
Under review as submission to TMLR

One-Hot Encoding Strikes Back: Fully Orthogonal
Coordinate-Aligned Class Representations

Anonymous authors
Paper under double-blind review

Abstract

Representation learning via embeddings has become a central component in many machine
learning tasks. This featurization process has gotten gradually less interpretable from each
coordinating having a specific meaning (e.g., one-hot encodings) to learned distributed
representations where meaning is entangled across all coordinates. In this paper, we provide
a new mechanism that converts state-of-the-art embedded representations and carefully
augments them to allocate some of the coordinates for specific meaning. We focus on
applications in multi-class image processing applications, where our method Iterative Class
Rectification (ICR) makes the representation of each class completely orthogonal, and then
changes the basis to be on coordinate axes. This allows these representations to regain their
long-lost interpretability, and demonstrating that classification accuracy is about the same
or in some cases slightly improved.

1 Introduction

Embedded vector representations of structured data objects are nowadays a common intermediate goal for
much of machine learning. The goal of these representations is typically to transform data into a form that is
easy to work with for downstream applications, most centrally classification tasks. If the representations are
successful, then for direct tasks, only a simple classifier is required afterward, e.g., logistic regression.

In this work, we argue that due to the fundamental nature of these representations, they should also aim for
explicit interpretability. Note that this is not attempting to make the process or neural architecture parameters
used in computing these representations interpretable but that given a data point’s vector structure, one
should understand the components of its representation. In particular, we argue that for labeled classes
provided among training data, we should be able to (a) associate these classes with class mean vectors, (b)
these class mean vectors should be completely orthogonal, and (c) each should be aligned with a particular
coordinate (a one-hot encoding).

Given such an embedding of data points, then many tasks can be done directly by simply reading the
representation. A multi-class classification task can be solved by returning the class associated with the
coordinate with the largest value. To understand a data point’s relative association among multiple classes,
one can compare their coordinate values; note that there are no hidden associations due to full orthogonality.
If one fears there is implicit bias in a task, and that bias is associated with a captured class (e.g., gender bias
captured by "woman" or "man" class), one can remove that class via projection like in Bolukbasi et al. (2016);
Dev & Phillips (2019) – by simply not using those coordinates in downstream analysis. Other tasks without
association with the bias should be unaffected, while those contaminated with bias will have that component
removed.

A couple of recent papers have attempted to use neural networks to learn embedded representations that
have class means orthogonal – their goal was increased generalization. The orthogonal projection loss
(OPL) (Ranasinghe et al., 2021), and CIDER (Ming et al., 2023) both add a regularization term which
favors compactness among points within a class and near orthogonality among class means. While these
methods are useful seeding for our approach, we observe that they fail to produce class means that are nearly

1

Under review as submission to TMLR

Compactness

Classes encoded as Coordinates

Full Orthogonality

Regularize for
compactness and
dispersion (e.g,

OPL, CIDER)

f1 f2

ICR or DCR

Dispersion

 Embedding Space Improved Embedding Space Improved and Interpretable Embedding Space

Figure 1: Our approach for embedding multi-class data: f1 initializes classes to be clustered and dispersed.
In f2, our ICR and DCR make classes completely orthogonal along the coordinate axis.

orthogonal. The average dot-product between normalized class means on CIFAR-100 for these prior methods
is about 0.2; for ours, it is below 0.01.

Furthermore, our proposed framework structurally restricts the classifier to classification-by-nearest-mean,
also known as the Rocchio algorithm. This directly reflects the training data: for each class, the mean of the
training data is stored, and on evaluation of a test point, it is assigned a label of the nearest mean vector.
This classification model produces a linear classifier with only two (2) classes, and its standard evaluation
reduces to the common task in information retrieval. This multi-class classifier becomes especially effective
when the representation of the data is learned and is common among state-of-the-art models (Yu et al., 2020)
for few-shot learning approaches in image processing.

Our paper achieves the following:

1. We propose two new class rectification methods (ICR and DCR) for multi-class classification under
the Rocchio algorithm, which completely orthogonalize class means.

2. We prove that these methods either require one step (DCR) or iteratively converge to an orthogonal
representation (ICR), conditioned that the class data is already clustered.

3. We show that this orthogonalized representation maintains state-of-the-art performance in a variety
of classification tasks, given a backbone architecture.

The iterative class rectification (ICR) at the heart of our approach is an extension of a recent method
ISR (Aboagye et al., 2023) designed for bias reduction in natural language. That approach, ISR, requires
subspaces defined by two opposing classes (e.g., male-female, pleasant-unpleasant), which is restrictive. That
paper only found a handful of such classes with sufficient training data, demonstrated the approach converged
with two subspaces (2 pairs of classes) and did not always quickly converge to orthogonal on three subspaces
(3 pairs of classes). A challenge addressed in that paper was determining a proper point of rotation. By using
single-class means, as we propose, this challenge goes away, and we show our approach effortlessly scales to
100 classes. We also introduce a second-class rectification method (DCR), which achieves this result without
iteration but has less continuity in how it augments the representation space.

After class means are fully orthogonal, we align them to coordinate axes. This basis transformation, by an
orthogonal matrix, does not change any distance or dot-products between data representations.

Example Uses. Consider the CIFAR-100 test image with the label orange; see Figure 2.The largest
dot-products among the normalized class mean vectors for our technique (OPL+)ICR is with orange (0.995),
the correct class, and then a big drop to cockroach at 0.0087 and other smaller values. In contrast, the
normalized class mean vectors for other approaches still identify orange as the correct class but have a much
larger association with other classes. For OPL, it is orange at 0.9975, but also apple, pear, and sweet_pepper
between 0.82 and 0.72. Since the image is so associated with the class mean (dot product of virtually 1), we
ascertain that the issue is the class means are not sufficiently orthogonal so that the image earns spurious

2

Under review as submission to TMLR

top dot products 0.9975 0.8204 0.7880 0.7215 0.4562
for OPL orange apple pear sweet_pepper poppy

top dot products 0.9950 0.0087 0.0061 0.0059 0.0051
for OPL+ICR orange cockroach maple_tree girl orchid

Figure 2: Dot Products with class mean vectors for orange image with OPL and OPL+ICR.

top dot products 0.8832 0.7938 0.7681 0.7168 0.6873 0.6266
for OPL hamster rabbit mouse squirrel possum fox

top dot products 0.7621 0.4148 0.2396 0.2030 0.1880 0.1331
for OPL+ICR hamster apple pear squirrel kangaroo baby

Figure 3: Dot products with class mean vectors for hamster+apple image with OPL and OPL+ICR.

correlation with the other classes. However, with ICR, this does not happen since the class means are forced
to be orthogonal.

Next, in Figure 3 we consider an image that has two classes present: hamster and apple. For OPL+ICR, this
image’s representational vector has the largest dot-products, with the normalized class means of 0.76 for
hamster and 0.41 for apple. The next largest drops to 0.24 for pear and 0.20 for squirrel. In contrast, for
OPL, the largest dot products are 0.88 for hamsters, but then the next largest are for rabbits, mice, squirrels,
possums, and foxes, all between 0.63 and 0.79. Because the hamster class has a correlation with the other
small fury mammals under OPL, they obscure the association with the hamster and hide the association
with the apple, which has a score of 0.58. This is not the case with OPL+ICR, so the association with pear
and squirrel can be interpreted to geometrically represent uncertainty about those class labels.

Then, we can consider removing the "hamster" class via a projection-based approach (e.g., Dev & Phillips
(2019)). Under OPL+ICR, the largest dot-product is now apple, still at 0.41, and the next largest is unchanged
with pear (0.24) and squirrel (0.20). For OPL after projection, we also have the largest dot-product with apple
at 0.41, but somewhat obscured with other correlated classes, including pear, orange, and sweet_pepper, all
between 0.33 and 0.38. Notably, the other small fury mammals are also removed from strong association
because of their correlation with the hamster class.

2 Algorithmic Framework

Our method considers a data set Z ⊂ Z, where each zi ∈ Z is associated with a label yi ∈ [k], where k is the
number of distinct classes. We use image data Z as an exemplar. Then, it operates in two phases towards
creating an embedding in Rd, with d > k; see Figure 1. The first phase learns an embedding f1 : Z → Rd
with the goal of classes being (nearly) linearly separable in Rd. The second phase, the innovation of this
paper, is another map f2 : Rd → Rd, which aims to retain (and perhaps improve) linear separability but
also achieve a form of orthogonality among classes. While this second phase can be interpreted as a form of
learning–so it only sees training and not testing data–it is deterministic and does not follow the traditional
optimize parameters over a loss function.

For input data (Z, y), denote X ′ = {x′
i = f1(zi) ∈ Rd | zi ∈ Z} as the embedding after phase 1. Then denote

X = {xi = f2(x′
i) ∈ Rd | x′

i ∈ X ′} as the embedding after phase 2. Let Zj , X ′
j , and Xj be the data points in

class j ∈ [k] for the initial data, first, and final embedding, respectively.

Rocchio algorithm. We leverage the Rocchio algorithm to build classifiers. For an embedded data set
(X, y), it first creates class means vj = 1

|Xj |
∑
xi∈Xj

xi for each class j ∈ [k]. Then on a training data
point x ∈ Rd it predicts class ĵ = arg minj∈[k] d(x, vj). If we normalize all class means (so vj ← vj/∥vj∥)

3

Under review as submission to TMLR

then using Euclidean d(x, vj) = ∥x − vj∥ has the same ordering as cosine distance. Instead, we can use
ĵ = arg maxj∈[k]⟨x, vj⟩; we do this hereafter unless stated otherwise.

Phase 1 embedding. For the first phase embeddings f1, we leverage existing recent algorithms that aim
for an embedding with three goals: (a) accuracy: each class can be (nearly) linearly separable from all other
classes. (b) compactness: each class X ′

j has points close to each other, i.e., small variance. (c) dispersion:
each pair of classes j and j′ are separated, and in fact nearly orthogonal. In particular, a couple of recent
papers proposed loss functions for f1 as Lf1 = LCE + λ(Lcomp + Ldisp). The LCE is the standard cross
entropy loss which optimizes (a), λ ∈ [0, 1], and where Lcomp and Ldisp optimize (b) and (c). These are
actualized with |Z| = n, k classes, n1 =

∑
j∈[k] |Zj |(|Zj | − 1) and n2 =

∑
j∈[k] |Zj |(n− |Zj |) as:

Lcomp = 1− 1
n1

∑
j∈[k]

∑
zi,zi′ ∈Zj

⟨f1(zi), f1(zi′)⟩, Ldisp =

∣∣∣∣∣∣ 1
n2

∑
zi∈Zj ;zi′ ∈Zj′ ̸=j

⟨f1(zi), f1(zi′)⟩

∣∣∣∣∣∣ (1)

Lcomp = − 1
n

n∑
i=1

log exp(⟨f1(zi), vji
)⟩∑k

j=1 exp(⟨f1(zi), vj⟩)
, Ldisp = 1

k

∑
j∈[k]

log 1
k − 1

∑
j′ ̸=j

exp(⟨vj , vj′⟩) (2)

The loss for OPL (Ranasinghe et al., 2021) is in eq 1 and for CIDER (Ming et al., 2023) in eq 2.

We observe (see Table 1) that these achieve good clustering among classes, but the classes are not fully
orthogonal. On training data for CIFAR-100, they achieve about 98% accuracy or better. This holds under
the trained linear classifier (under logistic regression) or the Rocchio algorithm. Pre-processing in phase 1
will prove an important first step for the success of our phase 2.

Phase 2 embedding: Full orthogonalization. As we observe that the result of learning an orthogonal
embedding through regularization is not completely effective, the second phase provides a deterministic
approach that enforces orthogonality of the class means. A first – but unworkable – thought is to just run
Gram-Schmidt on the class mean vectors v1, . . . , vk. However, this does not produce a generic function f2 that
also applies to training data; we want to transform X by some f2, so if we recalculate their class means under
f2(X), they are then orthogonal. But Gram-Schmidt only explains what to do for vectors v1, . . . , vk, not a
general function f2 that applies to other embedded data X. Toward this end, we propose two approaches:
ICR and DCR.

Iterative Class Rectification (ICR): For ICR, we adapt a recent approach called Iterative Subspace Rectifica-
tion (ISR) (Aboagye et al., 2023) designed to orthogonalize language subspaces to reduce bias. This approach
handles two concepts, each defined by a pair of classes (e.g., male-female, pleasant-unpleasant) as vectors
v1, v2, and centers the data around these. Then it applies a “graded rotation” operation (Dev et al., 2021)
(see Algorithm 5 in the Appendix) to the components of each x ∈ X that lies within the span of the two
linear concept directions: span(v1, v2). Because it operates only in this span, it only alters the embedding
of each x ∈ X in this 2-dimensional span, denoted πspan(v1,v2)(x) and shortened to π(x) in the algorithms.
The graded rotation is designed so the operation when defined on v1 and v2, is easy to understand: it moves
v2 7→ v′

2 so it is orthogonal to v1, and it does not change v1. For every other x′ = πspan(v1,v2)(x), the graded
rotation defines a rotation that depends on the angle to v1. Those closer in angle to v1 rotate very little, and
those closer in angle to v2 rotate an angle almost as much as v2 7→ v′

2. The magnitude of this angle varies
continually based on the angle from v1. The full technical details are explained in Dev et al. (2021) and are
reproduced in full in Algorithm 5 in the Appendix. The ISR paper (Aboagye et al., 2023) demonstrates
empirically that by repeating this process we get v2 7→ v⋆2 , with v⋆2 orthogonal to v1, even recomputing v1 and
v⋆2 from the updated embedded data points which define the associated classes.

4

Under review as submission to TMLR

Algorithm 1 BinaryICR(X,X1, X2, iters: T)
1: for i = 0, 1, . . . , T − 1 do
2: v1, v2 ← normalized means(X1, X2)
3: BinaryCR(X, v1, v2)

Algorithm 2 BinaryCR(X,u, v)
1: Set v′ = v − ⟨u, v⟩u
2: Define projection π(·) = (⟨·, u⟩, ⟨·, v′⟩)
3: for x ∈ X do
4: x̃← GradedRotat(π(u), π(v), π(x))
5: x← x+ (⟨π(u), x̃− π(x)⟩u+ ⟨π(v′), x̃− π(x)⟩v′)

We adapt this process in two ways in this paper, in Algorithms 1 and 2. First, we only use individual classes
and their class means (line 2 of Alg 1) in place of concepts that spanned across two opposing ideas (and
hence two sets of embedded points for each concept). Second, because we initialize with clustered concepts
by cosine similarity around their class mean vectors, we can rotate around the origin (line 4 of Alg 2) and do
not require a centering step as in ISR. Algorithm 2 does the core operation of projecting to the span of two
subspaces u, v, apply GradedRotation on each point x ∈ X and then adjust only the coordinates in span(u, v)
(line 5). Algorithm 1 iterates this procedure T steps as the recalculated class means become orthogonal.

Algorithm 3 MultiICR(X,X1, . . . , Xk, iters: T)
1: for i = 0, 1, . . . , T − 1 do
2: Let vi be the normalized mean vector of class Xi for i = 1, 2, . . . , k.
3: Set r, s = arg min1≤i,j≤k |⟨vi, vj⟩|, WLOG suppose r = 1, s = 2
4: Let S1 and S2 be the span of {v1} and {v1, v2} respectively
5: Run BinaryCR(X, v1, v2)
6: Recalculate normalized class means vi for all i
7: for i = 3, . . . , k do
8: Choose t = arg minj≥i⟨v1, vj⟩2 + ⟨v2, vj⟩2 + · · · ⟨vi−1, vj⟩2
9: WLOG assume t = i

10: Let v̄i be the projection of vi onto Si−1
11: Set ui = vi −

∑i−1
j=1⟨vj , vi⟩vj and v′

i = ui/∥ui∥
12: Run BinaryCR(X, v′

i, v̄i)
13: Set Si to be the span of {Si−1, vi}
14: Recalculate class normalized means vj for all j

To apply this to all classes, we now apply a Gram-Schmidt sort of procedure; see details in Algorithm 3. We
first identify the class mean vectors that are most orthogonal (line 3) and apply one step of Binary ICR.
Then, at each round, we find and maintain the subspace of the class means we have attended to so far Sj−1,
and find the class mean vj most orthogonal to that subspace (line 8). We project vj onto Sj−1, to get v̄j ,
and then run one step of BinaryCR to orthogonalize vj from v̄j (and hence to all of Sj−1). Once we have
addressed all classes, we iterate this entire procedure a few times (typically T = 1 or 2 iterations, and not
more than 5).

Finally, at the conclusion of the MultiClass ICR, the class means on the embeddings v1, . . . , vk are all
orthogonal (up to several digits of precision). To complete the definition of the function f2, we add a final
transformation step that aligns v1, . . . , vk to the first k coordinate axes. This step is defined by a single
orthogonal matrix, so it does not change Euclidean distance or dot products.

Algorithm 4 BinaryDCR(X, X1, X2)
1: v1, v2 ← normalized means(X1, X2)
2: θ′ ← angle between v1 and v2; θ = π

2 − θ
′

3: if (θ′ ≤ π
2) then set angle ϕ = θ′/2

else set angle ϕ = π
4

4: for x ∈ {x ∈ X | ⟨v2, x⟩ ≤ ϕ} do
5: x← Rθx

5

Under review as submission to TMLR

Discontinuous Class Rectification (DCR): This approach is similar but does not require iteration at the
expense of a discontinuous operation. It replaces the graded rotation (Dev et al., 2021) with a step that
identifies a conical region around v2 and applies an angle ϕ to all points in this region so afterward ⟨v1, v2⟩ = 0.
If the angle between v1 and v2 is acute, then the conical region is defined in the span of v1, v2 by an angle θ
from v2 to the bisector direction between v1 and v2. That is, for points closer to v2, they are moved along
with v2, and the rest are left alone. If v1 and v2 have an obtuse angle, then we set the conical angle around
v2 at π/4, so we only move points which will be closer to v2 after the transformation when ⟨v1, v2⟩ = 0. The
multiclass version of DCR follows the Gram-Schmidt recipe of ICR but with no iteration.

Freezing learned embedding X ′. It is important to note that before ICR or DCR is applied to determine
X, we need to learn and freeze the initial embedding X ′ ← f1(Z). Then f2 operates on X ′, to create
X ← f2(X ′) without adjusting f1. There are slight differences in how OPL (Ranasinghe et al., 2021) and
CIDER (Ming et al., 2023) choose an embedding layer: for OPL, it is the penultimate layer, whereas for
CIDER, it is the “head,” the last layer. We follow recommendations in those works.

In evaluation mode, we also need a classifier. In Section 3.2, we discuss two ways to train classifiers – one
is the Rocchio classifier (which we recommend for its structural properties and since it needs no further
training). However, a common approach is to build a logistic regression model on the last layer of f2(f1(Z));
we also do this on the training data. Finally, we can consider the evaluation/test data z ∈ Ztest, which are
evaluated with the chosen classifier operating on f2(f1(z)).

2.1 Properties of ICR and DCR

We highlight key properties of the ICR and DCR procedures. Technical proofs are deferred to Appendix B.

First, we show that binary ICR, even if iterated, only affects the coordinates of data points in the span of the
original mean vectors. This implies that the mean vectors of classes stay in their original span. Moreover, it
implies that as MultiICR gradually includes more classes, it maintains a modified span, and all components
of coordinates outside those spans are unchanged. Hence, if d > k, then the null space of the classes is
unchanged under the MultiICR procedure. These results follow trivially for binaryDCR and MultiDCR since
we just apply the Gram-Schmidt procedure to class cones (the cones around the class that contain the whole
associated class).

Second, we show that this process converges to have the mean vectors completely orthogonal to each other.
This argument requires that initial classes X ′

j are clustered; this explains and justifies the use of optimizing
f1 under the OPL or CIDER loss, or something similar, before applying BinaryICR. The assumption we use
(Assumption 1; see also Appendix B.1) is probably more restrictive than necessary (it requires clusters to be
completely separable), but it makes already messy proofs manageable.

Assumption 1 Let vi be the mean of Xi, and let Xi be included in the cone of radius ϕi around vi for
i = 1, 2, . . . , k. Assume these cones are disjoint (except at the origin). Figure 4 illustrates k = 2 and k = 3.

Theorem 1 (Convergence of BinaryICR) Let Assumption 1 hold with k = 2, and the angle between v1
and v2 is less than π

2 . Then the BinaryICR algorithm converges: as we iterate, in the limit, the angle between
class means approaches π

2 .

Proof Sketch. We consider the positive angle γ, the gap between the upper bound of the cones of radius ϕ1
and the lower bound of the cone with radius ϕ2 (see Figure 4). We then prove that after each iteration of
BinaryICR, the angle between the new means of two classes does not exceed π

2 (see Lemma 4). This helps to
show that after each iteration of BinaryICR, the gap γ increases. Therefore, we end up with an increasing
sequence of positive real numbers bounded by π

2 , which is convergent. Lastly, we discuss that the convergence
is to π

2 , showing the means of two classes after convergence are orthogonal to each other. □

The comparable arguments for DCR are more straightforward. Following Assumption 1, all points of X ′
2 are

in a cone, and all of them and only them are updated in the operation. Since those points are all moved at
an angle exactly ϕ, and ϕ moves v2 orthogonal to v1, then if we recalculate v2 after the move, it will still be

6

Under review as submission to TMLR

ϕ2

ϕ1

X2

X1

v2

v1

X3

X2

v2v3

X1v1

ϕ1

ϕ2

ϕ3

Figure 4: Pictorial view of Assumption 1. Left: k = 2, Right: k = 3.

orthogonal to v1. Hence, this achieves the orthogonality goal after one step and only affects data in the span
of v1, v2.

Theorem 2 (Convergence of BinaryDCR) Assume Assumption 1 holds with k = 2. In addition, if the
angle between v1 and v2 is bigger than π

2 , then we assume ϕ1, ϕ2 are less than π
4 . Then, after running the

BinaryDCR algorithm, the class means will be orthogonal to each other.

Proof Sketch. We basically run the Gram-Schmidt algorithm on the two class cones instead of class means.
Under Assumption 3, the whole class X2 will be rotated by a fixed angle, the gap between v2 and y-axis.
Thus the class mean v2 will be located on y-axis. As the first class mean v1 is supposed to be on the x-axis,
the two class means are now completely orthogonal to each other. □

However, data may not be completely separable; we experimentally observe that OPL and CIDER achieve
99-100% We observed that the difference in output from the original and robust version is in the third digit
of precision, so we only report results for the simpler non-robust variant of DCR.

The MultiDCR algorithm is running the Gram-Schmidt algorithm on class cones such that normalized class
means will constitute an orthonormal basis for a k-dimensional subspace of Rd.

Theorem 3 (Convergence of MultiDCR) Let Assumption 1 hold. In addition, suppose that cones are
sufficiently well-separated (see Assumption 3 in Appendix B.2). Then, after running the MultiDCR algorithm,
all class means will be orthogonal to each other.

3 Experiments

We evaluate our methods, ICR and DCR, in two main ways. First, we show that these approaches, with high
precision, achieve orthogonality of class means while previous approaches do not and maintain good class
compactness. Second, we show these approaches maintain or improve upon the near state-of-the-art accuracy
in various learning frameworks. Note that ICR and DCR are designed to maintain class cohesiveness, not
improve upon it, so we do not expect improvement in training data, and any improvement on the evaluation
sets can be seen as a fortuitous effect of regularizing to a meaningful structure. Third, we examine a few
example images and how, with OPL or CIDER, they have unwanted associations with other classes, but after
applying ICR or DCR, that association mostly disappears.

Datasets and Training Details. We use standard image classification data sets, tasks, and basic
architectures. In our main experiments, we use Resnet-9 as the backbone architecture for the CIFAR-100
Krizhevsky (2009) classification task and train for 120 epochs. The CIFAR-100 is an image dataset that
consists of 60,000 natural images that are distributed across 100 classes with 600 images per class. All

7

Under review as submission to TMLR

training, including ICR & DCR, is performed on the training samples of 50,000 images. All evaluation is
shown on the test data of the remaining 10,000 images.

3.1 Orthogonality and Compactness

The dimension of the penultimate layer in OPL (Ranasinghe et al., 2021) that was optimized towards being
orthogonal was set to d = 64 dimensions. It is mathematically impossible to fit k classes orthogonally for k > d
dimensions; note k = 100 for CIFAR-100 has 100 = k > d = 64. Alternatively, CIDER (Ming et al., 2023)
uses d = 512 dimensions in the final layer where dispersion and compactness are optimized. To help identify
the best choice of d, we first measure geometric properties for OPL and CIDER for d = 64, 128, 256, 512, 1024.
Table 1 shows for each: first, the average absolute dot-product between class means 1

(k
2)

∑
j ̸=j′ |⟨vj , vj′⟩|, and

second, the average intra-class compactness 1
k

∑
j∈[k]

1
X′

j

∑
x∈X′

j
⟨vj , x⟩. For both, orthogonality increases

(average dot products decrease) with higher dimensions, and while OPL’s compactness keeps increasing,
CIDER’s decreases after d = 128. Notably, even at d = 1024, both OPL and CIDER are still far from
orthogonal, with an average dot product of about 0.1.

Table 1: Average class absolute dot products; and intra-class compactness.

dim: 64 128 256 512 1024

OPL 0.2709 0.2412 0.1945 0.1509 0.1267
CIDER 0.1602 0.1435 0.1247 0.1017 0.0930

64 128 256 512 1024

0.9742 0.9784 0.9851 0.9885 0.9900
0.9816 0.9809 0.9789 0.9764 0.9754

Next, in Table 2, we show the top-1 and top-5 accuracy for OPL and CIDER by dimension on the CIFAR-100
evaluation set. OPL performs better than CIDER and has the best top-1 accuracy at 1024 dimensions.
Somewhat surprisingly, all others peak at smaller dimensions (128 or 256), but the decrease is mostly not
too significant. We decided to continue with the best result for top-1 accuracy and orthogonality, and so set
d = 1024 dimensions as a default.

In Figure 5, we also plot block matrices for the absolute value of dot products between all pairs of class means
for OPL and CIDER embeddings at 64 and 1024 dimensions. While increasing d can be seen to improve
orthogonality, none are fully orthogonal. Note CIDER dot products appear more uniform than OPL, but the
overall average absolute dot products do not differ much in Table 1.

CIFAR-100 Classes

CI
FA

R-
10

0
Cl

as
se

s

0.2

0.4

0.6

0.8

1.0

CIFAR-100 Classes

CI
FA

R-
10

0
Cl

as
se

s

0.2

0.4

0.6

0.8

1.0

CIFAR-100 Classes

CI
FA

R-
10

0
Cl

as
se

s

0.2

0.4

0.6

0.8

1.0

CIFAR-100 Classes

CI
FA

R-
10

0
Cl

as
se

s

0.2

0.4

0.6

0.8

1.0

Figure 5: Orthogonality visualization of the dot product of the average per-class feature vectors. From Left
to right: OPL(64), OPL(1024), CIDER(64), CIDER(1024).

Thus, OPL and CIDER cannot achieve complete orthogonality of different class features by clustering the
same class features. As one of our goals is to translate class indicators to align exactly onto coordinates for
interpretability, these loss-function-based approaches are not sufficient.

Augmentation of OPL features with ICR and DCR. Next, we add our rectification algorithms, ICR
and DCR, on top of the near-orthogonal and compact embeddings as output by OPL or CIDER. We use
d = 1024 as default but also show the dimensions used in the paper as OPL(64) and CIDER(512). The
orthogonality and compactness results are in Table 3. For ICR, we show the result after each of the 5
iterations. Note that ICR improves the average dot product by about one (1) digit of precision in each

8

Under review as submission to TMLR

Table 2: Softmax Top 1 and Top 5 Accuracy of each d

Loss 64 dim 128 dim 256 dim 512 dim 1024 dim

OPL Top 1 73.38 74.29 74.26 74.87 75.22
CIDER Top 1 71.94 72.23 72.00 72.00 71.80

OPL Top 5 91.41 92.42 92.61 92.62 92.14
CIDER Top 5 89.02 89.35 89.15 89.20 88.84

iteration, and compactness stays about the same, sometimes increasing. DCR achieves two digits of precision
in the average dot product after one step, with a slight degradation in compactness.

Table 3: Orthogonality and Compactness scores for OPL, CIDER, and each after applying +DCR or +ICR
j, for j iterations. As default, with 1024 dimensions.

Score OPL (64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Orthogonality 0.2709 0.1268 0.0015 0.0056 0.0006 8.2321e-5 1.1560e-5 1.7660e-6
Compactness 0.9742 0.9899 0.9669 0.9785 0.9779 0.9779 0.9779 0.9779

Score CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Orthogonality 0.1017 0.0930 0.0057 0.0138 0.0021 0.0004 7.4106e-5 1.5946e-5
Compactness 0.9764 0.9754 0.9594 0.9586 0.9566 0.9563 0.9562 0.9562

3.2 Classification Accuracy after ICR/DCR

We next investigate the effect on classification accuracy after applying ICR and DCR. We now note that
there are two standard ways to enact class predictions in this setting. The first is recommended in the
OPL paper: build a simple logistic regression for each class and choose the class with the highest score for
a query (denoted Smax). In this paper, we prefer using the less powerful model of the Rocchio algorithm
ĵ = arg maxj∈[k]⟨vj , q⟩, for a query q (denoted NN). Table 4 shows the top-1 and top-5 accuracy for OPL,
CIDER, and after applying +DCR or +ICR for up to 5 iterations.

Table 4: Test data results for OPL, CIDER and + DCR or +ICR with 1024 dimensions

Metric OPL(64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Smax Top 1 73.20 75.28 74.47 75.21 75.19 75.19 75.20 75.20
Smax Top 5 91.23 91.93 89.31 91.71 91.35 91.28 91.29 91.29

NN Top 1 72.36 74.57 73.39 75.02 75.03 75.03 75.03 75.03
NN Top 5 90.17 89.84 89.25 91.76 91.35 91.26 91.24 91.23

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 72.00 71.80 71.46 71.59 71.60 71.58 71.58 71.79
Smax Top 5 89.20 88.84 86.02 88.26 87.72 87.60 87.60 87.67

NN Top 1 72.19 71.74 71.50 71.60 71.66 71.61 71.61 71.61
NN Top 5 89.08 88.65 85.95 88.240 87.63 87.52 87.47 87.47

For both the Smax (logistic) and NN (Rocchio) classifiers, the OPL initialization outperforms CIDER.
Unsurprisingly, the more powerful Smax (logistic) classifier (about 75.2% on top-1) has a bit better performance
than the NN (Rocchio) approach (about 74.5− 75% on top-1). The overall best score is found with just OPL
(d = 1024) at 75.28% improving upon the baseline OPL (d = 64) at 73.20%; applying ICR slightly decreases
this to 75.21% or 75.20%. However, for the NN classifier, applying ICR actually improves the score from
OPL (d = 64) at 72.36% and OPL (d = 1024) at 74.57% up to a score of 75.03% – which is not far from

9

Under review as submission to TMLR

Table 5: OOD performance for CIDER, CIDER+DCR/ICR on CIFAR-100

SVHN Places365 LSUN iSUN Texture Average

FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑

CE+SimCLR 24.82 94.45 86.63 71.48 56.40 89.00 66.52 83.82 63.74 82.01 59.62 84.15
KNN+ 39.23 92.78 80.74 77.58 48.99 89.30 74.99 82.69 57.15 88.35 60.22 86.14
OPL 98.83 43.00 99.16 38.08 99.85 25.93 91.52 63.20 91.54 51.90 96.18 44.42
CIDER 44.16 89.47 69.44 80.82 57.59 86.29 9.27 98.09 35.74 91.72 43.24 89.28

CIDER+DCR 48.52 88.21 71.29 79.95 62.18 84.33 10.78 97.80 37.46 90.95 46.05 88.25
CIDER+ICR1 49.28 87.97 70.28 79.93 60.42 84.94 10.96 97.71 37.84 91.02 45.75 88.32
CIDER+ICR2 49.72 87.92 70.53 79.89 60.51 84.86 11.08 97.70 38.03 90.99 45.97 88.27

the best Smax (logistic) score. Similar effects are seen with top-5 accuracy (and CIFAR-10 in Appendix C),
where OPL outperforms CIDER, and in this case, using ICR has little effect and provides an improvement in
NN (Rocchio) classifiers.

To verify that OPL+ICR does not deteriorate representations, we applied it to the training data (see Tables
13 and 14 in Appendix D) where all methods achieve between 99.5% and 100% accuracy; with the exception
of some degradation under the Smax (logistic) classifier after using CIDER loss.

3.3 Out-of-Distribution Detection

Out-of-Distribution Detection (OOD) is the task of identifying testing samples that originate from an
unknown distribution, which the data representation did not encounter during training. This task evaluates
the model’s dependability when encountering both known in-distribution (ID) inputs and OOD samples –
these should not be forced into an existing classification structure and may represent anomalies requiring
further attention. A wide variety of OOD detection methods have been explored, with distance-based
OOD detection demonstrating considerable potential (Lee et al., 2018; Xing et al., 2019) via representation
learning. A central approach extends a Rocchio-type setup and determines ID vs. OOD based on the
distance to class means. Very recently, Ming et al. (2023) introduced CIDER, a Compactness and Dispersion
Regularized learning framework for OOD detection, discussed earlier in equation 2. This provides a significant
improvement in the state of the art.

Datasets and Training Details In line with the approach taken by Ming et al. (2023), we adopt the
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) as the in-distribution datasets (CIFAR-10 results in Appendix
C). For evaluating the OOD detection performance, we use a diverse collection of natural image datasets
encompassing SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2018), Textures (Cimpoi et al., 2013),
LSUN (Yu et al., 2015), and iSUN (Xu et al., 2015). Our experiments utilize the pre-trained ResNet-9
used in the Image Classification task for the CIFAR-100 dataset. We freeze the pre-trained model up to
the penultimate layer to extract CIDER ID and OOD features for our OOD detection experiments. After
obtaining the extracted CIDER features, we apply ICR to refine the features further, enhancing inter-class
separation within the feature embedding space. Upon acquiring the ICR-rectified CIDER ID and OOD
features at test time, we employ CIDER’s distance-based code for OOD detection.

The following metrics are reported in Table 5: 1) False Positive Rate (FPR) of OOD samples at 95% True
Positive Rate (TPR) of ID samples, and 2) Area Under the Receiver Operating Characteristic Curve (AUC).
We show two representative prior art: CE+SimCLR (Winkens et al., 2020) and KNN+(Sun et al., 2022), the
best two methods before CIDER. Observe how CIDER significantly improves FPR from about 60% to about
43% and AUROC from about 84-86% to 89% (averaged across data sets). Applying ICR or DCR shows a
small degradation of these improvements, with an FPR of about 45% and AUROC of about 88%, still a
significant improvement over the previous baselines, but now with an interpretable structure. On CIFAR-10,
CIDER+ICR slightly improves over just CIDER; see Appendix C. This task seems delicate, and for instance,
using OPL equation 1 in place of CIDER equation 2 achieves much worse results with an average FPR of
96% and AUROC of only 44%.

10

Under review as submission to TMLR

3.4 Qualitative Example Comparison

In Figure 6 we show a few illustrative examples from CIFAR-100, and compare their predictions on OPL,
CIDER, and applying +DCR or +ICR. For each image, we show the top 5 results under the NN (Rocchio)
classifier. After ICR or DCR, these are the coordinates in the new coordinate system associated with the
k = 100 classes.

We observe that while all methods have the label correct as the top prediction, the drop-off after the first
prediction is steeper after ICR or DCR is applied. For instance, because under OPL, the class means for
“woman” are correlated with other people (e.g., girl, man, boy), under OPL, the woman example also has a
high dot-product with those class means. But after ICR or DCR, the class means are orthogonal, so the
forced high association is gone. The same phenomenon can be seen with man & boy and with worm & snake.

OPL(64) : worm(98.81), snake(89.8), lizard(63.97), caterpillar(61.23), crab(59.34)
OPL(1024) : worm(99.6), snake(73.7), plate(37.51), caterpillar(34.95), lizard(31.65)
OPL + DCR : worm(99.58), pear(2.57), sweet_pepper(1.55), orange(0.76), shrew(0.74)
OPL + ICR : worm(99.38), sweet_pepper(3.72), pear(3.32), cockroach(2.11), orange(1.81)

CIDER(512) : worm(73.21), caterpillar(72.69), lizard(31.32), snake(29.45), rocket(25.37)
CIDER(1024) : worm(88.74), caterpillar(43.52), ray(27.07), snake(23.22), road(19.6)
CIDER + DCR : worm(68.16), caterpillar(41.54), road(28.5), ray(25.51), sunflower(18.38)
CIDER + ICR : worm(77.79), caterpillar(37.37), ray(21.99), road(19.35), snail(11.55)

WORM

OPL(64) : woman(96.37), girl(93.05), man(83.07), boy(81.57), baby(74.65)
OPL(1024) : woman(98.67), girl(88.85), boy(88.26), man(87.61), baby(82.9)
OPL + DCR : woman(98.13), lobster(10.45), crab(5.05), dolphin(5.02), lamp(2.43)
OPL + ICR : woman(97.67), lobster(7.79), crab(4.62), wolf(2.45), lamp(2.01)

CIDER(512) : woman(98.0), man(41.46), lamp(26.47), girl(25.69), camel(25.63)
CIDER(1024) : woman(97.71), man(45.12), camel(35.11), pear(24.46), girl(21.77)
CIDER + DCR : woman(96.94), lamp(7.56), shark(7.05), couch(6.89), bee(5.48)
CIDER + ICR : woman(93.42), man(23.59), pear(9.9), palm_tree(6.85), lamp(6.51)

WOMAN

OPL(64) : man(98.73), boy(89.51), woman(84.38), girl(78.22), baby(74.1)
OPL(1024) : man(99.4), boy(92.82), girl(89.67), woman(89.63), baby(88.4)
OPL + DCR : man(99.32), boy(2.94), baby(2.41), streetcar(2.39), beaver(1.4)
OPL + ICR : man(97.75), boy(16.47), baby(6.99), bicycle(2.75), dolphin(1.9)

CIDER(512) : man(99.06), boy(39.74), woman(35.32), flatfish(33.74), cattle(21.79)
CIDER(1024) : man(96.26), boy(41.29), flatfish(35.21), lamp(29.47), palm_tree(18.43)
CIDER + DCR : man(95.46), turtle(12.15), lamp(11.19), flatfish(8.64), boy(7.17)
CIDER + ICR : man(96.42), lamp(7.87), porcupine(5.53), possum(5.36), bee(5.11)

MAN

Figure 6: Example images and top-5 scoring NN (Rocchio) values among classes in CIFAR-100.

4 Conclusion & Discussion

This paper introduces a post-processing to the training phase of a learned embedding mechanism, which
provides an interpretable structure. Namely, for a learned embedded representation for a multi-class
classification task, our method, Iterative Class Rectification (ICR), continuously adjusts the embedding
function so each of k identified class means is associated with a coordinate. Thus, the representation of each
class is orthogonal and can be independently measured. This does not preclude an object from having an
association with multiple classes, but it decouples those contributions.

This class orthogonality could also be useful if the class is associated with a protected class (e.g., gender, race,
etc). By restricting to classifiers that predict labels based on dot products along these class coordinates, we
could eliminate association learned about that trait by simply ignoring that coordinate from the representation
at the evaluation phase. This pre-processes and makes simple the technique that has become popular in
language debiasing (Bolukbasi et al., 2016; Dev & Phillips, 2019; Ravfogel et al., 2020; Wang et al., 2020)
which first attempts to identify a linear subspace, and then projects all data in the representation of that
subspace.

11

Under review as submission to TMLR

References
Prince Osei Aboagye, Yan Zheng, Jack Shunn, Chin-Chia Michael Yeh, Junpeng Wang, Zhongfang Zhuang,

Huiyuan Chen, Liang Wang, Wei Zhang, and Jeff M Phillips. Interpretable debiasing of vectorized language
representations with iterative orthogonalization. In International Conference on Learning Representations
(ICLR), 2023.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is to computer
programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information
processing systems, 29, 2016.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613,
2013.

Sunipa Dev and Jeff Phillips. Attenuating bias in word vectors. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 879–887. PMLR, 2019.

Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Srikumar. Oscar: Orthogonal subspace correction and
rectification of biases in word embeddings. In Empirical Methods in Natural Language Processing (EMNLP),
2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Masters Thesis; University of
Toronto, 2009.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. ArXiv, abs/1807.03888, 2018.

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embeddings for
out-of-distribution detection? In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=aEFaE0W5pAd.

Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in natural images
with unsupervised feature learning. In NeurIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Hameed Khan, and Fahad Shahbaz
Khan. Orthogonal projection loss. 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 12313–12323, 2021.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out: Guarding
protected attributes by iterative nullspace projection. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 7237–7256, 2020.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest neighbors.
In International Conference on Machine Learning, pp. 20827–20840. PMLR, 2022.

Tianlu Wang, Xi Victoria Lin, Nazneen Fatema Rajani, Bryan McCann, Vicente Ordonez, and Caiming
Xiong. Double-hard debias: Tailoring word embeddings for gender bias mitigation. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 5443–5453, 2020.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam, Patricia
MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Contrastive training for improved
out-of-distribution detection. arXiv preprint arXiv:2007.05566, 2020.

Chen Xing, Sercan Ö. Arik, Zizhao Zhang, and Tomas Pfister. Distance-based learning from errors for
confidence calibration. ArXiv, abs/1912.01730, 2019.

Pingmei Xu, Krista A. Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R. Kulkarni, and Jianxiong Xiao.
Turkergaze: Crowdsourcing saliency with webcam based eye tracking. ArXiv, abs/1504.06755, 2015.

12

https://openreview.net/forum?id=aEFaE0W5pAd

Under review as submission to TMLR

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale
image dataset using deep learning with humans in the loop. ArXiv, abs/1506.03365, 2015.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation for class-incremental learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 6982–6991, 2020.

Bolei Zhou, Àgata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image
database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40:
1452–1464, 2018.

13

Under review as submission to TMLR

A Graded Rotation

Here, we describe the graded rotation algorithm from Dev et al. (2021) for completeness. For an angle θ we

can denote the 2× 2 rotation matrix by Rθ, that is, Rθ =
[

cos θ − sin θ
sin θ cos θ

]
. The graded rotation of a vector

x with respect to the mean vectors v1 and v2 was introduced in Dev et al. (2021), which we recall below.

Algorithm 5 GradedRotat(v1, v2, x)
1: Input: Unit vectors v1, v2 in R2 and x ∈ R2

2: Set θ′ = arccos(⟨v1, v2⟩) and θ = π
2 − θ

′

3: Set ϕ1 = arccos ⟨v1,
x

|x| ⟩
4: Set v′

2 = v2 − ⟨v1, v2⟩v1
5: Set d2 = arccos ⟨v′

2,
x

|x| ⟩

6: Compute θx =

θ ϕ1
θ′ if d2 > 0 and ϕ1 ≤ θ′

θ π−ϕ1
π−θ′ if d2 > 0 and ϕ1 > θ′

−θ π−ϕ1
θ′ if d2 < 0 and ϕ1 ≥ π − θ′

−θ ϕ1
π−θ′ if d2 < 0 and ϕ1 < π − θ′

7: return Rθx
x

It operates entirely on a data point x that lies in R2, a span that also contains input vectors v1 and v2. When
applied to data in higher dimensions, it is assumed data x has already been projected into this span; that
step is not covered here.

It then identifies v2 needs to be rotated (angle θ′) so that it will be orthogonal to v1. Then, based on the
angle ϕ1 that x makes with v1, it determines how large of a ratio that x should make, denoted θx. Note that
line 6 shows a case statement. While it is convenient to think about data x that lies in the first quadrant and
between v1 and v2, the algorithm should also work for data elsewhere in the span. Depending on whether
ϕ1 is greater or less than θ′ is one condition. The other condition depends on d2, which determines if x is
positive (in the direction of v2 or negative (away from v2, in which case things work symmetrically).

B Proofs of convergence of BinaryICR

B.1 Convergence of BinaryICR and BinaryDCR

In order to prove the convergence of BinaryICR and BinaryDCR algorithms, we need to make the following
assumptions on data, which are illustrated in Figure 7. Notice Assumption 1 is a special case of Assumption
2.

Assumption 2 Let 0 < θ′ < π
2 , θ = π

2 − θ
′, −ϕ1 ≤ 0 ≤ ϕ2 < ψ1 ≤ ψ2 ≤ π and γ = ψ1 − ϕ2 > 0. Let also

X1 and X2 be subsets of the cones Γ1 = {reiϕ : ϕ1 ≤ ϕ ≤ ϕ2, r > 0} and Γ2 = {reiψ : ψ1 ≤ ψ ≤ ψ2, r > 0},
respectively, and θ′ be the angle between the mean vectors v1 and v2 of X1 and X2, respectively (see Figure 7).

Lemma 4 Under Assumption 2, for any i, the angle θi = π
2 − θ

′
i stays positive, where θ′

1 = θ′ and θ′
i (i ≥ 2)

shows the angle between two class means after i-th iteration of BinaryICR.

Proof. First, we discuss what happens for the cones Γ1 and Γ2 after one iteration of BinaryICR. Then, by
an induction argument, we conclude that θi > 0 for any i.

In Γ1, the half-cone under v1 shrinks, but the other half expands. It means that the y-values of data points
in the half-cone under v1 increase, and their x-values decrease a bit but stay positive. The same phenomenon
happens for the other half of the cone. Since we had an increase in y-values, their average will increase as
well (i.e., will be positive as it was 0 previously). Therefore, v′

1 will be in the first quadrant.

14

Under review as submission to TMLR

θ′

v2

v1

φ1

φ2

ψ1

ψ2

γ

φ2

φ2

φ1

φ1

X2 X2

X1 X1
v1

v2

Figure 7: Pictorial view of Assumption 1 (left) and Assumption 2 (right) on two classes X1 and X2.

For Γ2, after running one iteration of BinaryICR, the half-cone above v2 shrinks, but the other half expands.
Now, in order to make the comparison easy, we rotate all the points of X ′

2 by −θ1 (i.e., y-axis will be
transformed on top of v2) and call it X ′′

2 , where X ′
2 is the transformation of X2 after applying graded

rotations on top of X2. This means that the x-values of data points in X ′′
2 are increased with respect to

their x-values in X2 (consider two cases ψ2 ≤ π/2 and ψ2 > π/2 separately). This will also happen to their
average, and thus, their average will be under v2. Rotating the points of X ′′

2 back by θ1 degree to get X ′
2

means that the average of X ′
2, which we call v′

2, will be less than π/2.

We observe that both mean vectors v′
1 and v′

2 stay in the first quadrant, implying θ′
2 < π/2 or equivalently

θ2 > 0.

Now by an induction argument if θi > 0, completely similar to going from θ1 > 0 to θ2 > 0 above, we can
conclude that θi+1 > 0. □

Theorem 5 (Restatement of Theorem 1) Under Assumption 2, the BinaryICR algorithm converges,
that is, after enough epochs, θ′

i will approach π
2 , where θ′

i is the angle between two class means after ith
iteration of BinaryICR.

Proof. Let θ1 = θ and θ′
1 = θ′. Notice that all vectors in (X1 ∪X2) \ R × {0} will be changed after any

iteration of BinaryICR if θ′
1 ̸= π

2 . Now consider the gap γ1 = γ between ϕ2 and ψ1, i.e. γ1 = ψ1 − ϕ2 > 0.
Since both ϕ2 and ψ1 lie in [0, θ′

1], after one iteration of BinaryICR, they will be mapped to ϕ2 + θ1
θ′

1
ϕ2 and

ψ1 + θ1
θ′

1
ψ1. Thus γ1 will be changed to γ2 = γ1 + θ1

θ′
1
γ1 > γ1 (note θi ≥ 0 and 0 < γ < θ′

i < π/2 by Lemma 4).
Considering θ′

2, running another iteration of BinaryICR will modify γ2 to γ3 = γ2 + θ2
θ′

2
γ2 > γ2 and so on.

Therefore, the sequence (γn) ⊂ [0, π2] is a bounded increasing sequence and thus convergent, say to γ′. This
means that running another iteration of BinaryICR will not change γ′, that is θn → 0, otherwise γ′ will need
to be changed. Hence, the BinaryICR algorithm converges. □

Theorem 6 (Restatement of Theorem 2) Assume Assumption 1 holds. In addition, if the angle between
v1 and v2 is bigger than π

2 , then we assume ϕ1, ϕ2 are less than π
4 . Then, after running the BinaryDCR

algorithm, the class means will be orthogonal to each other.

Proof. The proof is trivial, but we include it for completeness. Let θ′ be the angle between v1 and v2. There
are two cases.

Case 1. When θ′ < π
2 and the two classes are disjoint, according to the BinaryDCR algorithm, all vectors

in class 2 will be rotated by θ = π
2 − θ

′ degrees, and so their mean v2 will be rotated by θ degrees as well.
However, the vectors in class 1 will not be rotated. Thus, v1 will stay the same. Therefore, after running the
algorithm, the class means will be orthogonal to each other.

15

Under review as submission to TMLR

Case 2. In the case θ′ > π
2 , according to the BinaryDCR algorithm, all the vectors within π

4 of v2 will be
rotated by θ = π

4 degrees. So, by the assumptions, all the points in class 2, and thus their mean v2, will
be rotated by π

4 degrees. Since the points in class 1 will stay the same, this means that, after running the
algorithm, the class means will be orthogonal to each other. □

B.2 Convergence of MultiDCR

Assumption 3 We consider the following assumptions on the dataset in order to prove the convergence of the
MultiClassDCR algorithm (see Figure 8). Without loss of generality, we assume if we run the Gram-Schmidt
process on class means {v1, . . . , vk}, and it runs successfully (handled by assumption (1)), then the resulting
orthonormal basis would be the standard basis {e1, . . . , ek}.

1. Class means are linearly independent.

2. For each i, class Xi is included in a cone Ci around vi with radius ϕi, where for i ≥ 3, Ci is located
inside a cone Bi around ei of radius less than π/2.

3. All class means are in the first orthant, or ϕi < π
4 for all i.

4. For all j < i, where i ≥ 3, Xj is outside of the cone Bi.

vi

Ci Bi

ei

Xi

Figure 8: Pictorial view of Assumption 3.

Theorem 7 (Restatement of Theorem 3) Let Assumption 3 hold. Then, after running the MultiDCR
algorithm, all class means will be orthogonal to each other.

Proof. In the MultiDCR algorithm, for each class, we rotate the encompassing cone in a Gram-Schmidt
manner. Considering the separation assumptions and linear independence property in Assumption 3, all
cones will stay separated after any step in the Gram-Schmidt process. This is because, in the Gram-Schmidt
process, we orthogonalize vectors one by one; notice that this process happens in the same subspace as before,
that is, in the ith step the span of {e1, . . . , ei} and {v1, . . . , vi} will be the same. Now Assumption 3 implies
that the ith class cone Ci around vi will be rotated in such a way so that ei will be its center after the
rotation. We call this rotated cone C ′

i. Thus C ′
i will be inside the cone Bi, by Assumption 3(2). This means

that C ′
i will be disjoint from the previously orthogonalized cones C ′

j for j < i as they live outside the cone
Bi and so outside the cone C ′

i. Therefore, after running the MultiDCR algorithm, all class means will be
orthogonal to each other. □

16

Under review as submission to TMLR

C Experiments on CIFAR-10

We repeat here on CIFAR-10 many of the experiments we performed for CIFAR-100 in the main text. Things
mostly work about the same, but there are some differences due to some accuracy problems being easier due
to fewer classes. Also, orthogonality is easier to obtain since there are few classes in the same dimensional
space.

C.1 Orthogonality and Compactness

Like Table 1, Table 6 shows the average absolute dot-product between class means and the average intra-class
compactness with OPL and CIDER for CIFAR-10 dataset. For OPL, orthogonality and compactness increase
with higher dimensions, while CIDER’s orthogonality stays the same and compactness decreases.

Interestingly, CIDAR has worse orthogonality in this case than with CIFAR-100; this is because vectors
v1, . . . , v10 must lie in a 10-dimensional span (with the origin), and so one can make them further apart by
putting 1/9 of a way into the direction of the origin, hence the 0.111 dot product.

Table 6: Average class dot products; and intra-class compactness.

dim: 64 128 256 512 1024

OPL 0.0111 0.0093 0.0083 0.0036 0.0058
CIDER 0.1111 0.1111 0.1111 0.1111 0.1111

64 128 256 512 1024

0.9989 0.9990 0.9990 0.9990 0.9991
0.9892 0.9885 0.9880 0.9875 0.9859

Table 7, as Table 4, shows the top-1 and top-5 accuracy for OPL, CIDER, and after applying +DCR or +ICR
for up to 5 iterations for CIFAR-10 dataset. Here, as noted in Section 3.2, Smax means applying logistic
regression and choosing the class with the highest score for a query, and NN stands for applying the Rocchio
algorithm to infer the class predictions.

Table 7: Softmax Top 1 and Top 5 Accuracy of each k

Loss 64 dim 128 dim 256 dim 512 dim 1024 dim

OPL Top 1 93.020 93.610 93.200 93.420 93.310
CIDER Top 1 92.730 92.640 92.870 92.730 92.590

OPL Top 5 99.590 99.570 99.610 99.570 99.650
CIDER Top 5 99.570 99.590 99.550 99.520 99.690

C.2 Orthogonality visualization

In Figure 9, we plot block matrices for the absolute value of dot products between all pairs of class means for
OPL and CIDER embeddings at 64 and 1024 dimensions for the CIFAR-10 dataset. For OPL, all classes
but two are almost orthogonal in 64 dimensions and this trend is improved in 1024 dimensions, but those
two classes are not orthogonal to each other yet. For CIDER, going from 64 to 1024 dimensions does not
considerably improve class orthogonality scores and is far from orthogonality.

C.3 Augmentation of OPL features with ICR and DCR

Table 8 below shows the average absolute dot-product between class means and the average intra-class
compactness for the CIFAR-10 dataset when we apply ICR/DCR on top of the OPL/CIDER features. Note
that ICR and DCR improve dot products drastically for both OPL and CIDER, where OPL+ICR5 reaches
complete orthogonality of classes, and CIDER+ICR5 improves the average dot product by about one (1)
digit. Compactness stays about the same for OPL but decreases for CIDER as we iterate more ICR steps.

17

Under review as submission to TMLR

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.004286 0.011896 0.004946 0.001497 0.002417 0.001316 0.001665 0.005464 0.003637

0.004286 1.000000 0.000978 0.002473 0.000743 0.009500 0.001213 0.001215 0.001885 0.026687

0.011896 0.000978 1.000000 0.016570 0.005488 0.011622 0.015775 0.002361 0.001407 0.001947

0.004946 0.002473 0.016570 1.000000 0.005528 0.271455 0.013993 0.006456 0.002594 0.003147

0.001497 0.000743 0.005488 0.005528 1.000000 0.008542 0.003163 0.007131 0.001349 0.001780

0.002417 0.009500 0.011622 0.271455 0.008542 1.000000 0.003407 0.011625 0.002520 0.009495

0.001316 0.001213 0.015775 0.013993 0.003163 0.003407 1.000000 0.001490 0.001293 0.001433

0.001665 0.001215 0.002361 0.006456 0.007131 0.011625 0.001490 1.000000 0.001146 0.001897

0.005464 0.001885 0.001407 0.002594 0.001349 0.002520 0.001293 0.001146 1.000000 0.002441

0.003637 0.026687 0.001947 0.003147 0.001780 0.009495 0.001433 0.001897 0.002441 1.000000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) OPL(64)

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.000805 0.002282 0.001840 0.000932 0.001055 0.000664 0.000791 0.001792 0.001020

0.000805 1.000000 0.000684 0.001367 0.000739 0.001079 0.000611 0.000536 0.000723 0.002094

0.002282 0.000684 1.000000 0.003221 0.004221 0.006477 0.002645 0.001283 0.000836 0.000672

0.001840 0.001367 0.003221 1.000000 0.002931 0.082080 0.004580 0.003458 0.001497 0.001657

0.000932 0.000739 0.004221 0.002931 1.000000 0.003622 0.001962 0.003084 0.000977 0.000793

0.001055 0.001079 0.006477 0.082080 0.003622 1.000000 0.001918 0.010077 0.001016 0.001261

0.000664 0.000611 0.002645 0.004580 0.001962 0.001918 1.000000 0.000501 0.000510 0.000533

0.000791 0.000536 0.001283 0.003458 0.003084 0.010077 0.000501 1.000000 0.000637 0.000783

0.001792 0.000723 0.000836 0.001497 0.000977 0.001016 0.000510 0.000637 1.000000 0.000797

0.001020 0.002094 0.000672 0.001657 0.000793 0.001261 0.000533 0.000783 0.000797 1.000000
0.00

0.02

0.04

0.06

0.08

0.10

(b) OPL(1024)

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.112030 0.111178 0.109410 0.110922 0.108393 0.110652 0.112437 0.112183 0.111981

0.112030 1.000000 0.112891 0.110612 0.110847 0.108579 0.110351 0.111494 0.111573 0.114914

0.111178 0.112891 1.000000 0.112318 0.112436 0.110364 0.112605 0.113132 0.110245 0.113586

0.109410 0.110612 0.112318 1.000000 0.111192 0.121446 0.108475 0.109509 0.109121 0.111535

0.110922 0.110847 0.112436 0.111192 1.000000 0.110558 0.110710 0.110814 0.110766 0.111663

0.108393 0.108579 0.110364 0.121446 0.110558 1.000000 0.109125 0.105491 0.107594 0.110830

0.110652 0.110351 0.112605 0.108475 0.110710 0.109125 1.000000 0.109501 0.109396 0.112325

0.112437 0.111494 0.113132 0.109509 0.110814 0.105491 0.109501 1.000000 0.109352 0.112577

0.112183 0.111573 0.110245 0.109121 0.110766 0.107594 0.109396 0.109352 1.000000 0.112656

0.111981 0.114914 0.113586 0.111535 0.111663 0.110830 0.112325 0.112577 0.112656 1.000000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(c) CIDER(64)

CIFAR-10 Classes

CI
FA

R-
10

 C
la

ss
es

1.000000 0.113099 0.111870 0.112747 0.110812 0.110378 0.111430 0.110297 0.115086 0.111024

0.113099 1.000000 0.110882 0.112141 0.110693 0.110255 0.111953 0.112057 0.113048 0.110961

0.111870 0.110882 1.000000 0.112306 0.111857 0.110396 0.108947 0.110233 0.109815 0.108293

0.112747 0.112141 0.112306 1.000000 0.112183 0.112236 0.112412 0.112609 0.111046 0.111009

0.110812 0.110693 0.111857 0.112183 1.000000 0.108760 0.111093 0.112366 0.109843 0.110239

0.110378 0.110255 0.110396 0.112236 0.108760 1.000000 0.109750 0.112853 0.108433 0.109522

0.111430 0.111953 0.108947 0.112412 0.111093 0.109750 1.000000 0.110790 0.110642 0.110845

0.110297 0.112057 0.110233 0.112609 0.112366 0.112853 0.110790 1.000000 0.111520 0.109851

0.115086 0.113048 0.109815 0.111046 0.109843 0.108433 0.110642 0.111520 1.000000 0.111181

0.111024 0.110961 0.108293 0.111009 0.110239 0.109522 0.110845 0.109851 0.111181 1.000000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(d) CIDER(1024)

Figure 9: Orthogonality visualization of the dot product of the average per-class feature vectors. From Left to right:
OPL(64), OPL(1024), CIDER(64), CIDER(1024).

Table 8: Orthogonality and Compactness scores for OPL, CIDER, and each after applying +DCR or +OPL
j, for j iterations. As default, with 1024 dimensions.

Score OPL (64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Orthogonality 0.0111 0.0058 2.0720e-05 5.2844e-05 1.0261e-06 1.8735e-08 3.2816e-10 5.7593e-12
Compactness 0.9989 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991

Score CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Orthogonality 0.1111 0.1111 0.0744 0.0838 0.0592 0.0372 0.0239 0.0143
Compactness 0.9875 0.9859 0.9779 0.9351 0.8976 0.8778 0.8662 0.8601

C.4 Classification Accuracy after ICR/DCR on Test Data

Similar to Table 4, Table 9 shows the top-1 and top-5 accuracy on CIFAR-10 test data for OPL, CIDER, and
after applying +DCR or +ICR for up to 5 iterations, where OPL outperforms CIDER.

For OPL(1024), applying +DCR or +ICR, top-1 accuracy increases a bit with the Smax (logistic) classifier
and stays the same with the NN (Rocchio) classifier. In contrast, for CIDER, top-1 accuracy decreases by an
insignificant amount with both Smax and NN classifiers. For both OPL and CIDER, top-5 accuracy degrades
by less than 1%.

18

Under review as submission to TMLR

Table 9: Test data results for OPL, CIDER and + DCR or +ICR with 1024 dimensions

Metric OPL(64) OPL OPL+DCR OPL+ICR 1 OPL+ICR 2 OPL+ICR 3 OPL+ICR 4 OPL+ICR 5

Smax Top 1 93.020 93.310 93.330 93.330 93.330 93.330 93.330 93.330
Smax Top 5 99.590 99.650 98.700 98.700 98.700 98.700 98.700 98.700

NN Top 1 93.030 93.300 93.290 93.300 93.300 93.300 93.300 93.300
NN Top 5 99.560 99.720 98.900 98.920 98.920 98.920 98.920 98.920

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 92.730 92.590 92.360 92.630 92.610 92.440 92.370 92.400
Smax Top 5 99.520 99.690 99.180 99.630 99.610 99.580 99.570 99.590

NN Top 1 92.730 92.560 92.180 92.420 91.210 90.000 89.940 89.940
NN Top 5 99.420 99.550 99.010 99.170 98.870 96.840 95.510 95.350

C.5 Classification Accuracy after ICR/DCR on Training Data

Tables 10 and 11 show the top-1 and top-5 accuracy for OPL, CIDER, and after applying +DCR or +ICR
on training data. Similar to CIFAR-100, we observe that OPL+ICR does not deteriorate representations,
where all methods achieve between 99.9% and 100% accuracy. Applying +DCR after CIDER affects the
accuracy by less than 1%. However, we see some degradation after applying +ICR on top of CIDER features,
especially with the Smax classifier, when we use more iterations.

Table 10: Training data results for OPL, OPL+DCR, and OPL+ICR with 1024 dimensions

Metric OPL (64) OPL (1024) OPL+DCR OPL+ICR1 OPL+ICR2 OPL+ICR3 OPL+ICR4 OPL+ICR5

Smax Top 1 99.976 99.976 99.976 99.976 99.976 99.976 99.976 99.976
Smax Top 5 99.998 100.000 100.000 100.000 100.000 100.000 100.000 100.000

NN Top 1 99.974 93.300 93.290 99.974 99.974 99.974 99.974 99.974
NN Top 5 100.000 99.720 98.900 100.000 100.000 100.000 100.000 100.000

Table 11: Training data results for CIDER, CIDER+DCR, and CIDER+ICR with 1024 dimensions

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 99.944 99.952 99.150 94.176 93.402 87.858 86.980 86.890
Smax Top 5 100.000 100.000 99.998 98.456 93.588 93.582 93.192 87.336

NN Top 1 99.946 99.950 99.716 99.872 98.178 96.554 96.478 96.474
NN Top 5 100.000 100.000 100.000 100.000 99.926 97.570 96.590 96.572

C.6 Full Table for Out of Distribution Experiment using CIFAR-10 as In-Distribution (ID) Data

We show results in Table 15 for CIFAR-10 on the OOD experiments for which CIDER gave state-of-the-art
results. Many prior art results are taken directly from Ming et al. (2023). Unlike in CIFAR-100, where
running ICR gives minor degradation of results under these measures, with CIFAR-10, ICR and DCR give
barely measurable improvement or degradation (in the fourth bit of precision). OPL still does not perform as
well on this task.

19

Under review as submission to TMLR

Table 12: OOD performance for for CIDER, CIDER+DCR, and CIDER+ICR on the CIFAR10 Dataset

OOD Dataset
Method SVHN Places365 LSUN iSUN Texture Average

FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑

Without Contrastive Learning
MSP 59.66 91.25 62.46 88.64 45.21 93.80 54.57 92.12 66.45 88.50 57.67 90.86
ODIN 53.78 91.30 43.40 90.98 10.93 97.93 28.44 95.51 55.59 89.47 38.43 93.04
Mahalanobis 9.24 97.80 83.50 69.56 67.73 73.61 6.02 98.63 23.21 92.91 37.94 86.50
Energy 54.41 91.22 42.77 91.02 10.19 98.05 27.52 95.59 55.23 89.37 38.02 93.05
GODIN 18.72 96.10 55.25 85.50 11.52 97.12 30.02 94.02 33.58 92.20 29.82 92.97

With Contrastive Learning
ProxyAnchor 39.27 94.55 43.46 92.06 21.04 97.02 23.53 96.56 42.70 93.16 34.00 94.67
CE+SimCLR 6.98 99.22 54.39 86.70 64.53 85.60 59.62 86.78 16.77 96.56 40.46 90.97
CSI 37.38 94.69 38.31 93.04 10.63 97.93 10.36 98.01 28.85 94.87 25.11 95.71
SSD+ 2.47 99.51 22.05 95.57 10.56 97.83 28.44 95.67 9.27 98.35 14.56 97.38
KNN+ 2.70 99.61 23.05 94.88 7.89 98.01 24.56 96.21 10.11 97.43 13.66 97.22

Regularization for Compactness and Dispersion
CIDER 8.30 98.46 21.37 95.93 9.63 98.18 0.68 99.79 27.75 94.45 13.55 97.36
CIDER+DCR 8.33 98.46 21.58 95.92 9.59 98.19 0.67 99.79 27.75 94.48 13.58 97.37
CIDER+ICR1 8.31 98.46 21.33 95.93 9.48 98.19 0.69 99.79 27.82 94.44 13.53 97.36
CIDER+ICR2 8.32 98.46 21.29 95.93 9.46 98.19 0.69 99.79 27.84 94.45 13.52 97.36
CIDER+ICR3 8.32 98.46 21.30 95.93 9.46 98.19 0.69 99.79 27.84 94.45 13.52 97.36
CIDER+ICR4 8.32 98.46 21.29 95.93 9.46 98.19 0.69 99.79 27.84 94.45 13.52 97.36
CIDER+ICR5 8.32 98.46 21.29 95.93 9.46 98.19 0.69 99.79 27.84 94.45 13.52 97.36
OPL 99.74 33.74 99.44 42.56 99.75 56.45 99.93 49.33 97.15 40.49 99.20 44.51

D Training Data Experiments on Accuracy for CIFAR-100

Tables 13 and 14 show the top-1 and top-5 accuracy for OPL, CIDER, and after applying +DCR or +ICR on
training data of CIFAR-100 dataset. Table 13 confirms that OPL+ICR does not deteriorate representations,
where all methods achieve between 99.5% and 100% accuracy. In CIDER, with the NN classifier, accuracies
remain the same (above 99.7%), but with the Smax classifier, we see some degradation after applying +DCR
or +ICR.

Table 13: Training data results for OPL, OPL+DCR, and OPL+ICR with 1024 dimensions

Metric OPL (64) OPL (1024) OPL+DCR OPL+ICR1 OPL+ICR2 OPL+ICR3 OPL+ICR4 OPL+ICR5

Smax Top 1 99.946 99.976 99.762 99.594 99.686 99.698 99.698 99.698
Smax Top 5 100.000 100.000 99.992 100.000 100.000 100.000 100.000 100.000

NN Top 1 99.858 99.972 99.222 99.974 99.974 99.974 99.974 99.974
NN Top 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Table 14: Training data results for CIDER, CIDER+DCR, and CIDER+ICR with 1024 dimensions

Metric CIDER (512) CID CID+DCR CID+ICR 1 CID+ICR 2 CID+ICR 3 CID+ICR 4 CID+ICR 5

Smax Top 1 99.888 99.892 94.370 97.396 84.540 82.798 82.612 82.572
Smax Top 5 100.000 100.000 98.266 99.408 89.178 88.088 87.920 87.902

NN Top 1 99.890 99.898 99.720 99.872 99.864 99.862 99.862 99.862
NN Top 5 100.000 100.000 99.988 100.000 99.998 99.998 99.998 99.998

20

Under review as submission to TMLR

E Full Table for Out of Distribution Experiment using CIFAR-100 as In-Distribution
(ID) Data

This table is a full version of Table 5, where we have added some methods without contrastive learning and a
few more iterations of ICR on CIDER features. The numbers for additional methods are pulled from Ming
et al. (2023).

Table 15: OOD performance for for CIDER, CIDER+DCR, and CIDER+ICR on the CIFAR10 Dataset

OOD Dataset
Method SVHN Places365 LSUN iSUN Texture Average

FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑

Without Contrastive Learning
MSP 78.89 79.8 84.38 74.21 83.47 75.28 84.61 74.51 86.51 72.53 83.12 75.27
ODIN 70.16 84.88 82.16 75.19 76.36 80.1 79.54 79.16 85.28 75.23 78.7 79.11
Mahalanobis 87.09 80.62 84.63 73.89 84.15 79.43 83.18 78.83 61.72 84.87 80.15 79.53
Energy 66.91 85.25 81.41 76.37 59.77 86.69 66.52 84.49 79.01 79.96 70.72 82.55
GODIN 74.64 84.03 89.13 68.96 93.33 67.22 94.25 65.26 86.52 69.39 87.57 70.97
LogitNorm 59.6 90.74 80.25 78.58 81.07 82.99 84.19 80.77 86.64 75.6 78.35 81.74

With Contrastive Learning
ProxyAnchor 87.21 82.43 70.1 79.84 37.19 91.68 70.01 84.96 65.64 84.99 66.03 84.78
CE+SimCLR 24.82 94.45 86.63 71.48 56.4 89 66.52 83.82 63.74 82.01 59.62 84.15
CSI 44.53 92.65 79.08 76.27 75.58 83.78 76.62 84.98 61.61 86.47 67.48 84.83
SSD+ 31.19 94.19 77.74 79.9 79.39 85.18 80.85 84.08 66.63 86.18 67.16 85.9
KNN+ 39.23 92.78 80.74 77.58 48.99 89.3 74.99 82.69 57.15 88.35 60.22 86.14

Regularization for Compactness and Dispersion
CIDER 44.16 89.47 69.44 80.82 57.59 86.29 9.27 98.09 35.74 91.72 43.24 89.28
CIDER+DCR 48.52 88.21 71.29 79.95 62.18 84.33 10.78 97.8 37.46 90.95 46.05 88.25
CIDER+ICR 1 49.28 87.97 70.28 79.93 60.42 84.94 10.96 97.71 37.84 91.02 45.75 88.32
CIDER+ICR 2 49.72 87.92 70.53 79.89 60.51 84.86 11.08 97.7 38.03 90.99 45.97 88.27
CIDER+ICR 3 49.82 87.9 70.6 79.88 60.59 84.84 11.15 97.7 38.07 90.98 46.05 88.26
CIDER+ICR 4 49.85 87.9 70.61 79.87 60.62 84.84 11.15 97.7 38.16 90.98 46.08 88.26
CIDER+ICR 5 49.84 87.9 70.57 79.87 60.59 84.84 11.15 97.7 38.12 90.98 46.05 88.26
OPL 98.83 43 99.16 38.08 99.85 25.93 91.52 63.2 91.54 51.9 96.18 44.42

21

	Introduction
	Algorithmic Framework
	Properties of ICR and DCR

	Experiments
	Orthogonality and Compactness
	Classification Accuracy after ICR/DCR
	Out-of-Distribution Detection
	Qualitative Example Comparison

	Conclusion & Discussion
	Graded Rotation
	Proofs of convergence of BinaryICR
	Convergence of BinaryICR and BinaryDCR
	Convergence of MultiDCR

	Experiments on CIFAR-10
	Orthogonality and Compactness
	Orthogonality visualization
	Augmentation of OPL features with ICR and DCR
	Classification Accuracy after ICR/DCR on Test Data
	Classification Accuracy after ICR/DCR on Training Data
	Full Table for Out of Distribution Experiment using CIFAR-10 as In-Distribution (ID) Data

	Training Data Experiments on Accuracy for CIFAR-100
	Full Table for Out of Distribution Experiment using CIFAR-100 as In-Distribution (ID) Data

