
000 FALSE, MISLEADING, AND UNFOUNDED STATEMENTS 001 002 IN A RECENT TPAMI PUBLICATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 A recent TPAMI response raises issues with the contents of a recent TPAMI comment and
011 the data collection underlying that comment. Several of the claims in that response are un-
012 founded, inaccurate, misleading, false, invalid, or unsupported, as demonstrated by text in
013 the comment and cited work, and new analyses that we report. The response further ignores
014 key components of the work that it responds to.
015

016 017 1 INTRODUCTION 018

019 A recent response (Palazzo et al., 2024) raises issues with a recent comment (Bharadwaj et al.,
020 2023) and the data collection (Ahmed et al., 2021) underlying that comment. Several of the claims
021 in Palazzo et al. (2024) are unfounded, inaccurate, misleading, false, invalid, or unsupported, as
022 demonstrated by text in Bharadwaj et al. (2023) and Ahmed et al. (2021), and new analyses that we
023 report. Palazzo et al. (2024) further ignore key components of Bharadwaj et al. (2023) and Ahmed
024 et al. (2021). We clarify these below.
025

026 2 SIGNAL BLEEDING ACROSS TRIALS 027

028 Palazzo et al. (2024) claim that the interleaved design used by Bharadwaj et al. (2023) and Ahmed
029 et al. (2021) allows brain activity measured by EEG to bleed between adjacent trials.¹
030

031 *On the contrary, interleaved-design experiments introduce several confounds that may sup-
032 press the very response that one would hope to classify with machine learning methods.
033 Indeed, object recognition in humans tends to last many hundreds of milliseconds (especially
034 when the items change rapidly). This means that components such as the P300 and the N400
035 may still be processing the item from one class, when an item from the next class is presented
036 [14]. This response overlap certainly results in the signal bleeding into the subsequent trial.*
037

Palazzo et al. (2024)

038 While this may be true for designs such as those used by Spampinato et al. (2017), Kavasidis et al.
039 (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021), Li et al. (2021), and Ahmed et al. (2022)
040 where trials had duration 0.5 s and did not have any blanking between trials, the trials in Ahmed
041 et al. (2021), one of the datasets used by Bharadwaj et al. (2023), had duration 2 s with 1 s blanking
042 between trials.
043

044 *Each run started with 10 s of blanking, followed by 400 stimulus presentations, each lasting
045 2 s, with 1 s of blanking between adjacent stimulus presentations, followed by 10 s of blanking
046 at the end of the run.*

Bharadwaj et al. (2023)

047 In the design of Ahmed et al. (2021), one of the datasets used by Bharadwaj et al. (2023), the items
048 do not change rapidly and the 1 s blanking between trials is likely to preclude significant signal
049 bleeding between adjacent trials. Thus the claim by Palazzo et al. (2024) that the interleaved design
050 used by Bharadwaj et al. (2023) and Ahmed et al. (2021) “certainly results in the signal bleeding
051 into the subsequent trial” is unfounded.
052

053 ¹All citation numbers in quoted text are those in the original.

054 3 SUBJECT ATTENTIVENESS
055

056 Palazzo et al. (2024) claim that block designs make the class more salient than interleaved designs
057 and raised a concern about the attentiveness of the subject in Ahmed et al. (2021).
058

059 *Additionally, when items are presented in a block, it is possible to make the class very salient
060 (i.e., the participant will notice that they have viewed 50 dogs in a row), whereas the inter-
061 leaved design obscures the point of the study. In this case, if the subjects were even mildly
062 inattentive, they would certainly fail to think about the current class, something that is far
063 harder to miss in the block-design. Obscuring the class like Bharadwaj et al. did, without re-
064 quiring an overt response from the subject, calls into question if the subject was even paying
065 attention to the stimuli, whereas an overt response forces the subject to attend to and more
066 fully process the stimuli to the class level [14].*

067 Palazzo et al. (2024)

068 That may be an issue when presenting stimuli for 0.5 s with no blanking between stimuli, but is
069 likely to be less of an issue when presenting stimuli for 2 s with 1 s blanking between stimuli. But
070 beyond this, Ahmed et al. (2021) report strong evidence that the subject did attend to the stimuli.
071

072 *To check whether the subject consistently viewed the images presented, online trial averaging
073 of the EEG data was performed in every session to obtain evoked responses that are phase-
074 locked to the onset of the images. Data from two occipital channels (C31 and C32) were
075 bandpass filtered in the 1–40 Hz range and epochs of 800 ms duration were segmented out
076 synchronously following the onset of each image. Epochs with peak-to-trough fluctuations
077 exceeding 100 μ V were discarded and the remaining epochs were averaged together to yield
078 an 800 ms-long evoked response. A clear and robust N1-P2 onset response pattern was
079 discernible in the evoked response traces obtained in each of the 100 runs, consistent with
080 the subject viewing the images as instructed. Note that all online averaging procedures (e.g.,
081 filtering) were done to data in a separate buffer; the raw unprocessed data from 96 channels
082 was saved for offline analysis.*

083 Ahmed et al. (2021)

084 Further evidence of subject attentiveness is that Ahmed et al. (2021) report statistically significant
085 classification accuracy as high as 7.3% and Bharadwaj et al. (2023) report statistically significant
086 classification accuracy as high as 17.6% on a task where chance performance is 2.5%. Given the
087 randomized nature of the design, this would not be possible if the subject did not attend to the
088 stimuli. Thus the concern raised by Palazzo et al. (2024) about the subject in Ahmed et al. (2021) as
089 to whether “the subject was even paying attention to the stimuli” is unfounded.
090

091 4 SESSION LENGTH
092

093 Palazzo et al. (2024) claim that the data collection underlying Spampinato et al. (2017), Kavasidis
094 et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021) and had sessions lasting about 4 min-
095 utes.
096

097 *In the data collection carried out by Bharadwaj et al. in [7] and also employed in [1], the
098 authors state that a subject underwent stimuli exposition for over 20 minutes, instead of about
099 4 minutes in [3].*

100 Palazzo et al. (2024)

101 Similar claims are made six times in Palazzo et al. (2020b). However Spampinato et al. (2017,
102 Table 1), Kavasidis et al. (2017, Table 1), and Palazzo et al. (2017, Table 1) state that session
103 running time was 350 s, *i.e.*, 5 minutes and 50 s. This is more-or-less consistent with the protocol
104 described in Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017) where each
105 session contained 10 blocks, each block contained 50 stimuli, each stimulus lasted 0.5 s, and blocks
106 were separated by 10 s blanking. Thus the claim in Palazzo et al. (2024) that the data collection in
107 Spampinato et al. (2017) took “about 4 minutes” is inaccurate.

108 5 CROSS-SUBJECT VARIABILITY
109

110 Palazzo et al. (2024) claim that Li et al. (2021) observe large subject-to-subject variability in classification accuracy.

113 *Even Bharadwaj et al. in [21] observe large subject-to-subject variability in their reported results, as classification performance of their own proposed method varies from 37.80% to 70.50% (Table 4 in [21], and Tables 21–25 in [21]’s appendix).*

116 Palazzo et al. (2024)
117

118 Li et al. (2021, Tables 4, 21–25) discuss block runs. The central claim of Li et al. (2021) is that
119 the block runs suffer from a temporal confound and thus one cannot draw any conclusions about
120 stimulus processing from these block runs. In contrast, to assess cross-subject variability in Li et al.
121 (2021), one needs to limit consideration to Li et al. (2021, Tables 5, 26–30) because these report
122 randomized trials on image stimuli and the full 96 channels with bandpass filtering. These tables
123 do not differ from chance in a statistically significant fashion. Thus the claim of Palazzo et al.
124 (2024) that Li et al. (2021) “observe large subject-to-subject variability in their reported results” is
125 misleading.

126 6 SINGLE SUBJECT
127

129 Palazzo et al. (2024) claim that the supertrial method of Bharadwaj et al. (2023) was applied to only
130 a single subject.

131 *A recent comments paper [1] by Bharadwaj et al. discusses the results presented in [2],
132 claiming that the above-chance accuracy reported by that method is due to confounds in the
133 experimental design (from [3]). In order to support that claim, Bharadwaj et al. propose
134 a new dataset that is, according to them, free from those confounds. The key aspect of this
135 dataset is that samples — or, as they call them, “supertrials”, borrowing terminology from
136 [4] — are obtained by averaging a set of trials collected during EEG recording for a single
137 subject.*

138 Palazzo et al. (2024)
139

140 They further state:

142 *The dataset used by Bharadwaj et al., introduced in [7], is the result of EEG data collection
143 on one subject only. Single-subject analysis is critical mainly because EEG data are known
144 to be highly replicable within a person [14], but also highly specific from person to person
145 [14], [20].*

146 Palazzo et al. (2024)
147

148 This, however, ignores the fact that Bharadwaj et al. (2023) report not only the results of a supertrial
149 analysis on the single-subject data from Ahmed et al. (2021), but also on the data from Li et al.
150 (2021) on six subjects.

151 *We repeat this same method to all six subjects of the image rapid event data from Li et al.
152 [10] and replicate the study of Ahmed et al. [2, inline unnumbered table 9] with supertrials
153 instead of trials, with five-fold leave-one-portions-out cross validation.*

154 Bharadwaj et al. (2023)
155

156 These results are reported in the right half of Bharadwaj et al. (2023, Table 1). Bharadwaj et al.
157 (2023) further state:

159 *Here, we form supertrials by aggregating trials from a single subject. One could form super-
160 trials by aggregating trials from multiple subjects.*

161 Bharadwaj et al. (2023)

162 Bharadwaj et al. (2023) report results for a total of seven subjects: the left half of Bharadwaj et al.
163 (2023, Table 1) reports results on one subject and the right half reports results on six subjects. Thus
164 the claim of Palazzo et al. (2024) that “The dataset used by Bharadwaj et al., introduced in [7], is
165 the result of EEG data collection on one subject only” is false.
166

167 **7 EFFECT OF SUPERTRIALS ON SIGNAL SPECTRUM**
168

169 Palazzo et al. (2024) claim that the supertrial method of Bharadwaj et al. (2023) attenuates higher-
170 frequency bands in the signal:
171

172 *Interestingly, EEGNet outperforms EEGChannelNet at lower frequency bands, while our
173 approach performs better at higher frequency bands, thus confirming the findings of [2].
174 Thus, EEGChannelNet works better at higher frequencies. However, higher frequencies are
175 unavoidably attenuated by the supertrial method, proposed by [1]. Averaging trials acts as
176 a low pass filter (high frequencies rarely align temporally; therefore phase differences lead
177 to averaging out over trials [14]). Simply put, the authors explicitly test the model using
178 low frequency information, which we previously reported to reduce classification accuracy
179 (as shown in [2], low frequency classification accuracy of EEGChannelNet is 30 percent
180 lower w.r.t. high frequency classification). Supertrials necessarily result in the averaging
181 out of information with inconsistent phase but significant power in a specific frequency band,
182 which still contains useful neural information [14].*

183 Palazzo et al. (2024)
184

185 and this penalizes EEGChannelNet.
186

187 *Additionally, their specific supertrial setup seems designed to penalize EEGChannelNet [2],
188 since it has been shown to exploit high-frequency information, which are practically sup-
189 pressed by sample averaging.*

190 Palazzo et al. (2024)
191

192 Bharadwaj et al. (2023) state:
193

194 *Here, we aggregate supertrials by unweighted average in the time domain. One could av-
195 erage in the frequency domain, potentially considering only certain bands (e.g., induced
196 responses), weighting some samples or bands more than others, or more generally averaging
197 some nonlinear transform, learned or hard-coded, of single trials.*

198 Bharadwaj et al. (2023)
199

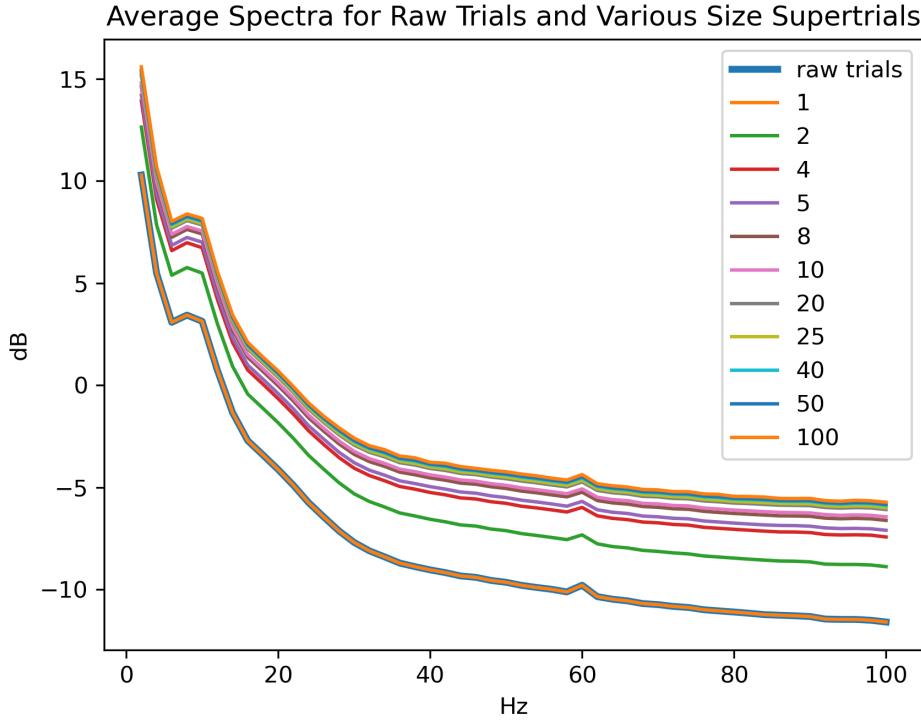
200 Now, we repeat the analyses of Bharadwaj et al. (2023) on the data from Ahmed et al. (2021),
201 constructing supertrials by averaging in the frequency domain. We do this by performing an FFT on
202 each sample, averaging the magnitude and phase of the samples independently, and performing an
203 inverse FFT on the average. This is done independently on each channel.
204

205 Fig. 1 plots the spectra for the raw trials and supertrials of various sizes N , averaged over (super)trial
206 and channel. It can be seen that this does not attenuate higher-frequency components. In fact, it
207 amplifies them.
208

209 We further repeat the analysis of Bharadwaj et al. (2023, Table 1 left) on the data from Ahmed
210 et al. (2021) using this supertrial averaging method (Table 1). EEGChannelNet is still at chance,
211 while SVM, 1D CNN, EEGNet, and SyncNet are still above chance for various size supertrials,
212 validating the original claim of Bharadwaj et al. (2023). Thus the claim by Palazzo et al. (2024)
213 that “Supertrials necessarily result in the averaging out of information with inconsistent phase but
214 significant power in a specific frequency band, which still contains useful neural information [14]”
215 is invalid.

Beyond this, Bharadwaj et al. (2023) did not develop the supertrial method; they simply employed
methods of Isik et al. (2014), Cichy et al. (2016), Greene & Hansen (2020), and Zheng et al. (2020a).

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241



242 Figure 1: Spectra for the raw data from Ahmed et al. (2021) and various sizes of supertrials con-
243 structed by averaging in the frequency domain.

244
245
246 Table 1: Replication of the analysis from Bharadwaj et al. (2023, Table 1 left) for various sizes N of
247 supertrials. Starred values indicate statistical significance above chance ($p < 0.005$) by a binomial
248 cmf. Note that when N gets larger, the number of test samples gets smaller, increasing quantization
249 noise in the accuracy estimates, thus requiring higher accuracy to achieve significance.

N	LSTM	k -NN	SVM	MLP	1D CNN	EEGNet	SyncNet	EEGChannelNet
1	2.2%	2.1%	5.5%*	2.5%	5.5%*	7.1%*	2.5%	2.5%
2	2.5%	2.3%	5.4%*	2.4%	5.0%*	7.9%*	2.7%	2.5%
4	2.4%	2.5%	6.3%*	2.6%	6.9%*	8.7%*	3.7%*	2.5%
5	2.1%	2.4%	6.0%*	2.7%	7.5%*	7.0%*	3.2%*	2.4%
8	2.3%	2.4%	3.2%*	2.4%	5.9%*	9.5%*	3.4%*	2.4%
10	2.2%	2.1%	2.6%	2.4%	4.5%*	7.9%*	3.2%*	2.6%
20	1.5%	2.0%	2.4%	2.7%	2.3%	7.9%*	3.0%	2.9%
25	3.4%	2.1%	2.3%	2.3%	2.9%	3.5%	2.6%	2.6%
40	2.2%	2.7%	2.2%	2.3%	2.0%	2.6%	3.4%	1.7%
50	2.1%	3.0%	2.8%	2.5%	2.8%	3.1%	3.6%	2.4%
100	4.0%	1.5%	3.5%	3.3%	3.0%	5.3%*	2.8%	2.8%

262
263
264 Since this work all predates Bharadwaj et al. (2023), and some of this work even predates Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021), Bharadwaj et al. (2023) could not have designed the supertrial setup to penalize EEGChannelNet. Thus the claim by Palazzo et al. (2024) that “their specific supertrial setup seems designed to penalize EEGChannelNet [2]” is inaccurate.

8 CONFOUNDS

Palazzo et al. (2024) claim that interleaved-design experiments (aka randomized stimulus presentation order) introduce several confounds.

On the contrary, interleaved-design experiments introduce several confounds that may suppress the very response that one would hope to classify with machine learning methods.

Palazzo et al. (2024)

It is not clear what “several confounds” refers to. Nonetheless, none of the concerns raised by Palazzo et al. (2024) about Bharadwaj et al. (2023) and Ahmed et al. (2021) constitute confounds, even if they were true. According to APA (2024), a confound is:

in an experiment, an independent variable that is conceptually distinct but empirically inseparable from one or more other independent variables. Confounding makes it impossible to differentiate that variable's effects in isolation from its effects in conjunction with other variables.

APA (2024)

Palazzo et al. (2024) misuse the term “confound”.

The protocol of Spampinato et al. (2017), Kavasidis et al. (2017), Palazzo et al. (2017; 2018; 2020a;b; 2021), and the block runs of Li et al. (2021) and Ahmed et al. (2022), does suffer from a confound, namely, a correlation between stimulus class and time since the start of the run, essentially a clock embedded in the signal. As a result, it is impossible to determine whether the classifier is classifying stimulus class or the embedded clock. This temporal confound excessively *overestimates* the classification accuracy. Even if they were true, the concerns raised by Palazzo et al. (2024) about Bharadwaj et al. (2023) and Ahmed et al. (2021) only would reduce the quality of the data and *underestimate* the classification accuracy. Any potential limitations of the interleaved-design experiments would not constitute “confounds.” Thus the claim by Palazzo et al. (2024) that “interleaved-design experiments introduce several confounds” is false.

Palazzo et al. (2024) claim that the protocol of Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021) does not suffer from a confound.

The claim that classification in block-design experiments mainly relies on temporal correlations has already been addressed in [13], where we showed that:

- *Models are not able to classify samples from a rapid-design setup when block-level labels are artificially assigned;*
- *Samples collected during blank screens between two blocks are unlikely to be classified as coming from the class before or after the blank screen.*

Palazzo et al. (2024)

This line of reasoning exhibits a logical fallacy. According to Frost (2024):

You can't prove a negative! [...] If your test fails to detect an effect, it's not proof that the effect doesn't exist. It just means your sample contained an insufficient amount of evidence to conclude that it exists.

Frost (2024)

The presence of a confound in the protocol used by Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021) is clearly demonstrated by the incorrect block-level labels experiment reported in Li et al. (2021, Tables 9 and 10) wherein it is shown that classifiers can decode incorrect block-level class labels that are unrelated to the actual stimuli used to elicit EEG response from trials with randomized stimulus presentation order.

Luck (2014) references twenty three discussions of confounds in the index. Among them, Luck (2014, p. 133) states:

Ignorance and Lack of Imagination When someone says, “I can’t imagine how that little confound could explain my results,” this is a case of a general logical fallacy that philosophers call the argument from ignorance. In fact, it’s a special case that is called (with a touch of humor) the argument from lack of imagination. The fact that someone can’t imagine how a confound could produce a particular effect might just mean that the person doesn’t have a very good imagination! I myself have occasionally used the “I can’t imagine how . . .” type of reasoning and then found that I was suffering from a lack of imagination (see, e.g., box 4.5). But now that I realize that this is not a compelling form of argument, I usually catch myself before I say it.

Luck (2014)

Palazzo et al. (2020b) (reference [13] in Palazzo et al. (2024)) offers two analyses in attempt to support their claim of a lack of a temporal confound in the data of Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021). Palazzo et al. (2020b, Table 2) report an analysis whereby models are trained on BDVE, the original data used by Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021), and tested on BDB, a dataset constructed from EEG collected when subjects viewed blank screens.

The neural signals recorded between each pair of classes, i.e., the **BDB dataset**, can help address this question. Since the neural data in response to the blank screen is equidistant in time from two classes, a strong temporal correlation would result in significantly greater than chance classification of that data as either the class before or the class after the blank screen. Thus, we verify whether a model trained on the block-design **BDVE** dataset would classify blank screen segments as either the preceding or subsequent class. Finding near chance level classification accuracy here would indicate little to no impact of a temporal correlation. To assess the temporal correlation we assign two class labels to each blank segment in the **BDB** dataset, corresponding to the preceding class and the following class. Then, for each of the models trained on the **BDVE** dataset and whose results are given in Table 1, we compute the classification accuracy of the **BDB** dataset as the ratio of blank segments classified as either one of the corresponding classes. Results are shown in Table 2, and reveal that all methods are at or slightly above chance accuracy (i.e., 5%, since for each segment has two possible correct options out of the 40 classes). This seems to be a clear indication that **temporal correlation in [2]'s data is minimal**, suggesting that block design experiments (when properly pre-processed) are suitable for classification studies.

Palazzo et al. (2020b)

(Emphasis in the original highlighted in bold.)

First note that Palazzo et al. (2020b, Table 2) do indeed report finding a temporal confound in the data of Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021). Second, this analysis does not accurately assess the temporal confound in the original results in Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021), as described below.

Li et al. (2021) discuss two kinds of temporal confound, one where the training and test sets come from the same blocks of the same runs (Li et al., 2021, Table 6) and one where the training and test sets come from temporally correlated blocks of two different runs (Li et al., 2021, § 3.7, Table 15). Note that the former has considerably higher accuracy than the latter, yet both are considerably above chance. This suggests that there is a strong temporal correlation within the blocks of the same run and a weaker, but still present, temporal correlation between temporally correlated blocks of different runs.

The BDB analysis of Palazzo et al. (2020b) measures the latter, not the former. It is thus expected that the temporal correlation will be less than that present in Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021) which is of the former kind. Thus, the claims in Palazzo et al. (2020b), that the “temporal correlation in [2]’s data is minimal” and “that block design experiments (when properly pre-processed) are suitable for classification studies”, and the claim in Palazzo et al. (2024), that “The claim that classification in block-design experiments mainly relies on temporal correlations has already been addressed in [13]”, are unfounded.

378 Further, the training and test samples in Spampinato et al. (2017) and Palazzo et al. (2017; 2018;
379 2020a;b; 2021) which come from the same block of the same run, have a uniformly distributed
380 temporal distance between 0.5 s and 25 s whereas the test samples in BDB come from the blanking
381 periods, not the stimulus periods. The temporal distance between the blanking periods and the
382 corresponding stimulus periods varies uniformly between 25 s and 35 s. Palazzo et al. (2020b) state:
383

384 *The data from these blank screens are particularly significant because, as claimed in [1],
385 any contribution of a temporal correlation to classification accuracy should persist through-
386 out the blank screen interval (i.e., the blank interval should be consistently classified above
387 chance as either the class before or after the blank screen)*

388 Palazzo et al. (2020b)

389 Li et al. (2021) never claim this and we have no reason to believe that this is the case. It is likely
390 that the temporal confound proceeds like a clock throughout the recording session. Palazzo et al.
391 (2020b; 2024) misunderstand the nature of the confound in Spampinato et al. (2017), Kavasidis
392 et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021) reported by Li et al. (2021), Ahmed
393 et al. (2021; 2022), and Bharadwaj et al. (2023). Thus the claim by Palazzo et al. (2024) that “any
394 contribution of a temporal correlation to classification accuracy should persist throughout the blank
395 screen interval (i.e., the blank interval should be consistently classified above chance as either the
396 class before or after the blank screen)” is also not supported by the data.

397 Palazzo et al. (2020b, Table 4) report a second analysis, that replicates the analysis in Li et al.
398 (2021, Table 9), whereby models are trained on BDVE, and tested on RDVE, a dataset collected
399 with randomized trials (with half the samples per class than the datasets in either Li et al. 2021 or
400 Spampinato et al. 2017, Kavasidis et al. 2017, and Palazzo et al. 2017; 2018; 2020a;b; 2021), but
401 where the actual class labels are replaced with incorrect block-level labels. First note that Palazzo
402 et al. (2020b, Table 4) do indeed report finding a temporal confound in the data of Spampinato et al.
403 (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b; 2021).

404 *The classification accuracy, when using rapid-design data with incorrect block-level labels,
405 is at most 9 percent points above chance, suggesting that the rapid design carries some small
406 temporal correlations.*

408 Palazzo et al. (2020b)

409 Many factors could contribute to observing a smaller effect than that observed by Li et al. (2021),
410 among them the fact that RDVE has half the samples per class. Thus the statement “at most 9
411 percent points above chance” is misleading when used to validate the use of data from Spampinato
412 et al. (2017) and the results from Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al.
413 (2017; 2018; 2020a;b; 2021).

415 Finally, Palazzo et al. (2024) state:

416 *In [13], we further elucidate that the single-subject analysis is problematic, by demon-
417 strating that pooling data across subjects accounts for inter-subject variability by reducing the
418 subject-specific representation on the classifier. We show that the per-subject variability
419 (measured in terms of standard deviation) decreases significantly when a classifier is trained
420 using multiple subjects’ data. Furthermore, this allows the model to focus on inter-subject
421 discriminative features, reducing the bias due to possible temporal correlations that may
422 exist in a single subject’s neural responses. Thus, the large inter-subject differences must
423 be overcome for any viable classification method. Importantly, averaged event-related data
424 from a random sample of about 10 subjects tends to look highly similar to another random
425 sample of 10 subjects [22], [14]. Failure to pool data across subjects would, again, only
426 serve to increase the impact of any temporal correlation.*

427 Palazzo et al. (2024)

428 We have no reason to believe that the temporal correlation proceeds at the same rate in differ-
429 ent subjects. Li et al. (2021, Table 8) assess this via a leave-one-subject-out analysis on the data
430 from Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017; 2018; 2020a;b;
431 2021). The precipitous drop in classification accuracy from that reported by Spampinato et al.

432 (2017) and Palazzo et al. (2017; 2018; 2020a;b; 2021), while still “pooling training data across sub-
433 jects,” strongly suggests that the high accuracy reported by Spampinato et al. (2017) and Palazzo
434 et al. (2017; 2018; 2020a;b; 2021) results from within-subject within-run temporal correlations that
435 are absent across subjects. Thus the claim in Palazzo et al. (2024) “that pooling data across subjects
436 accounts for inter-subject variability by reducing the subject-specific representation on the classifier”
437 is unfounded.

438 We know of no successful results on performing cross-subject classification of EEG recordings from
439 stimuli similar to those used in Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al.
440 (2017; 2018; 2020a;b; 2021) that do not suffer from confounds. EEG data collection is resource
441 limited. One can spend that resource collecting a smaller amount of data from multiple subjects
442 or a larger amount of data from a single subject. Ahmed et al. (2021) decided to do the latter as
443 cross-subject classification is infeasible at the current time and the intent was to assess the bounds of
444 classification accuracy with a feasible data collection effort. The data collection from Ahmed et al.
445 (2021) and Bharadwaj et al. (2023) was the largest known nonconfounded EEG dataset from stimuli
446 similar to those used in Spampinato et al. (2017), Kavasidis et al. (2017), and Palazzo et al. (2017;
447 2018; 2020a;b; 2021) at the time of publication. Moreover, the classification accuracies were the
448 highest known for nonconfounded data of that type at the time of publication. To our knowledge,
449 both of these are still the case.

450 9 CONCLUSION

451 The key claims in Bharadwaj et al. (2023) are stated in the conclusion.

452 *Palazzo et al. [14] claim that the data collected in Li et al. [10] lacks class information due
453 to lack of subject attentiveness during long sessions, and that classification failure is based
454 on this. [...] Table I demonstrates that the data of Ahmed et al. [1] and Li et al. [10] do
455 contain class information; it is just that some classifiers successfully extract it and some do
456 not. Thus our results here refute their claim. Table I further demonstrates that:*

457 • *With and without supertrials, EEGChannelNet yields chance accuracy on a noncon-
458 founded dataset 20× larger than that of [15].*
459 • *For some amounts of supertrial aggregation, EEGNet and SyncNet yield above chance
460 accuracy.*

461 *This refutes the claim in [15] that EEGChannelNet outperforms EEGNet and SyncNet. More-
462 over, to the best of our knowledge, the classification accuracy of 17.5% obtained by EEGNet
463 with $N = 20$ is the highest reported for a 40-class EEG classification task on ImageNet
464 stimuli. Finally, this demonstrates that the datasets of Ahmed et al. [1] and Li et al. [10]
465 do contain class information in the EEG signal; EEGNet, to some extent, and SyncNet, to a
466 lesser extent, can extract that class information. EEGChannelNet cannot.*

467 Bharadwaj et al. (2023)

468 Nothing in Palazzo et al. (2024) refutes that claim.

470 AUTHOR CONTRIBUTIONS

471 Removed for blind review.

472 ACKNOWLEDGMENTS

473 Removed for blind review.

474 ETHICS STATEMENT

475 This work debunks nearly one hundred published papers whose results are based on the same con-
476 found: a correlation between stimulus class and temporal drift. This confound has been found in
477 eighteen available EEG datasets. Just as with an inconsistent set of axioms one can prove anything, a
478 confounded dataset can be used to support any claim, even ones that are false or absurd. That is what
479 many recent publications based on this confound do: things like generating high fidelity renderings
480 of images, or even 3D CAD models of objects, from EEG recordings.

486 A research community, knowingly or unknowingly, has discovered that one can use confounded
487 datasets to churn out a plethora of flawed results without reviewers noticing. They have also dis-
488 covered that one can collect new confounded datasets to churn out even more flawed results without
489 reviewers noticing. The temptation to do this is so strong that the community continues to do so four
490 years after details of the confound were published.

491 It is conceivable that the flaws in these datasets may be a driving factor behind their frequent reuse.
492 When a dataset is severely confounded, it becomes relatively easy to achieve an extremely high
493 accuracy, which can in turn be used to support sensational claims, and ultimately directs further
494 attention to the dataset. In business, this phenomenon is referred to as “the bad money drives out the
495 good money.”

496 More prominent exposure of these flawed methods and consequent false results will allow resources
497 wasted on continued use of these confounded datasets and flawed methods to be reallocated. The
498 debunked work also causes direct ongoing harm:

- 500 • grant proposals can be rejected due to preliminary results not being competitive with results
501 demonstrating falsely-inflated performance based on confounded data or faulty methods;
- 502 • manuscripts can be rejected for the same reason;
- 503 • grants can be awarded based on false pretenses
- 504 • manuscripts can be accepted for the same reason;
- 505 • degrees can be awarded for the same reason;
- 506 • resources can be wasted attempting to replicate the debunked results;
- 507 • resources can be wasted having people read and review flawed papers, and learn flawed
508 methods; and
- 509 • because the debunked work relates to brain-computer interfaces—whose primary applica-
510 tion is helping people with disabilities (e.g., paralysis) interact with the world—the harm
511 caused is not merely scientific but also medical, with disproportionate impact on people
512 with disabilities.

513 This work is significant for the following reasons:

- 514 • Nearly one hundred papers (An & Cho, 2016; Spampinato et al., 2016; Ben Said et al.,
515 2017; Bozal Chaves, 2017; Kavasidis et al., 2017; Palazzo et al., 2017; Parekh et al., 2017;
516 Spampinato et al., 2017; Zhang et al., 2017; Du et al., 2018; Fares et al., 2018; Kumar et al.,
517 2018; Palazzo et al., 2018; Piplani et al., 2018; Tirupattur et al., 2018; Wang et al., 2018;
518 Zhang & Liu, 2018; Zhang et al., 2018; Zhong et al., 2018; Du et al., 2019; Hwang et al.,
519 2019; Jiang et al., 2019; Jiao et al., 2019; Long et al., 2019; Mukherjee et al., 2019; Uys,
520 2019; Wang et al., 2019; Cudlenco et al., 2020; Fares et al., 2020; Li et al., 2020; Palazzo
521 et al., 2020a;b; Wang et al., 2020; Zheng et al., 2020b;c; Palazzo et al., 2021; Zheng &
522 Chen, 2021; Ma et al., 2021; Mo et al., 2021; Jiang et al., 2021; Lee et al., 2021; Cavazza
523 et al., 2022; Khaleghi et al., 2022; Lee et al., 2022; Mishra et al., 2022; Mishra, 2022;
524 Scharnagl & Groth, 2022; Shimizu & Srinivasan, 2022; Ahmadieh et al., 2023; Bai et al.,
525 2023; Du et al., 2023; Duan et al., 2023; Hasan & A, 2023; Imani et al., 2023; Lan et al.,
526 2023; Lee et al., 2023; Liu et al., 2023; Singh et al., 2023; Song et al., 2023; Wahengbam
527 et al., 2023; Zeng et al., 2023b;a; Fan et al., 2024; Ferrante et al., 2024a;b; Gou et al.,
528 2024; Lei et al., 2024; Liu et al., 2024a;b; Luvsansambuu et al., 2024; Mishra et al., 2024;
529 Mwata-Velu et al., 2024; Ngo et al., 2024; Palazzo et al., 2024; Pan et al., 2024; Qian et al.,
530 2024; Singh et al., 2024; Tang et al., 2024; de la Torre-Ortiz et al., 2024; Yang & Liu, 2024;
531 Ye et al., 2024; Zheng et al., 2024b;a; Zhu et al., 2024; Deng et al., 2025; Fares, 2025; Fu
532 et al., 2025; Lopez et al., 2025; Mehmood et al., 2025; Singh et al., 2025; Xiang et al.,
533 2025) draw flawed conclusions based on the confounded dataset from Spampinato et al.
534 (2017) and datasets suffering from the same confound.
- 535 • A number of new datasets have been collected with this same confounded protocol (Gou
536 et al., 2024; Pan et al., 2024; Zhu et al., 2024; Qian et al., 2024; Uys, 2019; Shimizu &
537 Srinivasan, 2022; Liu et al., 2024b; Wang et al., 2019; 2020; Ma et al., 2021; Cudlenco
538 et al., 2020; Zheng et al., 2024b; Cavazza et al., 2022; Luvsansambuu et al., 2024; Liu
539 et al., 2023; Bai et al., 2023; Parekh et al., 2017).
- A number of these have been publicly released and are used by others. For example, Singh
et al. (2023), Singh et al. (2024), and Lopez et al. (2025) use the dataset reported in Kumar

et al. (2018) and Duan et al. (2023), Singh et al. (2024), and Lopez et al. (2025) use the dataset reported in Ma et al. (2021).

- This is further egregious because Palazzo et al. (2020b; 2024) continue to claim that their dataset (Spampinato et al., 2017), and their results that were obtained with that dataset (Spampinato et al., 2017; Kavasidis et al., 2017; Palazzo et al., 2017; 2018; 2020a;b; 2021; 2024), are valid, despite the refutations in Li et al. (2021), Ahmed et al. (2021; 2022), and Bharadwaj et al. (2023), in part, because of the arguments in Palazzo et al. (2024).
- This has been used to justify continued publication of a large and growing body of flawed work based on confounded datasets (Cavazza et al., 2022; Khaleghi et al., 2022; Lee et al., 2022; Mishra et al., 2022; Mishra, 2022; Scharnagl & Groth, 2022; Shimizu & Srinivasan, 2022; Ahmadieh et al., 2023; Bai et al., 2023; Du et al., 2023; Duan et al., 2023; Hasan & A, 2023; Imani et al., 2023; Lan et al., 2023; Lee et al., 2023; Liu et al., 2023; Singh et al., 2023; Song et al., 2023; Wahengbam et al., 2023; Zeng et al., 2023b;a; Fan et al., 2024; Ferrante et al., 2024a;b; Gou et al., 2024; Lei et al., 2024; Liu et al., 2024a;b; Luvsansambuu et al., 2024; Mishra et al., 2024; Mwata-Velu et al., 2024; Ngo et al., 2024; Palazzo et al., 2024; Pan et al., 2024; Qian et al., 2024; Singh et al., 2024; Tang et al., 2024; de la Torre-Ortiz et al., 2024; Yang & Liu, 2024; Ye et al., 2024; Zheng et al., 2024b;a; Zhu et al., 2024; Deng et al., 2025; Fares, 2025; Fu et al., 2025; Lopez et al., 2025; Mehmood et al., 2025; Singh et al., 2025; Xiang et al., 2025) even after the confound became known through the work of Li et al. (2021), Ahmed et al. (2021; 2022), and Bharadwaj et al. (2023).

Current machine-learning conferences, and more generally, computer-science conferences and journals, are loathe to publish refutations. Observing this, Schaeffer et al. (2025) proposed that the field of machine-learning establish a “refutations and critiques” track in prominent conferences. While we applaud and support this proposal, the current lack of such a track should not be an impediment to publishing refutations. Scientific journals in other fields have long done so, often resulting in retraction of flawed work. Schaeffer et al. (2025) offer five example pieces of claimed flawed work in machine learning. Each is an individual paper. These pale in comparison to the flaws we uncover here: a systemic flaw of the entire peer review process across an entire field of inquiry, namely classification of stimulus image class from EEG recordings, that affects seventeen datasets and ninety one papers. Moreover, none of the five examples in Schaeffer et al. (2025) are egregious; here the authors of the flawed work continue to argue for its validity despite four refereed refutations and fifty new flawed papers have been published subsequent to these four refereed refutations. This argues for the need to make the community aware of the severity of the issue.

REPRODUCIBILITY STATEMENT

The raw data that produced these results is available at <https://dx.doi.org/10.21227/bc7e-6j47>. Our code, which will be released upon publication, is built on top of the code in <https://dx.doi.org/10.21227/bc7e-6j47>.

REFERENCES

Hajar Ahmadi, Farnaz Gassemi, and Mohammad Hasan Moradi. A hybrid deep learning framework for automated visual image classification using EEG signals. *Neural Computing and Applications*, pp. 1–17, 2023.

Hamad Ahmed, Ronnie B. Wilbur, Hari M. Bharadwaj, and Jeffrey Mark Siskind. Object classification from randomized EEG trials. In *Computer Vision and Pattern Recognition*, pp. 3845–3854, 2021.

Hamad Ahmed, Ronnie B. Wilbur, Hari M. Bharadwaj, and Jeffrey Mark Siskind. Confounds in the data—Comments on “Decoding brain representations by multimodal learning of neural activity and visual features”. *Transactions on Pattern Analysis and Machine Intelligence*, 44(12):9217–9220, 2022.

Jinwon An and Sungzoon Cho. Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks. In *International Conference on Big Data and Smart Computing*, pp. 427–429, 2016.

594 Yunpeng Bai, Xintao Wang, Yan-pei Cao, Yixiao Ge, Chun Yuan, and Ying Shan. Dreamdiffusion:
595 Generating high-quality images from brain EEG signals. *arXiv*, 2306.16934, 2023.
596

597 Ahmed Ben Said, Amr Mohamed, Tarek Elfouly, Khaled Harras, and Z. Jane Wang. Multimodal
598 deep learning approach for joint EEG-EMG data compression and classification. In *Wireless
599 Communications and Networking Conference*, 2017.

600 Hari M. Bharadwaj, Ronnie B. Wilbur, and Jeffrey Mark Siskind. Still an ineffective method with
601 supertrials/ERPs—Comments on “Decoding brain representations by multimodal learning of neu-
602 ral activity and visual features”. *Transactions on Pattern Analysis and Machine Intelligence*, 45
603 (11):14052–14054, 2023.

604 Alberto Bozal Chaves. Personalized image classification from EEG signals using deep learning.
605 B.S. thesis, Universitat Politècnica de Catalunya, 2017.

606 Jacopo Cavazza, Waqar Ahmed, Riccardo Volpi, Pietro Morerio, Francesco Bossi, Cesco Willemse,
607 Agnieszka Wykowska, and Vittorio Murino. Understanding action concepts from videos and
608 brain activity through subjects’ consensus. *Scientific Reports*, 12(1):19073, 2022.

609 Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva.
610 Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object
611 recognition reveals hierarchical correspondence. *Scientific reports*, 6(1):1–13, 2016.

612 Nicolae Cudlenco, Nirvana Popescu, and Marius Leordeanu. Reading into the mind’s eye: Boosting
613 automatic visual recognition with EEG signals. *Neurocomputing*, 386:281–292, 2020.

614 Carlos de la Torre-Ortiz, Michiel M. Spapé, Niklas Ravaja, and Tuukka Ruotsalo. Cross-subject
615 EEG feedback for implicit image generation. *Transactions on Cybernetics*, 54(10):6105–6117,
616 2024.

617 Xia Deng, Shen Chen, Jiale Zhou, and Lei Li. Mind2matter: Creating 3D models from EEG signals.
618 *arXiv*, 2504.11936, 2025.

619 Changde Du, Changying Du, and Huiguang He. Doubly semi-supervised multimodal adversarial
620 learning for classification, generation and retrieval. In *International Conference on Multimedia*,
621 pp. 13–18, 2019.

622 Changde Du, Kaicheng Fu, Jinpeng Li, and Huiguang He. Decoding visual neural representations
623 by multimodal learning of brain-visual-linguistic features. *Transactions on Pattern Analysis and
624 Machine Intelligence*, 45(9):10760–10777, 2023.

625 Changying Du, Changde Du, Xingyu Xie, Chen Zhang, and Hao Wang. Multi-view adversarially
626 learned inference for cross-domain joint distribution matching. In *International Conference on
627 Knowledge Discovery & Data Mining*, pp. 1348–1357, 2018.

628 Yiping Duan, Shuzhan Hu, Xin Ma, and Xiaoming Tao. Multi-class image generation from EEG
629 features with conditional generative adversarial networks. In *International Conference on Wire-
630 less Communications and Signal Processing*, pp. 534–539, 2023.

631 Xiaoya Fan, Yuntao Liu, and Zhong Wang. Electroencephalogram helps few-shot learning. In
632 *International Conference on Acoustics, Speech and Signal Processing*, pp. 8015–8019, 2024.

633 Ahmed Fares. A novel spatiotemporal framework for EEG-based visual image classification through
634 signal disambiguation. *Applied System Innovation*, 8(5):121, 2025.

635 Ahmed Fares, Shenghua Zhong, and Jianmin Jiang. Region level bi-directional deep learning frame-
636 work for EEG-based image classification. In *International Conference on Bioinformatics and
637 Biomedicine*, pp. 368–373, 2018.

638 Ahmed Fares, Sheng-hua Zhong, and Jianmin Jiang. Brain-media: A dual conditioned and lateral-
639 ization supported GAN (DCLS-GAN) towards visualization of image-evoked brain activities. In
640 *International Conference on Multimedia*, pp. 1764–1772, 2020.

648 Matteo Ferrante, Tommaso Boccato, Stefano Bargione, and Nicola Toschi. Decoding EEG signals
649 of visual brain representations with a CLIP based knowledge distillation. In *Learning from Time*
650 *Series For Health*, 2024a.

651

652 Matteo Ferrante, Tommaso Boccato, Stefano Bargione, and Nicola Toschi. Decoding visual brain
653 representations from electroencephalography through knowledge distillation and latent diffusion
654 models. *Computers in Biology and Medicine*, 178:108701, 2024b.

655 Jim Frost. Statistics by Jim: Failing to reject the null hypothesis, 2024.

656

657 Honghao Fu, Hao Wang, Jing Jih Chin, and Zhiqi Shen. BrainVis: Exploring the bridge between
658 brain and visual signals via image reconstruction. In *International Conference on Acoustics,*
659 *Speech and Signal Processing*, pp. 1–5, 2025.

660

661 Mingyu Gou, Ying-Jie Zhang, Ren-Jie Dai, Hao-Long Yin, Tianzhen Chen, Fei Cheng, Bao-Liang
662 Lu, Jiang Du, and Wei-Long Zheng. Addressing temporal and auditory factors in meditative EEG
663 with self-supervised learning. In *International Conference on Bioinformatics and Biomedicine*,
664 pp. 1954–1959, 2024.

665 Michelle R Greene and Bruce C Hansen. Disentangling the independent contributions of visual and
666 conceptual features to the spatiotemporal dynamics of scene categorization. *Journal of Neuro-*
667 *science*, 40(27):5283–5299, 2020.

668

669 Haitham S Hasan and Al-Sharqi Mais A. EEG-based image classification using an efficient geo-
670 metric deep network based on functional connectivity. *Periodicals of Engineering and Natural*
671 *Sciences*, 11(1):208–215, 2023.

672 Sunhee Hwang, Kibeom Hong, Guiyoung Son, and Hyeran Byun. EZSL-GAN: EEG-based zero-
673 shot learning approach using a generative adversarial network. In *International Winter Conference*
674 *on Brain-Computer Interface*, pp. 1–4, 2019.

675

676 Zahra Imani, Mehdi Ezoji, and Timothée Masquelier. Brain-guided manifold transferring to improve
677 the performance of spiking neural networks in image classification. *Journal of Computational*
678 *Neuroscience*, 51(4):475–490, 2023.

679

680 Leyla Isik, Ethan M Meyers, Joel Z Leibo, and Tomaso Poggio. The dynamics of invariant object
681 recognition in the human visual system. *Journal of neurophysiology*, 111(1):91–102, 2014.

682

683 Jianmin Jiang, Ahmed Fares, and Sheng-Hua Zhong. A context-supported deep learning framework
684 for multimodal brain imaging classification. *Transactions on Human-Machine Systems*, 49(6):
685 611–622, 2019.

686

687 Jianmin Jiang, Ahmed Fares, and Sheng-Hua Zhong. A brain-media deep framework towards seeing
688 imaginations inside brains. *Transactions on Multimedia*, 23:1454–1465, 2021.

689

690 Zhicheng Jiao, Haoxuan You, Fan Yang, Xin Li, Han Zhang, and Dinggang Shen. Decoding EEG by
691 visual-guided deep neural networks. In *International Joint Conference on Artificial Intelligence*,
692 2019.

693

694 Isaak Kavasidis, Simone Palazzo, Concetto Spampinato, Daniela Giordano, and Mubarak Shah.
695 Brain2Image: Converting brain signals into images. In *International Conference on Multimedia*,
696 pp. 1809–1817, 2017.

697

698 Nastaran Khaleghi, Tohid Yousefi Rezaii, Soosan Beheshti, Saeed Meshgini, Sobhan Sheykhanvand,
699 and Sebelan Danishvar. Visual saliency and image reconstruction from EEG signals via an ef-
700 fective geometric deep network-based generative adversarial network. *Electronics*, 11(21):3637,
701 2022.

702

703 Pradeep Kumar, Rajkumar Saini, Partha Pratim Roy, Pawan Kumar Sahu, and Debi Prosad Dogra.
704 Envisioned speech recognition using EEG sensors. *Personal and Ubiquitous Computing*, 22(1):
705 185–199, 2018.

702 Yu-Ting Lan, Kan Ren, Yansen Wang, Wei-Long Zheng, Dongsheng Li, Bao-Liang Lu, and Lili Qiu.
703 Seeing through the brain: image reconstruction of visual perception from human brain signals.
704 *arXiv*, 2308.02510, 2023.

705 Pilhyeon Lee, Sunhee Hwang, Seogkyu Jeon, and Hyeran Byun. Subject adaptive EEG-based visual
706 recognition. In *Asian Conference on Pattern Recognition*, pp. 322–334, 2021.

708 Pilhyeon Lee, Sunhee Hwang, Jewook Lee, Minjung Shin, Seogkyu Jeon, and Hyeran Byun. Inter-
709 subject contrastive learning for subject adaptive EEG-based visual recognition. In *International*
710 *Winter Conference on Brain-Computer Interface*, pp. 1–6, 2022.

712 Pilhyeon Lee, Seogkyu Jeon, Sunhee Hwang, Minjung Shin, and Hyeran Byun. Source-free sub-
713 ject adaptation for EEG-based visual recognition. In *International Winter Conference on Brain-
714 Computer Interface*, pp. 1–6, 2023.

715 Weixian Lei, Yixiao Ge, Kun Yi, Jianfeng Zhang, Difei Gao, Dylan Sun, Yuying Ge, Ying Shan,
716 and Mike Zheng Shou. VIT-LENS: Towards omni-modal representations. In *Computer Vision
717 and Pattern Recognition*, pp. 26637–26647, 2024.

718 Dan Li, Changde Du, and Huiguang He. Semi-supervised cross-modal image generation with gen-
719 erative adversarial networks. *Pattern Recognition*, 100, 2020.

721 Ren Li, Jared S. Johansen, Hamad Ahmed, Thomas V. Ilyevsky, Ronnie B. Wilbur, Hari M. Bharad-
722 waj, and Jeffrey Mark Siskind. The perils and pitfalls of block design for EEG classification
723 experiments. *Transactions on Pattern Analysis and Machine Intelligence*, 43(1):316–333, 2021.

725 Dongjun Liu, Weichen Dai, Hangkui Zhang, Xuanyu Jin, Jianting Cao, and Wanzeng Kong. Brain-
726 machine coupled learning method for facial emotion recognition. *Transactions on Pattern Anal-
727 ysis and Machine Intelligence*, 45(9):10703–10717, 2023.

728 Dongjun Liu, Jin Cui, Zeyu Pan, Hangkui Zhang, Jianting Cao, and Wanzeng Kong. Machine to
729 brain: facial expression recognition using brain machine generative adversarial networks. *Cogni-
730 tive Neurodynamics*, 18(3):863–875, 2024a.

731 Xuan-Hao Liu, Yan-Kai Liu, Yansen Wang, Kan Ren, Hanwen Shi, Zilong Wang, Dongsheng Li,
732 Bao-Liang Lu, and Wei-Long Zheng. EEG2video: Towards decoding dynamic visual perception
733 from EEG signals. In *Advances in Neural Information Processing Systems*, pp. 72245–72273,
734 2024b.

736 Yanfang Long, Wanzeng Kong, Xuanyu Jin, Jili Shang, and Can Yang. Visualizing emotional states:
737 A method based on human brain activity. In *Human Brain and Artificial Intelligence*, pp. 248–
738 258, 2019.

739 Eleonora Lopez, Luigi Sigillo, Federica Colonnese, Massimo Panella, and Danilo Comminiello.
740 Guess what I think: Streamlined EEG-to-image generation with latent diffusion models. In *Inter-
741 national Conference on Acoustics, Speech and Signal Processing*, pp. 1–5, 2025.

743 SJ Luck. *An introduction to the event-related potential technique*. MIT press, 2 edition, 2014.

744 Urtsaikh Luvsansambuu, Tengis Tserendondog, Munkbayar Bat-Erdene, and Batmunkh Amar. A
745 deep learning model for classifying the thoughts of multiple individuals based on visual event. In
746 *International Conference on Electrical, Computer and Energy Technologies*, pp. 1–6, 2024.

748 Xin Ma, Yiping Duan, Shuzhan Hu, Xiaoming Tao, and Ning Ge. EEG based visual classification
749 with multi-feature joint learning. In *International Conference on Image Processing*, pp. 264–268,
750 2021.

751 Tariq Mehmood, Hamza Ahmad, Muhammad Haroon Shakeel, and Murtaza Taj. CATVis: Context-
752 aware thought visualization. *arXiv*, 2507.11522, 2025.

754 Abhijit Mishra, Shreya Shukla, Jose Torres, Jacek Gwizdka, and Shounak Roychowdhury.
755 Thought2text: Text generation from EEG signal using large language models (llms). *arXiv*,
2410.07507, 2024.

756 Alankrit Mishra. Enhancing machine vision using human cognition from EEG analysis. Master's
757 thesis, Lakehead University, 2022.

758

759 Alankrit Mishra, Nikhil Raj, and Garima Bajwa. EEG-based image feature extraction for visual
760 classification using deep learning. In *International Conference on Intelligent Data Science Tech-*
761 *nologies and Applications*, pp. 181–188, 2022.

762 Liangyan Mo, Yuhua Wang, Wenhui Zhou, Xingfa Shen, and Wanzeng Kong. A bi-LSTM based
763 network with attention mechanism for EEG visual classification. In *International Conference on*
764 *Unmanned Systems*, pp. 858–863, 2021.

765

766 Pranay Mukherjee, Abhirup Das, Ayan Kumar Bhunia, and Partha Pratim Roy. Cogni-Net: Cog-
767 nitive feature learning through deep visual perception. In *International Conference on Image*
768 *Processing*, pp. 4539–4543, 2019.

769 Tat'y Mwata-Velu, Erik Zamora, Juan Irving Vasquez-Gomez, Jose Ruiz-Pinales, and Humberto
770 Sossa. Multiclass classification of visual electroencephalogram based on channel selection, min-
771 imum norm estimation algorithm, and deep network architectures. *Sensors*, 24(12):3968, 2024.

772

773 Huyen Ngo, Khoi Do, Duong Nguyen, Viet Dung Nguyen, and Lan Dang. How homogenizing the
774 channel-wise magnitude can enhance EEG classification model? *arXiv*, 2407.20247, 2024.

775

776 Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah.
777 Generative adversarial networks conditioned by brain signals. In *International Conference on*
778 *Computer Vision*, pp. 3410–3418, 2017.

779

780 Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah.
781 Decoding brain representations by multimodal learning of neural activity and visual features.
782 *arXiv*, 1820.10974v1, 2018.

783

784 Simone Palazzo, Francesco Rundo, Sebastiano Battiato, Daniela Giordano, and Concetto Spamp-
785 inato. Visual saliency detection guided by neural signals. In *International Conference on Auto-*
786 *matic Face and Gesture Recognition*, pp. 434–440, 2020a.

787

788 Simone Palazzo, Concetto Spampinato, Joseph Schmidt, Isaak Kavasidis, Daniela Giordano, and
789 Mubarak Shah. Correct block-design experiments mitigate temporal correlation bias in EEG
790 classification. *arXiv*, 2012.03849, 2020b.

791

792 Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, Joseph Schmidt, and
793 Mubarak Shah. Decoding brain representations by multimodal learning of neural activity and
794 visual features. *Transactions on Pattern Analysis and Machine Intelligence*, 43(11):3833–3849,
795 2021.

796

797 Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, Joseph Schmidt, and
798 Mubarak Shah. Rebuttal to “Comments on ‘Decoding brain representations by multimodal learn-
799 ing of neural activity and visual features’”. *Transactions on Pattern Analysis and Machine Intel-*
800 *ligence*, 46(12):11540–11542, 2024.

801

802 Hongguang Pan, Zhuoyi Li, Yunpeng Fu, Xuebin Qin, and Jianchen Hu. Reconstructing visual stim-
803 ulus representation from EEG signals based on deep visual representation model. *Transactions*
804 *on Human-Machine Systems*, 54(6):711–722, 2024.

805

806 Viral Parekh, Ramanathan Subramanian, Dipanjan Roy, and CV Jawahar. An EEG-based image
807 annotation system. In *National Conference on Computer Vision, Pattern Recognition, Image*
808 *Processing, and Graphics*, pp. 303–313, 2017.

809

810 Tanya Piplani, Nick Merill, and John Chuang. Faking it, making it: Fooling and improving brain-
811 based authentication with generative adversarial networks. In *International Conference on Bio-*
812 *metrics Theory, Applications and Systems*, 2018.

813

814 Dongguan Qian, Hong Zeng, Wenjie Cheng, Yu Liu, Taha Bikki, and Jianjiang Pan. NeuroDM:
815 Decoding and visualizing human brain activity with EEG-guided diffusion model. *Computer*
816 *Methods and Programs in Biomedicine*, 251:108213, 2024.

810 Rylan Schaeffer, Joshua Kazdan, Yegor Denisov-Blanch, Brando Miranda, Matthias Gerstgrasser,
811 Susan Zhang, Andreas Haupt, Isha Gupta, Elyas Obbad, Jesse Dodge, Jessica Zosa Forde,
812 Francesco Orabona, Sanmi Koyejo, and David Donoho. Position: Machine learning conferences
813 should establish a “refutations and critiques” track. *arXiv*, 2506.19882, 2025.

814 Bastian Scharnagl and Christian Groth. Evaluation of different deep learning approaches for EEG
815 classification. In *International Conference on Artificial Intelligence for Industries*, pp. 42–47,
816 2022.

817 Hirokatsu Shimizu and Ramesh Srinivasan. Improving classification and reconstruction of imagined
818 images from EEG signals. *Plos one*, 17(9):e0274847, 2022.

819 Prajwal Singh, Pankaj Pandey, Krishna Miyapuram, and Shanmuganathan Raman. EEG2IMAGE:
820 Image reconstruction from EEG brain signals. In *International Conference on Acoustics, Speech
821 and Signal Processing*, pp. 1–5, 2023.

822 Prajwal Singh, Dwip Dalal, Gautam Vashishtha, Krishna Miyapuram, and Shanmuganathan Raman.
823 Learning robust deep visual representations from EEG brain recordings. In *Winter Conference on
824 Applications of Computer Vision*, pp. 7538–7547, 2024.

825 Pushapdeep Singh, Jyoti Nigam, Medicherla Vamsi Krishna, Arnav Bhavsar, and Aditya Nigam.
826 EAD: An EEG adapter for automated classification. *arXiv*, 2505.23107, 2025.

827 Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding
828 natural images from EEG for object recognition. *arXiv*, 2308.13234, 2023.

829 Concetto Spampinato, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Mubarak Shah, and
830 Nasim Souly. Deep learning human mind for automated visual classification. *arXiv*, 1609.00344,
831 2016.

832 Concetto Spampinato, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Nasim Souly, and
833 Mubarak Shah. Deep learning human mind for automated visual classification. In *Computer
834 Vision and Pattern Recognition*, pp. 6809–6817, 2017.

835 Jiajia Tang, Yutao Yang, Qibin Zhao, Yu Ding, Jianhai Zhang, Yang Song, and Wanzeng Kong.
836 Visual-guided dual-spatial interaction network for fine-grained brain semantic decoding. *Trans-
837 actions on Instrumentation and Measurement*, 73:1–14, 2024.

838 Praveen Tirupattur, Yogesh Singh Rawat, Concetto Spampinato, and Mubarak Shah. ThoughtViz:
839 Visualizing human thoughts using generative adversarial network. In *International Conference
840 on Multimedia*, pp. 950–958, 2018.

841 Pieter Johannes Uys. Image classification from EEG brain signals using machine learning and deep
842 learning techniques. Master’s thesis, Stellenbosch University, 2019.

843 Kanan Wahengbam, Kshetrimayum Linthoingambi Devi, and Aheibam Dinamani Singh. Fortifying
844 brain signals for robust interpretation. *Transactions on Network Science and Engineering*, 10(2):
845 742–753, 2023.

846 Fang Wang, Sheng Hua Zhong, Jianfeng Peng, Jianmin Jiang, and Yan Liu. Data augmentation
847 for EEG-based emotion recognition with deep convolutional neural networks. *Lecture Notes in
848 Computer Science*, 10705:82–93, 2018.

849 Pan Wang, Danlin Peng, Ling Li, Liuqing Chen, Chao Wu, Xiaoyi Wang, Peter Childs, and Yike
850 Guo. Human-in-the-loop design with machine learning. In *International Conference on Engi-
851 neering Design*, pp. 2577–2586, 2019.

852 Pan Wang, Shuo Wang, Danlin Peng, Liuqing Chen, Chao Wu, Zhen Wei, Peter Childs, Yike Guo,
853 and Ling Li. Neurocognition-inspired design with machine learning. *Design science*, 6:e33, 2020.

854 Xin Xiang, Wenhui Zhou, and Guojun Dai. Electroencephalography-driven three-dimensional ob-
855 ject decoding with multi-view perception diffusion. *Engineering Applications of Artificial Intel-
856 ligence*, 156:111180, 2025.

864 Guangyu Yang and Jinguo Liu. A new framework combining diffusion models and the convolution
865 classifier for generating images from EEG signals. *Brain Sciences*, 14(5):478, 2024.
866

867 Zesheng Ye, Lina Yao, Yu Zhang, and Sylvia Gustin. Self-supervised cross-modal visual retrieval
868 from brain activities. *Pattern Recognition*, 145:109915, 2024.

869 Hong Zeng, Nianzhang Xia, Dongguan Qian, Motonobu Hattori, Chu Wang, and Wanzeng Kong.
870 DM-RE2I: A framework based on diffusion model for the reconstruction from EEG to image.
871 *Biomedical Signal Processing and Control*, 86:105125, 2023a.

872

873 Hong Zeng, Nianzhang Xia, Ming Tao, Deng Pan, Haohao Zheng, Chu Wang, Feifan Xu, Wael Za-
874 karia, and Guojun Dai. DCAE: A dual conditional autoencoder framework for the reconstruction
875 from EEG into image. *Biomedical Signal Processing and Control*, 81:104440, 2023b.

876 Wenxiang Zhang and Qingshan Liu. Using the center loss function to improve deep learning per-
877 formance for EEG signal classification. In *International Conference on Advanced Computational
878 Intelligence*, pp. 578–582, 2018.

879

880 X. Zhang, L. Yao, Q. Z. Sheng, S. S. Kanhere, T. Gu, and D. Zhang. Converting your thoughts to
881 texts: Enabling brain typing via deep feature learning of EEG signals. In *International Conference
882 on Pervasive Computing and Communications*, 2018.

883

884 Xiang Zhang, Lina Yao, Dalin Zhang, Xianzhi Wang, Quan Z. Sheng, and Tao Gu. Multi-person
885 brain activity recognition via comprehensive EEG signal analysis. In *International Conference
886 on Mobile and Ubiquitous Systems: Computing, Networking and Services*, 2017.

887

888 Linfeng Zheng, Peilin Chen, and Shiqi Wang. EidetiCom: A cross-modal brain-computer semantic
889 communication paradigm for decoding visual perception. *arXiv*, 2407.14936, 2024a.

890

891 Xianglin Zheng, Zehong Cao, and Quan Bai. An evoked potential-guided deep learning brain repre-
892 sentation for visual classification. In *International Conference on Neural Information Processing*,
893 pp. 54–61, 2020a.

894

895 Xiao Zheng and Wanzhong Chen. An attention-based bi-LSTM method for visual object classifica-
896 tion via EEG. *Biomedical Signal Processing and Control*, 63, 2021.

897

898 Xiao Zheng, Wanzhong Chen, Mingyang Li, Tao Zhang, Yang You, and Yun Jiang. Decoding human
899 brain activity with deep learning. *Biomedical Signal Processing and Control*, 56, 2020b.

900

901 Xiao Zheng, Wanzhong Chen, Yang You, Yun Jiang, Mingyang Li, and Tao Zhang. Ensemble deep
902 learning for automated visual classification using EEG signals. *Pattern Recognition*, 102, 2020c.

903

904 Xu Zheng, Ling Wang, Kanghao Chen, Yuanhuifyi Lyu, Jiazhou Zhou, and Lin Wang. EIT-1M: One
905 million EEG-image-text pairs for human visual-textual recognition and more. *arXiv*, 2407.01884,
906 2024b.

907

908 Saisai Zhong, Yadong Liu, Zongtan Zhou, and Dewen Hu. ELSTM-based visual decoding from sin-
909 gal [sic]-trial EEG recording. In *International Conference on Software Engineering and Service
910 Science*, pp. 1139–1142, 2018.

911

912 Shuqi Zhu, Ziyi Ye, Qingyao Ai, and Yiqun Liu. EEG-ImageNet: An electroencephalogram dataset
913 and benchmarks with image visual stimuli of multi-granularity labels. *arXiv*, 2406.07151, 2024.

914

915

916

917