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ABSTRACT

Over the last several decades, researchers have sought to
capture the underlying functional activity of the human brain
from functional magnetic resonance imaging (fMRI). One
well-studied and promising avenue of research is indepen-
dent component analysis (ICA) to capture the maximally
independent set of elements known as functional networks.
These functional networks are represented as spatial maps
or 3D images in which each voxel has a value associated
with the given network. The current state-of-the-art meth-
ods use group-level spatial maps as a reference to provide
estimates of subject-level maps, which are vulnerable to the
low contrast-to-noise (CNR) ratio of fMRI signals. However,
such approaches do not account for all group-level spatial
information. As such, their subject-level estimate is still quite
noisy. This work presents a novel method that leverages the
topological properties of the group maps to improve subject-
level estimations. We show that adding topological similarity
constraints also improves subject-specific information.

Index Terms— Brain Networks, fMRI, Topology, ICA,
Topologically-informed Network Estimation

1. INTRODUCTION

Group independent component analysis (ICA) [1] is a widely
used method for estimating brain networks, referred to as in-
trinsic connectivity networks (ICNs). These ICNs, estimated
at the group level, contain valuable information about brain
functionality universal to all humans. To capture individual
networks, most methods leverage post-hoc estimations using
group-level maps and the subject’s whole brain fMRI image
[2]. One approach for estimating single subject maps, dual
regression [3], is a linear transform that estimates both the
subject-level spatial map and component time series. How-
ever, linear subject-level estimates do not consider spatial in-
formation, as each voxel acts as a single regressor. This loss
of spatial information impacts both the visualization and anal-
yses of these subject maps. Thus, a gold standard would be

a method that adapts the current methodology to regard spa-
tial information without interfering with the subject informa-
tion. This is where we suggest that an effective method would
correct the linear regression while constraining the maps to
maintain group-level information that would reduce noise and
make the subject-level maps more quantifiably similar to the
group-level maps.

One aspect of the human brain and neuroimaging is that these
images often contain informative topological properties. Pre-
vious work has studied the topological information of net-
works and graphs of fMRI images [4] and the topological
correction of images [5]. This topological information is gen-
erally estimated by the persistent homology of the image or
graph. Persistence estimates the homological classes (objects,
holes, hollows, etc.) after defining the image or graph as a set
of simplicial complexes or a set of points, lines, triangles, and
the n-dimensional counterparts. To date, no work has lever-
aged persistence to capture or improve subject-level spatial
maps of ICN.

This work presents a novel method that adapts and amalga-
mates previous persistent homology methodologies to con-
strain the subject-level spatial maps to be topologically simi-
lar to the group-level images. The assumption is that this will
reduce the overall CNR by considering the group-level spa-
tial information. Firstly, this work adapts previous work [6]
that regularizes machine learning algorithms (linear regres-
sion, specifically) to constrain the regression coefficients to
have specific topological properties. However, as we do not
want to enforce prior knowledge-based topological informa-
tion, we adapt this topology layer to use a continuous loss
function between the group and subject maps. Based on pre-
vious work [7, 8], we chose the Wasserstein distance between
the persistence information of the group and subject maps.
Finally, as a proof-of-concept, we present the preliminary re-
sults from our method obtained from 2D coronal slices from
the MRI images. To show the effectiveness of this method, we
compare the difference between the topologically corrected
subject spatial map and the group maps with the difference



between the dual-regression-only maps and the group maps.
Although it is beneficial for the subject-level maps to be sim-
ilar to the group-level maps, we must also ensure that we do
not lose between-subject variability. This kind of variability
is vital to researchers, and we show that our method enhances
subject-level variability.

2. METHODS

2.1. Data and Preprocessing

For this work, we chose a dataset of 50 fMRI subjects
from the Function Biomedical Informatics Research Net-
work (FBIRN). The images were preprocessed with the
Statistical Parametric and Mapping (SPM) (https://www.
fil.ion.ucl.ac.uk/spm/) and Analysis of Functional Neurolm-
ages (AFNI) (https://afni.nimh.nih.gov/) toolboxes. Motion
correction was performed with the INRIAlign toolbox. A
slice-timing correction was performed using the exact middle
slice as the reference. Despiking, warping to the Montreal
Neurological Institute (MNI) template, resampling to 3mm?
voxels, spatial smoothing with a 6mm full-width/half-max
gaussian kernel, and z-scoring were all performed.

Once processed, we computed the ICNs using the Group
ICA of fMRI Toolbox (GIFT) [9]. This pipeline starts with
the data’s subject-level principal components analysis (PCA)
to select the principal components (PCs) with a variance
greater than 99%. Then, group-level PCA was applied to the
subject-level PCs concatenated across time to select the 20
group-level PCs with the highest variance. The infomax ICA
algorithm [10] was applied using the ICASSO framework for
100 runs to obtain the 20 most stable components. We select
the components with the largest overlap with the gray matter
and the components where low-frequency fluctuations domi-
nate the timecourses. Finally, we select two components for
our experiments: one from the default mode network (DMN)
and one from the dorsal attention network (ATN).

2.2. ICNs and Dual Regression

Group spatial maps of ICNs have been vital for neuroimaging
research. However, group maps are not useful for study-
ing subject variation. This is why subject estimations have
become popular. These methods include directly estimat-
ing the subject maps [11] and estimating the subject maps
from the group components [1]. These include PCA-based
and regression-based approaches, called back-reconstruction.
One approach, dual regression, uses linear regression to esti-
mate the subject ICN timeseries and a secondary regression
that estimates the subject spatial maps from the computed
timeseries. However, this does not maintain the group’s
spatial information.

2.3. Persistent Homology

Persistent homology, a common method to estimate the topo-
logical information from images, point clouds, or graphs, has
found great utility in neuroimaging [12]. Persistent homology
computes the homological features at different resolutions,
a process known as filtration. These features are elements
within a given homological class. In this work, we use two
classes, HO and H1. HO is the O-dimensional connected com-
ponents, H1 is the set of holes in the image. The features are
estimated by breaking the image down into simplicial com-
plexes. Each simplicial complex is a set of simplices: points,
lines, and triangles. The filtration, specifically level-set fil-
tration, is the set of linearly-spaced resolutions in which the
simplices are computed based on a threshold of the voxel in-
tensities. During the persistence computation, we keep track
of each HO and H1 element as they are created or destroyed
during the filtration (i.e., a feature exists if it is within the
threshold and is destroyed if it is outside the threshold). The
creation and destruction of these features are called “birth”
and “death”. These birth and death values define the overall
topological information.

2.4. Topology Layer for Machine Learning

The topology layer for machine learning, from [6], defines a
loss function on a given machine learning algorithm learned
via gradient descent. One of their primary examples uses this
loss function to regularize linear regression. Their method
begins by estimating the regression coefficients with ordinary
least squares, then iteratively learning the topological loss
to produce a final set of coefficients constrained to contain
pre-defined topological information.

2.5. Topological Loss

To properly constrain the spatial maps to include the topolog-
ical information from the group maps, a loss function must
be defined to compare the subject and group maps. As shown
in previous work, the Wasserstein distance [7] can be adapted
to compute the error between two distributions of homolog-
ical persistence (i.e., the birth and deaths of all homological
features)[4].
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The minimization problem for the Wasserstein-based loss
function. b; and d; are the births and deaths of the i** object,
respectively. © is the estimated subject spatial maps from
the group spatial maps. Note that the objects are sorted by
total persistence value (d — b), allowing us to match objects
between the two maps. And for every object that exists in one



spatial map but not the other (i.e. |©] # |group)), the object
is mapped to zero, thus penalizing erroneous objects in the
estimated subject maps. This mapping of erroneous objects
to zero is part of this work’s novelty and a vital part of the
estimation.

2.6. Our Methodology

Although the topology layer fits the problem of dual regres-
sion nicely, we do not know the “ground truth” or pre-defined
topological properties of a group spatial map. Thus, we adapt
the Wasserstein distance to replace the loss function defined
by the machine learning topology layer. This adaptation can
be seen in the previous section. As this loss function is differ-
entiable, it is trivial to see how it can easily be adapted to the
topological layer.

Previous work adapts this loss function to neuroimaging data,
but most of it has focused on networks [4] or brain segmen-
tation [8]. To our knowledge, this is the first time someone
has adapted a dimension-specific Wasserstein loss function to
model parameters. This is the first time someone has used
topological spatial constraints for subject spatial maps.

To estimate each coronal slice of the subject spatial maps, we
initialize the spatial maps with dual regression. However, this
is only an initial position. From here, using gradient descent,
we optimize the topological loss function as well as the MSE
between the estimated spatial maps and the fMRI images (in
order to preserve the linear regression loss). Both the topo-
logical loss and the MSE have their own learning rates which
are user-specified hyperparameters.

2.7. Experiments

In order to show the validity of our method, we suggest that
there is one over-arching goal: to show that the topologically
corrected maps are more similar to the group maps while in-
creasing between-subject variability. Subject maps that are
more similar to the group maps will intrinsically contain more
group spatial information and hopefully increase the CNR.
However, we also show that the subject maps now have higher
subject variability after the topological correction. We argue
that with these two properties, the maps have a higher CNR
while also being more visually appealing.

3. RESULTS

3.1. Similarity to Group Maps

We argue that one aspect of cleaner-looking subject maps
with higher CNR is that they should be more similar to the
group map. To show this, for both the ATN and DMN net-
work, we plotted the Pearson correlation between each sub-
ject map and the group map in figure 1. We see that the av-
erage correlation over all subjects is for the topological maps
than the OLS maps for both the ATN and DMN.
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Fig. 1. A violin plot of the correlation between each topolog-
ically corrected subject map and the group map (blue) as well
as the correlations for the dual-regression only maps (red) for
the ATN (top) and DMN (bottom).

3.2. Between-Subject Variability

The second half of our preliminary result shows that topolog-
ically correcting the subject maps improves between-subject
variability, as seen in figure 2. From this figure, we see a large
increase in subject variability. While subject variability does
increase with the topological correction, it also increases in
the voxels that most contribute to the group network.

4. DISCUSSION

Estimations of subject-specific spatial maps can often be
noisy or dismissive of group-level information. So, we
present this method that adapts current subject-level esti-
mations to maintain spatial information from the group maps.
By constraining the subject maps to be topologically simi-
lar to the group maps, we keep relevant spatial information
without destroying subject-specific variability. From figure 2,
we see that the subject variability increases overall, but more
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Fig. 2. The average group spatial map (a), the voxel-

wise, between-subject standard deviation of the OLS-only
maps (b), the voxel-wise, between-subject standard deviation
for the topologically corrected maps (c), and a plot of the
between-subject variability of both methods (d) for the DMN.
As well as the same configuration for the ATN (e-h).

importantly, it increases in voxels that contribute the most
to the group network. In 2.b (DMN) and 2.f (ATN), we see
that the OLS-only maps show subject variability across the
entire brain, whereas the topologically corrected maps in 2.c
and 2.g show much higher variability, mostly in voxels that
contribute the most to the group network. This is backed by
2.d and 2.h, which plot the subject variability for the network-
relevant voxels (blue) and the less relevant voxels (red). This
increase in variability in voxels that contribute to the network
is a promising sign, as it suggests that the topological correc-
tion enhances network-specific signals within the subjects,
possibly increasing the CNR. Future work will extend this
method from 2D slices to 3D volumes. It should be noted that
this extension is not trivial, and requires much more compu-
tational overhead. However, working in the native 3D setting
of the data will preserve the natural properties. Whereas the
2D setting induces biases associated with the orientation of
the given slice.
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