. Tables 19 and 20 present the detailed
performance results for each evaluated distribution shift dataset, in Deeplabv3+ and U-Net, respectively. The reason for
LaREx performance difference can be attributed to a sub-optimal selection of the parameters and to the presence of “clean”
InD images in the evaluation datasets. In contrast to the other experiments, the Mahalanobis distance in both Deeplabv3+
models has the best performance results across the evaluated datasets. This was also the case for LaREM when compared
with LaRED. We attribute the dominance of the Mahalanobis-based methods to entropy vector dimensionality since no
dimensionality reduction (w/PCA) is performed that might suppress useful information for the detection. The entropy vectors
2D projection using PaCMAP [Wang et al., 2021] are displayed in Figures 13 and 14 for Deeplabv3+, and in Figures 19
and 20 for U-Net, validating the effectiveness of the entropy vectors for the distribution shift detection task, and supporting
our analysis of the results. Moreover, Figures 15 to 18 show the LaREx score comparison for each evaluated dataset in
Deeplabv3+, and Figures 21 and 22 show the LaRED score comparison for each evaluated dataset in U-Net.

3https://github.com/VainF/DeepLabV3Plus-Pytorch
4https://albumentations.ai/

https://github.com/VainF/DeepLabV3Plus-Pytorch
https://albumentations.ai/


Table 17: Semantic Segmentation DNN training details

Parameter Deeplabv3+ U-Net

Cityscapes Woodscape Cityscapes Woodscape

img size 512x256 640x483 128x256 128x256
epochs 1500 350 1800 1400
batch size 16 8 16 16
Loss Focal Focal CE CE
Optim SGD SGD Adam Adam
Weight decay 5 × 10−4 5 × 10−4 - -

LR scheduler Cosine
annealing

Cosine
annealing

Cosine
annealing

Cosine
annealing

LR scheduler
ηmin

1 × 10−3 1 × 10−3 2.3 × 10−5 2.3 × 10−5

(a) Cityscapes sample (b) Woodscape sample

Figure 9: Semantic segmentation DNN InD (training) datasets samples

(a) Flare sample (b) Fog sample (c) Mud-on-lens sample

Figure 10: Cityscapes-Anomalies dataset samples

(a) Flare sample (b) Fog sample (c) Mud-on-lens sample

Figure 11: Woodscape-Anomalies dataset samples

(a) Mud-on-lens sample (b) Drops-on-lens sample (c) Dust on lens sample

Figure 12: Woodscape-Soiling dataset samples



Methods Cityscapes-Anomalies Woodscape Woodscape-Soiling

FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑

Mahalanobis 3.21 99.17 99.31 0.0 99.94 99.95 0.0 99.98 99.99
KNN 24.35 95.62 96.0 0.48 99.62 99.67 0.0 99.87 99.92
LaREM-2048 9.0 98.26 98.34 0.0 99.91 99.91 0.0 99.99 100.0
LaRED-PCA58 32.35 92.48 92.27 0.26 99.14 99.28 0.0 99.51 99.65

Table 18: Deeplabv3+ trained w/Cityscapes dataset: distribution shift detection results

Methods Woodscape-Anomalies Cityscapes Woodscape-Soiling

FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑

Mahalanobis 0.48 99.6 99.71 0.0 99.67 99.84 4.28 98.8 99.2
KNN 4.51 98.69 98.96 0.0 99.79 99.89 10.44 97.93 98.41
LaREM-2048 29.72 92.78 88.5 5.43 96.52 94.88 28.67 81.42 84.14
LaRED-PCA50 20.39 94.32 92.48 4.3 98.54 98.5 13.11 95.87 95.45

Table 19: Deeplabv3+ trained w/Woodscape dataset: distribution shift detection results

Method InD
Dataset

InD-Anomalies Woodscape / Cityscapes Woodscape-Soiling

FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑

LaRED-PCA50 Cityscapes 31.21 90.88 89.43 14.23 9.71 97.37 7.94 97.88 98.25
LaRED-PCA50 Woodscapes 17.4 97.28 97.87 7.11 98.24 98.7 35.94 90.73 91.31

Table 20: U-Net distribution shift detection results

(a) Cityscapes vs Cityscapes-Anomalies (b) Cityscapes vs Woodscape (c) Cityscapes vs Woodscape-Soiling

Figure 13: Deeplabv3+ Cityscapes (InD): Entropy vectors 2D projection comparison using PaCMAP

(a) Woodscape vs Woodscape-Anomalies (b) Woodscape vs Cityscapes (c) Woodscape vs Woodscape-Soiling

Figure 14: Deeplabv3+ trained w/Woodscape (InD): Entropy vectors 2D projection comparison using PaCMAP



(a) Cityscapes vs Cityscapes-Anomalies (b) Cityscapes vs Woodscape (c) Cityscapes vs Woodscape-Soiling

Figure 15: DeepLabv3+ trained w/Cityscapes (InD): LaRED score comparison

(a) Cityscapes vs Cityscapes-Anomalies (b) Cityscapes vs Woodscape (c) Cityscapes vs Woodscape-Soiling

Figure 16: DeepLabv3+ trained w/Cityscapes (InD): LaREM score comparison

(a) Woodscape vs Woodscape-Anomalies (b) Woodscape vs Cityscapes (c) Woodscape vs Woodscape-Soiling

Figure 17: DeepLabv3+ trained w/Woodscape (InD): LaRED score comparison

(a) Woodscape vs Woodscape-Anomalies (b) Woodscape vs Cityscapes (c) Woodscape vs Woodscape-Soiling

Figure 18: DeepLabv3+ trained w/Woodscape (InD): LaREM score comparison



(a) Cityscapes vs Cityscapes-Anomalies (b) Cityscapes vs Woodscape (c) Cityscapes vs Woodscape-Soiling

Figure 19: U-Net trained w/Cityscapes (InD): Entropy vectors 2D projection comparison using PaCMAP

(a) Woodscape vs Woodscape-Anomalies (b) Woodscape vs Cityscapes (c) Woodscape vs Woodscape-Soiling

Figure 20: U-Net trained w/Woodscape (InD): Entropy vectors 2D projection comparison using PaCMAP

(a) Cityscapes vs Cityscapes-Anomalies (b) Cityscapes vs Woodscape (c) Cityscapes vs Woodscape-Soiling

Figure 21: U-Net trained w/Cityscapes (InD): LaRED score comparison

(a) Woodscape vs Woodscape-Anomalies (b) Woodscape vs Cityscapes (c) Woodscape vs Woodscape-Soiling

Figure 22: U-Net trained w/Woodscape (InD): LaRED score comparison



F IMAGE LEVEL DETECTION VS MORE DETAILED DETECTION SCHEMES

We performed image-level OoD detection, where the whole input image is classified as InD or OoD, even for object detection
and semantic segmentation tasks. In this regard, our results allow us to wonder if more detailed or localized detection
schemes alone are sufficient for detecting distribution shifts in complex computer vision tasks. In object detection, our results
from Table 2 show that adapted simple post-hoc methods for image level detection can surpass recent SotA object level
detection methods [Du et al., 2022, Wilson et al., 2023]. In semantic segmentation, recent benchmarks [Chan et al., 2021]
also consider adapted post-hoc methods for anomaly detection at the pixel level. Nevertheless, the execution runtime for
these methods is prohibitive for safety-critical applications with tight time constraints. Therefore, we believe that image-level
detection can be seen as a previous or complementary step towards object-level or pixel-level OoD detection, which, for
sure, are more difficult problems.

Regarding the evaluation, for the object detection task, the OoD datasets (COCO and OpenImages) are quite far away
semantically and visually from the InD BDD100k. Objects, backgrounds, and scenes were all quite different, which
creates an ideal situation for our proposed method and uncertainty-based confidence scores. For semantic segmentation, the
evaluation was limited to covariate-shift data close to the InD datasets. In this case, the evaluation can be extended using
datasets covered in anomaly segmentation benchmarks [Chan et al., 2021] and with datasets with stronger semantic shifts.

F.1 ON SEMANTIC SEGMENTATION PREDICTIVE UNCERTAINTY WITH MCD

It is important to reveal the limitations of predictive entropy with MCD. Predictive uncertainty in semantic segmentation
ends up providing a confidence measure per pixel instead of an image-level confidence measure. A qualitative inspection of
predictive entropy maps in Figure 23 shows no noticeable difference in the predictions from semantically similar samples.
Concretely, a DeepLabv3+ DNN trained with the Woodscape dataset is sufficiently robust to handle input samples from
the Cityscapes. Although robustness is a desired property in DNNs, we cannot assume that the validation or test set
performance will hold for new “shifted” samples. Moreover, image perturbation due to environmental factors can lead to
wrong overconfident predictions, as illustrated in Figure 24. From a strict safety point of view, it is impossible to provide
performance guarantees given the high dimensional input space and the ignorance of all the potential factors that can cause or
lead to a data distribution shift. Safety is about rare, high-consequence events as those depicted in Figure 24. Therefore, the
detection of both mild and drastic distribution shifts is paramount for safe deployment and to elicit trust in the DNN-based
component, as shown with both of our proposed confidence scores LaRED & LaREM in Appendix E.



(a) Woodscape input sample (InD) (b) Cityscapes Input sample (shift)

Figure 23: DeepLabv3+ MCD predictions for an InD sample vs Cityscapes (shift) sample, denoting the DNN robustness

Figure 24: Deeplabv3+ MCD predictions and predictive entropy qualitative comparison for InD sample w/Covariate shift.
The top row shows the input image with mud on lens perturbation and the ground truth labels. The bottom row shows the
DNN MCD predicted semantic and entropy maps. The yellow circle highlights the wrong overconfident predictions when a
relevant actor in the environment is partially occluded by the mud perturbation, exhibiting the DNN’s lack of understanding
of semantic structures and contexts
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