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ABSTRACT

Cross-encoder (CE) models which compute similarity by jointly encoding a
query-item pair perform better than using dot-product with embedding-based
models (dual-encoders) at estimating query-item relevance. Existing approaches
perform k-NN search with cross-encoders by approximating the CE similarity
with a vector embedding space fit either with dual-encoders (DE) or CUR matrix
factorization. DE-based retrieve-and-rerank approaches suffer from poor recall as
DE generalizes poorly to new domains and the test-time retrieval with DE is de-
coupled from the CE. While CUR-based approaches can be more accurate than the
DE-based retrieve-and-rerank approach, such approaches require a prohibitively
large number of CE calls to compute item embeddings, thus making it imprac-
tical for deployment at scale. In this paper, we address these shortcomings with
our proposed sparse-matrix factorization based method that efficiently computes
latent query and item representations to approximate CE scores and performs k-
NN search with the approximate CE similarity. In an offline indexing stage, we
compute item embeddings by factorizing a sparse matrix containing query-item
CE scores for a set of train queries. Our method produces a high-quality ap-
proximation while requiring only a fraction of CE similarity calls as compared to
CUR-based methods, and allows for leveraging DE models to initialize the em-
bedding space while avoiding compute- and resource-intensive finetuning of DE
via distillation. At test time, we keep item embeddings fixed and perform retrieval
over multiple rounds, alternating between a) estimating the test query embedding
by minimizing error in approximating CE scores of items retrieved thus far, and
b) using the updated test query embedding for retrieving more items in the next
round. Our proposed k-NN search method can achieve up to 5% and 54% im-
provement in k-NN recall for k = 1 and 100 respectively over the widely-used
DE-based retrieve-and-rerank approach. Furthermore, our proposed approach to
index the items by aligning item embeddings with the CE achieves up to 100×
and 5× speedup over CUR-based and dual-encoder distillation based approaches
respectively while matching or improving k-NN search recall over baselines.

1 INTRODUCTION

Efficient and accurate nearest neighbor search is paramount for retrieval (Menon et al., 2022; Rosa
et al., 2022; Qu et al., 2021), classification in large output spaces (e.g., entity linking (Ayoola et al.,
2022; Logeswaran et al., 2019; Wu et al., 2020)), non-parametric models (Das et al., 2022; Wang
et al., 2022), and many other such applications in machine learning (Goyal et al., 2022; Izacard
et al., 2023; Bahri et al., 2020). The accuracy and efficiency of nearest neighbor search depends
on a combination of factors (1) the computational cost of pairwise distance comparisons between
datapoints, (2) preprocessing time for constructing a nearest neighbor index (e.g., dimensionality
reduction (Indyk, 2000), quantization (Ge et al., 2013; Guo et al., 2020), data structure construc-
tion (Beygelzimer et al., 2006; Malkov & Yashunin, 2018; Zaheer et al., 2019)), and (3) the time
taken to query the index to retrieve the nearest neighbor(s).

Similarity functions such as cross-encoders which take a pair of data points as inputs and directly
output a scalar score, have achieved state-of-the-art results on numerous tasks (e.g., QA (Qu et al.,
∗Now at Google DeepMind
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2021; Thakur et al., 2021b), entity linking (Logeswaran et al., 2019)). However, these models are
exceptionally computationally expensive since these are typically parameterized by several layers of
neural models such as transformers (Vaswani et al., 2017), and scoring each item for a given query
requires a forward pass of the large parametric model, making them impractical similarity functions
to use directly in nearest neighbor indices (Yadav et al., 2022). Initial work has approximated search
with cross-encoders (CE) for a given test query using a heuristic retrieve-and-rerank approach that
uses a separate model to retrieve a subset of items followed by re-ranking using the CE. Prior work
performs the initial retrieval using dot-product of sparse query/item embedding from models such
as BM25, or dense query/item embeddings from models such as dual-encoders (DE) which are typ-
ically trained on the same task and data as the CE. To support search with CE, recent work (Yadav
et al., 2022; 2023) improves upon heuristic retrieve-and-rerank approaches, by directly learning an
embedding space that approximates the CE score function. These approaches use CUR decompo-
sition (Mahoney & Drineas, 2009) to compute (relatively) low-dimensional embeddings for queries
and items. The item embeddings are computed by scoring each item against a set of anchor/train
queries. At test-time, the test query embedding is computed by using CE scores of the test query
against a set of (adaptively-chosen) anchor items.

Both DE-based retrieve-and-rerank and CUR-based methods are not well suited for a typical appli-
cation setting in k-NN search – building an index on a new set of targets with a given (trained) sim-
ilarity function. The DE-based approach has several disadvantages in this setting. DE models show
poor generalization to new domains and thus require additional fine-tuning on the target domain to
improve performance Yadav et al. (2022); Thakur et al. (2021a). This can be both resource-intensive
as well time-consuming. Furthermore, it requires access to the parameters (not just embedding out-
puts) of the DE, which might not be possible if the DE is provided by an API service. On the other
hand, while CUR-based approaches outperform retrieve-and-rerank approaches without additional
fine-tuning of DE, they require computing a dense score matrix by scoring each item against a set of
anchor/train queries. This does not scale well with the number of items. For instance, for a domain
with 500 anchor/train queries and 10K items, it takes around 10 hours1 to compute the dense query-
item score matrix with a CE parameterized using bert-base (Yadav et al., 2022). By simple
extrapolation, indexing 5 million items using 500 queries would take around 5000 GPU hours.

In this paper, we propose a sparse-matrix factorization-based approach to improve the efficiency
of fitting an embedding space to approximate the cross-encoder for k-NN search. Our proposed
approach significantly reduces the offline indexing cost as compared to existing approaches by con-
structing a sparse matrix containing cross-encoder scores between a set of training queries (Qtrain)
and all the items (I), and using efficient matrix factorization methods to produce a set of item
embeddings that are aligned with the cross-encoder. At test-time, our proposed approach, AXN,
computes a test query embedding to approximate cross-encoder scores between the test query and
items, and performs retrieval using approximate cross-encoder scores. AXN performs retrieval over
multiple rounds while keeping the item embedding fixed and incrementally refining the test query
embedding using cross-encoder scores of the items retrieved in previous rounds. In the first round,
the cross-encoder is used to score the test query against a small number of items chosen uniformly
at random or baseline retrieval methods such as dual-encoder or BM25. In each subsequent round,
AXN alternates between (a) updating the test query embedding to improve the approximation of the
cross-encoder score of items retrieved so far, and (b) retrieving additional items using the improved
approximation of the cross-encoder, and computing the exact cross-encoder scores for the retrieved
items. Finally, the retrieved items are ranked based on exact cross-encoder scores and the top-k
items returned as the k-nearest neighbors for the given test query.

We perform an empirical evaluation of our method using cross-encoder models trained for the task
of entity linking and information retrieval on ZESHEL (Logeswaran et al., 2019) and BEIR (Thakur
et al., 2021b) benchmark respectively. Our proposed k-NN search method can be used together with
dense item embeddings produced by any method such as baseline dual-encoder models and still
yield up to 5% and 54% improvement in k-NN recall for k =1 and 100 respectively over retrieve-
and-rerank style inference with the same dual-encoder. Furthermore, our proposed approach to
align item embeddings with the cross-encoder achieves up to 100× and 5× speedup over CUR-
based approaches and training dual-encoders via distillation-based respectively while matching or
improving test-time k-NN search recall over baseline approaches.

1On an Nvidia 2080ti GPU with 12 GB memory using batch size=50
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2 PROPOSED APPROACH

Task Description A cross-encoder model f : Q× I → R maps a query-item pair (q, i) ∈ Q× I
to a scalar similarity. We consider the task of similarity search with the cross-encoder, in particular
finding the k-nearest neighbors items for a given query q from a fixed set of items I:

N(q) , arg topk
i∈I

f(q, i) (1)

where arg topk returns the indices of the top k scoring items of the function. Exact k-NN search with
a cross-encoder would requireO(|I|) cross-encoder calls as an item needs to be jointly encoded with
the test query in order to compute its score. Since cross-encoders are typically parameterized using
deep neural models such as transformers (Vaswani et al., 2017), O(|I|) calls to the cross-encoder
model can be prohibitively expensive at test time. Therefore, we tackle the task of approximate
k-NN search with cross-encoder models. Let f̂(·, ·) denote the approximation to the cross-encoder
that is learned using exact cross-encoder scores for a sample of query-item pairs. We refer to the
approximate k-nearest neighbors as N̂(q) , arg topki∈I f̂(q, i) and measure the quality of the

approximation using nearest neighbor recall: |N̂(q)∩N(q)|
|N(q)|

In this work, we assume black-box access to the cross-encoder2, access to the set of items and train
queries from the target domain, and a base dual-encoder (DESRC) trained on the same task and source
data as the cross-encoder. In §2.1, we first present our proposed sparse-matrix factorization based
method to compute item embeddings in an offline step. In §2.2, we present an online approach to
compute a test query embedding to approximate the cross-encoder scores and perform k-NN search
using the approximate cross-encoder scores.

2.1 PROPOSED OFFLINE INDEXING OF ITEMS

In this section, we describe our proposed approach to efficiently align the item embeddings with
the cross-encoder where efficiency is measured in terms of the number of training samples (query-
item pairs) required to be gathered and scored using the cross-encoder and wall-clock time to fit an
approximation of the cross-encoder model. We consider an approximation of the cross-encoder with
an inner-product space where a query (q) and an item (i) are represented with d-dimensional vectors
uq ∈ Rd and vi ∈ Rd respectively. k-NN search using this approximation corresponds to solving
the following vector-based nearest neighbor search:

N̂(q) , arg topk
i∈I

uqv
ᵀ
i . (2)

This vector-based k-nearest neighbor search can potentially be made more efficient using data struc-
tures such as cover trees (Beygelzimer et al., 2006), HNSW (Malkov & Yashunin, 2018), or any
of the many other highly effective vector nearest neighbor search indexes (Guo et al., 2020; John-
son et al., 2019). The focus of our work is not on a new way to make the vector nearest neighbor
search more efficient, but rather to develop efficient and accurate methods of fitting the embedded
representations of uq and vᵀ

i to approximate the cross-encoder scores.

Let G ∈ R|Qtrain|×|I| denote the pairwise similarity matrix containing the exact cross-encoder over
the pairs of training queries (Qtrain) and items (I). We assume that G is partially observed or
incomplete, that is only a very small subset of the query-item pairs (Ptrain) are observed in G. Let
U ∈ R|Qtrain|×d and V ∈ R|I|×d be matrices such that each row corresponds to the embedding of a
query q ∈ Qtrain and an item i ∈ I respectively. We optimize the following widely-used objective
for matrix completion to estimate U and V via stochastic gradient descent:

min
U∈R|Qtrain|×d,V ∈R|I|×d

‖(G− UV ᵀ)Ptrain‖2 (3)

where (·)Ptrain denotes projection on the set of observed entries in G. There are two important con-
siderations: (1) how to select with values of G to observe (and incur the cost of running the cross-
encoder model), and (2) how to compute/parameterize the matrices U and V .

2Approximating a neural scoring function by compressing, approximating, quantizing the scoring function
is widely studied but outside the scope of this paper.
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Constructing Sparse MatrixG Given a set of items (I) and train queries (Qtrain), we construct the
sparse matrix G by selecting kd items Iq ⊂ I for each query q ∈ Qtrain either uniformly at random
or using top-kd items from a baseline retrieval method such as the base dual-encoder (DESRC). This
approach requires kd|Qtrain| calls to the cross-encoder. We also experiment with an approach that
selects kd queriesQi ⊂ Qtrain for each item i ∈ I, and thus requires kd|I| calls to the cross-encoder.

Parameterizing and Training U and V

• Transductive (MFTRNS): In this setting, U and V are trainable parameters and are learned by
optimizing the objective in Eq. 4. U and V can be optionally initialized using query and item
embeddings from the base dual-encoder (DESRC). Note that this parameterization requires scoring
each item against at least a small number of queries to update the embedding of an item from its
initialized value, thus requiring scoring of O(|I|) query-item pairs to construct the sparse matrix
G. Such an approach may not scale well with the number of items as the number of cross-encoder
calls to constructG and the number of trainable parameters are both linear in the number of items.
For instance, when |I| = 5 million, d = 1000, V would contain 5 billion trainable parameters.

• Inductive (MFIND): In this setting, we train parametric models to produce query and item em-
beddings U and V from (raw) query and item features such as textual descriptions of queries and
items. Unlike transductive approaches, inductive matrix factorization approaches can produce em-
beddings for unseen queries and items, and thus can be used to produce embeddings for items not
scored against any train query in matrix G as well as embeddings for test queries qtest /∈ Qtrain.
Prior work typically uses DESRC (a DE trained on the same task and source domains as the CE)
and finetunes DESRC on the target domain via distillation using the CE. However, training all
parameters of such parametric encoding models via distillation can be compute- and resource-
intensive as these models are built using several layers of neural models such as transformers.
Recall that our goal is to efficiently build an accurate approximation of the CE on a given target
domain. Thus, to improve the efficiency of fitting the approximation of the CE, we propose to
train a shallow MLP model (using data from the target domain) that takes query/item embeddings
from DESRC as input and outputs updated embeddings while keeping DESRC parameters frozen.

2.2 PROPOSED TEST-TIME k-NN SEARCH METHOD: AXN

At test-time, we need to perform k-NN search for a test query qtest /∈ Qtrain, and thus need to
compute an embedding for the test query in order to approximate cross-encoder scores and perform
retrieval with the approximate scores. Note that computing the test query embedding by factorizing
the matrix G at test-time while including the test query qtest is computationally infeasible. Thus,
an ideal solution would be to compute item representations in an offline indexing step, and compute
the test query embedding on-the-fly while keeping item embeddings fixed. A potential solution is
to use a parametric model such as DESRC or MFIND to compute test query embedding, perform
retrieval using inner-product scores between test query and item embeddings, and finally, re-rank
the retrieved items using the cross-encoder. While such a retrieve-and-rerank approach can work,
the retrieval step on such an approach is decoupled from the re-ranking model, and thus may result
in poor recall.

In this work, we propose an adaptive approach AXN, which stands for ”Adaptive Cross-Encoder
Nearest Neighbor Search”. As described in Algorithm 1, AXN performs retrieval over R rounds
while incrementally refining the cross-encoder approximation for qtest by updating uqtest , the em-
bedding for qtest. The test-time inference latency (and throughput) depends largely on the number
of cross-encoder calls made at test time as each cross-encoder call requires a forward pass through
a large neural model. Thus, we operate under a fixed computational budget which allows for up to
BCE cross-encoder calls at test-time.

Let Ar be the cumulative set of items chosen up to round r. In the first round (r = 1), we select
BCE/R items either uniformly at random or using separate retrieval models such as dual-encoders
or BM25 and compute the exact cross-encoder scores of these items for the given test query. We
compute the test query embedding uqtest by solving the following system of linear equations

VAr
uqtest = ar (4)

where VAr ∈ R|Ar|×d contains embeddings for items in Ar, and ar contains cross-encoder scores
for qtest paired with items in Ar. In round r > 1, we select additional BCE/R items from I \Ar−1
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Algorithm 1 AXN - Test-time k-NN Search Inference

1: Input: q: Test query, V ∈ R|I|×d Item Embeddings, R: Number of iterative search rounds, ks: Number
of items to retrieve in each round, fθ: Cross-Encoder (CE) model

2: Output: Ŝ: Approximate scores of q with all items, AR: Retrieved items with CE scores in aR.
3: A1 ← INIT(I, ks) B Initial set of items
4: a1 ← [fθ(q, i)]i∈A1 B CE scores of q with items in A1

5: uq ← Solve-Linear-Regression(V,A1,a1) B Compute query embedding by solving Eq.4
6: for r ← 2 to R do
7: Ŝ(r) ← uq × V ᵀ B Update approx. scores
8: Ar ← Ar−1 ∪ arg topki∈I\Ar−1,k=ks

Ŝ
(r)
i B Retrieve ks new items

9: ar ← ar−1 ⊕ [fθ(q, i)]i∈Ar\Ar−1
B Compute CE scores of new items

10: uq ← Solve-Linear-Regression(V,Ar,ar) B Compute query embedding by solving Eq.4
11: Ŝ ← uq × V ᵀ B Compute approx. scores
12: return Ŝ,AR,aR

using inner-product of test query embedding uqtest and item embeddings vi (line 8 in Alg. 1).

Ar = Ar−1 ∪ arg topk
i∈I\Ar−1,k=BCE/R

uqtestv
ᵀ
i (5)

After computing Ar, we compute CE scores for new items chosen in round r, and we update the test
query embedding uqtest by solving Eq. 4 with the latest set of items Ar which includes additional
items selected in round r. Note that solving for uqtest in Eq 4 is akin to solving a linear regression
problem with embeddings of items in Ar as features and cross-encoder scores of the items as re-
gression targets. We solve Eq. 4 analytically to get uqtest = (V ᵀ

Ar
VAr )†V ᵀ

Ar
ar where M† denotes

pseudo-inverse of a matrix M .

At the end of R rounds, we obtain AR containing BCE items, all of which have been scored using
the cross-encoder model. We return top-k items from this set sorted based on exact cross-encoder
scores as the set of approximate k-NN for given test query qtest

N̂(qtest) = arg topk
i∈AR

f(qtest, i) (6)

Regularizing Test Query Embedding The system of equation in Eq 4 in round r contains |Ar|
equations with d variables and is an under-determined system when |Ar| < d. In such a case,
there exist infinitely many solutions to Eq 4 and the test query embedding uqtest can achieve zero
approximation error on items in Ar, and may show poor generalization when estimating cross-
encoder scores for items in I \Ar. Since the approximate scores are used to select the additional set
of items in round r+ 1 (line 8 in Alg. 1), such poor approximation affects the additional set of items
chosen, and subsequently, it may affect the overall retrieval quality in certain settings. To avoid such
overfitting, we compute the final test query embedding as:

uqtest = (1− λ)u(LinReg)
qtest + λu(param)

qtest (7)

where u(LinReg)
qtest is the analytical solution to the linear system in Eq. 4 and u(param)

qtest is the test query
embedding obtained from a parametric model such as a dual-encoder or an inductive matrix factor-
ization model. We tune the weight parameter λ ∈ [0, 1] on the dev set.

3 EXPERIMENTS

In our experiments, we evaluate proposed approaches and baselines on the task of finding k-nearest
neighbors for cross-encoder (CE) models as well as on downstream tasks. We use cross-encoders
trained for the downstream task of zero-shot entity linking and zero-shot information retrieval and
present extensive analysis of the effect of various design choices on the offline indexing latency and
the test-time retrieval recall.

Experimental Setup We run experiments on two datasets/benchmarks – ZESHEL (Logeswaran
et al., 2019), a zero-shot entity linking benchmark, and BEIR benchmark (Thakur et al., 2021b), a
collection of information retrieval datasets for evaluating zero-shot performance of IR models. We
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use separate CE models for ZESHEL and BEIR datasets, trained using ground-truth labeled data
from the corresponding dataset. For evaluation, we use two test domains from ZESHEL dataset
–YuGiOh and Star Trek with 10K and 34K items (entities) respectively, and we use SciDocs and
Hotpot-QA datasets from BEIR with 25K and 5M items (documents) respectively. These domains
were not part of the data used to train the corresponding cross-encoder models. Following the
precedent set by previous work (Yadav et al., 2022; 2023), we create a train/test split uniformly at
random for each ZESHEL domain. For datasets from BEIR, we use pseudo-queries released as part
of the benchmark as train queries and test on queries in the official test split in BEIR benchmark.
We use queries in the train split to train proposed matrix factorization models or baseline DE models
via distillation, and we evaluate on the corresponding domain’s test split. We refer interested readers
to Appendix A for more details about datasets, cross-encoder training, and model architecture.

Baselines We compare with the following retrieve-and-rerank baselines, denoted by RNRX, where
top-scoring items wrt baseline scoring method X are retrieved and then re-ranked using the CE.

• TF-IDF: It computes the similarity score for a query-item pair using the dot-product of sparse
query/item vectors containing TF-IDF weights.

• Dual-Encoders (DE): It computes query-item scores using the dot-product of dense embeddings
produced by encoding queries and items separately. We experiment with two DE models.
– DESRC: DE trained on the same source data and downstream task as the cross-encoder model.

This model is not trained or finetuned on the target domains used for evaluation in this work.
– DEDSTL: This corresponds to DESRC further finetuned via distillation using the cross-encoder

model on the target domain i.e. the domain used for evaluation.

We also compare with ADACUR (Yadav et al., 2023), a CUR-based approach that computes a
dense matrix with CE scores between training queries and all items to index the items, and performs
adaptive retrieval at test time. We use ADACURX to denote inference with ADACUR method
when items in the first round are chosen using method X ∈ {DESRC, TF-IDF}. We refer readers to
Appendix A for implementation details for all baselines and proposed approaches.

Proposed Approach We construct the sparse matrix G on the target domain by selecting top-
scoring items wrt DESRC for each query inQtrain followed by computing the CE scores for observed
query-item pairs in G. We use DESRC to initialize embeddings for train queries and all items, fol-
lowed by inductive (MFIND) or transductive (MFTRNS) matrix factorization while minimizing the
objective function in 3. We use the same sparse matrixG when training DE via distillation (DEDSTL)
on the target domain. We use AXNX,Y to denote the proposed k-NN search method (§2.2) when
using method X to compute item embeddings and method Y to retrieve items in the first round.

Evaluation Metrics Following the precedent set by previous work (Yadav et al., 2022; 2023),
we use Top-k-Recall@m for test queries as the evaluation metric which measures the fraction of
k-nearest neighbors as per the CE which are present in the set of m retrieved items. For each
method, we retrieve m items and re-rank them using exact CE scores. We also evaluate the quality
of the retrieved k-NN items wrt the CE on the downstream task. We use entity linking accuracy for
ZESHEL, and we use downstream task specific nDCG@10 and recall for BEIR domains.

For each approach, we calculate the time taken for indexing a given set of items from the target
domain which involves some or all of the following steps: a) computing query/item embeddings
using DESRC, b) computing (dense or sparse) query-item score matrix G forQtrain, c) gradient-based
training using G to estimate item embeddings for MFTRNS or parameters of models such as DEDSTL

and MFIND, and d) for DEDSTL and MFIND, computing updated item embeddings after training.

3.1 RESULTS

Figure 1 shows Top-1-Recall@Inference-Cost=100 and Top-100-Recall@Inference-Cost=500 ver-
sus the total wall-clock time taken to index the items for various approaches on YuGiOh and Hotpot-
QA. ADACUR can control the indexing time by varying |Qtrain|, the number of train queries, while
MF and distillation-based methods can control the indexing time by varying |Qtrain| and the number
of items scored per train query (kd). For YuGiOh, we use |Qtrain| ≤ 500 for all methods, and for
Hotpot-QA, we use |Qtrain| ≤ 1K for ADACUR and |Qtrain| ≤ 50K with other methods.
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Figure 1: Top-1-Recall and Top-100-Recall at inference cost budget (m) of 100 and 500 CE calls
respectively versus indexing time for various approaches. Matrix factorization approaches (MF)
can be significantly faster than ADACUR and training DE via distillation (DEDSTL). The proposed
adaptive k-NN search method (AXN) provides consistent improvement over corresponding retrieve-
and-rerank style inference (RNR).

Proposed Inference (AXN) vs Retrieve-and-Rerank (RNR) AXN consistently provides im-
provement over the corresponding retrieve-and-rerank (RNR) baseline. For instance, AXNDESRC ,DESRC

provides an improvement of 5.2% for k=1 and 54% for k=100 over RNRDESRC
for domain=YuGiOh.

Note that this performance improvement comes at no additional offline indexing cost and with neg-
ligible test-time overhead3. RNRTF-IDF performs poorly on YuGiOh while it serves as a strong base-
line for Hotpot-QA, potentially due to differences in task, data, and CE model. On Hotpot-QA,
Top-k-Recall for AXN can be further improved by sampling items in the first round using TF-IDF
(AXNZ,TF-IDF) instead of DESRC (AXNZ,DESRC

) for all indexing methods Z ∈ {DESRC,DEDSTL,MF}.
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Figure 2: Breakdown of indexing latency of MF and DEDSTL into various steps with training time
shown on the right of each bar for different values of |Qtrain| and no. of items scored per query (kd).

Matrix Factorization vs DEDSTL Unsurprisingly, performance on the target domain can be further
improved by using data from the target domain to fit an embedding space to approximate the CE. As
shown in Figure 1, our proposed matrix factorization based approaches (MF) can be significantly
more efficient than the distillation-based (DEDSTL) approaches while matching or outperforming
DEDSTL in terms of k-NN search recall in the majority of the cases. Figure 2 shows the breakdown
of total indexing time of DEDSTL and MF for different numbers of training queries (|Qtrain|) and
number of items scored per query (kd) using the CE in the sparse matrix G. As expected, both the
time taken to compute G and the training time increases with the number of queries and the number
of items scored per query. The training time does not increase proportionally after 10K queries as
we allocated a maximum training time of 24 hours for all methods. For MF, the majority of the
time is spent either in computing sparse matrix G or the initial item embeddings. While we report
total GPU hours taken for CE calls to compute G and initial item embeddings, these steps can be
easily parallelized across multiple GPUs without any communication overhead. Since DEDSTL trains
all parameters of a large parametric neural model, it requires large amounts of GPU memory and
takes up to several hours 4. In contrast, MF-approaches require significantly less memory5 and
training time as these approaches train the item embeddings as free parameters (MFTRNS) or train a

3We refer readers to §B.1 for analysis of overhead incurred by AXN
4We trained dual-encoders on an Nvidia RTX8000 GPU with 48 GB memory for a maximum of 24 hours.
5We used an Nvidia 2080ti with 12 GB memory for MF-based methods.
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shallow neural network on top of fixed embeddings (MFIND) from an existing DE. We report results
for MFTRNS on small-scale domains (e.g. YuGiOh with 10K items) and for MFIND on large-scale
domain Hotpot-QA (5 million items). We refer interested readers to Appendix B.3 for comparison
of MFTRNS and MFIND on small- and large-scale datasets.

Proposed Approaches vs ADACUR Our proposed inference method (AXN) in combination with
MF or DE can outperform or closely match the performance of ADACUR while requiring orders
of magnitude less compute for the offline indexing stage, on both small- and large-scale datasets.
For instance, ADACURDESRC

requires 1000+ GPU hours for embedding 5 million items in Hotpot-
QA, and achieves Top-1-Recall@100 = 75.9 and Top-100-Recall@500 = 44.8. In contrast, MFIND

with |Qtrain|=10K and 100 items per query takes less than three hours to fit item embeddings, and
AXNMFIND ,DESRC

achieves Top-1-Recall@100 = 80.5 and Top-100-Recall@500 = 42.6.
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Figure 3: Downstream task performance versus indexing time for proposed and baseline approaches
on different domains. All methods use a fixed inference cost budget of 100 cross-encoder calls.

Downstream Task Performance Figure 3 shows downstream task performance on proposed and
baseline approaches including EXACT which performs exact brute-force search using CE at test-
time. For Hotpot-QA, we observe that improvement in k-NN search accuracy results in improve-
ment in downstream task performance with EXACT brute-force performing the best. We observe
a different trend on SciDocs, YuGiOh, and Star Trek where EXACT search results in suboptimal
performance as compared to RNRDESRC

. For instance, RNRDESRC
achieves accuracy of 50.6 while

the accuracy of EXACT is 49.8 on the downstream task of entity linking on YuGiOh. We believe
that this difference in trends in k-NN search performance and downstream task performance could
be due to differences in the training setup of the corresponding CE (i.e. the loss function and nega-
tives used during training, see Appendix A.1 for details) as well as the nature of the task and data.
While beyond the scope of this paper, it would be interesting to explore different loss functions and
training strategies such as using negative items mined using k-NN search strategies proposed in this
work to improve the robustness and generalization capabilities of cross-encoders and minimize such
discrepancies in k-NN search and downstream task performance.

We refer readers to Appendix B for an analysis of the overhead incurred by AXN (§B.1), a compari-
son of AXN with pseudo-relevance feedback based approaches (§B.2), an analysis of design choices
for our proposed approach (§B.3,B.4), and results on other downstream evaluation metrics for BEIR.

4 RELATED WORK

Approximating Similarity Function Matrix factorization methods have been widely used for
computing low-rank approximation of dense distance and kernel matrices (Musco & Woodruff,
2017; Bakshi & Woodruff, 2018; Indyk et al., 2019), non-PSD matrices (Ray et al., 2022) as well as
for estimating missing entries in sparse matrices (Koren et al., 2009; Luo et al., 2014; Yu et al., 2014;
Mehta & Rana, 2017; Xue et al., 2017). In this work, we focus on methods for factorizing sparse
matrices instead of dense matrices as computing each entry in the matrix (i.e. CE score for a query-
item pair) requires a forward-pass through an expensive neural model. An essential assumption for
matrix completion methods is that the underlying matrix M is low-rank, thus enabling recovery of
the missing entries while only observing a small fraction of entries in M (Candes & Recht, 2012;
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Nguyen et al., 2019). Theoretically, such matrix completion methods require Ω(nr) samples to re-
cover an m × n matrix of rank r with m ≤ n (Krishnamurthy & Singh, 2013; Xu et al., 2015).
The sample complexity can be improved in the presence of features describing rows and columns
of the matrix, often referred to as side information (Jain & Dhillon, 2013; Xu et al., 2013; Zhong
et al., 2019). Inductive matrix completion (MFIND) approaches leverage such query and item fea-
tures to improve the sample complexity and also enable generalization to unseen queries (rows) and
items (columns). Training dual-encoder (DE) models via distillation using a cross-encoder (CE),
where the DE consumes raw query and item features (such as query/item description) and produces
query/item embeddings, can be seen as solving an inductive matrix factorization problem. A typ-
ical training objective for training DE involves minimizing the discrepancy between CE (teacher
model) and DE (student model) scores on observed entries in the sparse matrix (Hofstätter et al.,
2020; Reddi et al., 2021; Thakur et al., 2021a). Recent work has explored different strategies for
distillation-based training of DE such as curriculum learning based methods (Zeng et al., 2022),
joint training of CE and DE to mutually improve the performance of both models (Liu et al., 2022;
Ren et al., 2021). Inductive MF methods (MFIND) used in this work also share similar motivations to
adapters (Houlsby et al., 2019) which introduce a small number of trainable parameters between lay-
ers of the model, and may reduce training time and memory requirements in certain settings (Rücklé
et al., 2021). MFIND used in this work only trains a shallow MLP on top of query/item embeddings
from DE while keeping DE parameters frozen, and does not introduce any parameters in the DE.

Nearest Neighbor Search k-NN search has been widely studied in applications where the inputs
are described as vectors in Rd (Clarkson et al., 2006; Li et al., 2019), and the similarity is com-
puted using simple (dis-)similarity functions such as inner-product (Johnson et al., 2019; Guo et al.,
2020) and `2-distance (Kleinberg, 1997; Chávez et al., 2001; Hjaltason & Samet, 2003). These ap-
proaches typically work by speeding up each distance/similarity computation (Jegou et al., 2010;
Hwang et al., 2012; Zhang et al., 2014; Yu et al., 2017; Bagaria et al., 2021) as well as constructing
tree-based (Beygelzimer et al., 2006; Dong et al., 2020) or graph-based data structures (Malkov &
Yashunin, 2018; Wang et al., 2021a; Groh et al., 2022) over the given item set to efficiently navigate
and prune the search space to find (approximate) k-NN items for a given query. Recent work also
explores such graph-based (Boytsov & Nyberg, 2019a; Tan et al., 2020; 2021; MacAvaney et al.,
2022), or tree-based (Boytsov & Nyberg, 2019b) data structures for non-metric and parametric sim-
ilarity functions. Another line of work explores model quantization (Nayak et al., 2019; Liu et al.,
2021) and early-exit strategies (Xin et al., 2020a;b) to approximate the neural model while speeding
up each forward pass through the model and reducing its memory footprint. It would be interesting
to study if such data structures and approaches to speed up cross-encoder score computation can
be combined with matrix factorization based approaches proposed in this work to further improve
recall-vs-cost trade-offs for k-NN search with cross-encoders.

Pseudo-Relevance Feedback (PRF) Similar to PRF-based methods in information retrieval (Roc-
chio Jr, 1971; Lavrenko & Croft, 2001), our proposed k-NN search method AXN refines the test
query representation using model-based feedback. In our case, we use the cross-encoder scores of
items retrieved in the previous round as feedback to update the test query representation. PRF-based
approaches have been widely used in information retrieval for retrieval with sparse(Li et al., 2018;
Mao et al., 2020; 2021) and dense embeddings (Yu et al., 2021; Wang et al., 2021b). We refer readers
to Appendix §B.2 for comparison with a recent PRF-based method (Sung et al., 2023).

5 CONCLUSION

In this paper, we present an approach to perform k-NN search with cross-encoders by efficiently ap-
proximating the cross-encoder scores using dot-product of learned test query and item embeddings.
In the offline indexing step, we compute item embeddings to index a given set of items from a target
domain by factorizing a sparse query-item score matrix, leveraging existing dual-encoder models
to initialize the item embeddings while avoiding computationally-expensive distillation-based train-
ing of dual-encoder models. At test time, we compute the test query embedding to approximate
cross-encoder scores of the given test query for a small set of adaptively-chosen items, and perform
retrieval with the approximate cross-encoder scores. We perform extensive empirical analysis on
two zero-shot retrieval benchmarks and show that our proposed approach provides significant im-
provement in test-time k-NN search recall-vs-cost tradeoffs while still requiring significantly less
compute resources for indexing items from a target domain as compared to previous approaches.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank members of UMass IESL for helpful discussions and feedback. This work was supported
in part by the Center for Data Science and the Center for Intelligent Information Retrieval, in part
by the National Science Foundation under Grant No. NSF1763618, in part by the Chan Zuckerberg
Initiative under the project “Scientific Knowledge Base Construction”, in part by International Busi-
ness Machines Corporation Cognitive Horizons Network agreement number W1668553, in part by
Amazon Digital Services, and in part using highperformance computing equipment obtained under a
grant from the Collaborative R&D Fund managed by the Massachusetts Technology Collaborative.
Any opinions, findings, conclusions, and recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the sponsor(s).

REFERENCES

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, and Andrea Pierleoni. Re-
FinED: An efficient zero-shot-capable approach to end-to-end entity linking. In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies: Industry Track, pp. 209–220. Association for Com-
putational Linguistics, 2022.

Vivek Bagaria, Tavor Z Baharav, Govinda M Kamath, and N Tse David. Bandit-based monte carlo
optimization for nearest neighbors. IEEE Journal on Selected Areas in Information Theory, 2(2):
599–610, 2021.

Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy labels. In International Confer-
ence on Machine Learning, pp. 540–550. PMLR, 2020.

Ainesh Bakshi and David Woodruff. Sublinear time low-rank approximation of distance matrices.
Advances in Neural Information Processing Systems, 2018.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference on Machine learning, pp. 97–104, 2006.

Leonid Boytsov and Eric Nyberg. Accurate and fast retrieval for complex non-metric data via
neighborhood graphs. In International Conference on Similarity Search and Applications, pp.
128–142. Springer, 2019a.

Leonid Boytsov and Eric Nyberg. Pruning algorithms for low-dimensional non-metric k-nn search:
a case study. In International Conference on Similarity Search and Applications, pp. 72–85.
Springer, 2019b.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Com-
munications of the ACM, 55(6):111–119, 2012.

Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquı́n. Searching in
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A TRAINING AND IMPLEMENTATION DETAILS

Dataset Domain |I| (|Qtrain|/|Qtest|) Splits Train Query (Qtrain) Type

ZESHEL YuGiOh 10,031 (100/3274), (500/2874), (2000/1374) Real Queries
ZESHEL Star Trek 34,430 (100/4127), (500/3727), (2000/2227) Real Queries

BEIR SciDocs 25,657 {1K, 10K, 50K}/1000 Pseudo-Queries
BEIR Hotpot-QA 5,233,329 {1K, 10K, 50K}/1000 Pseudo-Queries

Table 1: Statistics on number of items (I), number of queries in train (Qtrain) and test (Qtest) splits
for each domain. Following the precedent set by Yadav et al. (2022), we create train/test split
by splitting the queries in each ZESHEL domain uniformly at random, and experiment with three
values of |Qtrain| ∈ {100, 500, 2000}. For BEIR domains, we use pseudo-queries released as part
of the benchmark as train queries (Qtrain) and run k-NN evaluation on test-queries from the official
test-split (as per BEIR benchmark) of these domains. For HotpotQA, we use the first 1K queries out
of a total of 7K test queries and we use all 1K test queries for SciDocs.

A.1 TRAINING CROSS-ENCODER MODELS

In our experiments, we use [EMB]-CE, a cross-encoder model variant proposed by Yadav et al.
(2022) that jointly encodes a query-item pair and computes the final score using dot-product of
contextualized query and item embeddings extracted after joint encoding.

ZESHEL Dataset For ZESHEL, we use the cross-encoder model checkpoint6 released by Yadav
et al. (2022). We refer readers to Yadav et al. (2022) for further details on parameterization and
training of the cross-encoder.

6 https://huggingface.co/nishantyadav/emb crossenc zeshel
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BEIR Benchmark For BEIR, we use the cross-encoder model checkpoint7 trained on MS-
MARCO dataset and released by Yadav et al. (2023). The cross-encoder model is parameterized
using a 6-layer MINI-LM8 model (Wang et al., 2020) and uses the dot-product based scoring mech-
anism for cross-encoders proposed by Yadav et al. (2022).

A.2 TRAINING DUAL-ENCODER AND MATRIX FACTORIZATION MODELS

For BEIR datasets, we train matrix factorization models and DEDSTL using sparse matrix G con-
taining number of train queries |Qtrain| ∈ {1K, 10K, 50K} with number of items per query
kd ∈ {100, 1000}. For ZESHEL datasets, we use |Qtrain| ∈ {100, 500, 2000} with the number
of items per query kd ∈ {100, 1000} for matrix factorization models and kd ∈ {25, 100} for train-
ing DEDSTL model. Table 1 shows train/test splits used for each domain.

A.2.1 TRAINING DUAL-ENCODER MODELS

We train dual-encoder models on Nvidia RTX8000 GPUs with 48 GB GPU memory.

ZESHEL dataset We report results for DE baselines as reported in Yadav et al. (2022). The
DE models were initialized using bert-base-uncased and contain separate query and item
encoders, thus resulting in a total of 2× 110M parameters. The DE models are trained using cross-
entropy loss to match the DE score distribution with the CE score distribution. We refer readers
to Yadav et al. (2022) for details related to training of DE models on ZESHEL dataset.

BEIR benchmark For BEIR domains, we use a dual-encoder model checkpoint9 released as
part of sentence-transformer repository as DESRC, unless specified otherwise. This DE
model was initialized using distillbert-base (Sanh et al., 2019) model and trained on MS-
MARCO dataset which contains 40 million (query, positive document (item), negative document
(item)) triplets using triplet ranking loss. This DESRC is not trained on target domains SciDocs
and Hotpot-QA used for running k-NN experiments in this paper. We finetune DESRC via distil-
lation on the target domain to get the DEDSTL model. Given a set of training queries Qtrain from
the target domain, we retrieve top-100 or top-1000 items for each query, score the items with the
cross-encoder model and train the dual-encoder by minimizing cross-entropy loss between predicted
query-item scores (using DE) and target query-item scores (obtained using CE). We train DEDSTL

using AdamW (Loshchilov & Hutter, 2019) optimizer with learning rate 1e-5 and accumulating gra-
dient over 4 steps. We trained for 10 epochs when using top-100 items per query and for 4 epochs
when using top-1000 items per query. We allocate a maximum time of 24 hours for training.

A.2.2 MATRIX-FACTORIZATION MODELS

We train both transductive (MFTRNS) and inductive (MFIND) matrix factorization models on Nvidia
2080ti GPUs with 12 GB GPU memory for all datasets with the exception that we trained
MFTRNS for Hotpot-QA on Nvidia A100 GPUs with 80 GB GPU memory. We use AdamW op-
timizer (Loshchilov & Hutter, 2019) with learning rate and number of epochs as shown in Ta-
ble 2. Training MFTRNS on Hotpot-QA required 80 GB GPU memory as it involved training 768-
dimensional embeddings for 5 million items which roughly translates to around 4 billion trainable
parameters, and we used AdamW optimizer with stores additional memory for each trainable pa-
rameter. For smaller datasets with the number of items of the order of 50K, smaller GPUs with 12
GB memory sufficed.

For inductive matrix factorization (MFIND), we train a 2-layer MLP with skip-connection on top of
query and item embeddings from DESRC. For a given input embedding xin ∈ Rd, we compute the
output embedding xout ∈ Rd as

x′out = b2 +W ᵀ
2 gelu(b1 +W ᵀ

1 xin)

xout = σ(wskip)x′out + (1− σ(wskip))x

7 https://huggingface.co/nishantyadav/emb crossenc msmarco miniLM
8https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
9msmarco-distilroberta-base-v2: www.sbert.net/docs/pretrained-models/msmarco-v2.html
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where W1 ∈ Rd×2d, b1 ∈ R2d,W2 ∈ R2d×d, b2 ∈ Rd, wskip ∈ R are learnable parameters and σ(.)
is the sigmoid function. We initialize wskip with -5 and use default PyTorch initialization for other
parameters. We trained separate MLP models for queries and items. We would like to highlight
that a simple 2-layer MLP without the skip connection i.e. using x′out as the final output embedding
performed poorly in our experiments and it did not generalize well to unseen queries and items.

Domain MF Type Learning Rate Number of Epochs

SciDocs MFTRNS 0.005 4 if (|Qtrain|, kd) ∈ {(10K,1K), (50K, 1K} else 10
SciDocs MFIND 0.005 10 if (|Qtrain|, kd) ∈ {(10K,1K), (50K, 1K} else 20

Hotpot-QA MFTRNS 0.001 4 if (|Qtrain|, kd) ∈ {(10K,1K), (50K, 1K} else 10
Hotpot-QA MFIND 0.001 10 if (|Qtrain|, kd) ∈ {(10K,1K), (50K, 1K} else 20

YuGiOh MFTRNS 0.001 20

Star Trek MFTRNS 0.001 20

Table 2: Hyperparameters for transductive (MFTRNS) and inductive (MFIND) matrix factorization
models for different number of training queries (|Qtrain|) and number of items per train query (kd) in
sparse matrix G.

A.3 TF-IDF

For BEIR datasets, we use BM25 with parameters as reported in Thakur et al. (2021b) and for
ZESHEL, we use TF-IDF with default parameters from Scikit-learn (Pedregosa et al., 2011), as
reported in Yadav et al. (2022).

A.4 TEST-TIME INFERENCE WITH AXN, ADACUR , AND RNR

For RNRX, we retrieve top-scoring items using dot-product of query and item embeddings computed
using baseline retrieval method X and re-rank the retrieved items using the cross-encoder model.
For RNRMFTRNS

, we use dense query embedding from base dual-encoder model DESRC for test-
queries qtest /∈ Qtrain along with item embeddings learnt using transductive matrix factorization to
retrieve-and-rerank items for the given test query.

For both ADACUR and AXN, we use R = 10 for domains in BEIR and R = 5 for domains in
ZESHEL unless stated otherwise. For BEIR datasets, we tune AXN weight parameter λ (in eq 7)
on the dev set. We refer interested readers to §B.2 for the effect of λ on final performance. For
ZESHEL, we report results for λ = 0. For Hotpot-QA, we restrict our k-NN search with AXNX,Y
and ADACURY to top-10K items wrt method Y , Y ∈ {DESRC, TF-IDF}. For other domains, we
do not use any such heuristic and search over all items.

Cross-Encoder Score Normalization for AXN Figure 4a shows query-item score distribution for
the cross-encoder model and DESRC on SciDocs datasets from BEIR benchmark. For cross-encoder
models trained on BEIR dataset, we observe that the cross-encoder and DESRC model produce query-
item scores in significantly different ranges. Since DESRC is used to initialize the embedding space
for matrix factorization approaches, this resulted in a mismatch in the range of the target score
distribution from the cross-encoder in sparse matrix G and the initial predicted score distribution
from DESRC. Consequently, using raw cross-encoder scores while training MF models and while
computing test query embedding by solving the linear regression problem in Eq 4 leads to a poor
approximation of the cross-encoder. To alleviate this issue, we normalize the cross-encoder scores
to match the score distribution from DESRC model using two parameters α, β ∈ R.

sfinal(q, i) = β(sinit(q, i)− α)

where sinit(q, i) and sfinal(q, i) are initial and normalized cross-encoder scores, and α and β are esti-
mated by re-normalizing cross-encoder distribution to match dual-encoder score distribution using
100 training queries. Note that such score normalization does not affect the final ranking of items.

We do not perform any such normalization for ZESHEL datasets the cross-encoder and DESRC

model output scores in similar ranges as shown in Figure 4b.
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Figure 4: Score distribution for cross-encoder (CE) and dual-encoder (DE) models on SciDocs
for BEIR and YuGiOh from ZESHEL. For each domain, we use cross-encoder and dual-encoder
models trained on the corresponding task. See §A.1 for details on cross-encoder training and §A.2.1
for dual-encoder training.

B ADDITIONAL RESULTS AND ANALYSIS

B.1 OVERHEAD OF ADAPTIVE RETRIEVAL WITH AXN
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Figure 5: Breakdown of inference latency for ADACURDESRC
and AXNDESRC ,DESRC

under different
test-time CE call budgets for domain=Hotpot-QA. See §B.1 for detailed discussion.
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Figure 6: Top-k-Recall versus number of rounds for AXNDESRC ,DESRC
under different test-time cross-

encoder call budgets for domains Hotpot-QA and SciDocs. Number of rounds (R) = 1 corresponds
to retrieve-and-rerank style inference with DESRC i.e. RNRDESRC

. Top-k-Recall generally improves
with the number of rounds and saturates around 5 to 10 rounds.

Figures 5a and 5b show total inference latency for ADACUR and AXN for varying number of
rounds (R) at different cross-encoder (CE) calls budgets. The secondary y-axis in Figure 5 shows the
breakdown of the inference latency into three main steps in Algorithm 1 - (a) CE Calls: computing
CE scores for retrieved items (line 9), (b) solving linear regression problem to update test query
embedding for AXN (line 10) (c) Matrix Multiply: updating approximate scores for all items (line 7)
followed by retrieving items using approximate scores. In case of ADACUR , computing query
embedding in step (b) involves computing the pseudo-inverse of a matrix instead of solving a linear
regression problem.
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As shown in Figure 5, the overhead of adaptive retrieval is negligible for R = 5 to 10, and the
overhead increases linearly with the number of rounds. AXNDESRC ,DESRC

for R = 1 corresponds
to RNRDESRC

, retrieve-and-rerank style inference using DESRC. We observe that AXN incurs less
overhead than ADACUR under the same test-time CE call budget. Each CE call takes an amortized
time of ∼2 ms10 when computing CE scores with a batch-size of up to 50 for domain=Hotpot-QA.
While the time complexity of updating the approximate scores is linear in the number of items, we
observe that this step can be significantly sped up using GPUs/TPUs, and use of efficient vector-
based k-NN search methods. In this work, to get an efficient implementation for large domains such
as Hotpot-QA, we first shortlist 10K items for the test query using the baseline retrieval method (e.g.
DESRC), and only update the approximate scores for those 10K during inference using brute-force
computation of scores for all 10K items. Further, note that the approximate scores are only used
for retrieving items (line 8 in Alg. 1), and this operation can also be implemented on CPUs using
efficient vector-based k-NN search methods (Malkov & Yashunin, 2018; Guo et al., 2020) without
the need for brute-force computation of approximate scores for all items.

B.2 COMPARING DIFFERENT QUERY EMBEDDING METHODS
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Figure 7: Top-k-Recall versus inference cost for different test query embedding methods on domains
SciDocs and Hotpot-QA. See §B.2 for detailed discussion.

Our proposed k-NN search method shares a similar motivation to pseudo-relevance feedback (PRF)
methods that aim to improve the quality of retrieval by updating the initial query representation
using heuristic or model-based feedback on retrieved items. We show results for TOUR (Sung
et al., 2023), a recent PRF-based method that, similar to our method, also optimizes the test query
representations using retrieval results while utilizing the CE call budget of BCE CE calls over R
rounds. However, unlike AXN, TOUR uses a single gradient-based update to query embedding to
minimize KL-Divergence (TOUR-CE) or mean-squared error (TOUR-MSE) between approximate
and exact scores for top-BCE/R items in each round. In contrast, AXN computes the analytical
solution to the least-square problem in Eq. 4 in each round, and optionally computes a weighted
sum with the test query embedding from a dense parametric model such as a dual-encoder using
weight λ ∈ [0, 1] in Eq. 7. For TOUR-CE, we use learning rate =0.1 (chosen from {0.1, 0.5, 1.0})
and for TOUR-MSE, we use learning rate = 1e-3 (chosen from {1e-2, 1e-3, 1e-4}).

10On an Nvidia 2080ti GPU with 12 GB memory for a 6-layer Mini-LM (Wang et al., 2020) based model.
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Figure 8: Top-k-Recall for AXNDESRC ,DESRC
for different values of λ parameter in eq 7. We use 200

queries from the validation set in Hotpot-QA and the value in parentheses in the legend denotes
average Top-1-Recall, averaged over different test-time inference cost budgets. For k = 1, using
λ = 0.8 yields the best performance and for k = 100, we use λ = 0 unless specified otherwise.

Figure 7 shows Top-k-Recall and downstream task metrics versus test-time inference CE cost bud-
get (BCE) for AXNDESRC ,DESRC

under two settings of the weight parameter, λ = 0 and 0.8, and for
DESRC and TOUR baselines. For both SciDocs and Hotpot-QA, AXNλ=0.8 performs better than
AXNλ=0 for k-NN search when k = 1 while λ = 0 works better for searching for k=100 near-
est neighbors. TOUR and AXN achieve similar Top-1-Recall at smaller inference costs with AXN
performing marginally better than TOUR at larger cost budgets. However, for k = 100, AXNλ=0

achieves significantly better recall than TOUR. We observe mixed trends for downstream task met-
rics. For instance, AXNλ=0.8 and TOUR baselines yield similar performance for nDCG@10 on both
SciDocs and Hotpot-QA and for downstream task recall on Hotpot-QA while AXNλ=0 performs
better than all baselines on downstream task recall for SciDocs.

B.3 TRANSDUCTIVE VERSUS INDUCTIVE MATRIX FACTORIZATION
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Figure 9: Top-k-Recall versus indexing time for transductive (MFTRNS) and inductive (MFIND) ma-
trix factorization for SciDocs and Hotpot-QA. We report Top-1-Recall and Top-100-Recall at fixed
inference cost budget (m) of 100 and 500 CE calls respectively. See §B.3 for detailed discussion.

Figure 9 shows Top-k-Recall versus indexing time for DESRC, and transductive (MFTRNS) and in-
ductive (MFIND) matrix factorization in combination with two test-time inference methods: pro-
posed inference method (AXN) and retrieve-and-rerank style (RNR) inference. We construct the
sparse matrix G by selecting top-kd items for each train query using DESRC, and report results for
|Qtrain| ∈ {1K, 10K, 50K} and kd ∈ {100, 1000}. We use DESRC to initialize the query and item
embeddings for MF methods.

Recall that MFTRNS trains item embeddings as free-parameters, and thus requires scoring an item
against a small number of train queries in order to update the item embedding. For this reason,
MFTRNS performs marginally better than or at par with MFIND on small-scale data SciDocs with
25K items, as selecting even for |Qtrain| = 1000, kd = 100, results in each item being scored with
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four queries on average. However, MFTRNS performs poorly for large-scale data Hotpot-QA (with
5 million items) due to the increased sparsity of matrix G, providing marginal to no improvement
over DESRC. In contrast, MFIND provides consistent improvement over DESRC on Hotpot-QA.

B.4 EFFECT OF SPARSE MATRIX CONSTRUCTION STRATEGY

Hotpot-QA SciDocs
Sparse Matrix |Qtrain|, kd Time to Train-Time Time to Train-Time

Construction Strategy computeG MFIND MFTRNS computeG MFIND MFTRNS

kd items per query

1K, 100 3 mins 5 mins (20) - 10 mins 5 mins (10) 1.5 mins (10)
1K, 1000 31 mins 20 mins (20) - 1.6 hrs 20 mins (20) 7 mins (10)
10K, 100 30 mins 20 mins (20) 1.2 hrs (10) 1.6 hrs 20 mins (20) 7.5 mins (10)
10K, 1000 5.2 hrs 3 hrs (20) 3.2 hrs ( 4 ) 16.7 hrs 3.2 hrs (20) 1.1 hrs ( 4)
50K, 100 2.6 hrs 1.2 hrs (20) 4.1 hrs (10) 8.3 hrs 1.3 hrs (20) 0.6 hrs (10)
50K, 1000 26.3 hrs 9 hrs (10) 16 hrs ( 4) 82 hrs 14 hrs (10) 3.7 hrs ( 4)

kd queries per item
50K, 2 5.8 hrs 3hrs (20) 7.5 hrs (10) 5 mins 3 mins (20) 6.5 mins (20)
50K, 5 12.7 hrs 8hrs (20) 8.5 hrs ( 4) 14 mins 5 mins (20) 9 mins (20)
50K, 10 23 hrs 9hrs (10) 16 hrs ( 4) 26 mins 6 mins (20) 10 mins (20)

Table 3: Breakdown of indexing latency for transductive MFTRNS and inductive MFIND matrix fac-
torization methods on SciDocs and Hotpot-QA. For each setting, we show the number of epochs
for training the model in parentheses. Total indexing time also includes the time taken to compute
initial query and item embeddings using DESRC. Computing item embeddings takes 90 seconds for
SciDocs (with 25K items) and∼2 hours for Hotpot-QA (with 5 million items) on an Nvidia 2080ti
GPU with 12 GB GPU memory.

Figure 10 shows Top-k-Recall versus indexing time for and MF with two different strategies to
construct sparse matrix G and Table 3 shows the time taken to construct the sparse matrix G and the
time taken to train the matrix factorization model. Q−∗ indicates that G is constructed by selecting
a fixed number of kd items per query inQtrain, and I −∗ indicates that G is constructed by selecting
fixed number of kd queries per item in I. When selecting a fixed number of items per query, we
experiment with |Qtrain| ∈ {1K, 10K, 50K } and kd ∈ {100, 1000}. When selecting a fixed number
of queries per item, we first create a pool of 50K queries and then select kd queries per item for
kd ∈ {2, 5, 10}.
Transductive Matrix Factorization For MFTRNS, bothQ−∗ and I−∗ strategies yield similar Top-
k-Recall at a given indexing cost on SciDocs as both strategies result in each item being scored with
at least a few queries. However, on Hotpot-QA, selecting a fixed number of items per query may
not result in each item being scored against some queries, and thus Q − ∗ variants yield marginal
(if any) improvement over DESRC. I − ∗ variants perform better than DESRC and corresponding
Q− ∗ variants as each item is scored against a fixed number of queries. Note that this performance
improvement comes at the cost of an increase in time required to compute sparse matrixG, as shown
in Table 3.

Inductive Matrix Factorization For MFIND, we observe that Q − ∗ variants consistently provide
better recall-vs-indexing time trade-offs as compared to corresponding I − ∗ variants on both Sci-
Docs and Hotpot-QA.
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Figure 10: Top-1-Recall and Top-100-Recall at fixed inference cost budget (m) of 100 and 500 cross-
encoder calls respectively versus indexing time (in hours) for different strategies of constructing
sparse matrix G. Q − ∗ indicates that G is constructed by selecting a fixed number of items per
query in Qtrain, and I − ∗ indicates that G is constructed by selecting fixed number of queries per
item in I. ForQ−∗ approaches, the text annotations indicate (|Qtrain|, kd) pairs where |Qtrain| is the
number of anchor/train queries and kd is the number of items per query in the sparse matrix G. For
I − ∗ approaches, the text annotations indicate the number of queries per item in the sparse matrix
G. See §B.4 for detailed discussion.
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(a) |Qtrain| = 100, |Qtest| = 3274
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(b) |Qtrain| = 500, |Qtest| = 2874
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(c) |Qtrain| = 2000, |Qtest| = 1374

Figure 11: Top-k-Recall and downstream task accuracy versus indexing time for various approaches
on domain=YuGiOh. We report Top-1-Recall and Top-100-Recall at fixed inference cost budget (m)
of 100 and 500 CE calls respectively, and downstream task accuracy for fixed inference cost of 100
CE calls. Each subfigure shows results for different train/test splits.
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(a) |Qtrain| = 100, |Qtest| = 4127
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(b) |Qtrain| = 500, |Qtest| = 3727

100 102

88

90

92

94

96

T
op

-k
-R

ec
al

l@
m

k=1@m=100

100 102

40

50

60

70

80

90
k=100@m=500

Total Indexing Time (in hours)
100 102

Total Indexing Time (in hours)

61.5

62.0

62.5

63.0

63.5

D
ow

ns
tr

ea
m

T
as

k
A

cc
ur

ac
y

(c) |Qtrain| = 2000, |Qtest| = 2227

Figure 12: Top-k-Recall and downstream task accuracy versus indexing time for various approaches
on domain=Star Trek. We report Top-1-Recall and Top-100-Recall at fixed inference cost budget
(m) of 100 and 500 CE calls respectively, and downstream task accuracy for fixed inference cost of
100 CE calls. Each subfigure shows results for different train/test splits.
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Figure 13: Top-k-Recall and downstream task performance metrics versus indexing time for var-
ious approaches on domain=SciDocs. We report Top-1-Recall and Top-100-Recall at fixed in-
ference cost budget (m) of 100 and 500 cross-encoder (CE) calls respectively, and downstream
task metrics for fixed inference cost of 100 cross-encoder calls. We report results for transduc-
tive matrix factorization (MFTRNS) in these plots. The base dual-encoder (DESRC) in these plots
is a 6-layer distilbert model finetuned on MS-MARCO dataset. The DESRC model is available at
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v2.
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Figure 14: Top-k-Recall and downstream task performance metrics versus indexing time for var-
ious approaches on domain=Hotpot-QA. We report Top-1-Recall and Top-100-Recall at fixed in-
ference cost budget (m) of 100 and 500 cross-encoder (CE) calls respectively, and downstream
task metrics for fixed inference cost of 100 cross-encoder calls. We report results for induc-
tive matrix factorization (MFIND) in these plots. The base dual-encoder (DESRC) in these plots
is a 6-layer distilbert model finetuned on MS-MARCO dataset. The DESRC model is available at
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v2.
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Figure 15: Top-k-Recall and downstream task performance metrics versus indexing time for various
approaches on domain=SciDocs. We report Top-1-Recall and Top-100-Recall at fixed inference
cost budget (m) of 100 and 500 cross-encoder (CE) calls respectively, and downstream task metrics
for fixed inference cost of 100 cross-encoder calls. We report results for transductive matrix factor-
ization (MFTRNS) in these plots. The base dual-encoder (DESRC) in these plots is a 12-layer bert-base
model finetuned on MS-MARCO dataset. The model is available at https://huggingface.co/sentence-
transformers/msmarco-bert-base-dot-v5.
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Figure 16: Top-k-Recall and downstream task performance metrics versus indexing time for var-
ious approaches on domain=Hotpot-QA. We report Top-1-Recall and Top-100-Recall at fixed in-
ference cost budget (m) of 100 and 500 cross-encoder (CE) calls respectively, and downstream
task metrics for fixed inference cost of 100 cross-encoder calls. We report results for inductive
matrix factorization (MFIND) in these plots. The base dual-encoder (DESRC) in these plots is a
12-layer bert-base model finetuned on MS-MARCO dataset. This DESRC model is available at
https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5.
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