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ABSTRACT

We introduce STREET, a unified multi-task and multi-domain natural language
reasoning and explanation benchmark. Unlike most existing question-answering
(QA) datasets, we expect models to not only answer questions, but also produce
step-by-step structured explanations describing how premises in the question are
used to produce intermediate conclusions that can prove the correctness of a certain
answer. We perform extensive evaluation with popular language models such as
few-shot prompting GPT-3 and fine-tuned T5. We find that these models still lag
behind human performance when producing such structured reasoning steps. We
believe this work will provide a way for the community to better train and test
systems on multi-step reasoning and explanations in natural language.

1 INTRODUCTION

A long-term pursuit in Artificial Intelligence is to endow machines with the ability to reason and
manipulate premises to reach conclusions and perform tasks. Initially, most reasoning systems
performed multi-step operations over symbolic or probabilistic knowledge (Newell & Simon, 1956;
McCarthy et al., 1960; Siler & Buckley, 2005), and even though these systems were able to perform
complex tasks (Vernon et al., 2007; Metaxiotis et al., 2002; Ribeiro & Forbus, 2021), there were still
shortcomings when it comes to encoding such knowledge, learning reasoning rules and dealing with
ambiguity (Bell, 1985; Ribeiro et al., 2019). Some recent works in the field of question-answering
(QA) have demonstrated that language models can bypass some of these issues and learn to reason
directly over natural language (Clark et al., 2020), allowing for more flexible and adaptable reasoning
capabilities. Another advantage of performing multi-step reasoning over natural language is that
it allows for more inspectable outputs, improving the explainability of models that are otherwise
regarded as black box systems (Jain & Wallace, 2019; Rajani et al., 2019a; Danilevsky et al., 2020).
Despite the recent progress, we notice that there is still a gap in resources for training and evaluating
general reasoning capabilities over natural language.

To facilitate research in this direction we propose the STructured REasoning and Explanation Multi-
Task benchmark (or STREET for short), containing a collection of tasks in various domains including
quantitative reasoning (math questions), analytical reasoning (logic puzzle questions), and deductive
reasoning (common-sense and science questions). We build upon existing QA datasets by adding
multi-premise, multi-step, structured explanations in the form of reasoning graphs, as depicted
in Figure 1. The STREET benchmark contains 35.8k questions, each of which is accompanied by
a reasoning graph, either created by expert annotators or programmatically. When combined, all
reasoning graphs contain a total of 151.1k reasoning steps (or textual entailments), of which 14.7k
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(1) Natalia sold clips to 48 of her 
friends in April

(2) and then she sold half as many 
clips in May

(3) How many clips did Natalia sell 
altogether in April and May?

(4) Natalia sold 48 / 2 = 24 
clips in May

(5) Natalia sold 48 + 24 = 72 clips 
in April and May

Answer: 
72

Question + Context Reasoning Steps Answer

(5) used pop is on sale and 
new opera is not.

(6) If both types of pop are on sale, 
then all soul is.

(8) If neither type of jazz is on sale, 
then new pop is

(16) If new jazz or used jazz are not 
on sale, then new pop is on sale.

(17) Since new pop and used pop 
are on sale, then new soul and used 

soul are on sale.

Answer: 
D)

CONTEXT: (1) A music store carries exactly ten

types of CDs (2) both new and used of each of

jazz, opera, pop, rap, and soul. (3) The store is

having a sale on some of these types of CDs. (4)

The following conditions must apply: (5) used

pop is on sale and new opera is not. (6) If both

types of pop are on sale, then all soul is. (7) If

both types of jazz are on sale, then no rap is. (8)

If neither type of jazz is on sale, then new pop

is. (9) If either type of rap is on sale, then no soul

is.

QUESTION: (10) Which one of the following

CANNOT be true? (11) A) Neither type of opera

and neither type of rap is on sale. (12) B) Neither

type of jazz and neither type of opera is on sale.

(13) C) Neither type of opera and neither type of

soul is on sale. (14) D) Neither type of jazz and

neither type of soul is on sale. (15) E) Neither

type of jazz and neither type of rap is on sale.

CONTEXT: (1) Natalia sold clips to 48 of her

friends in April, and then (2) she sold half as

many clips in May.

QUESTION: (3) How many clips did Natalia sell

altogether in April and May?

(10) Which one of the following 

CANNOT be true?

(18) If neither type of jazz is on sale, both 
types of soul must be on sale, which 

contradicts option D)

AR-LSAT

GSM8K

(14) D) Neither type of jazz and 
neither type of soul is on sale.

Figure 1: Two examples from our proposed STREET benchmark. The questions are derived from
the Grade School Math (GSM8K) and Analytical Reasoning - Law School Admission Test (AR-
LSAT) tasks. The QA components (e.g. question, context, and answers options) are broken into
textual logical units, or TLUs. These TLUs are connected to form a reasoning graph. Our proposed
benchmark builds upon existing QA datasets by adding structured reasoning explanations that shows
how one can derive the answer to a given question.

were created by our expert annotators. We carefully selected the tasks such that most of the relevant
knowledge required to answer the questions is contained within the question or context themselves.

Therefore, we focus on the reasoning problem, with a greater number of reasoning steps (an average of
7.8 reasoning steps per answer) and a more complex reasoning structure than previous datasets. These
properties differentiate our work from single-step reasoning such as Natural Language Inference
(NLI) (Bowman et al., 2015; Williams et al., 2018; Zellers et al., 2018) or multi-hop QA (Yang et al.,
2018; Chen et al., 2021) that require specific factual knowledge retrieval.

In our proposed evaluation, the models are expected to not only answer the questions, but also generate
the reasoning graphs (including the textual intermediate steps) that explains their output answer. With
that in mind, we design a few evaluation metrics to verify if the generated reasoning graphs match
the expected golden data. We perform extensive evaluation using some popular language models of
various sizes, namely T5 (Raffel et al., 2020) and GPT-3 (Brown et al., 2020), either fine-tuning on
training data or using few-shot prompting. Our experiments show that even though these models
can achieve high solving rates on many of the original QA datasets, they still struggle to generate
coherent and relevant reasoning graphs and appear to be far below human performance.

Our main contributions are as follows: (1) We define reasoning graphs, which are structured chains of
reasoning in natural language that provide explainability to the output of models on QA tasks. (2) We
propose STREET, a multi-task and multi-domain benchmark containing questions requiring diverse
types of reasoning skills. The answers in the dataset contain annotated or generated reasoning graphs.
We make the data and evaluation code available online 1 (3) We evaluate the performance of LMs
such as fine-tuned T5 and few-shot prompting with GPT-3 on our proposed task. Our results suggest
there is still room for improving language models when it comes to generating complex multi-step
reasoning explanations.

1https://github.com/amazon-science/street-reasoning
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2 TASK AND DATA

2.1 TASK DEFINITION

In the standard definition, a question-answering task T = (C,Q,O,A,R) has the following com-
ponents: an optional context C such as a passage or problem description; a question Q that might
reference the context; answer options O = (o1, o2, . . . , oK) in the case of K-way multiple choice
questions; an expected answer A (where A ∈ O, if options are present). Some MRC tasks (Ling
et al., 2017; Camburu et al., 2018; Rajani et al., 2019b; Cobbe et al., 2021) also provide rationales R
as free-form textual explanations of the answer A.

To generate a more fine-grained explanation, we modify the above formulation so that the data
also contains a structured, step-by-step explanation of the answer, as depicted in Figure 1. To
this end, we define textual logical units (TLU), which are essentially a sequence of tokens from
elements in T that defines premises that will possibly be referenced in the reasoning steps. More
formally, a TLU for a QA component in T ∈ T is a list of the sequence of tokens in T . For
instance, given the tokens T = (t1, t2, . . . , t|T |), the TLU of T is defined as the list of spans
LT = ((l1, l2), (l2 + 1, l3), . . . , (l(|LT |−1) + 1, l|LT |)) where li ∈ {x | 1 ≤ x ≤ |T |} and li > lj
for i > j. Each pair (li, lj) ∈ LT represents the sequence of tokens (t(li), t(li+1), . . . , t(lj)). The
TLUs can be extracted automatically from the text by using a simple algorithm, e.g., breaking
down paragraphs by punctuation mark. The algorithm we used to create the datasets can be found
in Appendix A.5. Note that the TLUs for the rationale LR can be thought of as a sequence of
step-by-step explanations.

Given the TLUs, we also define a structured explanation, which we call reasoning graph. Each
element in LR (referred here as reasoning steps or intermediate conclusions) will be connected to a
set of other TLUs (or premises) that contain sufficient information supporting the reasoning step. The
reasoning graph can be defined as a set of vertices and edges G = (V, E), where the nodes are TLUs
such that V ⊆ (LC∪LQ∪LO∪LA∪LR) and the edges E ⊆ V×(LO∪LA∪LR) are pairs of nodes.
The starting node of an edge is a premise of a reasoning step, while the ending node is the output of a
reasoning step, i.e., an intermediate conclusion or an answer. Note that in this case the explanation
graph G is directed (edges go from premises to conclusions) and acyclic (each conclusion should
only be generated once). Our reasoning graph formulation shares some similarities to Entailment
Trees from Dalvi et al. (2021). However, our benchmark does not require a pre-assigned corpus of
textual facts or a hypothesis (which must be included with the data). Furthermore, reasoning graphs
allow for other QA elements (e.g., context, answer options, and expected answer) and represents the
reasoning using the less restrictive directed acyclic graphs (a tree data structure can’t easily be used
to represent the examples from Figure 1).

2.2 DATA SOURCE AND ANNOTATION

With the goal of testing complex reasoning capabilities, we build upon existing QA datasets in which
solutions require multiple reasoning steps. Since our focus is testing reasoning capabilities, we
disregard datasets that require domain knowledge to solve the problem. Instead, we focus on the ones
containing most of the information within the context, question, and answer options. We categorize
the reasoning tasks according to their level of existing structured reasoning steps, which we describe
below.

The first category, comprised of the science question dataset AI2 Reasoning Challenge (ARC) (Clark
et al., 2018), already contains annotated structured reasoning steps provided by ENTAILMENTBANK
(Dalvi et al., 2021). ENTAILMENTBANK comes with an external source of knowledge (Jansen
et al., 2018) from which premises could be retrieved to generate explanations. Since the retrieval of
premises is out of the scope of this work, we directly add the gold premises to the context C of the
QA task2.

The second category uses the Sequential Context-Dependent Execution dataset (SCONE) (Long et al.,
2016). The questions in SCONE describe a sequence of actions that modify a given toy world (e.g.,
list of objects and their relative position), and the expected answer is the final world state. We extract

2Entailment Bank has a similar formulation which they call Task-1. However, they do not consider the
problem of choosing the correct answer given the multiple choice options from ARC.
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Task
Name

Task
Domain

# Original
Questions

# Used
Questions

# Reasoning
Steps

Answer
Type

ARC Science 7,787 1,840 5,881 4-Way MC
SCONE Processes 14,574 14,574 130,482 State Pred.
GSM8K Math 8,792 1,030 4,666 Number
AQUA-RAT Math 101,449 1,152 7,179 5-Way MC
AR-LSAT Logic 2,046 500 2,885 5-Way MC

TOTAL — 134,648 19,096 151,093 —

Table 1: The different tasks used to create the proposed benchmark. In the answer types, “K-Way
MC” stands for multiple choice answer with K options.

the reasoning steps programmatically as this dataset also provide the intermediate world states for
each question.

The third category of tasks, namely GSM8K (Cobbe et al., 2021) and AQUA-RAT (Ling et al.,
2017) contain unstructured rationales (in natural language) showing the chain of reasoning used
to solve the given questions. In this category, we further annotate the datasets. First, we split the
context, question, answer options, and rationales into TLUs, assigning a number ID to each of them.
Afterwards, we ask human annotators to create the structure of the reasoning steps, assigning which
premises were used in each entailment step. Note that some entailment steps might not have any
premises (e.g., when stating a known fact as in “one hour has 60 minutes”).

Finally, the last category is comprised of the AR-LSAT dataset (Zhong et al., 2021), which is a
relatively complex reasoning task (transformer-based models are shown to struggle in this task) and
does not come with any rationale or explanation. Therefore, we annotate the rationales and reasoning
structure from scratch. We ask expert annotators to solve the questions given the context and the
answer. While writing down the step-by-step explanations, they are also asked to assign which
premises are used to reach each intermediate conclusion.

2.3 DATASET DETAILS

A summary of all datasets in our proposed benchmark can be found in Table 1. Note that not
all questions in the original datasets were used due to the significant amount of time required for
annotation. Examples of the final data for each dataset can be found in Appendix A.1.

Annotation Details: Each dataset is pre-processed and QA components are broken down into
TLUs. For all datasets except ARC and SCONE, we ask human annotators to further annotate data
points by first creating multi-step rationales (this is skipped if the dataset already contains rationales),
and then connect each rationale step to the premises that support that conclusion (in the user-interface
the annotators select a set of numbers for each rationale step). Note that human annotators are given
an unlimited amount of time to complete each task, and they are mostly comprised of experts with
undergraduate or graduate level education, as opposed to randomly selected online workers.

For quality control, we performed two passes for each reasoning step, using a third pass to break
ties when needed. As an indicator of annotation quality, we compute the annotation agreement
using Fleiss Kappa κ (Fleiss, 1971). Each directed edge in the reasoning graph is regarded as binary
question (edge should be present or not). Finally, the first two annotation passes are used to compute
κ = 0.79, indicating “substantial agreement” among annotators. With a total of 14,730 reasoning
steps annotated (for GSM8K, AQUA-RAT, and AR-LSAT), we estimate a total of 1,467 (paid) work
hours. Further annotation details can be found in Appendix A.2.

Data Statistics: We analyze the data of all combined datasets to obtain some insights into the scale
and reasoning complexity. Figure 2 shows the distribution of the “number of reasoning steps” among
the data points in each annotated dataset. Note that most of the tasks contain a larger number of
reasoning steps compared to previous multi-hop QA datasets (Jhamtani & Clark, 2020; Yang et al.,
2018; Geva et al., 2021; Chen et al., 2021). For the most part, multi-hop QA questions only contain
up to two “hops” (or reasoning steps), while STREET has an average of 7.8 steps per question, with

4



Published as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Number of Reasoning Steps

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Da
ta

se
t P

ro
po

tio
n ARC

GSM8K
AQUA-RAT
SCONE
AR-LSAT

Figure 2: A histogram containing the distribution of data points and the number of reasoning steps for
each annotated dataset (training, development, and testing split combined), truncated to a maximum
of 15 steps. The distribution varies among datasets, with an average of 7.8 steps across all data points.

26.4% of the questions containing more than 10 reasoning steps. The number of incoming edges for
each node (a.k.a “in-degree” or “valency”, which is the number of directed edges with such node
as destination) in the reasoning graph is usually between one and three, with questions containing
nodes with more than five incoming edges. Further data statistics and dataset analysis are available in
Appendices A.3 and A.4.

3 BASELINE MODELS

We measure the performance of various models on our multi-task reasoning and explanation bench-
mark. We show results separately for each of the tasks, where we mainly evaluate (1) the standard
QA accuracy (i.e., can the model predict the correct answer?) and (2) the models’ ability to generate
the reasoning graph. The evaluation metrics will be described in section 4.1.

To this end, we use two approaches to solve the structured reasoning task. The first approach is fully
supervised, where we fine-tune a T5 model (Raffel et al., 2020), which is similar to other work on
reasoning datasets (Tafjord et al., 2021; Dalvi et al., 2021; Ribeiro & Forbus, 2021). The second
approach uses the much larger GPT-3 language model (Brown et al., 2020). Instead of fine-tuning
GPT-3, we use few-shot prompting. These large language models have been shown to have strong
step-by-step reasoning generation capabilities (Wei et al., 2022; Wang et al., 2022) even if just
provided with a handful of examples.

3.1 REASONING GRAPH ENCODING

Following prior work with structured input and output (Chen et al., 2020; Tafjord et al., 2021; Dalvi
et al., 2021; Neves Ribeiro et al., 2022), we linearize the reasoning graph such that it can be generated
by the language model as a sequence of tokens. First, each one of the candidate premises (i.e., context,
question, and answer options) are assigned an id token. Then we sort the reasoning graph’s steps
according to a valid topological order (i.e., all premises must be part of the linearized string before
adding a reasoning step node). For tasks where answer types are multiple-choice or number, the last
node will contain the text with the value of the predicted answer, such as “The answer is A)” or “The
answer is 15”. The text encoding for the GSM8K example in Figure 1 can be seen below:

$question$ = (1) Natalia sold clips to 48 of her friends in April,
and then (2) she sold half as many clips in May. (3) How many
clips did Natalia sell altogether in April and May?

$proof$ = (1) & (2) -> (4): Natalia sold 48/2 = 24 clips in May;
(1) & (3) & (4) -> (5): Natalia sold 48+24 = 72 clips altogether
in April and May; (3) & (5) -> (6): The answer is 72;

The SCONE task is a special case where we do not expect the generative models to output the state
of every tracked object in the answer node. Instead, the answer is extracted from the intermediate
nodes of the reasoning graph (examples are shown in Appendix A.1)
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3.2 SUPERVISED TRAINING

For full supervision, we fine-tune the T5-large model (770 million parameters) on the training data for
each task separately. The model is fine-tuned for up to 30 epochs, and we select the check-point with
the highest answer accuracy on the development data at the end of each training epoch. The training
is done using a machine with four NVIDIA Tesla V100-SXM2, and the Hugging Face3 pre-trained
T5-model distribution. Further implementation details are available in Appendix C. During inference,
we use beam search with a beam size of 5 to generate the reasoning graph and the answer for a given
question.

3.3 FEW-SHOT PROMPTING

For few-shot prompting we use GPT-3 (Brown et al., 2020) by accessing the OpenAI’s API 4. The
API provides access to a few model variants. For our experiments we use the largest advertised model,
namely text-davinci-002 (175B parameters). During inference, we select up to 5 examples
(depending on the tasks and models, fewer prompt examples might be provided due to the encoder
token size limit) as prompts for the model, following the encoding method from Section 3.1, except
we remove the expected reasoning graph from the target question. During generation, we use greedy
decoding and do not set any maximum or minimum output size, expecting the model to predict the
end of the structured output.

4 EXPERIMENTS

4.1 EVALUATION METRICS

We specify the 3 main categories of evaluation metrics described below to evaluate the answer to the
questions and the generated reasoning graph.

Answer Accuracy: This metric measures the ability of generative models to predict the correct
answer to a question. Exact match is used to evaluate the models on tasks with multi-choice or
numerical answers. For the tasks with state prediction (i.e., SCONE), we use the combined state
for each object as the expected answer. The answer accuracy will be an upper bound for the other
metrics since any generated reasoning graph with an incorrect answer is also labeled as incorrect.

Reasoning Graph Accuracy: This metric compares the predicted and golden reasoning graphs
in terms of both the graph structure and the content of the intermediate conclusion nodes. The
comparison between the predicted graph Gp = (Vp, Ep) and golden graph Gg = (Vg, Eg) starts with
aligning the nodes in Vp and Vg . In this matching, we use the premises as anchors, and the reasoning
step nodes are matched according to their ancestors in a topological ordering. Given two matched
reasoning step nodes vp ∈ Vp and vg ∈ Vg , we use textual similarity function σ(text(vp), text(vg))
to test if two reasoning step nodes are equivalent. The textual similarity function varies depending on
the QA Task. More details on the matching algorithm and the different text similarity functions used
are available in Appendix D. Note that this is a strict metric, and small deviations from the golden
reasoning graph will render the predicted graph incorrect.

Reasoning Graph Similarity: The reasoning graph similarity sim(Gp,Gg) is a “softer” metric that
compares the predicted and golden reasoning graphs using the graph edit distance function δ(Gp,Gg).
The function δ uses insertion, deletion and substitution as elementary graph edit operators over nodes
and edges. The text similarity function σ is used to test if two nodes match. The cost of any edit
operation is 1. However, if the generated answer is incorrect, the similarity is set to 0 (i.e., the edit
cost for the “answer node” LA is∞). The Graph Similarity function is normalized (the output is in
the range [0, 1]) and can be computed as:

sim(Gp,Gg) = 1−
[

δ(Gp,Gg)
max(|Np|+ |Ep|, |Ng|+ |Eg|)

]
(1)

3model available at https://huggingface.co/t5-large
4https://openai.com/api/
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Model ARC SCONE GSM8K AQUA-RAT AR-LSAT
Answer Accuracy

Random Guess 25.0 — — 20.0 20.0
T5 [large] (fine-tuned) 93.5 69.6 10.4 28.7 28.0
GPT-3 [davinci] (few-shot) 72.9 02.3 34.8 40.2 19.0

Reasoning Graph Accuracy
T5 [large] (fine-tuned) 17.1 60.0 00.7 00.0 00.0
GPT-3 [davinci] (few-shot) 01.7 01.2 00.7 00.0 00.0

Graph Similarity
T5 [large] (fine-tuned) 44.1 67.0 05.4 00.9 00.3
GPT-3 [davinci] (few-shot) 15.1 01.9 16.0 05.2 01.1

Table 2: The main results on the test set across the different tasks and different evaluation metrics.
Numbers are in percentage. The “Random Guess” results are included to facilitate visualization since
different tasks have different answer types.

In general, computing the graph edit distance can be computationally expensive as the problem is
NP-complete (Abu-Aisheh et al., 2015). For this reason, we compute an approximation of this value
by using the implementation from the networkx5 library.

4.2 RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Value

ARC

SCONE

GSM8K

AQUA-RAT

AR-LSAT

Reasoning Graph Similarity
for Correct Answers

Human Performance
T5 [large]
GPT-3 [davinci]

Figure 3: A histogram containing the reasoning
graph similarity of baseline models as well as hu-
man performance on a randomly selected subset of
the test data.

The main experiment results can be found in
Table 2. The results for the SCONE task are
averaged across the different sub-tasks (namely
Alchemy, Scene, and Tangrams). Further ex-
periment results with different model sizes and
generalization settings can be found in Appendix
B.

There are a few takeaways. First, we notice that
T5 [large] (fine-tuned) either outperforms or
is on par with GPT-3 [davinci] (few-shot)
on ARC and SCONE across all metrics, while
the opposite is true for the math domain tasks
GSM8K and AQUA-RAT. Both methods per-
form poorly on AR-LSAT. This result is consis-
tent with the results from Zhong et al. (2021),
which shows that language models still struggle
with more complex analytical reasoning tasks.

Second, the results of fine-tuned T5 [large]
show that the Reasoning Graph Accuracy and
Reasoning Graph Similarity are substantially
better on both ARC and SCONE (with perfect
generation for 17.1% and 60.0% of the correct
answers, respectively), while close to zero for
the remaining tasks. Both ARC and SCONE are
the tasks with best answer accuracy compared to
“random guess”. This suggests a trend that the
higher the answer accuracy for a task, the more
likely the model is able to produce a correct
reasoning graph explaining their answer.

5https://networkx.org/

7



Published as a conference paper at ICLR 2023

Third, the GPT-3 [davinci] model struggles
with tasks outside of the math domain. Noticeably, the SCONE results are far worse when compared
to T5 [large]. This has been observed previously by Wei et al. (2022), where few-shot prompting
models can struggle with toy “symbolic reasoning” tasks. This often happens when models are not of
sufficient size or if the prompt examples are out of domain (i.e., evaluation examples have more steps
than prompt examples).

To better visualize and understand the quality of the generated output, we plot the reasoning graph
similarity for each task in Figure 3. This plot only considers outputs in which answers match the
golden answers for the QA tasks. For reference, we also estimate the human performance by asking
expert annotators to write the reasoning graph from scratch, given only the context, question, and
the expected answer (broken down into TLUs) for 100 randomly selected questions from the test set
across the different tasks.

The baseline models perform well compared to human performance on both SCONE and GSM8K.
Most noticeably, T5 [large] seems to generate the best structured explanations outputs for SCONE,
which is expected since this task is more formulaic and contains the most training examples. On the
other hand, the baseline models seem to perform much worse on ARC, AQUA-RAT and AR-LSAT,
with human-generated reasoning graphs having over 200% higher scores compared to baselines. The
human results on AQUA-RAT, and AR-LSAT are somewhat lower than on the other tasks, primarily
due to the diversity of the possible valid outputs (there are multiple ways one can explain an answer).
In general, automatic evaluation of generated text is still a challenge (Celikyilmaz et al., 2020) in the
field of natural language understanding.

4.2.1 ERROR ANALYSIS

To better understand the model’s mistakes, we manually analyze 100 randomly selected outputs
where the answers are incorrect. Since each STREET task has their own peculiarities, we analyze the
error patterns for each of them separately.

ARC In this task, both baseline models seem to struggle with large outputs (i.e., more than 5
reasoning steps), which leads to a common error pattern where generated reasoning graphs do not
contain the answer to the question (≈ 62%).

SCONE To our surprise, GPT-3 [davinci] often fails to execute basic operations in this task. It
generates an incorrect conclusion in first reasoning step for ≈ 83% of the analyzed outputs. This
could be due to the limited number of few-shot examples (as a consequence of the input size limit) or
because this task is outside of its pre-training data distribution. On the other hand, the T5 [large]
seems to make fewer mistakes, with ≈ 74% of all reasoning steps matching the golden data.

GSM8K Even among incorrect answers, both models are often able to output partially correct
proofs. A small percentage of the incorrect steps are due to calculation error (≈ 12% in GPT-3
[davinci] outputs and ≈ 30% in T5 [large] outputs). In ≈ 37% of the generated outputs, the
models seem to have misunderstood the question or applied the wrong formula in one of the steps.

AQUA-RAT In this task, both models hallucinate the predicted answer into the last reasoning step
(≈ 28%), even when it does not follow the step’s equation. Similarly to GSM8K, a small percentage
of the incorrect steps are due to calculation errors (≈ 12%).

AR-LSAT Both models struggle with this task. Most of the correct answers are due to random
chance, and (≈ 33%) of the generated outputs don’t contain an answer to the question. In particular,
GPT-3 [davinci] often just copies the TLUs from the question without making any meaningful
conclusions.

5 RELATED WORK

Complex Reasoning in Question-Answering Modeling complex reasoning is an important chal-
lenge and a crucial component of natural language understanding. In the context of question-
answering (QA), initial efforts to emulate complex reasoning used symbolic representations and
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problem solvers (Forbus & De Kleer, 1993; Platonov et al., 2020). With recent advances in pre-trained
language models, reasoning over natural language has became more tractable as these models can
more easily handle ambiguity and learn the reasoning rules implicitly (Clark et al., 2018; Tafjord
et al., 2021). As one of the simpler forms of reasoning, textual entailment was extensively studied,
and many datasets and tasks have been proposed (Bowman et al., 2015; Williams et al., 2018; Zellers
et al., 2018). To address multi-step reasoning over language, many multi-hop QA (MHQA) datasets
and methods were proposed (Yang et al., 2018; Dua et al., 2019; Xiong et al., 2021; Chen et al., 2021).
Common limitations of MHQA that we try to address in this paper include (1) a small number of
reasoning steps (usually up to three) and (2) simplistic evaluation, allowing models to correctly predict
answers by exploiting spurious correlations (Tang et al., 2021). Datasets such as CLUTRR (Sinha
et al., 2019) and RuleTaker D* (Clark et al., 2020) better addressed the multi-step and structured
aspect reasoning with explanations. However, they contain mostly synthetic data and tasks that are
relatively easy to solve with current language models.

Explainable Question-Answering Due to the black-box nature of neural networks (Danilevsky
et al., 2020), many approaches were proposed to improve the explainability of QA systems. They
include explanation graphs (Jansen et al., 2018), generating a free-form natural language explanations
(Camburu et al., 2018; Rajani et al., 2019b; Ayyubi et al., 2020), and chain of reasoning explanations
Jhamtani & Clark (2020). Most noticeably, Dalvi et al. (2021) introduced the concept of Entailment
Trees, containing multi-premise textual entailment steps. Entailment Trees differ from our proposed
Reasoning Graphs in three main points (1) they were designed to be used mostly for explanation, not
representing the answer to the questions directly (2) they require an external corpus of premises (3)
they use the concept of hypothesis (as a combination of question + answer) that needs to be annotated
as input. We believe reasoning graphs are a more flexible representation for explaining answers in the
context of QA.

Multi-Task Language Understanding Benchmarks are an important way to measure progress in
natural language understanding. Datasets that contain multiple tasks have the advantage of testing
the generality of models. The GLUE (Wang et al., 2018) and SUPER-GLUE (Wang et al., 2019)
contain tasks such as reading comprehension and natural language inference. The Massive Multitask
Language Understanding benchmark (Hendrycks et al., 2021) contains various QA problems extracted
from the internet. BIG-Bench (Srivastava et al., 2022) contains over 200 tasks drawing on problems
involving linguistics, math, common-sense reasoning, and others. These datasets arguably test the
model’s ability to perform reasoning to some degree. However, most of their evaluation revolves
around answering questions instead of systematically testing the reasoning required to answer such
questions.

6 CONCLUSION

We aim to enable machines to perform multi-step reasoning while explaining their answers. We
believe that teaching machines how to manipulate premises and reach conclusions can be an important
step towards true language understanding. With that in mind, we introduce STREET, a new multi-task
reasoning and explanation resource covering various forms of reasoning in the context of question-
answering. We hope this benchmark will allow for a more systematic evaluation of the reasoning
capabilities of natural language systems. Future avenues of research include exploring reasoning
capabilities with knowledge retrieval and using supervised models trained on multi-step reasoning
data to bootstrap unsupervised learning for multi-step reasoning.
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A STREET DATA

A.1 DATA EXAMPLES

We show examples (as linearized textual encoding) for each of the five tasks in STREET below. The
questions and reasoning graphs were taken from the development set. The SCONE task contains
three different sub-tasks (namely Alchemy, Scene, and Tangrams), and we show examples for each
of them separately as their format differs significantly.

ARC:

$question$ = (1) the sun rising / setting occurs once per day
(2) the sun setting is a kind of event (3) the sun rising is a
kind of event (4) Which event occurs on a daily cycle? (5) A) The
Sun rises and sets. (6) B) Earth tilts on its axis. (7) C) Earth
revolves around the Sun. (8) D) The Moon revolves around Earth.

$proof$ = (1) & (2) & (3) -> (9): the sun rising and setting is
the event that occurs once per day; (9) -> (10): The answer is A);

SCONE (Alchemy):

$question$ = (1) first beaker has 0 chemicals (2) second beaker
has 1 green chemical (3) third beaker has 1 purple chemical (4)
fourth beaker has 1 orange chemical (5) fifth beaker has 1 green
chemical (6) sixth beaker has 1 red chemical (7) seventh beaker
has 1 yellow chemical (8) throw out the orange chemical (9) then,
add the leftmost beaker of green chemical to the yellow chemical
(10) mix it (11) then, add the remaining green chemical to it (12)
mix that too

$proof$ = (4) & (8) -> (13): fourth beaker has 0 chemicals; (2)
& (7) & (9) -> (14): seventh beaker has 1 yellow and 1 green
chemical; (2) & (9) -> (15): second beaker has 0 chemicals; (14)
& (10) -> (16): seventh beaker has 2 brown chemicals; (16) & (11)
& (5) -> (17): seventh beaker has 2 brown and 1 green chemicals;
(11) & (5) -> (18): fifth beaker has 0 chemicals; (17) & (12) ->
(19): seventh beaker has 3 brown chemicals;

SCONE (Scene):

$question$ = (1) position 1 has no person (2) position 2 has no
person (3) position 3 has no person (4) position 4 has no person
(5) position 5 has person in red shirt and yellow hat (6) position
6 has no person (7) position 7 has no person (8) position 8 has
no person (9) position 9 has no person (10) position 10 has no
person (11) a man in a yellow shirt appears on the right of the
man in a red shirt and yellow hat (12) a second man in a yellow
shirt appears on the left end (13) he leaves (14) the man in the
red shirt and yellow hat moves one space to the left (15) a man in
a red shirt appears on his right

$proof$ = (11) & (6) -> (16): position 6 has person in yellow
shirt and no hat; (1) & (12) -> (17): position 1 has person in
yellow shirt and no hat; (17) & (13) -> (18): position 1 has
no person; (14) & (4) & (5) -> (19): position 4 has person in
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red shirt and yellow hat; (14) & (5) -> (20): position 5 has no
person; (20) & (15) -> (21): position 5 has person in red shirt
and no hat;

SCONE (Tangrams):

$question$ = (1) position 1 has figure A (2) position 2 has figure
D (3) position 3 has figure E (4) position 4 has figure C (5)
position 5 has figure B (6) swap the 1st and 5th figure (7) swap
the 1st and 3rd figure (8) swap them back (9) delete the 5th
figure (10) add it back

$proof$ = (1) & (6) -> (11): position 1 has figure B; (5) & (6) ->
(12): position 5 has figure A; (11) & (7) -> (13): position 1 has
figure E; (3) & (7) -> (14): position 3 has figure B; (13) & (8)
-> (15): position 1 has figure B; (14) & (8) -> (16): position 3
has figure E; (12) & (9) -> (17): position 5 has no figure; (17) &
(10) -> (18): position 5 has figure A;

GSM8K

$question$ = (1) Adam and Tom are brothers. (2) Adam is 8 years
old and (3) Tom is 12 years old. (4) In how many years will their
combined age be 44 years old?

$proof$ = (2) & (3) -> (5): At present, the two brothers have a
combined age of 8 + 12 = 20 years old.; (5) -> (6): Therefore,
1 year means an increase in the sum of their ages by 1 * 2 = 2
years.; (4) & (5) -> (7): Adam and Tom need a total of 44 - 20
= 24 more years to be 44 years old together.; (6) & (7) -> (8):
So both brothers will be 44 years old together after 24 / 2 = 12
years.; (4) & (8) -> (9): The answer is 12;

AQUA-RAT

$question$ = (1) Three birds are flying at a fast rate of 900
kilometers per hour. (2) What is their speed in miles per minute?
(3) [1km = 0.6 miles] (4) A)32400 (5) B)6000 (6) C)600 (7) D)60000
(8) E)10

$proof$ = (0) -> (9): To calculate the equivalent of miles in a
kilometer; (3) -> (10): 0.6 kilometers = 1 mile; (10) & (1) ->
(11): 900 kilometers = (0.6)*900 = 540 miles; (0) -> (12): In
1 hour there are 60 minutes; (11) & (12) & (2) -> (13): Speed
in miles/minutes = 60 * 540 = 32400; (13) & (2) & (4) -> (14):
Correct answer - A; (14) -> (15): The answer is A);

AR-LSAT

$question$ = (1) Four boys - (2) Fred, Juan, Marc, and Paul -
(3) and three girls - (4) Nita, Rachel, and Trisha - (5) will
be assigned to a row of five adjacent lockers, (6) numbered
consecutively 1 through 5, (7) arranged along a straight wall.
(8) The following conditions govern the assignment of lockers to
the seven children: (9) Each locker must be assigned to either one
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Figure 4: Screenshot of the web-based annotation tool designed to author the reasoning graphs. The
fields on the left contain the TLUs from the question components. The fields on the right are used by
annotators to select the premises for the current rationale (i.e., reasoning step). For AR-LSAT, the
annotators also had to write the rationales in addition to selecting the premises.

or two children, (10) and each child must be assigned to exactly
one locker. (11) Each shared locker must be assigned to one girl
and one boy. (12) Juan must share a locker, (13) but Rachel cannot
share a locker. (14) Nita’s locker cannot be adjacent to Trisha’s
locker. (15) Fred must be assigned to locker 3. (16) Which one of
the following is a complete and (17) accurate list of the children
who must be among those assigned to shared lockers? (18) A) Fred,
Juan (19) B) Juan, Paul (20) C) Juan, Marc, Paul (21) D) Juan,
Marc, Trisha (22) E) Juan, Nita, Trisha

$proof$ = (1) & (3) & (5) -> (23): Four boys and three girls will
be assigned to five adjacent lockers; (10) & (11) & (9) -> (24):
Each locker can be assigned to max two children, one girl and one
boy, and one child must be assigned to exactly one locker; (12)
& (14) -> (25): Kids who can share lockers : Juan, Nita, Trisha;
(13) -> (26): Kids not sharing lockers : Rachel; (0) -> (27):
Answer is 22; (27) -> (28): The answer is E);

A.2 FURTHER DATA ANNOTATION DETAILS

Initially the expert annotators are given a guideline document containing a list of instructions on how
to properly label the data. Afterwards, we carried out a meeting to elucidate any further questions
about proposed annotation tasks. The guideline documents contains a few annotation examples
created by the authors and also contains overall annotation instructions, summarized as follows:
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Figure 5: A histogram containing the distribution of incoming edges (a.k.a node’s degree) per reason-
ing step for each annotated dataset (training, development, and testing split combined), truncated to a
maximum value of 8 incoming edges.

• Completeness: The premises (directed edges) should contain all the information needed to ensure
that the conclusion nodes are entailed given the premise.

• Relevance: Edges connecting nodes should ensure the entailment is correct, and no further
irrelevant edges should be included.

• Purposefulness: The nodes containing the question and the answer should always be included in
the final reasoning graph.

• Granularity: While writing the step-by-step rationales (in the case of AR-LSAT), the entailments
should be fine-grained, encoding a single inference or logical step.

As mentioned previously, human annotators were given an unlimited amount of time to complete
their tasks. The education level of the experts annotators were undergraduate or graduate. We believe
all these factors contributed to the final quality of the data.

The annotation tool used a simple web-based form, with fields containing the question, context,
answer choice, and answer. Each annotation represented a single entailment step. The annotators had
to select from a check-box like input field containing premises. For AR-LSAT they were required to
write the step rationales as well (explaining the answer). A screenshot of the annotation tool for with
a GSM8K example is shown in Figure 4.

A.3 FURTHER DATA STATISTICS

The STREET reasoning tasks are not only multi-step, but also multi-premise, where over 96.5% of
nodes in the reasoning graphs contain two or more incoming edges. The distribution of such incoming
edges is shown in Figure 5.

A.4 DATASET ANALYSIS

We analyse the types inferences used during the reasoning steps in STREET. We sampled 100
reasoning steps, evenly distributed among the five tasks. We manually classify the reasoning steps in
seven different categories, as shown in Table 3. For each category, we provide one reasoning step
example, including the premises and the conclusion.

The majority of the reasoning steps requires “Spatial reasoning” (41%), involving concepts such as
inertia, object displacement, ordering, and others. The second most common type involves “arith-
metic inference” (20%), where conclusions contain simple operations such as addition, subtraction,
multiplication and division. In the third most common inference type, “identifying answer” (17%),
the conclusion simply states the final answer, either in a numerical or multiple-choice format.

A.5 TEXTUAL LOGICAL UNIT EXTRACTION ALGORITHM

Algorithm 1 contains a pseudo-code for the script used to extract TLUs from the components of the
questions. The algorithm uses Python’s module “re” style of regular expression and matching to
determine boundaries between TLUs.
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Inference Type % Example(s)

spatial
reasoning 41

p1
p2

step

“position 3 has person in purple shirt and purple hat”
“the man with the purple shirt and

hat moves to the right end”
“position 3 has no person”

arithmetic
inference 20

p1
p2

step

“There are 30 students”
“he wants to give a Valentine to 60% of them”

“He needs 18 valentine’s cards because 30 * 0.6 = 18”

identifying
answer 17

p1
p2
p3

step

“What is their speed in miles per minute?”
“A) 32400”

“Speed in miles/minutes = 60 * 540 = 32400;”
“The answer is A)”

logical
inference 12

p1
p2

step

“a plant cell is a kind of cell”
“a cell nucleus is a part of a cell”
“a plant cell contains a nucleus”

paraphrasing
question

or context
5

p1
p2
p3

step

“Four boys”
“and three girls”

“will be assigned to a row of five adjacent lockers”
“Four boys and three girls will be
assigned to five adjacent lockers”

algebraic
manipulation 4 p1

step
“1/13 = 7/k”

“k = 91”

stating common
knowledge 1 step “In 1 hour there are 60 minutes”

Table 3: Types of inference in the reasoning steps for the different tasks in STREET. p1 through p3
represent the premises, while step represents the conclusion. Some of the conclusions do not have
any premises (e.g., “stating common knowledge” inference type).

B FURTHER RESULTS

We perform further experiments to understand: (1) how model sizes influence the final results (2) if
models can generalize when using examples from other tasks. The experiment results with GPT-3
model are summarized in Table 4.

First, we compare the results with the GPT-3 [curie] (few-shot) model. This model performs
significantly worse than GPT-3 [davinci] (few-shot), even though it is advertised as the next
best model 6. This phenomenon has been previously observed, with Wei et al. (2022) reporting
that large models perform qualitatively better than smaller models. Second, the GPT-3 [davinci]
(few-shot, MT) model selects one examples from each STREET task and use them as “few-shot”
examples in order to simulate a multi-task setting. We observe that the results are comparable to
GPT-3 [davinci] (few-shot) except for GSM8K, which has significantly worse results. For the
most part, these results suggest that GPT-3 can adapt and learn from other reasoning domains.

6https://beta.openai.com/docs/models/gpt-3
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Algorithm 1 Textual Logical Unit Extraction
1: procedure EXTRACT TLUS(text)
2: patterns← “(. )|(, )|(! )|(? )|( and )|( then )” ▷ TLU boundaries REGEX
3: matches← text.regex match(patterns)
4: tlus← []
5: last pos← 0
6: for match ∈ matches do
7: tlu← text.substring(last pos,match.end())
8: if match.text() ∈ [“, ”, “and”, “then”] then
9: if tokens(tlu).size() ≥ 5 then

10: tlus.push(tlu)
11: last pos← match.end
12: end if
13: end if
14: end for
15: return tlus
16: end procedure

Model ARC SCONE GSM8K AQUA-RAT AR-LSAT
Answer Accuracy

Random Guess 25.0 — — 20.0 20.0
GPT-3 [davinci] (few-shot) 72.9 02.3 34.8 40.2 19.0
GPT-3 [davinci] (few-shot, MT) 88.1 01.2 07.0 37.1 20.0
GPT-3 [curie] (few-shot) 29.4 00.0 0.37 24.8 21.0

Graph Similarity
GPT-3 [davinci] (few-shot) 15.1 01.9 16.0 05.2 01.1
GPT-3 [davinci] (few-shot, MT) 25.3 01.2 0.21 05.8 00.9
GPT-3 [curie] (few-shot) 00.9 00.0 00.0 00.3 00.0

Table 4: Results on the test set across the different tasks and different evaluation metrics for
variations of the GPT-3 model. Numbers are in percentage. The “Random Guess” results are included
to facilitate visualization since different tasks have different answer types.

C IMPLEMENTATION DETAILS

The T5 model is fine-tuned in an auto-regressive manner. We select the AdamW (Loshchilov &
Hutter, 2019) as the optimizer. During training, we use batches containing two data points. The
learning rate starts at zero and is gradually increased to its maximum value of 3 ∗ 10−5. After 1000
steps, the learning rate is decreased following a cosine function scheduler. The weight decay is set to
10−3.

D REASONING GRAPH SIMILARITY

The textual similarity function σ(a, a) is a binary function that maps the text of two nodes (a and
b) to a TRUE or FALSE value. We use different textual similarity functions for each of the tasks in
STREET. The description of the function are found in Table 5.

Note that our comparison function disregard reasoning steps that contain no antecedents as they are
mostly used as supporting facts during reasoning (for instance, “one hour has 60 minutes” is a node
that might not have antecedents in the reasoning graph).
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STREET Tasks Text Similarity σ(a, b) Description

SCONE The nodes in scone follow a well defined textual structure, therefore
the node similarity returns TRUE if and only if a = b.

GSM8K and AQUA-RAT We parse the node text and extract all the mathematical values
inside the node. For instance “Natalia sold 48 / 2 = 24 clips in
May” would be converted to the set {48, 2, 24}. Then the similarity
function return TRUE if the sets extracted from a and b are equal.

ARC and AR-LSAT Since the conclusion nodes in these are in free text format, we
follow Dalvi et al. (2021) and use the BLEURT (Sellam et al.,
2020) text similarity function. BLEURT is a trained metric that
uses the BERT language model and was shown to have better
correlation to human judgment than standard metrics like BLEU
and ROUGE. We define that BLEURT > 0.25 is the threshold
that decides if nodes a and b are similar.

Table 5: Definition of the text similarity function for each of the STREET tasks.
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