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ABSTRACT

The reliable and objective evaluation of AI models is essential for measuring sci-
entific progress and translating methods into practice. However, in the nascent
field of multimodal foundation models, validation has proven to be even more
complex and error-prone compared to the field of narrow, task-specific AI. One
open question that has not received much attention is how to set up strong vi-
sion language model (VLM) benchmarks while sparing human annotation costs.
This holds specifically for domain-specific foundation models designed to serve a
predefined specific purpose (e.g. pathology, autonomous driving) for which per-
formance on test data should translate into real-life success. Given this gap in
the literature, our contribution is three-fold: (1) In analogy to the concept of data
augmentation in traditional ML, we propose the concept of task augmentation -
a resource-efficient method for creating multiple tasks from a single existing task
using metadata annotations. To this end, we use three sources to enhance existing
datasets with relevant metadata: human annotators (e.g. for annotating trunca-
tion), predefined rules (e.g. for converting instance segmentations to the number
of objects), and existing models (e.g. depth models to compute which object is
closer to the camera). (2) We apply our task augmentation concept to several
domains represented by the well-known data sets COCO (e.g. kitchen, wildlife
domain) and KITTI (autonomous driving domain) datasets to generate domain-
specific VLM benchmarks with highly reliable reference data. As a unique fea-
ture compared to existing benchmarks, we quantify the ambiguity of the human
answer for each task for each image by acquiring human answers from a total of
six raters, contributing a total of 162,946 human baseline answers to the 37,171
tasks generated on 1,704 images. (3) Finally, we use our framework to benchmark
a total of 21 open and frontier closed models. Our large-scale analysis suggests
that (I) model performance varies across domains, (II) open models have narrowed
the gap to closed models significantly, (III) the recently released Qwen2 72B is the
strongest open model, (IV) human raters outperform all VLMs by a large margin,
and (V) many open models (56%) perform worse than the random baseline. By
analyzing performance variability and relations across domains and tasks, we fur-
ther show that task augmentation is a viable strategy for transforming single tasks
into many and could serve as a blueprint for addressing dataset sparsity in various
domains.

1 INTRODUCTION

The reliable and objective performance assessment, i.e., validation of AI models is crucial for both
the measurement of scientific progress and translation into practice. Benchmarking for traditional
narrow, task-specific AI already comes with numerous challenges (Myllyaho et al., 2021), but vali-
dation has proven to be even more complex and error-prone in the emerging field of generalist mul-
timodal foundation models. For example, an award-winning Neurips paper (Schaeffer et al., 2024)
on language foundation models recently showed a large discrepancy between progress claimed by
researchers and fundamental changes in model behavior with scale. In the context of vision lan-
guage models (VLMs), benchmarking-related issues include data leakage (Chen et al., 2024a), a
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narrow task focus with inadequate coverage of vision-language capabilities, labor-intensive and
time-consuming human annotation, and frequent failure to report the number and qualifications of
human annotators, as well as potential disagreements in their annotations. One open question that
has not received much attention is how to set up strong domain-specific VLM benchmarks while
sparing human annotation costs. This paper therefore focuses on the specific task of VLM vali-
dation from the perspective of (annotation) resource investment. It is based on the following key
observations:

1. Cross-domain validation is not always desirable. While numerous datasets and benchmarks are
currently being released in the general computer vision field (e.g. 400 out of the 2700 CVPR 2024
publications propose a new or modified dataset, see Appendix C), these may not always be optimal
for validating domain-specific foundation models designed to serve a predefined specific purpose.
In such cases, performance on test data should translate into real-life success, thus requiring the
test set to represent the challenges and variability found in the specific domain the model was de-
signed for (e.g., medicine). Given this, arena-style evaluations—where users submit tasks and rate
models blindly—provide strong evidence for the need for domain-specific evaluation by ensuring
task-relevant assessments, such as Chatbot Arena1 or WildVision Arena2. Domain-specific evalua-
tion, however, comes with challenges, as publicly available data may be sparse and human resources
for labeling can be limited (see e.g. Maier-Hein et al. (2022)). An open question, therefore, is how
to make the best out of available data and resources.

2. Picking the right tasks is challenging. Foundation models should be adaptable to a wide variety
of domain tasks. The challenge in traditional computer vision was to obtain a highly diverse set
of representative images for reliable evaluation. Analogously, the rise of foundation models calls
for a highly diverse number of tasks. An open challenge is to decide which tasks to include in a
benchmark. Adding a task to an existing set of tasks may not necessarily provide additional insights,
as performance across tasks can be highly correlated (Fu et al., 2024b). From a resource investment
perspective, picking the right tasks is thus highly desirable.

3. Balancing quantity and quality is non-trivial. Reliable reference data for robust evaluation has
always been a priority. Generally speaking, increasing the number of annotators increases the qual-
ity of the reference annotation (e.g. Guzene et al. (2023), and Dumitrache et al. (2015)). However,
balancing the quantity of images with the number of annotators per image is challenging. In the field
of image classification, for example, prior work suggests that a single human rater is not sufficient
to create reliable benchmarks (Schmarje et al., 2024). On the other hand, recent work suggests that
resources may be better invested when annotating more images rather than increasing the number
of annotators per item (Dorner & Hardt, 2024)]. In the context of VLM benchmarks, this issue has
not yet been well-explored. According to an analysis of 13 popular VLM benchmarks, information
on the number of annotators per image in VLM benchmarks is either not provided (38%), or only 3
or fewer raters (15%) contributed to creating the reference 4. Of note, MTurk has faced issues with
workers producing inconsistent or careless annotations, leading to a noticeable decline in annota-
tion quality in recent years (Kennedy et al., 2020; Rädsch et al., 2023; 2024). In general, there is
insufficient evidence to determine the optimal number of annotators when considering the trade-off
between annotation quality and cost.

Overall, our literature analysis clearly indicates that there is a lack of guidance on how to set up
strong VLM benchmarks while keeping annotation costs low. We address this gap in the literature
with the following three key contributions (see Fig. 1):

1. Automatic task augmentation for resource-efficient creation of VLM benchmarks: In
analogy to the concept of data augmentation in traditional ML, we propose the concept
of task augmentation—a resource-efficient method for generating multiple tasks from a
single existing task using metadata annotations (see Fig. 2). Starting from a single task
with fine-grained annotations (here: instance segmentations), metadata on each image is
acquired to convert the single task to a collection of tasks (Tab. 1.), enabling comprehensi-
ble in-domain validation. To enable the augmentation, we enrich the existing datasets with
metadata related to the image (e.g., number of objects, object relations, brightness) as well
as individual objects (e.g., object depth, occlusion).

1lmarena.ai/?leaderboard; see the Arena(Vision) tab
2huggingface.co/spaces/WildVision/vision-arena
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Figure 1: Summary of contributions. (1) New concept: We propose the concept of task augmen-
tation as a resource-efficient method for creating multiple tasks from a single existing task using
metadata annotations from multiple sources (humans, rules, models). (2) New dataset: We apply our
task augmentation framework to the well-known instance segmentation tasks of COCO and KITTI
to generate domain-specific VLM benchmarks with highly reliable reference data. As a unique fea-
ture compared to existing benchmarks, we quantify the ambiguity of each question for each image
by acquiring human answers from a total of six raters. (3) New insights: We apply our framework
to a total of 21 open and frontier closed models to demonstrate the benefit of task augmentation and
to shed light on current VLM capabilities.

2. New public data sets META-COCO and META-KITTI: We apply our task augmen-
tation framework to (subsets of) the well-known data sets COCO (Lin et al., 2014) and
KITTI (Geiger et al., 2012) datasets to generate domain-specific VLM benchmarks with
highly reliable reference data. As a unique feature compared to existing benchmarks, we
quantify the ambiguity of each question for each image by acquiring human answers from a
total of six raters per question. In total, this yielded 162,946 corresponding human baseline
answers corresponding to 37,171 questions on 1,704 images.

3. Comprehensive benchmarking of state-of-the-art open and closed VLMs: We apply
our framework to a total of 21 open and frontier closed models (see App. E) to demonstrate
the benefit of task augmentation. Specifically, we show that the performance of models
varies substantially (1) across domains, highlighting the need for domain-specific bench-
marks, and (2) across tasks, indicating that our task augmentation is able to convert a single
task into a diverse set of tasks suitable for VLM benchmarking. Additionally, we provide
difficulty rankings for a total of 25 VLM tasks, as well as a strength-weakness analysis of
existing models based on our benchmark.

2 RELATED WORK

2.1 VISION-LANGUAGE BENCHMARKS

Recent studies have proposed a range of evaluation benchmarks for VLMs, varying in size and the
number and type of vision-language (VL) capabilities they assess (e.g. Fu et al. (2024b) and Bai
et al. (2023)). For instance, Blink (Fu et al., 2024b) and MMBench (Liu et al., 2024a) comprise
more than 3,000 multiple-choice questions and cover multiple VL tasks while MME (Fu et al.,
2024a) focuses on evaluating perception and cognition abilities using Yes/No questions.

Among the largest benchmarks developed to date are MMT-Bench (Ying et al., 2024) which in-
cludes more than 31,000 questions, MME-RealWorld (Zhang et al., 2024b) comprising more than
29,000 image-question pairs, and MMMU (Yue et al., 2024) featuring 11,500 questions. While
these large benchmarks cover multiple VL capabilities and domains, they require extensive labeling
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efforts. For example, the authors of the MME-RealWorld benchmark involved 25 professional an-
notators and seven experts in VLMs, while the MMMU benchmark included contributions from 50
college students. The authors of MMT-Bench, however, do not provide the exact number of human
annotators.

At the same time, MMStar (Chen et al., 2024b) and MM-Vet-v2 (Yu et al., 2024) allow the evaluation
of core VL capabilities of VLMs using much smaller question sets. Additionally, several works in-
tegrate multiple existing benchmarks into comprehensive evaluation frameworks (Jiang et al., 2024;
Al-Tahan et al., 2024). Platforms such as WildVision (Lu et al., 2024) and LVLM-eHub (Xu et al.,
2023) enable the collection of human preferences to further enhance VLM evaluation. Other studies
focus on specific aspects of VLM assessment such as accounting for uncertainty (Kostumov et al.,
2024), disentangling perception and reasoning (Qiao et al., 2024), evaluating complex vision tasks
(Liu et al., 2024b; Rahmanzadehgervi et al., 2024), or leveraging large language models (LLMs)
to assess visual storytelling abilities of VLMs (Bai et al., 2023). Very recently, (Tong et al., 2024)
presented a critical examination of multimodal LLM benchmarks.

Despite the variety of datasets and tasks, a resource-efficient and generalizable approach that enables
extensive evaluation of VLMs across multiple (domain-specific) tasks is still lacking. One potential
solution is task augmentation.

2.2 TASK AUGMENTATION AND METADATA

The challenge of generating multiple tasks from a single dataset for VLM benchmarking remains
relatively unexplored. A few examples include CLEVR (Johnson et al., 2017), a benchmark dataset
of 3D objects used to assess various visual reasoning tasks by combining existing metadata attributes
such as the size, color, or shape of objects. ”Task Me Anything” (Zhang et al., 2024a) generated
an important contribution in showing the potential of automatic task generation, but focuses on
computationally rendered images specifically created for the evaluation. Taskonomy (Zamir et al.,
2018) proposed a fully computational approach for modeling the structure and connections within
the domain of visual tasks. Other related works are LVIS-INSTRUCT4V (Wang et al., 2023), a
visual instruction dataset generated with GPT-4V, and JourneyBench (Wang et al., 2024) which
comprises human-annotated, generated images and requires in-depth multimodal reasoning. In ad-
dition, GoogleAI’s Open Images Dataset (Kuznetsova et al., 2020) and Visual Genome (Krishna
et al., 2017) can serve as a valuable resource for VLMs benchmarking as they include compre-
hensive pre-generated metadata. However, these datasets do not support automatic generation of
metadata for other datasets, limiting their use to the specific data they contain. To the best of our
knowledge, our work is the first to develop an approach for automated task augmentation from real
world instance segmentation datasets using metadata enrichment.

2.3 RESOURCE-EFFICIENT VLM BENCHMARKING

Most existing benchmarks often focus on performance metrics without considering the computa-
tional resources required (see e.g. (Fu et al., 2024b; Liu et al., 2024a)). The work that has been done
on efficient benchmarking has been only in the realm of unimodal language models (Polo et al.,
2024; Perlitz et al., 2023). This is despite the fact that VLMs are becoming more prominent both in
research and industry (Li et al., 2024; Yang et al., 2023) and multimodality has been described as a
key measure of intelligence (Bubeck et al., 2023).

3 METHODS

In this section, we present the methodology related to our three core contributions (see 1).

3.1 TASK AUGMENTATION

The principle of task augmentation for resource-efficient in-domain benchmarking is depicted in
Fig. 2. Starting from a single task with fine-grained annotations, metadata on each image is acquired
from multiple sources (humans, rules, and models) to transform the single task into a collection of
tasks. In this work, we use instance segmentation as the core perceptual task to generate the diverse
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Figure 2: Task augmentation using metadata. Starting from a single task with fine-grained an-
notations (here: instance segmentations), metadata on each image is acquired from multiple sources
(humans, rules, and models) to convert the single task into a collection of tasks. This allows for
resource-efficient in-domain benchmarking of VLMs.

set of VLM benchmark tasks depicted in App. I (examples in App. A). The metadata features result
from three sources:

1. Human annotators were used to generate information that cannot be extracted from the
existing annotations or using established models. To this end, we outsourced annotations
to a professional annotation company as well as in-house annotators. Human raters were
asked to decide on whether occlusion and truncation were present in the images.

2. A rule-based approach was used to convert existing information to metadata. For example,
instance segmentations were leveraged to generate the number of objects of a specific class
or whether a segmentation mask was touching any other segmentation masks and, if so,
which ones.

3. An existing depth foundation model, Depth Anything v2 (Yang et al., 2024), was used to
generate depth maps of images.

3.2 META-KITTI AND META-COCO

We applied the principle of task augmentation to the well-known datasets KITTI (Geiger et al.,
2012) and COCO (Lin et al., 2014). For COCO, we used the high-quality instance segmentation
masks provided by COCONut (Deng et al., 2024). Overall, we added 300,000 metadata annotations
to a total of 1,704 images across seven domains. This includes 15 annotations per object (e.g.
occlusion, relative size, segmask touches segmask, or average depth). For truncation, occlusion,
and direction, we obtained up to five annotations per object from crowdworkers (UI example is
displayed in App. B). The complete list is provided in App. 5.

The metadata were then used to define a set of 25 different VLM tasks, where six concern the whole
image, 13 are related to individual objects, and six concern pairs of objects.

To create a concrete list of vision-language tasks for each image we employed a systematic process.
We began by prioritizing images in the datasets that featured a higher number of classes and objects
to maximize task diversity and complexity. Next, specific criteria for each task were evaluated to
ensure appropriate task generation for each image. For instance, for tasks that involved comparing
two objects, it was essential that both objects were present in the image and belonged to the relevant
classes. Furthermore, we established minimum thresholds for various measures, such as requiring
a significant depth difference between objects, to ensure the correct answers for the task could be

5
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Table 1: Summary of META-COCO and META KITTI.
Domain Icon #Images #Objects #Tasks Human Annotations
Wildlife 268 853 5,528 24,024
Persons 250 7,812 6,122 26,548
Vehicles 235 2,199 5,219 22,976
Animals 273 1,162 5,724 24,907
Kitchen 272 2,143 5,332 23,793

Food 236 5,673 5,249 23,221
Kitti 170 1,458 3,997 17,477

reliably determined. Overall, our objective was to generate as many of the 25 different tasks as
possible for each image.

To rate the difficulty/ambiguity for each of the 33,174 tasks, we further acquired annotations from
six human raters per image. We implemented early stopping if four raters agreed for a task. Overall,
this resulted in 145,489 human reference annotations. An overview of the resulting datasets META-
COCO and META-KITTI is provided in Tab. 1.

3.3 BENCHMARKING STRATEGY

VLM benchmarking results can vary substantially with various factors, such as the images used, the
domain, and the prompts applied. This often renders comparison of results across papers infeasible.
For example, Accuracy is known to be a prevalence-dependent metric, meaning that results should
not be compared across datasets. To address this bottleneck, we fully homogenized our benchmark-
ing pipeline using the proposed task augmentation concept.

Model Selection: We selected 21 frontier and open VLMs of various sizes and from various
providers and sources, as illustrated in App. E. The oldest model was released in January 2024,
while the most recent one was released a few days before the manuscript submission.

Benchmarking workflow: To ensure fair and consistent evaluation of all selected VLMs, we devel-
oped a standardized benchmarking workflow applied uniformly across all models. We assessed them
in a zero-shot setting without any additional fine-tuning or domain-specific training. We strictly fol-
lowed the configurations and setups recommended by each model’s authors, using the exact settings
provided in their official repositories (e.g., on Hugging Face) to ensure that each model was eval-
uated under conditions intended by its creators. For tasks requiring multiple images, they were
combined into one. Each model was provided with a carefully crafted text prompt alongside the
corresponding image(s). To eliminate potential ambiguities, we conducted iterative testing of these
prompts among human evaluators. Through multiple rounds of refinement, we adjusted the prompts
until all human testers consistently agreed on their interpretation.

VLM Tasks: We evaluated the models on a comprehensive set of 25 tasks derived from our task
augmentation framework (examples in App. A; details in App. I). Each task was associated with
specific evaluation criteria and standardized prompts. For instance, when dealing with multiple-
choice questions or tasks involving object selection, we established clear guidelines on how options
were presented and how objects were chosen within images. This attention to detail ensured that the
evaluation was both rigorous and reproducible.

Metrics and Rankings: Choosing an adequate strategy for performance assessment is far from trivial
and a research topic of its own (Maier-Hein et al., 2024; Reinke et al., 2024). In this work, we
were specifically interested in relative performance differences rather than in the specific ability
of models to serve a specific task. To obtain aggregated performance values across images, we
introduce the Accuracy% metric. This metric is configured with a percentage threshold t. Simply
put, the Accuracy%(t) metric outputs the percentage p of images, for which at least t% of questions
were answered correctly.

• D represents the dataset, where each image is denoted as i ∈ D.

6
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• M represents the models, where each model is denoted as m ∈ M .
• Qi represents the set of questions for image i.
• Ci,q,m represents the correctness score for image i, question q, and model m, where
Ci,q,m ∈ {0, 1} (1 if correctly answered, 0 otherwise).

• t ∈ [0, 1] is the threshold that specifies the desired percentage of correct answers (e.g.,
t = 0.75 for 75%).

The Accuracy%(t) at threshold t for model m can be defined as:

Accuracy[%]m(t) =
1

|D|
∑
i∈D

 1

|Qi|
∑
q∈Qi

I(Ci,q,m ≥ t)

× 100, (1)

where:

• |D|: Total number of images in the dataset.
• |Qi|: Number of questions for image i.
•
∑

q∈Qi
Ci,q,m: Number of correctly answered questions for image i by model m.

• 1
|Qi|

∑
q∈Qi

Ci,q,m: Fraction of correctly answered questions for image i.

Figure 3: The need for specific in-domain evaluation is demonstrated by the high performance
variability across imaging domains. The Accuracy%(t) metric represents the percentage of im-
ages for which at least a specified proportion of questions are correctly answered. For the best
model Gemini 1.5 pro, the percentage of images for which at least 75% of (the same) questions are
answered correctly varies between 22% and 72%. The full plots for all thresholds are displayed in
App. D.

4 EXPERIMENTS AND RESULTS

The primary purpose of our experiments was to showcase the benefit of our task augmentation
approach (sec. 4.1). To assess the value of each task for VLM benchmarking, we related it to average
model performance, resources needed to create the task, and corresponding human ambiguity (sec.
4.2). Finally, we leveraged our concept and data to explore the capabilities of the most recent open
and closed VLMs (sec. 4.3.).

4.1 BENEFIT OF TASK AUGMENTATION

Fig. 3 shows aggregated performance values for all models, separated by imaging domain. As the
tasks and prompts were homogenized, the results clearly indicate that performance varies substan-
tially across domains, supporting the hypothesis that in-domain validation is crucial for real-world

7
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Figure 4: Task augmentation yields a diverse set of tasks. Spider diagram illustrating high vari-
ability across tasks. For each model and each task we aggregate the results across all datasets.

translation. Note that this holds true despite the fact that we purposely chose domains that are
relatively common (presumably captured in the model training) and closely related to one another.

Furthermore, as shown in Fig. 4, the performance of models varies substantially across VLM tasks,
suggesting that the tasks generated by our task augmentation approach are diverse. The hardest tasks
on average across domains are (1) T7.2 “Jigsaw Puzzle Completion”, (2), T1.2 “Object Counting”,
(3), T7.1 “Rotated Jigsaw Puzzle Completion”, (4), T2.1 “Object Occlusion Detection”, and (5)
T5.2 “Second Brightest Image Selection”. The easiest task on average was T1.3 “Additional Object
Presence Detection” (see Fig. 11).

4.2 HUMAN AMBIGUITY

As demonstrated in App. K, there is a high discrepancy in task rankings between humans and
models. While the ”Jigsaw Puzzle Completion” tasks ranked amongst the most challenging for the
models, humans found ”Object Occlusion Detection” and “Object Touching Detection” to be the
most difficult.

From a resource perspective, tasks should be (1) hard to solve for models and (2) require as little
human annotation as possible. This potential trade-off is captured in App. J. It can be seen that many
hard tasks, including the top four, can already be extracted from instance segmentations alone.

4.3 INSIGHTS ON CURRENT MODELS

Fig. 5 summarizes the performance of all models as well as the human and random baseline. The
following insights can be extracted:

1. Closed models mostly outperform open models across tasks and domains.
2. However, open models have narrowed the gap significantly.
3. Among the ones tested, Qwen2 72B is by far the best performing open model.
4. Large models typically outperform their smaller variants, although exceptions exist

(e.g. Molmo 7B is mostly outperforming Pixtral 12 B and Gemini Flash on occasion out-
performs Gemini Pro)

8
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5. Human raters outperform VLMs by a large margin. While they have close to perfect
performance in the majority of tasks, they struggle with counting, occlusion and direction
category tasks, with counting being the most difficult one.

5 DISCUSSION

This paper contributes to the advancement of VLM benchmarking in three ways.

1. Framework for domain-specific benchmarking: We showed that task augmentation, using
instance segmentation as the root task, enables the generation of a diverse set of VLM
tasks and could thus evolve as a core method for resource-efficient domain-specific VLM
benchmarking. The insights gained on the varying difficulty of presented VLM tasks will
further guide the design of future benchmarks.

2. New data: Our two new datasets META-KITTI and META-COCO will help assess gener-
alist capabilities of future VLMs. Furthermore, we release the six human annotations per
task (totaling 162,946 annotations) to assist other researchers in their benchmarking efforts.

3. New insights: The insights on current capabilities of closed and open VLMs highlight the
narrowing gap between closed and open models. Most importantly, we showcased the need
for domain-specific validation.

Core strengths of our contribution include the broad applicability of our concept, the open data
contribution, and the wide range of state-of-the-art closed and open models investigated here, with
the youngest model released only a few days before submission.

As an implicit contribution, we introduced the new metric Accuracy%, which offers several key
strengths. It measures the variety of tasks on the same image, enabling a comprehensive evaluation
across different capabilities, and provides a rigorous benchmark that challenges VLMs on a wide
range of tasks. The metric is extendable with additional tasks, allowing for gradually increasing
difficulty, and can be adapted to evaluate domain-specific tasks effectively. However, there are
limitations: some questions require specific conditions, such as the presence of multiple objects for
comparison, potentially resulting in variability in the number of questions per image. Additionally,
tasks are treated equally without any weighting, which may overlook differences in task difficulty
or importance.

A limitation of our work is model family dependence, as many models come from closely related
families, which may hinder statistical analysis. For closed-source models, specific information about
training and data is often unavailable, creating transparency issues. Model performance also shows
prompt dependence, with results potentially varying based on prompt phrasing. Additionally, our
human annotations were performed by professional annotators, which may introduce ambiguity
since annotators aim to complete tasks quickly.

Future work should focus on expanding the number of tasks generated, further enhancing the di-
versity and comprehensiveness of VLM benchmarks. Additionally, our method can be adapted to
different domains with domain-specific questions or scaled up to support continuous extension, pro-
viding a versatile approach for evaluating models across diverse applications.

CODE

Code will be made available after acceptance.
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Figure 5: Open source models have narrowed the gap to closed models significantly. (a) The
Accuracy%(t) metric shown across all datasets, all closed (solid line) and open (dashed lines) models
investigated in this study as well as the human baseline (grey line). It represents the percentage
of images for which at least a specified proportion of questions were correctly answered by the
model, calculated for varying accuracy thresholds. A stratification per imaging domain is provided
in App. D. (b) Blob plots indicating ranking variation across models over all domains. The radius of
each blob at position (Mi, rankj) is proportional to the relative frequency model Mi achieved rank
j over all domains. Open models are indicated by a dashed border.
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Bünyamin Pekdemir, Tobias Roß, Annette Kopp-Schneider, and Lena Maier-Hein. Labelling
instructions matter in biomedical image analysis. Nature Machine Intelligence, 5(3):273–283,
2023.
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A EXAMPLE TASKS FOR AN IMAGE

Figure 6: For each image, we generate numerous tasks covering diverse perception abilities.
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B EXAMPLE OF HUMAN METADATA ANNOTATION

Figure 7: Exemplary initial human metadata enrichment task. These annotations were used to
enrich the objects with human generated metadata.

C CVPR 2024 PAPER ANALYSIS

Table 2: CVPR 2024 paper analysis summary.
CVPR 2024
Total number of papers 2,708
With New or modified dataset: 397
Without new or modified dataset: 2,311

We analyzed all papers from CVPR 2024 using three different large language models (LLMs). If
the majority of models indicated that a paper introduced a new or modified dataset, we tagged it
accordingly. This process identified 397 publications proposing a new or modified dataset. To
validate the accuracy of the tagging, we randomly selected 10% of these flagged papers for a human
review. All human-verified publications were confirmed to propose a new dataset.
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D ACCURACY%(T) CURVES ACROSS DATASETS

Figure 8: The need for specific in-domain evaluation is demonstrated by the high performance
variability across imaging domains. The Accuracy%(t) metric represents the percentage of images
for which at least a specified proportion of questions are correctly answered by the mode.
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E MODEL OVERVIEW

Table 3: VLM Benchmark Models used in this study
Accessibility Size Name Version Organization Release Date
Closed - GPT-4o gpt-4o-2024-08-06 OpenAI 2024-08-08
Closed - GPT-4o-mini gpt-4o-mini-2024-07-18 OpenAI 2024-07-18
Closed - Gemini 1.5 Pro gemini-1.5-pro-001 Google 2024-05-24
Closed - Gemini 1.5 Flash gemini-1.5-flash-001 Google 2024-05-24
Closed - Claude 3.5 Sonnet claude-3-5-sonnet-20240620 Anthropic 2024-06-20
Open 1B InternVL2-1B InternVL2-1B OpenGVLab 2024-07-04
Open 8B InternVL2-8B InternVL2-8B OpenGVLab 2024-07-04
Open 40B InternVL2-40B InternVL2-40B OpenGVLab 2024-07-04
Open 7B Qwen2 7B Qwen2-VL-7B-Instruct Alibaba 2024-08-30
Open 72B Qwen2 72B Qwen2-VL-72B-Instruct Alibaba 2024-08-30
Open 7B LLaVA-NeXT 7B llava-v1.6-mistral-7b-hf U. of Wisconsin–Madison 2024-01-30
Open 34B LLaVA-NeXt 34B lava-v1.6-34b-hf U. of Wisconsin–Madison 2024-01-30
Open 7B Chameleon 7B chameleon-7b Meta 2024-05-16
Open 4.2B Phi-3 Vision Phi-3-vision-128k-instruct Microsoft 2024-04-23
Open 4.2B Phi-3.5 Vision Phi-3.5-vision-instruct Microsoft 2024-08-20
Open 770M Florence-2 Florence-2-large-ft Microsoft 2024-06-15
Open 3B PaliGemma 3B 224x224 paligemma-3b-mix-224 Google 2024-05-14
Open 3B PaliGemma 3B 448x448 paligemma-3b-mix-448 Google 2024-05-14
Open 12B Pixtral Pixtral-12B-2409 Mistral 2024-09-17
Open 90B Llama 3.2 90B llama-3-2-90b-vision-instruct Meta 2024-09-25
Open 7B Molmo 7B Molmo-7B-D Allen Institute for AI 2024-09-24

F OVERVIEW OF VLM BENCHMARK ANNOTATION PROCESSES

Table 4: Overview of VLM Benchmark Annotation Processes
Benchmark Annotators

reported?
Raters per
image

Comment

Blink Yes 2 per image Two annotators (co-authors) assigned per task.
Exception: one question type received single
annotation.

MMBench No N/A Volunteers (students) expanded initial question
set.

MME No N/A Number of annotators unclear
MMStar Yes N/A Three experts reviewed. Unclear if all samples

seen by all.
MM-Vet v2 No N/A GPT-4V generated drafts, experts reviewed.

Exact number undisclosed.
MMT-Bench Yes 50 in total ”Dozens of co-authors” and 50 students as-

sisted.
WildVision Yes 1 per image Crowdsourced. Cohen’s Kappa: 0.59.
MMMU Yes N/A 50 annotators, college students from diverse

disciplines.
II-Bench Yes N/A 50 students collected and annotated images.
Vibe-Eval Yes N/A 22 group members collected prompts.
TouchStone No N/A Manually annotated, no statistical info pro-

vided.
Seed-Bench-2 No N/A Partly manually annotated, number not given.
MME-
RealWorld

Yes N/A 25 professional annotators, 7 MLLM experts.
Task distribution unclear.
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G THREE METADATA SOURCES

Table 5: Metadata sources used for enriching instance segmentation datasets.
Human Raters
Attribute Description
Occluded Object occluded or fully visible (other object in front)
Truncated Object truncated or fully visible (edge of image)
Direction Direction the object is facing
Existing Annotations
Attribute Description
relative size Relative size compared to image size
bbox touches bbox Bounding box touching another bounding box
segmask touches segmask Segmentation mask touching another segmentation mask
segmask touches segmask with Specific segmentation masks touching each other
segmentation area Area covered by segmentation
brightness score Brightness score
michelson contrast score Michelson contrast score
bbox x min, bbox y min,
bbox x max, bbox y max

Bounding box coordinates

class name Class name of the object
Model Generated
Attribute Description
average depth Average depth of the object
top 95 depth Depth of the top 95% portion of the object
bottom 5 depth Depth of the bottom 5% portion of the object
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H MODEL ACCURACY%(T) CURVES FOR EACH DATASET

Figure 9: Model Accuracy%(t) curves per dataset. We observe performance variability across
imaging domains and across models. Exemplary for animals, the best open model Qwen 72B (purple
dashed) is almost on par with the best closed Model Gemini 1.5 pro (solid blue).
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I OVERVIEW VLM TASKS

Table 6: Overview of VLM Benchmark Tasks
ID Task Name Task Description Answer Type
T1.1 Is Object Present Determines whether a specified object is present in the

image.
Binary

T1.2 Count Objects Determines the number of objects in the image Count
T1.3 Is Oth Object Present Determines whether or not there is more than one object

in the image
Binary

T2.1 Is Object Occluded Determines if the specified object is partially or fully
occluded.

Quiz (A/B/C/D)

T2.2 Is Object Truncated Determines if the specified object is truncated in the im-
age frame.

Binary

T2.3 Blur Object Determines whether an object is blurred Quiz (A/B/C/D)
T2.4 Noise Object Determines whether an object contains noise Quiz (A/B/C/D)
T2.5 Blur Of Image Determines which image variant is least blurred Quiz (A/B/C/D)
T2.6 Noise Of Image Determines which image variant is not corrupted Quiz (A/B/C/D)
T3.1 Size Comparison Determines which of two objects is larger Color
T3.2 Horizontal Compari-

son
Determines which object is further to the left of the im-
age

Color

T3.3 Vertical Comparison Determines which object is further to the bottom of the
image

Color

T3.4 Is Oth Object Left Determines whether there is another image further to
the left of an object

Binary

T3.5 Is Oth Object Lower Determines whether there is another image further to
the bottom of an object

Binary

T4.1 Is Object Touching
other Object

Determines if two objects are touching each other Binary

T4.2 Is Object Facing
Camera

Determines if the object is facing the camera Quiz (A/B/C/D)

T5.1 Color Object Match-
ing

Determines which of four tiles show the correct color
for the given image

Quiz (A/B/C/D)

T5.2 2nd Brightest Image Determines which of the images is the 2nd brightest im-
age

Quiz (A/B/C/D)

T5.3 Color Of Image Determines which image variant is not corrupted Quiz (A/B/C/D)
T5.4 Brightness Compari-

son of Two Points
Determines which of two points is brighter Binary

T6.1 Depth Comparison Determines which of two objects is closer to the camera Color
T6.2 Depth Two Points Im-

age
Determines which point is closer Binary

T7.1 Jigsaw rotation Puz-
zle

Determines which of four rotated tiles fits best into a
cut out area of the image

Quiz (A/B/C/D)

T7.2 Jigsaw Puzzle Image Determines which of four tiles fits best into a cut out
area of the image

Quiz (A/B/C/D)

T8.1 Rotation Of Image Determines which image variant is not rotated Quiz (A/B/C/D)
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J EXTRACTING HARD TASKS FROM INSTANCE SEGMENTATIONS

Figure 10: Instance segmentations alone allow for the extraction of hard tasks. (a) Tasks were
classified in those extractable directly from instance segmentations (blue), requiring external models
(green) and requiring human annotations (red). (b) Human ambiguity plotted against model perfor-
mance.
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K RANKING COMPARISON BETWEEN MODELS AND HUMANS

All models Human baselines

Closed models Open models
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Figure 11: Task ranking differs between models and human raters. The plot shows the difficulty
of tasks based on aggregated model scores (1 = hardest task, 25 = easiest task). The radius of the
blob indicates how often a task was assigned a difficulty rank when considering all seven domains
and all models (n = 5 for closed models; n = 16 for open models; n = 21 for all models; n = 1
for humans as majority vote over several raters). The larger the plot, the higher the percentage it
achieved a specific rank. The hardest tasks on average across domains are (1) T7.2 “Jigsaw Puzzle
Completion”, (2), T1.2 “Object Counting”, (3), T7.1 “Rotated Jigsaw Puzzle Completion”, (4), T2.1
“Object Occlusion Detection”, and (5) T5.2 “Second Brightest Image Selection”. The easiest task
on average was T1.3 “Additional Object Presence Detection”.
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