
Conditional Graph Generation with Graph Principal Flow Network

Tianze Luo * 1 Zhanfeng Mo * 1 Sinno Jialin Pan 1 2

Abstract

Conditional graph generation is crucial and chal-
lenging since the conditional distribution of graph
topology and feature is complicated and the se-
mantic feature is hard to be captured by the
generative model. In this work, we propose a
novel graph conditional generative model, termed
Graph Principal Flow Network (GPrinFlowNet),
which enables us to progressively generate graphs
from low- to high-frequency components. Our
GPrinFlowNet effectively captures the subtle yet
essential semantic features of graph topology, re-
sulting in high-quality generated graph data.

1. Introduction
The task of conditional graph generation is crucial in vari-
ous domains such as automatic compound discovery, drug
design, and more (Zang & Wang, 2020; Shi et al., 2020;
Yang et al., 2020; Wang et al., 2019; Liu et al., 2021). It
requires one to generate graph data conditioned on a spe-
cific graph label, e.g. graph property, category. In general,
a graph data with n node is defined as G ≜ (X,A, y),
where X ∈ X ⊂ Rn×d is the node feature matrix, A ∈
A ⊂ Rn×n is the graph adjacency matrix, and y ∈ Y is
the graph label. Suppose the target graph distribution of
interest is G, and each graph is sampled from G ∼ G, the
goal of conditional generation is to learn a generative model
g(·; ·) : (X ×A)×Y 7→ (X ×A), such that for each graph
label ∀y ∈ Y , the distribution of g(ϵ; y) approximates the
conditional graph distribution G|y well, where ϵ is a noise
sampled from a known prior π.

While there is a considerable amount of work and litera-
ture dedicated to unconditional graph generation (Zhu et al.,
2022), the field of conditional graph data generation is rel-

*Co-first authors with equal contributions. 1Nanyang Tech-
nological University, Singapore. 2Chinese University of
Hong Kong. E-mail: {tianze001,zhanfeng001}@ntu.edu.sg;
sinnopan@cse.cuhk.hk.

Proceedings of the 40 th International Conference on Machine
Learning workshop on Structured Probabilistic Inference Gen-
erative Modeling, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

atively understudied. The main challenge in conditional
graph data generation arises from two factors: Firstly, the
conditional graph distribution is highly complicated, as the
relationship between graph features and topology varies
significantly across different graph labels. Secondly, condi-
tional datasets typically consist of fewer data points, leading
to a higher demand for the effectiveness of the learning
model due to data scarcity.

Admittedly, unconditional models can be transformed into
conditional generators by integrating a graph label embed-
ding module, similar to conditional generative vision models
(Ho & Salimans, 2021). However, existing unconditional
graph generation models have inherent limitations, making
them unsuitable for unconditional generation. Likelihood-
based models, like (Simonovsky & Komodakis, 2018; Ma
et al., 2018; De Cao & Kipf, 2018), estimate the likelihood
function of the underlying graph data distribution to gener-
ate samples. Yet, these models struggle with complex graph
structures and computational burdens, making them less
suitable for conditional generation. Another class, diffusion-
based models like (Niu et al., 2020b; Jo et al., 2022; Luo
et al., 2022), illustrates the state-of-the-art performance in
unconditional generation by denoising graph data through
reverse diffusion SDE. However, noise insertion in the dif-
fusion process can corrupt semantic information, hindering
their ability to capture crucial graph label modes. Hence,
diffusion-based models fall short as conditional generation
models.

In this work, we leverage graph spectral theory to enhance
the learning of subtle yet crucial semantic features. Instead
of fitting the likelihood function or recovering the graph
from uniform noise, our approach involves progressive
graph generation from low to high-frequency components.
The low-frequency components correspond to the smallest
principal components of the graph Laplacian matrix. This
step-by-step approach enables coarse-to-fine learning of the
graph. As shown in Figure 1, despite a minor difference in
the connection between the clusters, the upper and bottom
graphs have distinct graph labels with different topological
properties and connectivity. The low-frequency component
(on the right) successfully discriminates the connectivity,
while the diffusion process results in a completely blurred
adjacency matrix, failing to distinguish between them. Thus,
the low-frequency component is an ideal starting point for

Conditional Graph Generation with Graph Principal Flow Network

unconditional graph generation as it has a smoother distri-
bution, is easier to learn, and captures subtle yet crucial
semantic features of the graph label.

Building upon recent advancements in generative modeling,
specifically the Generative Flow Network (GFlowNet) (Ben-
gio et al., 2021a;b), we propose a novel framework called
Graph Principal Flow Net (GPrinFlowNet). This frame-
work facilitates conditional graph generation by employing
a step-by-step coarse-to-fine approach. In the language of
GFlowNet, this progressive generation can be understood as
a Markov chain, where the k-th intermediate state represents
the graph adjacency reconstructed from the k lowest princi-
pal components of the graph Laplacian. Unlike GFlowNet,
which focuses on discrete probabilistic modeling, GPrin-
FlowNet simultaneously learns the continuous-valued graph
feature and eigenvalues of the graph Laplacian.

2. Fundamentals of GFlowNet
Several pivotal developments in generative modeling
have led to the emergence of Generative Flow Network
(GFlowNet), an advanced model for probabilistic infer-
ence (Bengio et al., 2021a; Deleu et al., 2022; Zhang
et al., 2022b;a; Pan et al., 2023; Bengio et al., 2021b).
GFlowNet employs a reward function R(x) ∈ R+ to ef-
ficiently sample data x from the data space X . Notably,
GFlowNet’s sampling protocol follows a Markovian trajec-
tory τ = (s0, s1, ..., sn), where s0 is the initial state, si is
the i-th hidden state, and sn is the terminating state with
sn = x. It’s important to note that each hidden state si
is derived from the state space S, which may differ from
the data space X . Furthermore, the sampling trajectories of
GFlowNet, denoted as T , form a Directed Acyclic Graph
(DAG), with each node representing a hidden state s ∈ S.
As highlighted in (Bengio et al., 2021b), the sampling pro-
cess of GFlowNet is governed by the flow function F (·).
This function ensures that the measure of incoming trajecto-
ries at each hidden state is equal to the measure of outgoing
trajectories. Our primary objective is to learn a flow func-
tion F (·) such that the total mass of trajectories terminating
at x is proportional to the reward R(x), mathematically
expressed as

∑
τ :sn=x F (x) = R(x).

In reference to the work of Bengio et al. (Bengio et al.,
2021a), three principal supervisons have been introduced for
training GFlowNets. These encompass the flow matching
condition (Bengio et al., 2021a) as outlined in the same
study, the detailed balance condition (Bengio et al., 2021b),
and the trajectory balance condition (Malkin et al., 2022).
All of these conditions aim to depict the conservation law of
flow mass from different levels of granularity. A definition

for the flow matching condition is∑
si−1

Fθ(si−1, si) =
∑
si+1

Fθ(si, si+1), (1)

where Fθ(s, s
′) ≜

∑
(s,s′)∈τ Fθ(τ) is the learnable edge

flow function. It promotes equality between the masses of
incoming and outgoing edge flows. The detailed balanced
condition is given by

Fθ(si)PF,θ(si+1|si) = Fθ(si+1)PB,θ(si|si+1), (2)

where PF,ϕ and PB,ϕ represent the forward and backward
transition probabilities. It aims to achieve equal mass for
forward and backward transitions between two consecu-
tive states. To further accelerate the convergence and im-
prove the performance of GFlowNet, the trajectory balance
objective extends the detailed balance criterion to an en-
tire trajectory by matching the forward and backward tra-
jectory probabilities PF,θ(τ) ≜

∏n−1
i=0 PF,θ(si+1|si) and

PB,θ(τ) ≜
R(x)
Zθ

∏n−1
i=0 PB,θ(si|si+1), where Zθ is a learn-

able normalization constant.

3. Methodology
3.1. Graph Principal Flow Network

Assume that each conditional graph instance G|y is gener-
ated by a Markov sample path τ ≜ (s0|y, ..., sn−1|y,G|y),
and our ultimate goal is to sample in proportion to the
fidelity of G|y. To facilitate the learning process of the
transition policies between each successive hidden states
(si|y, si+1|y), we introduce the following Graph Principal
Flow Network. We define the graph Laplacian associated
to the adjacency matrix A as L ≜ D−A, where D is the
diagonal degree matrix defined by D[i, i] ≜

∑n
j=1 A[i, j].

We denote the eigen decomposition of L as L = UΛU⊤,
where λi ≜ Λ[i, i] is the i-th smallest eigenvalue, and U[:, i]
is the corresponding eigenvector.

Definition 3.1 (Graph Principal Flow Network). Suppose
d(·, ·) : (X ×A)× (X ×A) 7→ R+ is a graph discrepancy
score, T is the Graph Principal trajectory space, where each
trajectory τ ∈ T is defined by

τ ≜ (s0|y, ..., sn−1|y,G|y), ∀y ∈ Y, (3)

G|y ≜ (X,A)|y, sn−1|y ≜ (Xn−1,An−1)|y. (4)

We assume that the transition between each (si|y, si+1|y)
follows

(si+1|si, y) ∼ PF,θ(si+1|si; y), (5)
(si|si+1, y) ∼ PB,θ(si|si+1; y). (6)

Here, PF,θ and PB,θ represent the learnable forward and
backward transition kernels, which are parameterized by

Conditional Graph Generation with Graph Principal Flow Network

Data degeneration: forward diffusion

Conditional Generation: reversed diffusion

(a). Conventional diffusion process on graphs.

Data degeneration: finer to coarser

(b). Our proposed Graph Principal Flow Network.

Conditional Generation: forward transition

Step 200/1000 Step 400/1000 Step 800/1000 Step 2/10 Step 4/10 Step 8/10

Figure 1: A comparison between the degeneration of graph adjacency across different data degeneration states of diffusion-
based models and our GPrinFlowNet. The low-frequency component (green box) proficiently captures the subtle yet crucial
patterns that are discriminative to graph labels.

θ. Then (d, T , PF,θ, PB,θ) forms a Graph Principal Flow
Network (GPrinFlowNet), if there exists a sequence of nor-
malizers {Zi}ni=1 such that

PF,θ(si+1|si; y)
R(si|y)

Zi
= PB,θ(si|si+1; y)

R(si+1|y)
Zi+1

,

R(si|y) ≜ exp(−d((Xi,Ai), (X,A(i)))) (7)

Here, A(i) ∈ A is the i-th level granularity reconstruction
of A, that is

A(i)[i, j] ≜(UΛiU
⊤)[i, j] · δij , (8)

Λi ≜diag(λ1, ..., λi, 0, ..., 0),

where the self-loop in A is omitted.

GPrinFlowNet stands apart from the standard GFlowNet
in two crucial ways: Firstly, each hidden state of GPrin-
FlowNet resides within a continuous-valued space. Sec-
ondly, as demonstrated in (7), at the i-th intermediate step,
the distribution of the generated graph adjacency aligns
with the distribution of A(i) at the corresponding granular-
ity level. This alignment effectively steers GPrinFlowNet to
generate conditional graph data incrementally, from lower
to higher frequency components.

We propose an effective parameterization and training objec-
tive to train a GPrinFlowNet. Specifically, we parameterize
the forward and the backward transition kernels as learnable
Gaussian distributions, i.e.

PF,θ(s|s′; y) ≜ N(s;µF,θ(s
′, y),ΣF,θ(s

′, y)), (9)

PB,θ(s|s′; y) ≜ N(s;µB,θ(s
′, y),ΣB,θ(s

′, y)), (10)

where s ≜ (X,Λ,U), and the mean and covariance are
learned by a multi-layer Graph Convolutional Network
(GCN) (Defferrard et al., 2016). Now that the transition
probabilities have explicit expression, we can train the

GPrinFlowNet by minimizing the following Graph Prin-
cipal Trajectory Balance objective, which is defined as

L(θ; τ) ≜
n−1∑
i=0

(
log

Zi,θ

∏i−1
j=0 PF,θ(sj+1|sj ; y)

R(si|y)
∏i−1

j=0 PB,θ(sj |sj+1; y)

)2

,

(11)

where the normalizers {Zi,θ}ni=1 are trainable scalars.

3.2. Conditional Generation with GPrinFlowNet

With a well-trained GPrinFlowNet, we can efficiently gen-
erate high-quality conditional graph data in a maximum
of n steps, substantially fewer than the steps required by
diffusion-based models. The conditional generation process
is detailed in Algorithm 1.

Algorithm 1 Conditional Generation with GPrinFlowNet

Input: training data S, a target label y, the forward and
the backward transition policy networks PF,θ and PB,θ,
the conditional and normalized average eigenvector ma-
trix Ū|y and feature matrix X̄|y, a temperature hyperpa-
rameter σ > 0.
Output: a plausible conditional graph data (X̂, Â)
Sample U ∼ N(Ū|y, σ), X0 ∼ N(X̄|y, σ)
Initialize s0 ← (X0,0,U)
for i = 0 to n− 1 do
si+1 ∼ PF,θ(·|si, y) {Forward transition}

end for
(X̂, Â)← (Xn,UΛnU

⊤)

return (X̂, Â)

4. Experiments
4.1. Conditional Graph Generation

Baselines and datasets. We compare our method with
the state-of-the-art graph generation method, including

Conditional Graph Generation with Graph Principal Flow Network

graph diffusion methods such as GDSS (Jo et al., 2022),
EDP-GNN (Niu et al., 2020a); VAE-based methods such
as GraphVAE (Simonovsky & Komodakis, 2018); auto-
regressive models such as GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), and GraphRNN (You et al.,
2018). Although these existing methods focus on uncondi-
tional generation, we effectively modify and extend them
for conditional generation by integrating a graph label em-
bedding module, mirroring the approach we employed in
GPrinFlow. We adopt the AIDS (Morris et al., 2020), En-
zymes (Schomburg et al., 2004), and Synthie datasets (Fer-
agen et al., 2013) for graph conditional generation. More
details of the datasets and the evaluation metric are included
in Appendix A.

Results and analysis. Following the graph generation eval-
uation setting (Jo et al., 2022), for each category, we adopt
the same train versus test split ratio as (Jo et al., 2022). We
measure the maximum mean discrepancy (MMD) to com-
pare the distributions of graph statistics between the same
number of generated and test graphs under each category,
and report the mean MMD as our overall evaluation score.
As shown in Figure 4, our proposed method turns out to
be the best performance among the state-of-the-art graph
generation baselines.

AIDS Enzymes Synthie
Avg. MMD↓ Avg. MMD↓ Avg. MMD↓

GraphRNN (You et al., 2018) 0.139 0.307 0.317
GraphAF (Shi et al., 2020) 0.105 1.068 0.205
GraphDF (Luo et al., 2021) 0.101 0.953 0.253
GraphVAE (Simonovsky & Komodakis, 2018) 0.256 0.772 0.344
GNF (Liu et al., 2019) 0.134 - -
EDP-GNN (Niu et al., 2020b) 0.078 0.177 0.226
GDSS (Jo et al., 2022) 0.044 0.109 0.170
Ours 0.029 0.045 0.056

Table 1: Generation results on the conditional graph datasets. We
report the MMD distances between the test datasets and generated
graphs. The best results are highlighted in bold (the smaller the
better). Hyphen (-) denotes out-of-resources that take more than
10 days or are not applicable due to memory issues.

4.2. Unconditional Graph Generation

We also conduct unconditional graph generation experi-
ments with the aforementioned state-of-the-art graph gen-
eration methods on synthetic datasets: Community-small
and Grid from (You et al., 2018); and a real-world dataset:
Enzymes (Schomburg et al., 2004). As shown in Table 2,
our GPrinFlowNet still achieves state-of-the-art generation
results on the unconditional generation task.

Furthermore, we compare the graph generation efficiency
of some representative aforementioned methods in Table 3.
We record and report the graph generation time (in seconds)
for generating 100 samples. Our GPrinFlowNet achieves
the highest generation speed among all existing methods.

Community-small Enzymes Grid
Avg. MMD↓ Avg. MMD↓ Avg. MMD↓

DeepGMG (Li et al., 2018) 0.523 - -
GraphRNN (You et al., 2018) 0.080 0.043 -
GraphAF (Shi et al., 2020) 0.133 1.073 -
GraphDF (Luo et al., 2021) 0.070 0.922 -
GNF (Liu et al., 2019) 0.170 - -
GraphVAE (Simonovsky & Komodakis, 2018) 0.623 0.730 0.846
EDP-GNN (Niu et al., 2020b) 0.074 0.124 0.340
SubspaceDiff (Jing et al., 2022) 0.056 0.051 0.076
WSGM (Guth et al., 2022) 0.044 0.048 0.051
GDSS (Jo et al., 2022) 0.046 0.046 0.062

Ours 0.037 0.039 0.038

Table 2: Generation results on the unconditional graph datasets.
We report the MMD distances between the test datasets and gener-
ated graphs. The best results are highlighted in bold (the smaller
the better). Hyphen (-) denotes out-of-resources that take more
than 10 days or are not applicable due to memory issues.

Dataset GraphAF GraphDF EDP-GNN GDSS Ours

Community-small 357 2.47e3 368 72 2.7
Enzymes 596 7.58e3 665 128 10.2
Grid 5.83e3 6.42e4 7.58e3 1.75e3 30.89

Table 3: Graph generation time comparison (in seconds) for gener-
ating 100 graphs under the methods’ default setting.

4.3. Ablation Studies

We further conduct ablation studies on how the intermedi-
ate supervision (e.g. aligning the distribution of the i-th
intermediate output to the distribution of the reconstruction
version of the adjacency matrix at the i-th granularity level)
affects the performance of GPrinFlowNet. The results pre-
sented in Table 4 underscore the importance of imposing
supervision to enable GPrinFlowNet to effectively learn the
distribution of the reconstructed graph adjacency matrix at
various granularity levels.

Supervision scheme AIDS Enzymes Synthie

No supervision 0.037 0.075 0.086
Supervision per 10 steps 0.035 0.061 0.072
Supervision per 5 steps 0.032 0.054 0.066
Supervision per 2 steps 0.030 0.049 0.058
Supervision in every step 0.029 0.045 0.056

Table 4: Ablation studies. We report the mean MMD over distri-
butions of degree, clustering coefficient, and the number of orbits,
for conditional graph generation.

5. Discussion
In this paper, we address the challenge of conditional graph
generation using the Graph Principal Flow Network (GPrin-
FlowNet). Through its progressive coarse-to-fine graph gen-
eration process, GPrinFlowNet excels at capturing the subtle
yet crucial semantic features, making it the state-of-the-art
conditional generation model.

Conditional Graph Generation with Graph Principal Flow Network

References
Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-

gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021a.

Bengio, Y., Deleu, T., Hu, E. J., Lahlou, S., Tiwari,
M., and Bengio, E. Gflownet foundations. CoRR,
abs/2111.09266, 2021b. URL https://arxiv.org/
abs/2111.09266.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of the 30th International
Conference on Neural Information Processing Systems,
NIPS’16, pp. 3844–3852, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

Deleu, T., Góis, A., Emezue, C. C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian struc-
ture learning with generative flow networks. In The
38th Conference on Uncertainty in Artificial Intelligence,
2022. URL https://openreview.net/forum?
id=HElfed8j9g9.

Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., and
Borgwardt, K. Scalable kernels for graphs with continu-
ous attributes. Advances in neural information processing
systems, 26, 2013.

Guth, F., Coste, S., Bortoli, V. D., and Mallat, S. Wavelet
score-based generative modeling. ArXiv, abs/2208.05003,
2022.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. URL https://
openreview.net/forum?id=qw8AKxfYbI.

Jing, B., Corso, G., Berlinghieri, R., and Jaakkola, T. Sub-
space diffusion generative models. In ECCV, 2022.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liu, H., Jing, L., Wen, J., Xu, P., Wang, J., Yu, J., and Ng,
M. K. Interpretable deep generative recommendation
models. J. Mach. Learn. Res., 22:202–1, 2021.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. In NeurIPS, 2019.

Luo, T., Mo, Z., and Pan, S. J. Fast graph generative model
via spectral diffusion. arXiv preprint arXiv:2211.08892,
2022.

Luo, Y., Yan, K., and Ji, S. Graphdf: A discrete flow model
for molecular graph generation. In ICML, pp. 7192–7203,
2021.

Ma, T., Chen, J., and Xiao, C. Constrained generation
of semantically valid graphs via regularizing variational
autoencoders. In NeurIPS, 2018.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
GFlownets. In Oh, A. H., Agarwal, A., Belgrave, D.,
and Cho, K. (eds.), Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=5btWTw1vcw1.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020a.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In AISTATS, pp. 4474–4484, 2020b.

Pan, L., Zhang, D., Courville, A., Huang, L., and Bengio,
Y. Generative augmented flow networks. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=urF_CBK5XC0.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
acids research, 32(suppl 1):D431–D433, 2004.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. arXiv preprint arXiv:2001.09382,
2020.

https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
https://openreview.net/forum?id=HElfed8j9g9
https://openreview.net/forum?id=HElfed8j9g9
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=urF_CBK5XC0
https://openreview.net/forum?id=urF_CBK5XC0

Conditional Graph Generation with Graph Principal Flow Network

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Wang, H., Xu, T., Liu, Q., Lian, D., Chen, E., Du, D., Wu,
H., and Su, W. Mcne: an end-to-end framework for
learning multiple conditional network representations of
social network. In KDD, pp. 1064–1072, 2019.

Yang, Y., Feng, Z., Song, M., and Wang, X. Factorizable
graph convolutional networks. In NeurIPS, pp. 20286–
20296, 2020.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In ICML, pp. 5708–5717, 2018.

Zang, C. and Wang, F. Moflow: an invertible flow model
for generating molecular graphs. In KDD, pp. 617–626,
2020.

Zhang, D., Chen, R. T. Q., Malkin, N., and Bengio, Y.
Unifying generative models with gflownets. ArXiv,
abs/2209.02606, 2022a.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for dis-
crete probabilistic modeling. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 26412–26428. PMLR, 17–
23 Jul 2022b. URL https://proceedings.mlr.
press/v162/zhang22v.html.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A survey on deep graph generation: Methods and
applications. arXiv preprint arXiv:2203.06714, 2022.

https://proceedings.mlr.press/v162/zhang22v.html
https://proceedings.mlr.press/v162/zhang22v.html

Conditional Graph Generation with Graph Principal Flow Network

A. Complete Experiment Results and experiment details
We follow the evaluation setting of (Jo et al., 2022; You et al., 2018): we split the data into train/test set according to (Jo
et al., 2022; You et al., 2018), and sample the same number of graphs as in the test set. Then, we use the maximum mean
discrepancy (MMD) to compare the distributions of graph statistics between the same number of generated and test graphs.
We follow (Jo et al., 2022; You et al., 2018) to measure the distribution difference of degree, clustering coefficient, and the
number of occurrences of orbits with 4 nodes. We further average the MMDs and present them in the fourth column under
each dataset. We present the complete experiment results for conditional graph generation in Table 5, and unconditional
graph generation in Table 6.

AIDS Enzymes Synthie

Real, |V | ≤ 95, |C| = 2 Real, |V | ≤ 125, |C| = 6 Synthetic, |V | ≤ 100, |C| = 4

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

GraphRNN (You et al., 2018) 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317
GraphAF (Shi et al., 2020) 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205
GraphDF (Luo et al., 2021) 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068
GraphVAE (Simonovsky & Komodakis, 2018) 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953
GNF (Liu et al., 2019) 0.224 0.159 0.018 0.133 - - - - - - - -
EDP-GNN (Niu et al., 2020b) 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226
GDSS1 (Jo et al., 2022) 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169

Ours 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056

Table 5: Generation results on the conditional graph generation. We report the MMD distances between the test datasets
and generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources
that take more than 10 days or are not applicable due to memory issues.

Community-small Enzymes Grid

Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

DeepGMG (Li et al., 2018) 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN (You et al., 2018) 0.080 0.120 0.040 0.080 0.017 0.043 0.021 0.043
GraphAF (Shi et al., 2020) 0.18 0.200 0.020 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF (Luo et al., 2021) 0.060 0.120 0.030 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE (Simonovsky & Komodakis, 2018) 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF (Liu et al., 2019) 0.200 0.200 0.110 0.170 - - - - - - - -
EDP-GNN (Niu et al., 2020b) 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340
SubspaceDiff (Jing et al., 2022) 0.057 0.098 0.012 0.056 0.037 0.099 0.018 0.051 0.124 0.013 0.090 0.076
WSGM (Guth et al., 2022) 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051
GDSS1 (Jo et al., 2022) 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062

Ours 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 0.056 0.042 0.015 0.038

Table 6: Generation results on the unconditional graph datasets. We report the MMD distances between the test datasets
and generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources
that take more than 10 days or are not applicable due to memory issues.

The average results of the Enzymes dataset reported in the GDSS original paper is 0.032. However, the best result we can
obtain using the author’s released code and checkpoint with careful fine-tuning is 0.046.

