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ABSTRACT

We introduce a new, flexible, and theoretically justified framework for dimension
reduction in high-dimensional regression, based on an ensemble of random pro-
jections. Specifically, we consider disjoint groups of independent random projec-
tions, retain the best projection in each group according to the empirical regression
performance on the projected covariates, and then aggregate the selected projec-
tions via singular value decomposition. The singular values quantify the relative
importance of corresponding projection directions and guide the dimension se-
lection process. We investigate various aspects of our framework, including the
choice of projection distribution and the number of projections used. Our theo-
retical results show that the expected estimation error decreases as the number of
groups of projections increases. Finally, we demonstrate that our proposal consis-
tently matches or outperforms state-of-the-art methods through extensive numeri-
cal studies on simulated and real data.

1 INTRODUCTION

In regression, we seek to understand the relationship between a p-dimensional vector of predictors
X € RP and a response Y € R based on n observations. In many modern datasets, p is large and
may even exceed the sample size n. In these high-dimensional problems, many classical methods
suffer from the curse of dimensionality and can become intractable. For instance, ordinary least
squares is not applicable when p > n because the sample covariance matrix is singular. Moreover,
nonparametric methods, which are often based on smoothness assumptions, hinge on having suffi-
cient data around the points of interest for prediction. As a result, the sample size n required for
such methods scales exponentially with p (e.g.,|Wainwright, 2019, Chapter 1.2).

One general strategy to address the curse of dimensionality is to seek a low-dimensional represen-
tation of the predictors that preserves all the information in X about Y. In particular, sufficient
dimension reduction (SDR) (Cook, |2007) aims to find a function f : R? — R, for some d < D,
such that X and Y are conditionally independent given f(X). A closely related problem focuses
on the so-called central mean subspace (Cook & Lil 2002}, where the conditional mean of Y given
X can be written in terms of f(X). In practice, f is often restricted to be linear, which yields more
interpretable representations.

OUR CONTRIBUTIONS

1. We propose random projection ensemble dimension reduction (RPEDR) (Algorithm [I), a
novel framework that is distinct from existing SDR methods. This is supplemented by
two further algorithms: Algorithm [2]selects an appropriate projection dimension and Algo-
rithm 3| provides a further refinement in some cases (see the diagram in Figure [2).

2. We systematically study the key tuning choices in our framework (e.g., projection distribu-
tions, number of random projections) and provide default recommendations.

3. We establish theoretical results for our proposal (Theorem [T]and Theorem [2), and demon-
strate its strong performance through extensive simulated and real data experiments.
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The main idea in Algorithm [I]is to apply many low-dimensional random projections to the data, fit
a base regression model after each projection, and choose good projections based on their empiri-
cal performance. The selected projections are then aggregated through singular value decomposition
(SVD). Figure([T]illustrates our random projection-based method on a toy regression problem. A ran-
domly chosen 2-dimensional projection retains little of the relationship between X and Y, whereas
a projection carefully selected from a group of M = 200 random projections yields more promising
results. By repeating this process and aggregating the chosen projections, we are able to retain a
large amount of the structure observed after applying the oracle projection.
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Figure 1: Dimension reduction example (n = 100, p = 20). True model: ¥ = AJ X + 0.3¢ with Ay =
(1,1,0,...,0) 7 /v/2 € R?®, X ~ N2o(0,1) and € ~ N(0,1). Left to right: Y against the oracle projection
1+ z2 (red line: true regression function); Y against a random projection; Y against the best projection among
a group of 200 random projections; Y against the projection estimated by our proposal (with L = 200).

Our proposed framework is highly flexible and allows user-specified choices of the random projec-
tion distribution and the base regression method, depending on the problem at hand — these choices,
along with other practical aspects, are investigated in Section[3]and Appendix [A] In particular, The-
orem [I]in Section [3.2] shows that the expected estimation error converges at a rate no slower than
L~1/2 where L is the number of projection groups. This rate is observed in empirical investigations.

One key feature of our method is that the singular values in the SVD step provide a measure of the
relative importance of the corresponding singular vectors. These values can therefore be used to
determine the projection dimension if needed. In Section [3.3] we propose Algorithm [2]to select the
projection dimension by comparing the singular values obtained under our method with those ob-
tained when the group size is one (no selection). We also explore the potential benefits of applying
Algorithm [T] a second time on the projected data from the initial application in Section [3.4] This
refinement step, formalized in Algorithm |3} can improve performance in certain settings by com-
bining signals and removing irrelevant directions. A more detailed demonstration of Algorithm [3
together with the associated theoretical result (Theorem[2), is provided in Appendix
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Figure 2: Workflow of Algorithms 1-3.

Section [ presents the empirical performance of our proposal on simulated data. We compare our
method with several other state-of-the-art approaches to SDR. Our proposal is very competitive
across a wide range of settings: it achieves the best results in fifteen out of eighteen cases in the
simulation study, as well as in six out of ten scenarios in the real-data analysis (see Appendix D)),
ranking second in all remaining cases. Moreover, in some settings, our method is the only approach
that demonstrates non-trivial performance. Notably, in cases where p > n, some comparators
become intractable, whereas our method remains effective in such regimes.
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The remainder of our paper is as follows: an overview of the related work is presented in Section[I.1]
In Section[2} we introduce the statistical setting and present our main algorithm. Section[3|focuses on
practical considerations and provides guidance on selecting method inputs. The main simulation re-
sults are presented in Sectiond] We conclude with a discussion in Section[5] The appendices contain
additional details on practical considerations (Appendix [A)), the theoretical proofs (Appendix [B), the
full results of our simulation study (Appendix [C) and real-data experiments (Appendix [DJ.

1.1 RELATED WORK

Work on sufficient dimension reduction dates back to the idea of inverse regression, which targets
the expectation of X given Y rather than regressing Y on X. The earliest work is sliced inverse re-
gression (SIR) (Li,|1991)), which uses ‘slices’ of Y to estimate Cov(X | '), the eigenvectors of this
estimate are then used as the basis of the dimension reduction subspace. This idea led to a long line
of work, including sliced average variance estimation (SAVE) (Cook & Weisberg, |1991)), principal
Hessian directions (PHD) (Li,{1992), sparse SIR (Li & Nachtsheim,[2006) and directional regression
(DR) (Li & Wang, [2007). In another line of work, the nonparametric minimum average variance
estimation (MAVE) (Xia et al., 2002) estimates the dimension reduction subspace by constructing
a minimization problem that quantifies how well the model fits the observations. Comprehensive
reviews are provided by Ma & Zhu|(2013)). More recent proposals include gradient-based kernel di-
mension reduction (gKDR) (Fukumizu & Leng| 2014)), dimension reduction and MARS (drMARS)
(Liu et al., [2023), robust SDR (Huang et al., [2024a)), sparse kernel SDR (Liu & Xuel |2024)) and
Neural Network based SDR (Xu & Yu, |2025)); see also the survey by|Ghojogh et al.|(2021).

Random projections offer a natural approach to dimension reduction. The Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss| [1984; |Dasgupta & Guptal [2003) shows that applying a random
projection can approximately preserve pairwise distances between observations. However, as il-
lustrated in Figure |1| naively applying a single random projection typically fails. Our proposal is
motivated by Cannings & Samworth| (2017)), who introduced a random-projection ensemble method
for classification by aggregating the results of applying a base classifier to the projected data from
many carefully selected random projections. Related ideas have been used in sparse principal com-
ponent analysis (Gataric et al.,[2020)), sparse sliced inverse regression (Zhang et al.,|2025), and semi-
supervised learning (Wang et al.| 2025)). Other works on (unsupervised) dimension reduction using
random projection techniques include [Bingham & Mannilal (2001) and Reeve et al.| (2024). Work
on other problems includes precision matrix estimation (Marzetta et al.| 2011)), two-sample testing
(Lopes et al., 2011), clustering (Fern & Brodley, 2003}, |Anderlucci et al., [2022)), high-dimensional
regression (Thanei et al.l 2017; Slawski, |2018}; [Dobriban & Liu, 2019; |Ahfock et al.l 2020), and
differential privacy (Huang et al.l2024b). See also Xie et al.|(2017)) and |(Cannings| (2021).

2  STATISTICAL SETTING AND METHODOLOGY

Let P denote a distribution on RP x R and suppose that the covariate-response pair (X,Y") ~ P. Let
n(z) :=E(Y | X = x) be the regression function. We seek to find a dimensiond € {1,...,p— 1}
and a corresponding projection matrix A € A,y q := {A € RP*?: AT A = I, 4} for which there
exists a function g : RY — R satisfying

n(z) = g(ATz). (1)

Here AT maps X to a d-dimensional subspace, and the representation A" X contains all the infor-
mation available in X about the conditional mean of Y given X. Equation|[I]is of course satisfied
by taking d = p, A = I,xp, and g = 1. The main interest, however, is in finding a solution to equa-
tion [I] for a minimal choice of d, which we will denote by dy. The corresponding projection matrix
and link function will be denoted by A and gg, respectively. While dj is unique, the associated A
is not. Indeed, if Ay € A,xq, and go satisfy equation then so do A1 = AgB and ¢1 () = go(B-),
forany B € Ag,xd,-

Since Ay is not uniquely identifiable, our focus is on the space spanned by the columns of Ay. For
a projection matrix A € A, 4, we write S(A) = span(A) for the d-dimensional subspace spanned
by the columns of A. If A satisfies equation [I} then S(A) is called a mean dimension reduction
subspace (Cook & Lil|2002). The space spanned by the columns of the dy-dimensional projection
Ag, S(Ap), is called the central mean subspace (CMS).
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For the purposes of this paper, we assume the existence and uniqueness of the CMS. This assumption
is standard and mild (see, for example, |Cookl |1996, Lemma 1), and allows us to focus on our main
goal of estimating the space S(Ay) based on a dataset of n independent and identically distributed
pairs (X1,Y1),...,(X,,Y,) ~ P. Our estimate in this problem will be the space spanned by the

columns of a projection 4y € .ApX do for some Czo € [p], where cio and 1210 are (possibly randomised)
functions of the data D = {(X1,Y1),..., (X, Y,)}. To measure the distance between the spaces
S(Ap) and S(Ap), we will focus on dg (S(Ag), S(Ay)), where

A 1, -
i (S(Ao), S(Ag)) = §HAOAOT - AOAJH; (2)

The scaling in equation [2| ensures that, if dy = do, then dp is equivalent to the sin-theta distance
(Davis & Kahan, [1970;|Yu et al.,[2015).

2.1 RANDOM PROJECTION ENSEMBLE DIMENSION REDUCTION

We now introduce our new procedure for dimension reduction, which is presented in Algo-
rithm [[I We first outline the notation used. Given a dataset of n; covariate-response pairs
((21,91)5- - (2ny» Uny)) € (R? x R)™, a d-dimensional data-dependent regression method is a
measurable function § : R? x (R? x R)™* — R. The function § uses the data (21, Y1), -, (2, , Yn, )
to estimate a regression function g : R? — R. We often drop all but the first argument of
(5 (21,91), -+, (2ny, Yn, )) and simply write §(-) for the estimated regression function. We write
Ga,n, for the set of all such regression methods. In Algorithm Z1, ..., 2n, are different (randomly
chosen) projections of a subset of the p-dimensional covariate observations x1, . . ., Zy,.

The algorithm also takes as inputs a projection dimension d € [p]; a corresponding projection
distribution @ on Q,xq := {A € RP*4 : diag(ATA) = (1,...,1)"}; a number of groups of
projections L € Nj a group size M € N; a subsample size n; € [n — 1]; and a base regression
method § € Gg . A full investigation, alongside recommendations on how to choose these inputs
in practice is given in Sections[3]and Appendix

Algorithm 1: Random-projection ensemble dimension reduction (RPEDR)

Input: Data ((z1,41),- .-, (Tn,yn)) € (R? x R)™, projection dimension d € [p], projection distribution
Q on Qpxq, number of groups L, group size M, sample-split size n1 € [n — 1], base regression method
g S gd,nl .

Let P1,1, . PL,N[ 1}\-(} Q

for ¢ € [L] do

Let N7 be a random sample of size n1 chosen without replacement from {1,...,n}.

for m € [M] do

fori € NT, let ﬁg,m(xi) = g(Pmei; (szxj, yj)jej\[l).
- - 2
Let Rem = 72 Xiene (v — hem(@) )

Choose the projection that minimizes the mean-squared error within the group, taking the one with

1 1 1 . Pp— jopp—— 3
the smallest index in the case of ties: Py . := Py yx, where my := sargmin,, ¢ s Re,m-

SetIl:= 23" PP/, )
Calculate the singular value decomposition of II = UDU ' .
Output: The matrix U € R?*? and diag(D) € RP.

Algorithm starts by generating L - M random projection matrices Py, € RP*¢ from the distribu-
tion () and partitioning them into L disjoint groups of size M. For each projection P ,,,, we apply
it to all observed covariates, fit the base regressor ¢ on a subsample of the projected data, evaluate
the mean-squared error on the complement, and retain the best-performing projection in each group.

These selected projections P , are then aggregated by averaging their outer products to obtain I1.
Finally, the algorithm returns the matrix U and the vector diag(D), provided by the SVD of IL.

The columns of U are the estimated dimension reduction directions, and the singular values in D
provide information about the relative importance of each direction. If a target dimension dy is



Published as a conference paper at ICLR 2026

predetermined, then we set /10 = (Uh,...,U (io) as our estimate of Ay. Otherwise, the singular
values provide guidance — we propose a data-dependent choice of do in Algorithm in section

1
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Figure 3: Output of Algorithm [I|applied to the data used in Figure Inputs: d = 5, L = 200, M = 200,
n1 = 66, Q: entries are rescaled standard Cauchy, §: quadratic least squares. Left: diag(D). Right: entries of
U, (red filled circles), Uz (blue x), Us (green +), true dimension reduction direction (black filled diamonds).

To demonstrate how our approach works, we applied Algorithm |I|to the data used in Figure|l} In
Figure[3] the first two entries of D are relatively large, suggesting that the singular vectors U; and
Uy capture most of the signal. In this case, the true SDR direction Ay is one-dimensional, and nearly
all the signal is found in the first singular vector, with |U}" Ag| = 0.996. The second singular vector
contains only a small portion of the signal, with |U,” Ag| = 0.048. The remaining entries of D are
small, suggesting that Us, ..., U, can be discarded (indeed, max;—3 .. , \U]-TA0| < 0.01).

3 PRACTICAL CONSIDERATIONS

3.1 RANDOM PROJECTION GENERATING DISTRIBUTION

In this section, we investigate how the choice of distribution for generating random projections af-
fects Algorithm[I] Projections with independent Gaussian entries are widely used in the literature
and have desirable rotational invariance properties (see, for example, [Vershynin, 2018, Proposi-
tion 3.3.2). On the other hand, Cauchy random projections can offer distinct advantages in certain
applications - for example, [Li et al.| (2007) extended the Johnson-Lindenstrauss lemma to the ¢;-
norm, and Ramirez et al| (2012) used them for sparse signal reconstruction. As the columns of
a projection represent directions in the original covariate space, we generate random projections
slightly differently from standard practice. Formally, we construct a p X d projection matrix P by
drawing d i.i.d. unit-norm columns P; € R? and concatenating them, i.e., P = (Py,..., P;). We
focus on two choices for the distribution of these columns:

1. Gaussian columns: We write P; ~ Qn if P; < Z/|Z||, where Z ~ N,(0,I).

2. Cauchy columns: We write P; ~ Q¢ if P; L W/||W|, where W = (Wy,...,W,) and
Wi, ..., W, R Cauchy(0,1).

We conduct a numerical experiment using three different versions of the following model:

Model 1: Let X ~ N,(0,1) and Y = 2(A] X)? + ¢, where e ~ N (0, 1), Ag = ﬁ(lqv 0,_,), for
q€[p]. Here1l, =(1,...,1) e R7and 0,_, = (0,...,0) € RP74,

We set p = 20 and vary ¢ to simulate different sparsity levels: ¢ = 2 (Model 1a), ¢ = 10 (Model
1b) and ¢ = 20 (Model 1c). Three different projection distributions are considered, namely Q%d
(Gaussian), Q5 (Cauchy) and %Ql‘%’d + %Q%d (mixture, i.e., with probability § we draw P ~ Q%Y.

and with probability % we draw P ~ Q%d). The goal is to examine how the projection-generation
choice affects performance across sparsity levels. Signal strength is designed to be the same across
settings, and all other inputs to Algorithm ] are held fixed.
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Figure 4: Boxplots of the sin-theta distance (see equation [2)) between U; from the output of Algorithm and
the true direction A] = %(lq7 0,—4) over 100 repeats of the simulation. We present the results for three
different instances of Model 1, namely when ¢ = 2 (left), ¢ = 10 (middle) and ¢ = 20 (right). We compare the
results when the projection distribution @ is Q%d (Gaussian), Q%d (Cauchy), and %Q%d + %Q%d (mixture).

Figure [4| shows that, in sparse models, Cauchy projections outperform Gaussian projections; how-
ever, the heavy-tailed Cauchy distribution is less suitable in settings without sparsity. Due to the
rotational invariance of the problem, Gaussian projections exhibit the same performance regardless
of the sparsity level. Using a 50-50 mixture of Gaussian and Cauchy projections yields good per-
formance in both sparse and dense settings. Therefore, when the sparsity level of Ag is unknown,
we recommend using this mixture as the default option. This strategy will be employed in all of the
numerical experiments presented later in the paper.

3.2 CHOICE OF L, M AND d

Algorithm [I| combines the results of evaluating the empirical performance of the base regression
method across a total of L - M - d projection directions. More precisely, we aggregate the results of
L (d-dimensional) projections, where each projection is selected as the best from a disjoint group
of size M. In this section, we explore how varying these parameters affects performance. As we
will show, the performance typically improves as L increases, in the sense that the sin-theta distance
decreases at rate L~'/2 (assuming the other quantities fixed); see Theorem |I| and our numerical
results in Figure [9] Overall, these results lead us to recommend L = 200 as the default. The
effects of M and d are slightly less straightforward, and their choices are influenced by the ambient
dimension p. We recommend M = 10p and d = min{[p'/?],10}.

We focus here on the choice of L; details regarding the choices of M and d are provided in Ap-
pendix Theorem [1| below compares the sin-theta distance between the first dy columns of U
from the output of Algorithm [I] run with L groups of projections, with the corresponding output
when considering an infinite-simulation version of the algorithm which takes “L = oo0”. More
precisely, given data {(z1,y1),.-., (Zn,yn)} (here treated as fixed pairs in R? x R), d € [p],
a projection distribution @ on Q,x4, L € N, M € N, ny € [n—1] and § € Gan,, let
flé = Ay = (Uy,...,Uyq,) denote the first dy columns of the output U. We explicitly emphasise
the dependence on L and assume the true dj is known. Further define II*° := E(Pg,*PZ*) € Spxp

to be the expected value of IT in line 9 of Algorithm |1} the expectation is taken only over the ran-
domness in the projections and the sample-split in line 4 of the algorithm, but not over the data. Let
A = (U, ..., Ug), where Up*, ..., U are the singular vectors of I1°.

Theorem 1. We have

N 1/2 o 2(27T)1/2d1/2dp
Edy (S(Af), S(40)) < 2|1 — A0 AJ llop + =775
The proof of Theorem [T]is given in Appendix [B] The second term in the bound suggests that the
error of our algorithm decreases at rate L~'/2 as L increases. The first term does not depend on L
and can be seen as the infinite-simulation error of our method; it depends on the choices of M and
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d (as well as the base regression method and projection distribution) and would be small when, on
average, the projections selected are close to Agy. See Appendix for a numerical demonstration.

3.3 CHOICE OF d,

In some scenarios, the user may have a predetermined target dimension, dh, in mind. In such cases,
one should simply retain the first dy columns of U from Algorithmand set Ag = (Uh,...,U do).
Indeed, the singular vectors of U can be interpreted as the most frequently selected dimensions
(in decreasing order of importance) across projection groups in the algorithm. When the desired
dimension is unknown, we propose to use the information contained in the singular values D from
the output of Algorithm|l} The main idea is to compare these singular values with the component-
wise median of those obtained by applying the same procedure to random projections with the same
distribution, but without selection within each group (i.e., M = 1); see Algorithm[2]below. We use
the median rather than the mean, as it provides a more stable summary of the no-selection random
projection baseline and is less sensitive to outliers, which can occur under heavy-tailed Q).

Algorithm 2: RPEDR Dimension Estimator

Input: Projection dimension d € [p], projection distribution Q on Q,, 4, number of groups L, and the
vector diag(D) = (D1, ..., Dy) of singular values from the output of Algorithm I} as well as a random
projection resample size R € N.

LetPiy,...,Prr &' Q.

for r € [R] do

Set 1" = LS Py, P/,.
Calculate the singular value decomposition of [T = U™ D) (™) T and let
diag(D™) = (D", ..., D).

Let Tj

1 R
7 2r=1Lipcp)y

Output: The dimension do := max{j € [p] : T; > 1/2, for all £ < j}. (Here the maximum over the
empty set is taken to be zero, interpreted as evidence that there is no correlation between X and Y'.)

The motivation is that, for a particular direction to be selected, there should be evidence that it carries
more signal than would be expected at random. For the leading singular vector U; (with associated
value D), we require evidence that this direction is more likely to be selected by our algorithm than
under random chance. For subsequent components, note that since our projections are rescaled to

have trace d, we have Z?Zl D; = trace(II) = d. This induces a natural penalty for selecting more
dimensions when earlier singular values in D are relatively large.

Model 1-3, n=200, p=20

|~ Random Signal
 Model 1 Signal
+  Model 2 Signal
& Model 3 Signal

Model 1-3, n=200, p=100

— Random Signal
Model 1 Signal
+  Model 2 Signal
A Model 3 Signal

4

Ve
Value

Ordered Singular Values Ordered Singular Values

Figure 5: Comparison between the vector D of singular values from the output of Algorithmfor Models 1a, 2
and 3, and the median of corresponding D™ in Algorithmfor p = 20 (left) and p = 100 (right). We present
only the first 10 singular values in each case.

Figure [5|illustrates the procedure for selecting do in Models 1a, 2 and 3. For Model 1a, the output
suggests retaining the first two singular vectors. This is partly because, as seen in Figure[3] the single
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signal %(X 1 + X>2) is often split into two. The reason is, in part, that even though the direction

%(1, —1,0,...,0)T is orthogonal to the true signal direction, the response Y is not (marginally)

independent of X; — X5. As a result, our algorithm suggests selecting (approximately) this direc-
tion. We demonstrate in Section [3.4]how applying our algorithm twice in such cases can accurately
recover only the true one-dimensional signal. For the other two models, there is a clear indication
that we should take cio =d,i.e., cZO = 1 in Model 2 and cfo = 2 in Model 3, and in fact, we recover
most of the signal: for Model 2, |U" e3| > 0.999; for Model 3, min{|U;" eg|, |U; e7|} > 0.995.

Further evaluation of dj selection can be found in the full simulation study in Appendix

3.4 DOUBLE RANDOM PROJECTION ENSEMBLE DIMENSION REDUCTION

In this subsection, we explore how applying our main algorithm a second time may help to further
reduce the dimension in cases where the user is not satisfied with the suggested dimension from an
initial application of Algorithms [] andE} This double application strategy is particularly effective
when we have a desired dimension, dj say, in mind and the number of covariates contributing
to S(Ap) exceeds do. In such situations, a single application of our algorithm may favour the
coordinate axes of the relevant covariates, but fail to combine these effectively into the smallest
possible number of dimension reduction directions.

One perspective of this approach, is that the first application of our algorithm acts as a screening step
to select potentially relevant directions, while the second application then combines these directions
to yield a lower-dimensional projection that still retains a large amount of the signal. The full
procedure is presented in Algorithm 3] and a detailed demonstration is provided in Appendix [A.5]
where we also provide an extension of Theorem [I]applicable to this algorithm (see Theorem 2).

Algorithm 3: Double RPEDR

Input: Data ((z1,41), ..., (Tn,yn)) € (RP x R)™ and desired dimension dy € [p].
Let U and D be the output of Algorithmapplied t0 (Z1,Y1), -y (Tn, yn) With L = 200, M = 10p,
d = min{[p'/?],10}, m = [2/3], @ = 5O + 3Q&". and § = Juans.
Let do be the output of Algorithmapplied to D, with L = 200, d = min{[p*/?],10},
Q=1Q¥" + 105"
if do > do then
Set Ag := (Un,..., U(io) and z; := AJ z; fori € [n].
Let U and D be the output of Algorithmapplied t0 (21, 91); -y (2n, yn) With L = 200, M = 10do,
d =min{[V/do],10}, n1 = [2n/3], Q = 1Q2 + 1Q2?, and § = guars.
Let AO = Ao(Ul, ey UJO) S RPXCZO
else
| LetAo = (Us,...,U;,) € RP*%

Output: The projection Ao.

Additional practical considerations — including the selection of base regressor, the choice of the
split ratio nq /n, and computational notes — are presented in Appendix

4 NUMERICAL SIMULATIONS

In this section, we summarize the main findings from a large simulation study comparing the per-
formance of our proposal with several existing methods for estimating the central mean subspace
S(Ap); the full experimental design and complete results are provided in Appendix We evaluate
three versions of our proposed method (see also Figure [2). The first variant applies Algorithm [T]on
its own, and the second is the double dimension reduction approach presented in Algorithm 3] Both
variants are suitable when the true projection dimension dj is known. The third variant, which com-
bines Algorithm [T]and [2] is designed for situations where dj is unknown. For comparison, we use
the default implementations of several existing methods, including SIR (Li, |1991), pHd (Li,|1992),
MAVE (Xia et al., [2002), DR (Li & Wang, 2007), gKDR (Fukumizu & Leng, 2014), and drMARS
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(Liu et al.} [2023)). The models used in our experiments include Model 1 (with ¢ = 2, introduced in
Section [3.1)), as well as eight additional models given in Appendix [A.1][A.5] and[C]

In the main text we focus on the slightly simpler scenario where the dimension dy of the central mean
subspace S(Ap) is known. In this case, our first proposal, denoted as RPE in Figures |§| and sets

Ay = (Uy,...,Uq,), where U = (Uy,...,U,) is the output of Algorithmwith the default inputs
recommended. In particular, we set d = min{[p'/?],10}, L = 200, M = 10p, n; = [2n/3],

Q = %Q%d + %Q%d, and § = guars. We also present the performance of Algorithm [3| with

czo = djp, which is denoted RPE2 in Figures |§| and For the competing methods, we use the
R packages dr (Weisberg, 2002) for SIR and pHd, MAVE (Hang & Xia, [2021)) for MAVE, and
the relevant code available via GitHub for DR (https://github.com/JSongLab/SDR_HC),
gKDR and drMARS (https://github.com/liuyu-star/drMARS). In each case, we use
the corresponding default recommendations to select appropriate tuning parameters.
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10
5

=_— = — = 3
o B I : _—
% == - Fa— + - - -
== T = . == :
T BT - : ; E=ES B2
. [ S | 3 £ - - Lo -
B B+ < - el ==
i : : TF
o 1 o - S i i
: N ‘ g 8 .
3 . S + - H
i 5 e
. = L X . — . ——
SIR pHd  MAVE dr gKDR drMARS RPE  RPE2 SIR pHd  MAVE dr gKDR drMARS RPE  RPE2 SIR pHd  MAVE dr gKDR drMARS RPE  RPE2
Model 4 Model 5 Model 6
o P - _— . — eme= 0 T T
- M —_ ° ° o - H = H o . H H H
+ B = = I P === - + o
© i i T === T - | -
Ny — - — 5 T - g,
B = . E ;
4 = [ e Lo
° ; £ - ; 2 i g . R :
- . i —_ i 3 i i
o | - . PR S
=y ]
o o o [
g B H]
SR o WAE & om awaRs RPE RPe SR o WAE & gom s RPe e SR WAE & gom anARs RPE RRe
Model 7 Model 8 Model 9
—_ e e — = _ - —
T Esm=T - + 7 == ==
- L 7 ; i | T = == BN = L = —
3 : - 2 B - S i i
l ) | L
3 - = 3 ¢ 3 + T
o - [ S o _i .=
g g g

SR pHd MAVE dr  QKDR diMARS RPE RPE2 SR pHd MAVE dr  QKDR MARS RPE RPE2 SR pHd MAVE dr  QKDR GrMARS RPE  RPE2

Figure 6: Boxplots of sin-theta distance between the subspaces spanned by the estimated projection Ap and
true projection Ag for our RPE-based methods and the six competing methods when dj is known. We present
the results for models 1a-9 over 100 repeats of the experiment, with n = 200 and p = 50.

Figures |§| and [7| present boxplots of the sin-theta distance dp(S(Ag), S(Ag)) when n = 200 and
p € {50,500} setting across 100 replicates for the nine models. We observe that both RPE and
RPE2 approaches are highly effective. In Models 1a and 4, RPE2 demonstrates a clear improvement
over RPE, as highlighted in Section [3.4] For the other models, a single application of Algorithm [I]
performs very well. The drMARS approach is also competitive in Models 1a, 5, 6 and 7. The other
competitors suffer prohibitively due to the curse of dimensionality and are typically ineffective in
the 50-dimensional examples shown here; when p = 500, SIR, pHd and DR are intractable because
p > n. In the high-dimensional setting, our RPE-based methods show even more pronounced
advantages: RPE or RPE2 achieve the best performance across all nine models. There are a few
cases where none of the methods achieve a sin-theta distance close to zero: In Models 5 and 7, our
algorithm tends to find the space spanned by e; and es, but misses the weak signal in the es direction;
Model 6 is particularly challenging, as all three covariates X7, X2 and X3 are needed to obtain a
non-trivial prediction, and the regression problem remains difficult even given the oracle projection.
We observe better performance in these models when p = 20 and n = 500 — see Appendix [C}
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Figure 7: Boxplots of sin-theta distance between the subspaces spanned by the estimated projection Ag and
true projection A for our RPE-based methods and the three competing methods when dj is known. We present
the results for models 1a-9 over 100 repeats of the experiment, with n = 200 and p = 500.

5 DISCUSSION AND EXTENSIONS

We introduced a new general approach to sufficient dimension reduction, based on aggregating
an ensemble of carefully chosen projections. The framework is highly flexible, allowing different
distributions of random projections and a user-specified choice of base regression method. We have
provided default recommendations for these aspects and other tuning parameters based on extensive
numerical experiments. While our current theory focuses primarily on the effect of L, extending the
theory to other tuning parameters and developing more automated defaults are promising directions
for future work. Our default implementation prioritises statistical performance and can be slower
than classical SDR methods. However, the computation is highly parallel across projection groups
and candidates and, as discussed in Appendix [C.3] competitive performance is often achievable
with modest runtimes using multi-core CPU parallelism. Therefore, an obvious direction for further
improving scalability is to exploit GPU acceleration.

There are several ways in which our framework could be extended further. First, a natural assump-
tion in high-dimensional settings is sparsity, specifically the case where the projection Ay is sparse.
In this scenario, it may be more effective to consider sparse random projections; perhaps more
importantly, employing sparse SVD (see, for example, |[Yang et al., 2014) to aggregate the chosen
projections can encourage a sparse estimate Ag. Second, in the context of additive index models
(see, for example, Friedman & Stuetzle, [1981; [Ruan & Yuan, [2010), we may seek to sequentially
find the signal directions one by one. For the first direction, apply Algorithm [I]and keep only the
leading singular vector. To identify the subsequent directions, one could then apply a modification of
our procedure that always includes the signals found so far and considers random projections that are
orthogonal to the previously identified signals. Finally, while this paper has focused on dimension
reduction—specifically estimating the projection matrix Ap—it would be interesting to consider al-
ternative ways of aggregating the results when the primary objective is to predict the response Y. In
particular, improved predictive performance might be achieved by directly aggregating the predic-
tions from the chosen projections, as opposed to fitting a new regression model after projecting the

data using the estimated projection Ay. We leave these extensions for future investigation.

10
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REPRODUCIBILITY STATEMENT

Code to implement our algorithms in R is submitted in a .zip file as supplementary material, and
is also available at https://github.com/Wenxing99/RPEDR. The algorithms are fully
specified in Algorithm 1 (RPEDR), Algorithm 2 (dimension selection), and Algorithm 3 (double
RPEDR) in Sections [2] [3.3] and [3.4] respectively. Default settings (base regressor, projection distri-
bution, L, M, d, ny/n) and implementation details are summarized in Section [3|and Appendix
The full simulation design (including all nine models, different values of n and p) is reported in
Section[d]and Appendix [C] Real-data preprocessing, splits and evaluation are given in Appendix
Complete proofs of our theoretical results appear in Appendix
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A FURTHER PRACTICAL CONSIDERATIONS

A.1 CHOICE OF BASE REGRESSION METHOD

The choice of base regression method § € Gg,, used in Algorithm [I| depends on two primary
factors: first, the method should be computationally efficient, as it will be applied L - M times to
different randomly projected datasets; second, the base regression method must capture at least some
of the signal after a good projection has been applied. We will show that a global polynomial-based
method is often effective, even when the true signal is not exactly polynomial. However, there are
scenarios in which a more flexible nonparametric approach is needed.

We investigate four options in detail. In each case, we describe how § € G4 , is defined based on a
dataset (21,91); - - -, (Zms Ym) € (R? x R)™ of sizd|m > 1+ d(d + 3)/2 and a test point z € R%.

1. Global linear least squares (LLS): jar.(z) = & + BTz, where

m

(@8) = argmin {3 (yi —a—5T2)%}.
(a,8)ERXRE 5
2. Global quadratic least squares (QLS): jaq(z) = a + b7z + 27 Cz, where

m

(a, b, C’) = arg min Z(yz —a—blz — ziTCzi)2}, 3)
(a,b,C)ERXREXSgxa i—1
and S;x ¢ denotes the set of d X d symmetric matrices.
3. Nadaraya—Watson: Fix a kernel K and a bandwidth i > 0, then let
(s) = St p KBz =),
>ic1 K (|2 — 2]])

2/
In our experiments below, we take K (t) = % and h = 0.1.

4. Multivariate Adaptive Regression Splines (MARS): Let gynars denote the estimator pro-
duced by the forward and backward passes (Algorithms 2 and 3) of [Friedman|(1991)), which
fits piecewise linear models to the data and automatically selects interactions between vari-
ables. We use the implementation of this method from the R-package earth (Milborrow,

2024). The maximum degree of interaction is taken to be 3.

While many alternative base regression methods are available, we focus on these four methods for
their balance between flexibility and computational feasibility.

To demonstrate how these different options perform in practice, we carry out a further set of experi-
ments using three different models:

* Model la: as used in Sectionwith Ap = (12,0,_2) 7.
* Model 2: Let X = (Xi,...,X,)" ~ Unif([-1,1]?) and Y = 2sin(27X3) + € with
€ ~ N(0,1/4) independent of X.
* Model 3% Let X = (X1,...,X,)" ~ N,(0,1) and
Y = Xo
1/2+ (X7 +3/2

with € ~ N(0,1/4) independent of X. Here Ay = (eq, e7) is 2-dimensional, where ¢;
denotes the jth canonical Euclidean basis vector in RP.

+e€
)2

'this sample size requirement is mild and ensures that we can apply the global quadratic method below —
if it is not satisfied, then either d should be reduced, or we are limited to using the linear least squares method
which only requires m > d.

2Model 3 was used in the simulation studies in|Lil (1991 );[Xia et al.|(2002); Liu et al.|(2023).
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In each case, we set p = 20 and n = 200, and apply Algorithm[I|with d = 5, L = 200, M = 200,
ni = [2n/3],and Q = Q%" + 1QE".

Model 1

Model 2

Model 3

L=

==

T
Polynomial

T
Nadaraya-Watson

T
MARS

Figure 8: Boxplots of the sin-theta distance (see equation between Uy.q4, from the output of Algorithmand
the true direction Ag over 100 repeats of the simulation. We present the results for Model 1a (left), Model 2
(middle) and Model 3 (right), for p = 20 and n = 200. The base method is linear least squares, quadratic least
squares, Nadaraya—Watson or MARS.

Figure [§] exhibits some interesting behaviour. In Model la, the LLS is not effective because no
linear signal exists in any d-dimensional projection of the data. For a similar reason, the linear
and quadratic least squares methods do not perform well in Model 2. However, in Model 1a, the
quadratic base method is very effective, as this model is correctly specified after applying the or-
acle projection Ag. MARS also performs well here, although at a higher computational cost. For
Model 2, the flexibility of the nonparametric methods is required to find the signal, and MARS
outperforms Nadaraya-Watson. The results for Model 3 show that, even when the base model is
incorrectly specified, good performance is still achievable. Here the true regression function after
the oracle projection is not polynomial. The linear base method captures the (approximately) linear
signal in X, but misses the signal in X7. However, the signal is sufficiently well-approximated by
a quadratic function, allowing us to recover much of it using the quadratic base method; the slightly
more computationally expensive MARS method performs similarly to the quadratic least squares.

Based on these results, MARS is recommended as a suitable default base regression method. It
performs well across all examples presented here and across a wide range of settings in our large
simulation study (Section ] and Appendix [C).

A.2 CHOICEOF L, M AND d

To further elucidate the effect of L in practice, we conduct a numerical experiment using versions
of Models la, 2 and 3 from the previous subsection with p = 20 and p = 100; see Figure E}
We set n = 200, with the other inputs to Algorithm being d = 5, M = 10p, ny = [2n/3],
Q= %Qf\?d + %Q%d for the projection distribution, and § set to MARS. The number of projection
groups L varies from 10 to 1000.

The empirical results in Figure [0] confirm that, in these examples, performance of our method im-
proves as L increases, in line with Theorem [I] In Model la, we observe greater variability across
repeats — partly because, in this example, our algorithm captures only part of the true signal within
the leading singular vector of U in some repeats. As also discussed in Section [3.3]and Appendix [C}
nearly all of the signal is found in the first two singular vectors (which is not fully reflected by the
sin-theta distance measure presented here). In fact, the extension in Section is able to find the
majority of the signal in a one-dimensional projection using a double application of our procedure.

We now turn to the choice of M and d, which together determine the total number of projection
directions considered within each of the L groups in Algorithm [I| In contrast to the choice of L,
there is a trade-off when choosing d and M. For instance, if M is taken to be small (e.g., less than
20 when p = 20), it is unlikely that a good projection appears within a block of size M. On the other
hand, if M is taken to be very large (e.g., greater than 1000 when p = 20), we may start to overfit—
although this effect is often negligible due to the data resampling strategy taken in Algorithm [I]
In our experiments, we see that the performance tends to level off rather than deteriorate as M
increases. Regarding the projection dimension d, if d is too small—-especially if it is smaller than (the
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Figure 9: The median (solid line) of the sin-theta distance (see equation between Us.q, from the output of
Algorithm[T]and the true direction Ao over 100 repeats as L varies. We present the results for Model 1a (left),
Model 2 (middle) and Model 3 (right), for p = 20 (top row) and p = 100 (bottom row). The grey shaded
region shows area between the 5%-95% quantiles for each value of L.

unknown) dp—one or more relevant projection directions will always be missed, as the algorithm
will consistently choose only a more dominant dimension reduction direction. Nevertheless, we
aim to keep d relatively small for computational considerations and the fact that the base regression
methods may suffer from the curse of dimensionality.

To explore these aspects in practice, we repeat the experiments presented in Figure 0] but now fix
L at the default recommendation of 200, and vary d € {1,2,5,10,20} and M € [1000]. The
results are shown in Figure When p = 20, taking d = 1 is not effective across all three models
considered, and there is a clear advantage to taking d > dy. To elucidate this point, consider an
example where dy = 1. Setting d = 1 requires one of the M projections in each group to be
relatively highly correlated with the true projection direction, which is rare unless M is very large.
With a larger d, it is more likely that we find a projection with some signal, which then yields good
performance in the final aggregation step. However, if d is too large, the base method may begin to
overfit—as seen, for example, Model 1a when p = 20 and d = 10.

Regarding M, when p = 20 and d = 5, the performance of our proposal improves rapidly as M
increases, and then levels off for M between 100 and 200. When p = 100 in Model 1a, M needs to
be very large in order to capture all of the signal in the first singular vector of U in fact, nearly all of
the signal lies in the first two singular vectors even for moderately small values of M. For Model 3
with p = 100, the algorithm recovers one of the dy = 2 directions for small M (for every d), but
larger d and M are needed to capture the second direction. This explains the two plateaux seen
in the bottom-right plot. Overall, we recommend d = min{[p'/?],10} and M = 10p as sensible
default choices.

A.3 CHOICE OF nq

The purpose of this subsection is to present a sensitivity analysis regarding the sample-split ra-
tio in Algorithm E], since ny /n trades off selection stability against validation reliability. We use
Models 1a, 2 and 3 from Appendix set p € {20,100} and n = 200, and apply Algo-
rithm [1 with d = min{[p!/?],10}, L = 200, M = 10p, and Q = 1Q¥* + LQE". We vary
ny/n € {1/2,2/3,3/4,4/5}. The results are presented in Figure[11} where we see that the perfor-
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Figure 10: The median of the sin-theta distance (see equation between Us.q, from the output of Algorithm
and the true direction Ay over 100 repeats as M varies from 10 to 1000, with d = 1 (black), d = 2 (blue),
d =5 (red), d = 10 (green) and d = 20 (yellow). We present the results for Model 1a (left), Model 2 (middle)
and Model 3 (right), for p = 20 (top row) and p = 100 (bottom row).

mance is very stable as n varies over this range. Nevertheless, we use nq /n = 2/3 throughout the
experiments in this paper.
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Figure 11: Boxplots of the sin-theta distance between Ui.q, from the output of Algorithm |1 and the true
direction Ao over 100 repeats as n1/n varies in {1/2,2/3,3/4,4/5}. We present the results for Model 1a
(left), Model 2 (middle) and Model 3 (right), for p = 20 (top row) and p = 100 (bottom row).

A.4 COMPUTATIONAL CONSIDERATIONS
The dominant cost of Algorithm [I|comes from applying the base regression method L x M times;

by contrast, projecting the data and computing the final SVD are relatively cheap if the ambient
dimension p is modest (tens to low hundreds). Notably, these L x M fits are highly parallelizable,
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so multi-core execution substantially reduces wall-clock time. In practice, we parallelize only the
outer loop over the L groups (one group per worker), since these groups are independent of each
other; within each worker, the M candidates are evaluated sequentially, and the selected projections
are aggregated afterwards.

In Appendix we have shown that global linear least squares (LLS) and global quadratic least
squares (QLS) are effective in certain applications. We report below the illustrative runtimes for the
setting n = 200, p = 50 (Model 1a). Specifically, we measure the wall-clock time per experiment
(using 10 CPU cores) on a 3.20 GHz Intel 19-14900KF computer for MARS (default), QLS, and
LLS. Table[I]summarizes the results; these numbers are illustrative and complement the full timings
in Appendix C.3 (all measured on the same machine).

Base regressor  Time (s) Notes

MARS (default) 56.133  slow; flexible nonparametric default, robust to misspecification
QLS 20.780  faster; less strong but still often effective
LLS 12.794  fastest; effective only when the signal is close to linear

Table 1: Runtime (seconds) per run for RPE employed with three base regressors on 10 cores; Model 1a with
n = 200, p = 50; L=200, M=10p, d=[/p], @ = 1Q¥* + 1Q%"

An appealing direction is to first screen candidate projections within each group using a cheap
base regressor (e.g., QLS), then apply MARS only to the top candidates (for instance, the top 5%)
before selecting the best in the group. This two-stage strategy has the potential to preserve good
performance at a much lower cost; a thorough evaluation is left to future work. Nevertheless, we
report runtimes of our method with default settings in Appendix [C.3]

A.5 DEMONSTRATION OF DOUBLE RANDOM PROJECTION ENSEMBLE DIMENSION
REDUCTION

We demonstrate the procedure of Algorithm [3|using Model 1a and a new model as follows:

 Model 4: Let X = (X1,...,X,)" ~ N,(0,1) and

Xi—Xo+ X
v — exp(l—m) te
3
with ¢ ~ N(0,1/5) independent of X. Here Ay = %(1,—171,01,,3)—r is one-

dimensional.

In both Models 1a and 4, the true projection Ay is one-dimensional and therefore we seek to find
the best one-dimensional projection. Figure [I2|compares the leading singular vector obtained from
Algorithm |1f with the output of Algorithm , using the recommended default inputs and dy = 1.
Specifically, we apply Algorithm [1with L = 200, M = 10p, d = min{[p'/2],10}, n1 = [2n/3],
the projection distribution @) = %Q%d + %Q%d, and § = gmars. In both models, a second appli-
cation yields substantially improved performance. For Model 1a, the first application (Algorithm|[T)
typically identifies the first two coordinates as important, but splits the signal across the first two sin-
gular vectors. The second application (Algorithm[3)) then effectively combines these separate signals
into a better estimate of the one-dimensional Ay. A similar and even more pronounced improvement
is observed in Model 4.

When the initial application of Algorithms [I} and [2| correctly identifies the true dimension do, ap-
plying Algorithm [3| provides no further benefit. However, as long as dy > dj, there is typically no
disadvantage either—see, for example, the results for Model 3 presented in Figure[6|of the main text.

We now provide an extension of Theorem 1, which provides guarantees for the output of Algo-
rithm 3. To set the scene for this new result, suppose we input dy = dj in Algorithm 3, and that

Algorithm 2 suggests we should set (Zo > dy, then lines 5-7 of Algorithm 3 apply. Let Aj € A doxdo

be the ) matrix in a QR decomposition of AOT Ap. Intuitively, Afj captures exactly the part of
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Figure 12: Demonstration of the double RPE dimension reduction approach in Algorithm [3] We compare a

single application of Algorithmwith do = 1 to the double application in Algorithmwith do = 1. Left: the
first 10 entries of the estimated Ao for a single run; right: the sin-theta distance over 100 repeats. We report
results for p € {20, 100}, with Model 1a (top) and Model 4 (bottom).

the true CMS S(Ay) that is preserved inside S (flo) after the first-stage projection. As in Theo-
rem 1, we treat the {(z1, yl) (zn, yn)} as fixed pairs in R% x R. From Algorithm 3, we obtain
U= U1 dy = (Ul, cee U ) and D. Algorithm 3 then outputs Ay = AO(Ul, cee Udo) = AOUl:do-

Let 1 := E(UDUT | Ao) € Sgyxdy-

Theorem 2] bounds the expected error of the output of Algorithm 3|conditionally on the initial output
from the first application of Algorithm[I] The bound includes the false negative error arising from
the first application, defined as

dFN(AO;AO) = ||(I - AOAJ)AOHF

dpn measures false negatives and quantifies the amount of the space spanned by Ay that is missed

by the projection Ag. Indeed, we have dpx (Ao, Ag) = 0 when S(Ag) C S(Ay). This should be in-
terpreted as quantifying the amount of the true signal missed by the first application of Algorithm
The other terms in the bound in Theorem [2] should be interpreted similarly to those in Theorem

note, however, that since the dimension has been reduced from p to dy in the first application, the
final term in the bound no longer depends on the ambient dimension p.

Theorem 2. We have that

E[dr (S(4o), S(4o)) | Ad]

2(2m)V/2d}/*d - dy

< drn (Ao, Ao) + 24y * T2 = A5(A5)[lop + T

The proof of Theorem 2]is given in Appendix
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B PROOFS OF OUR TECHNICAL RESULTS
The aim of this section is to prove Theorem [T]and Theorem 2]

Proof of Theorem([I} Recall that the data (21, y1), . (xn , yn) are treated as n fixed (i.e. non ran-
dom) pairs in R? x R. From Algorithm |1| we have that I = I Ze 1Py *Pz .» and AL € Rpxdo
denotes the matrix whose columns are the dy leading eigenvectors of I1, ordered according to the
corresponding eigenvalues. Recall also that II*° = E(Pe’*PZ*). LetIT := AgA] € RP*P, and for
j € [do) write a; for the jth column of Ay, so that Ag = (a1, - -+ ,aq,). Since Aj Ao = Liyxd, the
dp largest eigenvalues of II are 1 and the remainder are 0. Indeed, rank (IT) = rank (4g) = dy, so
IT has dy nonzero eigenvalues. Moreover, Ila; = AgAJ a; = Ao(AJ a;) = Aoej = a; for j € [do).
Then, since II and IT are symmetric, by the Davis—Kahan Theorem (Yu et al., 2015, Theorem 2) we
have

dr (S(AF), S(Ao)) = [|sin O(AF, Ag)|| - < 2dy"*|[TT — 11| \
. )
< 245 (71 = T op + 11 = TH]Jo ).

The second term in equation [ does not depend on L or on the randomness in the projections. The
remainder of the proof therefore involves controlling the expectation of the first term on the right
hand side of equation To that end, we first show that

P(|[fr-<||, > ¢) <p-ei 5)

for t > 0. To see this, for £ € [L] let I, := P, P/, and write J; := £ (II; — II°°). Then

1

L
1 L L

=Y PLPL =Y
=1 =1

Furthermore, E(Jg) = 0, and J; (and thus also Je ) is symmetric. We now show that Je < Lg Ipxp,
in other words ﬁlpx » — J7 is positive semidefinite almost surely, or equivalently that
d2
T 72
sup v Jyv< —
{urlleli=1} L2
First, write Py, = (Py.1,...,Pguaq). Since diag(PZ*PA*) = (1,...,1)T € R, we have
|Pe. ;1> = 1forj € [d]. Then, for v € R? with ||v]|s = 1, by Cauchy-Schwarz we have

(6)

d
v = [P0l = Y (P, 0)? < Z 1P e sl 0]l =
j=1

Therefore, v " IT;v € [0, d]. Moreover, by the linearity of expectation, we also have
v 1% = v "E(My)v = E(v M) € [0,d]
whenever ||v||2 = 1. It follows that
v (T —TT®)v = v M — v T* € [~d,d],  forall ||v|, = 1.

Hence we can write I, — I = UZDKUZT, where U; € RP*P is orthonormal and Dy is a diagonal
p X p matrix with all diagonal entries between —d and d (Horn & Johnson| [1985| Corollary 2.5.11).
We deduce that, for all v € RP with ||v||2 = 1, we have

d2

1 o0
—2UT(Hg —II%°)%y = 72

L
which establishes equation [6]

v JPv = v UDIU, v < ﬁnUé ol =

1
2
Finally, because each of the projections P . is chosen from a disjoint group of independently gener-

ated random projections, we have that P, , for £ € [L] are independent, and therefore J, for ¢ € [L]
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are also independent. It then follows from the Matrix Hoeffding inequality (see, for example Tropp
(2012, Theorem 1.3)), that

. t2 2
IP’(HH — HOOHOp > t) <p- exp(—

_t°L
8 2 ovz1 % llop

which establishes the bound in equation [5] To complete the proof we bound the expectation as

follows:
E(|T—m=| )= [ P(|I-1| >t)dt
op 0 op
e 2L d-pV2r
< e s dt = ———— |
<[ pees o
as required. O

Proof of Theorem |2} First, by triangle inequality we have
dr (S(Ao). S(A)) < dr(S(AoU1a, ). S(Ap A7) + dp(S(AoAf), S(Ao)).- )
Now for any B € Rdoxdo
|AoBAJ||% = w{AyBAJ AgBT A} = w{B(A] Ap)BT (4] Ao)}
=u{BB"} = B[}
It follows that

dr(S(AoU1.q,), S(Ao A} |AoUn.a, Uy 4y Ag — Ao AG(AG)TAJ ||

)=
_ 1
— \ﬁ‘
_ 1
— \ﬁ‘
= dp(S(U.4,), S(A}))- (8)

Further, by an application of Theorem to the data projected by Ag and working conditionally on
A, we have

| AoV, Ulay = A5(45) TIAT ||

|00 Uy — A5(A5) ||

2(2m)V/2d}/*d - dy

L1/2 (9)

E{dg (S(Tr.a,), S(AL)) | Ao} < 2d5/2T12° — A35(A5) [lop +

Now consider the second term on the right hand side of equation [7] For simplicity of exposition,
let P := AgAj(Ay)TAJ, Q := AgAJ. Both P and Q are symmetric, P? = P, Q? = @, and
tr(PQ) = tr(QP). Further

tr(Q) = tr(Ag Ay ) = tr(Ag Ag) = tr(Ig,) = do,
and similarly
tr(P) = tr{ A A5(A5) TAg } = u{(A3) T(A] Ag)Aj}
T IyAodoldg) Ao I A 0 410)Ag
= tr{(A)) T A5} = tr(I4,) = do.
It follows that
- 1 9
& (8(4043).5(40)) = 5|P— Q|2

= (P Q)T (P- Q)
o

%tr(PQ _PQ-QP+Q?)

_ %tr(P +Q - 2PQ) = dy — t(PQ).
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Recall that A5 € A; ., is given by the QR decomposition of M := AOT Ag, ie.
M = AJ Ay = AR, (11)
where R € R%*% is some upper triangular matrix. Then solving equation|[1 1] gives
R = (AS)TA(TAO-
Therefore
tr(PQ) = tr{ Ag Ay (Ay) T Ag AgAJ } = tr{(A5) T AJ AgAJ ApAf} =t(RRT).  (12)
On the other hand, recall from the definition of false negative measure de(flo, Ap) we have

din(Ag, Ag) = (1 - AOA(T)AOHi—‘
=tr{AJ (I — AoAJ)* Ao}
=t{AJ (I — AgAJ)A,}
=tr{AoA] (I - AOAJ)} (13)
=tr{ApAg } —tr{AgA] AgAJ}
=dy — tr{ A] AgAJ Ao}
=dy—tue(MM").
Finally, we have
w(MM") = u{A;RRT (A§)"} = w{RR"(A}) " Ay} = w(RR"). (14)
Combining equation[I0} equation[T2] equation[I3] and equation[T4] we have
dp (S(AgA),S(Ao)) = dpn(Ao, Ao) (15)

Now taking conditional expectation with respect to Ay on both sides of equation [7| in combination
with equation 9] and equation [T5]completes the proof.

C FULL SIMULATION RESULTS

In this section, we present the full results of our simulation study, which follows the design of
experiments described in SectionEjof the main text. The models considered are Model 1 (with g = 2,
introduced in Section [3.1)), Model 2 and 3 (introduced in Appendix [A.T)), Model 4 (introduced in
Appendix |A.5), and five additional models defined as follows: let X := (X1,...,X,)" ~ N,(0,1)
and € ~ N(0, 1/4), with X and e independent:

—2(X1+X2+X3)?
Model 5: Y = XitXo+5e 5 + €,

Model 6: Y =5X: X5 X35+ ¢

Model 7: Y = 4(X; — X5 + X3)sin(Z (X1 + X)) + €
« Model 8: ¥ = X{ (X1 + Xo + 1) +¢

* Model 9: Y = 10cos (6X;) + X2 + ¢

Models 5, 6 and 7 were used in [Liu et al.| (2023)), and Model 8 was used in [L1 (1991); Xia et al.
(2002); L1u et al.|(2023)).

For each model, we consider the settings with p € {20, 50, 100, 200, 500} and n. € {50, 200, 500}.
The full description of the algorithms considered, along with how tuning parameters were chosen,
is given in Section 4]
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C.1 DIMENSION dy KNOWN

First, we report the complete results for the setting where the dimension dy of the central mean
subspace S(Ag) is known, providing the full picture of this scenario described in the main text. To
save space, rather than presenting boxplots here, we focus on the mean and standard error of the
sin-theta distance (when dg is known) over 100 repeats of the experiments. The results are given in
Table 2] (Models 1a-3), Table 3] (Models 4-6), and Table @] (Models 7-9).

The broad message from the results is that our random projection based algorithms are competitive
across all nine models, for different values of n and p. The relative performance is broadly similar
to the p € {50,500}, n = 200 cases presented in the main text. More specifically, we note the
following. First, in the cases where p > n, SIR, pHd and DR methods are not applicable. Second,
in relatively large p settings (for example, n < 10p), our method shows substantial improvement
over existing methods. Overall, our approach enjoys the best performance for Models 2, 3, 4, 8, and
9. For the remaining models, our random projection based method and drMARS perform similarly
and typically outperform the other competitors.

Setting Competing Methods Our Methods
Model P n SIR pHd MAVE DR gKDR drMARS RPE RPE2
50 | 0.970.05 0.81p.10 0.87p.14 0.970.05 0.929.09 0.13p.18 0.320.14 0.12¢ 04
20 200 | 0.979.05 0.400.08 0.24p.04 0.330.06 0.290.06 0.030.01 | 0.200.11 0.060.02
500 | 0.960.07 0.240.05 0.100.02 0.199.03 0.1409.03 0.01g.01 | 0.139.08 0.050.02
50 / / 0.930.09 / 0.970.03 0.34p.28 | 0.460.17 0.14¢.08
50 200 | 0.999.02 0.7409.00 0.93p9.08 0.6509.12 0.98p9.04 0.04¢.01 0.32¢0.17 0.060.02
500 | 0.980.04 0.43p.06 0.42p.12 0.340.04 0.570.20 0.02¢.02 | 0.280.15 0.050.02
50 / / 0.950.07 / 0.980.02 0.330.28 | 0.570.17 0.29¢.29
(do=1) 100 200 | 1.000.00 0.950.03 0.970.04 0.990.01 0.990.02 0.050.02 | 0.460.17 0.06¢.02
500 | 0.990.01 0.720.07 0.940.08 0.549.04 0.990.02 0.01g.01 0.380.16 0.050.02

200 50 / / 0.970.06 / 0.980.02 0.31¢g.27 0.640.19 0.350.30
200 / / 0.970.04 / 0.990.01 0.23p.21 | 0.550.16 0.060.02
500 50 / / 0.980.05 / 0.999.01 0.340.31 | 0.830.18 0.780.26
200 / / 0.980.03 / 0.990.01 0.22¢.19 0.61p0.15 0.080.03

50 | 0.960.06 0.980.03 0.900.00 0.970.03 0.940.06 0.450.35 | 0.200.26 0.260.33

20 200 | 0.88p.11 0.98p.02 0.780.11 0.960.05 0.880.11 0.090.10 | 0.020.00 0.02¢.00
500 | 0.600.10 0.990.02 0.61g.10 0.950.06 0.81¢p.12 0.05¢.02 0.02g0.00 0.02¢.g0

50 / / 0.91¢.07 / 0.98p.03 0.790.29 | 0.210.29 0.43¢.41

50 200 | 0.980.02 0.990.01 0.870.05 0.98p.03 0.929.06 0.090.04 | 0.020.00 0.02¢.00
500 | 0.92p.07 0.990.01 0.760.06 0.980.03 0.750.07 0.060.02 | 0.0209.00 0.02¢.00

50 / / 0.950.05 / 0.999.01 0.7709.31 | 0.270.36 0.54¢.43
(dp=1) 100 200 | 0.990.02 1.000.01 0.919.05 0.980p.02 0.96¢.04 0.100.04 0.02g.00 0.02¢p.01
500 | 0.990.01 1.000.00 0.840.05 0.990.02 0.8409.05 0.06¢.02 0.02g.00 0.02¢.01

200 0 / / 0.960.05 / 1.000.00 0.750.31 | 0.260.37 0.300 .38
200 / / 0.920.04 / 0.980.02 0.270.10 | 0.010.00 0.010.00
500 50 / / 0.970,04 / 1.000.00 0.850,24 0.330.42 0‘340.42
200 / / 0.950.03 / 0.990.01 0.330.25 | 0.010.00 0.010.00

50 1.300.07 1.270.08 1.079.10 1.299.07 1.160.11 0.92¢.28 0.500.31 0.500.30

20 200 | 0.850.13 0.880.12 0.720.13 0.990.11 0.89p.12 0.480p.33 | 0.1009.02 0.10¢.02
500 | 0.51p.08 0.550.08 0.390.07 0.67p.11 0.600.11 0.270.26 | 0.070.01 0.07¢.01

50 / / 1.12¢.10 / 1.329.05 1.21p.17 | 0.6609.32 0.70¢.33

50 200 | 1.270.06 1.290.06 1.0709.08 1.23p0.07 1.030.08 0.5409.27 | 0.10g.03 0.100.04
500 | 0.8709.10 0.930.09 0.800.10 0.980.09 0.790.07 0.32¢.25 0.06g9.01 0.060.01

50 / / 1.160.11 / 1.370.02 1.180.19 0.71¢.35 0.800.31
(do=2) 100 200 | 1.38p.05 1.380.02 1.090.08 1.290.04 1.22p.04 0.63p.25 | 0.100.05 0.11¢.05
500 | 1.220.05 1.27p.06 1.060.06 1.160.06 0.940.05 0.360.27 | 0.060.01 0.070.01

200 0 / / 1.190.00 / 1.390.01 1.210.15 | 0.830.32 0.830.32
200 / / 1.130,07 / 1.32[]_03 1‘110‘19 0.130.09 0.130.09
s00 0 / / 1.220.00 / 1.410.00 1.210.1s | 0.940.25 0.930.23
200 / / 1.160.07 / 1.380.01 1.150.10 | 0.250.22 0.250.22

Table 2: The average sin-theta distance between Ao and Ao over 100 repeats for Models 1a, 2 and 3, with
p € {20,50,100,200,500} and n € {50,200,500}. We compare two versions of our method with six
competing approaches. For each setting, we also present 10 times the standard error for each method as a
subscript. The “/” entries indicate that the method is not applicable.
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Setting Competing Methods Our Methods
Model P n SIR pHd MAVE DR gKDR drMARS RPE RPE2
50 [ 0.900.10 0.930.08 0.51p.12 0.850.13 0.650.13 0.500.21 | 0.53p.12 0.480.19
20 200 | 0.300.06 0.61p.11 0.290.05 0.370.07 0.380.08 0.28p.22 0.340.14 0.160.04
500 | 0.170.03 0.380p.08 0.180.03 0.23p.04 0.230.04 0.14¢.13 0.299.12 0.11¢g.03
50 / / 0.550.15 / 0.860.00 0.82¢.20 0.660.12 0.55¢0.19
50 200 | 0.67p.12 0.900.08 0.43p.06 0.600.07 0.490.06 0.320.10 0.61p.15 0.14¢0.0a
4 500 | 0.300.03 0.660.09 0.300.03 0.370.04 0.340.04 0.180.09 0.530.15 0.090.03
50 / / 0.610.16 / 0.950.04 0.82¢.20 0.74p0.10 0.62¢.18
(dop=1) 100 200 | 0.990.01 0.980.02 0.460.06 0.770.07 0.640.06 0.410.09 0.700.10 0.14¢.04a
500 | 0.52¢p.05 0.88p.06 0.390.04 0.52p9.04 0.419.03 0.200.10 0.63p.15 0.09¢0.03

200 50 / / 0.690.16 / 0.980.01 0.84¢.20 0.800¢.09 0.780.17
200 / / 0.48¢.06 / 0.820.06 0.850.16 0.749.08 0.179.15
500 50 / / 0.770.16 / 0.990.00 0.850.15 0.840.08 0.850.11
200 / / 0.540.06 / 0.949.04 0.860.15 0.790.04 0.25¢.24

50 | 1.280.07 1.330.06 1.150.00 1.250.00 1.150.08 1.06¢.19 1.060.00 1.030.13
20 200 | 1.00p0.06 1.070.08 0.950.12 1.01p.08 0.950.09 0.730.31 1.000.00 0.930.22
500 | 0.850.12 0.990.05 0.64014 0.850.12 0.740.13 0.4403s | 1.000.00 0.660 39
50 / / 1.200 10 / 1.300.05 1.290.12 | 1.120.11 1.130.10
50 200 | 1.240.05 1.380.03 1.150.05 1.180.05 1.090.05 0.8402¢ | 1.000.00 0.97014
500 | 1.040.04 1.11p.07 1.069.05 1.050.04 0.950.05 0.500.30 | 1.000.00 0.700.36
50 / / 1.25¢.08 / 1.360.03 1.300.12 1.150.13 1.190.11
(dop =2) 100 200 | 1.400.02 1.400.01 1.180.04 1.270.03 1.200.04 1.02¢.21 1.000.00 0.96¢.15
500 | 1.170.03 1.390.03 1.150.03 1.1509.03 1.050.04 0.530.29 1.000.00 0.74¢.34
50 / / 1.290 o7 / 139001 1.29010 | 1.210.12 1.21¢.12

200 200 / / 1.200.04 / 1.290.03 1.300p.13 | 1.000.00 1.000.00
500 50 / / 1.310.08 / 1.410.00 1.270.14 1.23p.13 1.230.13

200 / / 1.24¢.04 / 1.36¢0.01 1.300.11 1.000.00 1.00¢.00
20 50 | 1.590.06 1.500.08 1.380.12 1.590.07 1.520.08 1.160.46 | 1.140.27 1.200.26

200 | 1.58p.07 1.390.09 1.260.15 1.380.10 1.160.13 0.660.56 | 0.730.28 0.730.29
500 | 1.590.06 1.360.09 0.41p.05 0.98p.13 0.690.10 0.499.56 | 0.36p.12 0.360.13
50 / / 1.470 11 / 1.640.03 1.53016 | 1.360.23 1.44016
50 200 | 1.680.02 1.590.04 1.550.06 1.650.03 1.650.03 1.090.51 1.08¢.35 1.18p.36
500 | 1.670.03 1.540.05 1.530.06 1.490.07 1.470.06 0.660.65 | 0.670.31 0.660.32
50 / / 1.540_11 / 1.680_02 1.500_21 1.510_17 1.560_14
(dop=3) 100 200 | 1.71p0.03 1.680.02 1.560.05 1.700.01 1.690.02 1.290.46 | 1.31g.23 1.41¢.21
500 | 1.700.01 1.640.02 1.630.04 1.670.03 1.690.02 0.880.65 | 1.020.314 1.120.38
50 / / 1.570.10 / 1.710.01 1.480.19 | 1.52¢.19 1.52¢0.19

200 509 / / 1.59%.06 / L.7lo.01  1.570.10 | 1.390.28 1.390.28
wo O / / 1.640 09 / 17200 1.51p17 | 1.61g16 1.61016
200 / / 1.600.06 / 1.720 00 157030 | 1.50010 1.500.19

Table 3: The average sin-theta distance between Ao and A over 100 repeats for Models 4-6, with p €
{20, 50, 100, 200, 500} and n € {50,200,500}. We compare two versions of our method with six com-
peting approaches. For each setting, we also present 10 times the standard error for each method as a subscript.
The “/” entries indicate that the method is not applicable.

24



Published as a conference paper at ICLR 2026

Setting Competing Methods Our Methods
Model P n SIR pHd MAVE DR gKDR drMARS RPE RPE2
50 | 1.34p.05 1.290.06 1.230.11 1.330.06 1.300.08 1.09¢0.24 | 1.130.19 1.150.18
20 200 | 1.3409.05 1.130.11 1.050.15 1.079.08 1.029.07 0.60¢g.23 | 0.659.19 0.61¢g.22
500 | 1.330.06 0.990.13 0.54p.22 0.950.09 0.780.16 0.550.16 | 0.550.02 0.54¢.17
50 / / 1.300.09 / 1.360.03 1.280.16 | 1.220.128 1.260.17
50 200 | 1.399.02 1.31p.05 1.290.07 1.330.06 1.370.04 0.67g.29 | 0.790.22 0.780.27
7 500 | 1.390.02 1.2109.09 1.200.09 1.100.05 1.200.00 0.56¢0.20 0.570.01 0.530.11
50 / / 1.350.07 / 1.390.02 1.25¢0.17 | 1.31p.13 1.330.11
(do=2) 100 200 | 1.400.01 1.390.02 1.320.06 1.40p.01 1.390.02 0.870.31 | 0.950.26 1.01p.26
500 | 1.400.01 1.330.04 1.330.06 1.300.06 1.390.02 0.53¢0.17 0.580.01 0.560.08

200 50 / / 1.380.06 / 1.400.01 1.27¢.17 1.330.14 1.330.14
200 / / 1-340.06 / 1.400_01 1.180_21 1.000.24 0.990_25
s00 50 / / 1.390.06 / 1.419.00 1.230.18 | 1.350.12 1.350.12
200 / / 1.360.04 / 1.41p9.00 1.179.20 | 1.030.26 1.030.26

50 | 1.300.08 1.210.07 1.020.11 1.299.07 1.1609.13 0.380.30 | 0.21g9.15 0.200.12

20 200 | 1.03p9.15 1.03p0.07 0.71g.12 0.929.13 0.839.13 0.200.13 0.080.02 0.08¢.02
500 | 0.680.13 0.88p.19 0.380.07 0.680.14 0.580.12 0.079.05 | 0.070.01 0.07¢.01

50 / / 1.11¢9.11 / 1.320.05 0.730.30 | 0.249.24 0.27¢.24

50 200 | 1.349.05 1.200.04 1.0209.06 1.169.06 1.139.00 0.260.16 | 0.080.01 0.08¢.01
500 | 1.060.11 1.07p.02 0.82p.08 0.940.10 0.830.08 0.14p.10 | 0.070.01 0.07¢.01

50 / / 1.150.10 / 1.370.02 0.81¢.27 0.330.31 0.35¢0.20

(do =2) 100 200 | 1.409.01 1.360.02 1.060.06 1.320.04 1.28p.05 0.360.14 | 0.079.01 0.08¢.02
500 | 1.340.04 1.199.04 0.990.05 1.100.05 1.060.07 0.17p.12 | 0.070.01 0.07¢.01

200 50 / / 1.180.11 / 1.390.01 0.790.31 | 0.540.38 0.540.3s8

200 / / 1.080.06 / 1.37p.02 0.88p.21 | 0.100.02 0.100.02
500 50 / / 1.21¢.09 / 1.419.00 0.830.30 | 0.740.35 0.740.35
N 200 / / 1.110_07 / 1»400_01 0.890,19 0.180_14 0.180_14

50 | 1.300.07 1.31g.06 1.21g.00 1.320.07 1.220.07 0.950.32 | 1.000.15 1.02¢.16

20 200 | 1.060.05 1.170.0s 1.120.06 1.180.00 1.170.0r 0.310.43 | 0.180.21 0.18¢ 22
500 | 1.000.04 1.08p9.05 1.03p.04 1.060.04 1.08p.05 0.149.31 | 0.070.02 0.07¢.02

50 / / 1.250.08 / 1.330.04 1.240.15 | 1.070.16 1.120.17

50 200 | 1.300.06 1.330.04 1.220.04 1.3009.05 1.180.04 0.690.43 0.279.30 0.280.30
500 | 1.090.03 1.210.05 1.150.03 1.18p.06 1.150.04 0.47¢.48 0.090.06 0.09¢.06

50 / / 1.280.07 / 1.370.02 1.24¢.16 1.070.18 1.130.15
(dop =2) 100 200 | 1.400.03 1.390.02 1.230.05 1.340.03 1.270.04 0.890.36 | 0.350.35 0.370.36
500 | 1.260.05 1.330.04 1.22p.03 1.260.04 1.1509.02 0.53p.48 | 0.11p9.18 0.11¢p.18

200 50 / / 1.300.07 / 1.390.01 1.22¢.22 1.090.16 1.090.15
200 / / 1.260.05 / 1.350.02 1.250.20 0.340.39 0.34¢.39
s00 S0 / / 1.320.07 / 1.419.00 1.240.22 | 1.180.20 1.130.20
200 / / 1.280.05 / 1.390.01  1.220.25 | 0.280.37 0.28¢.37

Table 4: The average sin-theta distance between Ao and A over 100 repeats for Models 7-9, with p €
{20, 50, 100, 200, 500} and n € {50,200,500}. We compare two versions of our method with six com-
peting approaches. For each setting, we also present 10 times the standard error for each method as a subscript.
The “/” entries indicate that the method is not applicable.

C.2 DIMENSION dy UNKNOWN

In this subsection, our primary goal is to evaluate the performance of Algorithm [I]when the dimen-
sion of the final projection, do, is chosen via Algorithm We therefore focus on a single application
of our random projection ensemble algorithm. The double dimension reduction technique in Algo-
rithm [3] is not considered here, as it requires a prespecified target dimension. For comparison, we
also include the results from the competing methods, with their projection dimension selected by
the corresponding recommended default approaches—specifically, the marginal dimension test from
the dr R package for SIR and pHd; generalised cross-validation, which is available as part of the
mave package (for MAVE); and the corresponding GitHub links referenced in the previous sub-
section (for gKDR and drMARS - for these two, we set the maximum projection dimension to be
[\/P])- The DR method is only applicable with a prespecified dy, and it is therefore excluded from
this subsection.

In the experiments below, we reuse the Models 1a-9 described earlier. Our proposal, labelled RPE

in the boxplots, follows the recommendations from Section [3| for Algorithm |1} with dy selected by
Algorithm 2 using R = 10000. Competing methods utilize their respective default values for tuning
parameters.
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Figure 13: Boxplots of do from Algorithm [2| alongside competing methods over 100 repeats for models 1a-9.
We present the results for n = 200 and p = 50. The red horizontal lines indicate the true dimension do.

The results in Figure [I3] show that, with the exception of SIR and pHd, most methods including
ours tend to be somewhat liberal in choosing dy, in the sense that they typically select dy > dgy. By

contrast, SIR and pHd typically select do = 0 in these examples, indicating no signal is detected —
as mentioned above, both methods appear to suffer from the curse of dimensionality.

To further assess the performance when dj is unknown, we consider two complementary metrics.
We introduce the false positives measure

dpp (Ao, Ag) := ||(I — AoAg ) Aol| (16)
and we recall the false negatives measure from Appendix [A:5}
dpx (Ao, Ao) = ||(I — AgAg ) Aol| (17)

In both definitions, Ao isap X do projection, where do need not equal dy. The metric dpp measures
false positives, in the sense that it quantifies the extent to which Ag contains regions of the ambient

p-dimensional space orthogonal to Ag. In particular, if S (AO) C S(Ap), then de(A()7 Ap) =0.In
contrast, dpN measures false negatives and quantlﬁes the amount of the space spanned by Ag that is

missed by the projection Ay. Indeed, we have dpn (Ao, Ag) = 0 when S(Ag) € S(Ap).

Note, however, that a small value of drp or dpy on its own does not guarantee good performance:
selecting no directions yields dpp = 0 but a large drn, while selecting the full p-dimensional
ambient space yields dgn = 0 but a large dpp. In some of our simulations, SIR and pHd effectively
behave like the former, returning only a nearly trivial subspace and thus having small dpp but very
large dpn. Broadly speaking, increasing do typically decreases dpn at the expense of increasing
dpp. Only when CZO = dy can both dpp and dpy simultaneously be (or be close to) zero. Finally, we
also have the identity
2d (Ao, Ag) = dipp (Ao, Ao) + di (Ao, Ag).
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Figure 14: Boxplots of dpp(/lg, Ap) for the different methods when dyg is unknown, for models 1a-9 over 100
simulations, with n = 200, p = 50. Our RPE method uses Algorithm with do chosen via Algorithm For
competing methods, do is chosen by the corresponding approaches described at the beginning of this subsection.
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Figure 15: Boxplots of drn (/10, Ap) for the different methods when do is unknown, for models 1a-9 over 100
simulations, with n = 200, p = 50. Our RPE method uses Algorithm with do chosen via Algorithm For
competing methods, do is chosen by the corresponding approaches described at the beginning of this subsection.

Figures |14] and [15] present the results of drpp and dpy, respectively, for different methods across
the nine models. When dj is frequently selected equal dy, namely Models 3, 8 and 9, we observe
excellent performance in terms of both false positives and false negatives. In Models 1 and 4, our
algorithm tends to identify the one-dimensional signal direction by selecting the individual coor-
dinate axes that contribute to the true projection. In these cases, we perform well in terms of the
false-negative metric, indicating that nearly all of the signal is captured. However, this comes at
the cost of higher false positives, though our approach remains competitive with the other methods
considered. For Models 2 and 6, we often take dq larger than dj, thereby including some noise
directions alongside the signals. Nevertheless, our approach still excels in terms of false negatives,
outperforming the other methods considered—especially in Model 2, where the competing methods
fail to capture the signal directions—although in Model 6 this advantage comes at the cost of higher
false positives. Finally, in Models 5 and 7, our algorithm tends to select the e; and es directions
separately while missing e3, and thus also fails to combine these signals in the optimal way. As a
result, neither false-positive nor false-negative is close to zero. Nevertheless, our method remains
competitive with the other algorithms considered in these examples.

Tables [5] and [6] show the full results for the false-positive and false-negative metrics for ad-
ditional experiments corresponding to those in Section [C.2] We present the results for p €
{20, 50, 100,200,500} with n = 200. Results for n € {50,500} are broadly similar and are
omitted for brevity.
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Setting Competing Methods Our Methods
Model D SIR pHd MAVE g¢KDR drMARS RPE
20 [ 0.06g.23 0.07g.17 0.249.04 1.48p60 1.15¢9.76 1.00¢.00
50 | 0.049.00 0.009.00 0.939.0s8 2.229.33 1.54¢.80 1.00¢.04
la(dp =1) 100 |0.00g.00 0.000.00 0.970.04 2.87926 1.820.84 1.079.21
200 / / 0.970.04 2.840926 1.7509.90 1.00¢.00
500 / I 0.9800s 276026 1.73002 | 1.0lgor
20 (088011 0.98002 1.59 25 146041 147045 | 0.020.00
50 [0.980.02 0.99901 1.63p.15 2.08p.50 1.82¢0.57 0.040.14
2(do=1) 100|0.99%02 1.00001 1.62014 2.5%41 1.86075 | 0.120.51
20| 7 I 163015 276030 21955 | 0.019.00
500 | / I 15916 270043 2.070s6 | 0.019.00
20 | 0.460.25 0.049.15 0.920.30 1.230.52 1.060.63 0.100.02
3(dyp=2) 100 |0.00000 0.000.00 1.350.20 2.55p9.41 1.540.s4 0.350.47
200 / / 1.400.19 2.629.31 1.86¢.64 0.12¢.10
4(dy=1) 100]0.000.00 0.000.00 1.280.290 2.49945 1.720s3 1.54¢ 18
200 / / 1.280.20 2.540.34 1.770.70 1.400.07
20 [0.359.21 0.01p.10 0.98p.34 1.45947 0.97955 1.01p.01
50 [0.099.28 0.00g.00 1.409.19 2.069.39 1.470.¢7 1.050.13
200 / / 1.44417 2.61g39 1.88p565 1.000.04
500 / / 1.460.18 2.67g.33 1.84066 0.980.07
20 [0.039.15 0.00g.00 1.269.29 0.859.37 0.59¢.57 1.010.46
50 [0.00g.00 0.00g.00 1.55¢0.23 1.47956 1.109.79 1.970.56
6(dy =3) 100 |0.00g00 0.00g.00 1.56p.92 2.55¢9.50 1.360.73 2.470 .62
500 / / 1.520.19 2.919.31 1.58¢.74 0.65¢.37
20 [0.029.13 0.00g.00 1.31p.32 1.00953 0.87¢.57 0.99¢ 44
7(dy=2) 100 |0.00g00 0.00g.00 1.63p.16 2.56p.41 1.52.52 2.260.79
200 / / 1.630.15 2.609.39 1.64¢¢s 0.64¢ .97
8 (dg =2) 100|0.009.00 0.00g.00 0.909.02 2.65935 1.62¢80 0.18p.31
50 [0.10g.29 0.00g.00 1.530.16 2.23p.38 1.26¢.59 0.280.36
9(dy =2) 100 |0.00g00 0.000.00 1.52p.16 2.679.39 1.74¢.s1 0.419.51
200 / / 1.530.17 2.520.45 1.90¢.6s 0.06¢.04
500 / / 1.51p.18 2.51p.39 2.009.67 0.049.02

Table 5: The average of drp(S(Ao),S(Ao)) over 100 repeats of the experiment for Models 1a-9, with p €
{20, 50, 100, 200, 500} and n = 200. For each setting, we also present 10 times the standard error for each
method as a subscript. The “/” entries indicate that the method is not applicable.
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Setting Competing Methods Our Methods
Model D SIR pHd MAVE g¢KDR drMARS RPE
la(dp =1) 100 |1.009.00 1.000.00 0.970.04 0.830.07 0.03¢.02 0.049.00
200 / / 0.970.04 0.94903 0.12¢15 0.050.01
500 / / 0.980.03 0.98p.01 0.12¢.19 0.06¢.01
20 [0.880.11 0.98p.02 0.71g.10 0.81p.12 0.079.04 0.029.00
50 [0.980.02 0.999.01 0.850.06 0.859.06 0.080.04 0.02¢.00
2(dp=1) 100|0.9902 1.00001 0.89p.05 0.91p.04 0.09¢.04 0.020.00
200 / / 0.900.05 0.94902 0.14p0s 0.019.00
500 / / 0.930.04 0.980.01 0.15¢.14 0.01¢.00
20 | 1.070.16 1.400.07 0.690.12 0.88p.17 0.430.34 0.100.02
3(dyp=2) 100 |1.41g00 1.41g00 1.050.09 1.12¢06 0.56¢.30 0.100.09
200 / / 1.08p.08 1.260.03 0.93¢.31 0.15¢.18
500| 7 /' 113007 134001 097080 |  0.640 45
20 | 0.350.19 1.009.00 0.27¢.05 0.350.07 0.18¢.08 0.11¢.03
50 [0.969.11 1.00g.00 0.409.05 0.44905 0.260.19 0.09¢.02
4 (do == 1) 100 1.000_00 1.000_00 0-430.06 0.580_05 0-320_12 0.090_02
200 / / 0.460.06 0.750.03 0.71p22 0.11¢p.12
500 / / 0.51g.06 0.899.02 0.68¢.95 0.19¢.21
20 [1.11p13 1.41g00 0.949.14 0.88p.14 0.550.40 0.930.23
50 | 141004 141000 1.13006 1.02006 0.610ss | 0.970 16
5(do=2) 100|1.41000 141000 1.1600s 1.1500s 0.89s1 | 0.95017
200 / / 1.180.06 1.259.02 1.16¢.29 1.01p.03
500 / / 1.220.05 1.340.01 1.159.04 1.02¢.05
20 [1.730.02 1.730.00 1.260.17 1.37g22 1.04¢56 0.63¢.25
50 | 1.719.00 1.730.00 1.550.07 1.639.11 1.22¢.4s 0.930.35
6(do=3) 100|1.73000 1.73000 1.57007 1.63005 1.28050 | 1.15028
200 / / 1.58p.08 1.67g.02 1.560.24 1.550.17
500 / / 1.615.07 1.70g.01 1.58p.20 1.599.15
20 [1.41900 1.41p00 0.98p.15 1.01p11 0.61p39 0.56¢.90
50 | 1.419.01 1.41900 1.239.06 1.279.11 0.61¢.40 0.62¢.23
7o =2) 100|1.41000 141000 1.2800s 132005 0.810s7 | 0.800 26
200 / / 1.300.07 1.37g.02 1.08p.30 1.079.24
500 / / 1.34p5.06 1.40g.01 0.98p.32 1.12¢ .90
20 [1.259.16 1.31g.16 0.84¢.19 0.73p.14 0.18¢.1s 0.080.02
50 1.410,02 1.410_00 1.070,09 0.960_10 0-190_11 0.080_01
8(do=2) 100 | 141000 141000 1.1100s 1.15006 025010 | 0.070.01
200 / / 1.11p.10 1.309.03 0.60¢.26 0.10¢.02
500 / / 1.14p.99 1.37901 0.630.27 0.350.37
20 | 1.249.15 1.4190s 1.08907 1.11g10 0.31p.44 0.260.34
50 1.400,04 1.410_00 1.200.05 1.130_04 0-680.44 0.290_33
9(do=2) 100|1.41000 141000 1.2100s 1.22001 0.85057 | 0.340 56
200 / / 1.240.05 1.31g.02 1.14908 0.45¢.45
500 | / I 126006 136001 1.08081 | 0.440 46

Table 6: The average of drx (S(Ao), S(Ao)) over 100 repeats of the experiment for Models 1a-9, with p €
{20, 50, 100, 200, 500} and n = 200. For each setting, we also present 10 times the standard error for each

method as a subscript. The “/” entries indicate that the method is not applicable.

C.3 COMPUTATIONAL COST

Table [7]reports the wall-clock runtimes in seconds for one run of Model 1a across different values
of n and p. We compare all competing methods considered and our method (label ‘RPE’) under
three compute budgets (single core, 10 cores, 20 cores), all measured on the same 3.20 GHz Intel i9-
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14900KF computer. The multi-core columns exhibit that our method achieves roughly 8x speedup
at 10 cores and 10-12x at 20 cores.

Setting Competing Methods Our Methods
P n SIR pHd MAVE DR gKDR drMARS RPE RPE(10 cores) RPE(20 cores)
50 [ 0.007 0.007 0.051 0.009 0.015 0.138 104.819 14.940 11.677
20 200 | 0.007 0.005 0.408 0.007 0.078 0.211 135.390 18.826 14.208
500 | 0.008 0.006 0.961 0.008 0.381  0.276 177.824 24.095 17.888
50 / / 0.047 / 0.026  0.185 311.972 40.821 29.769
50 200 |0.011 0.007 0.827 0.013 0.224 0478 422.228 54.199 38.174
500 | 0.014 0.009 2.988 0.020 1.006  0.635 594.113 74.270 50.941
50 / / 0.047 / 0.109  0.188 702.826 89.105 62.658
100 200 | 0.032 0.016 0.820 0.018 0.778 0.841 970.345 121.098 82.853
500 | 0.033 0.020 7.945 0.031 3.327 1.162 | 1477.162 181.603 116.395

Table 7: Runtime (seconds) for one run of Model 1a, with p € {20, 50,100} and n € {50, 200, 500}. The “/”
entries denote that the method is not applicable.

While the classical SDR methods are faster in wall-clock time, many become inapplicable when p >
n and are typically ineffective in higher-dimensional regimes. By contrast, our random projection-
based method delivers substantial improvements across settings and, in several scenarios, is the
only approach achieving non-trivial performance (see Tables 2—4, and also the real data analysis
in Appendix D). Thus, the additional computation is justified when accuracy matters, and parallel
execution keeps runtimes manageable under the recommended defaults.
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Figure 16: Performance in terms of sin theta distance versus running time of RPE-based method (20 cores of
the same machine) across nine models, with n = 500 and p = 100. In models 1, 4, and 7, RPE2 is used. In
Models 3 and 8, single application of RPE with QLS as the base method is used. In the other models, a single
application of RPE with the MARS default is used.

In cases where computational resources may be limited, we can significantly reduce the computa-
tional cost and still remain competitive with (and often superior to) existing approaches. For some
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examples, we could slightly reduce M and L, use simpler projection distributions, and / or adopt a
less computationally intensive base method. To demonstrate this, in Figure [I6| we present the run-
times for some additional experiments with @ = Q&” (as opposed to @ = 1QF” + 1Q&", since
sparsity in projections is natural in high dimensional settings), M = 5p (rather than 10p) and L vary-
ing from 10 to 200. We see that, while the performance improves as L (and therefore the runtime)
increases, we can typically outperform (or come very close to) all existing methods with relatively
low computational resources (smaller L); the more computationally intensive default settings used
in Table[7)are aimed at achieving near-optimal performance. Notably, when using larger values of L
in combination with Q) = Q%d in these experiments, our RPE-based methods outperform drMARS
in Models 5-7, whereas under the default settings in Tables [3|and 4] drMARS was slightly better.

D REAL DATA APPLICATION

In this section, we compare the performance of our methods with competing approaches using real-
world data. We make use of the following four datasets from the UC Irvine Machine Learning
Repository:

1. Superconductivit(Hamidieh, 2018): This dataset consists of measurements on 81 phys-
ical and atomic covariates for 21,263 superconductors. The response variable is the critical
temperature of the superconductor. We use all p = 81 covariates and randomly select a
subsample of 7 = 1000 observations for training, and use the remainder for testing.

2. Communities and Crim (Redmond & Bavejal [2002): This dataset contains 1,994 obser-
vations on 122 predictive variables relating to socioeconomic and police data. The response
variable of interest is the per capita rate of violent crimes. For simplicity, we remove vari-
ables with missing values, leaving p = 105 predictive covariates in our experiment, and
take a random sample of n = 1329 observations for training (the remainder for testing).

3. Residential Buildinﬂ (Rafiei & Adeli, 2016): This dataset includes construction cost,
sales prices, project variables, and economic variables corresponding to real estate single-
family residential apartments in Tehran, Iran. There are 372 observations and 105 variables
in total. We use all p = 105 predictive variables and take a random sample of n = 248
observations for training (the remainder for testing). There are two options for the response
variable—sales price and construction cost—and we include both in our experiments.

4. Geographical Origin of Musi(ﬂ (Zhou et al., 2014): This dataset consists of 1,059 obser-
vations on 116 variables relating to audio features of a piece of music. We use the latitude
of the piece’s origin as the response variable. In this case, all p = 116 variables are used,
and a subsample of n = 706 observations is taken for training (the remainder for testing).

In these experiments, since the true projection Ag is unknown, we measure the performance of dif-
ferent techniques based on regression prediction accuracy after projecting the data. More precisely,
we fixed the projection dimension dy to either 3 or 10, and then apply the methods described in
Section using only the training data. The interpretation is that each method selects its do most
important directions. We then apply MARSE] to the projected training data after each method. The
performance is evaluated using the root mean squared error (RMSE) on the corresponding projected
test set. The results are presented in Table |8} where our methods exhibit competitive performance
across all four datasets considered here.

*https://archive.ics.uci.edu/dataset/464/superconductivty+data
*nttps://archive.ics.uci.edu/dataset/183/communities+and+crime
Shttps://archive.ics.uci.edu/dataset/437/residential+building+data+set
®https://archive.ics.uci.edu/dataset/315/geographical+original+of+music
"We use cross-validation to determine the degree, with the maximum order of interactions set to four.
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Dimension reduction technique Our Methods
Dataset | Noproj | do | SIR. pHd MAVE DR gKDR drMARS | RPE RPE2
1 17.4 31165 302 19.3 29.9 18.1 18.8 185 17.0
10| 17.3 278 180 222 179 20.4 17.0 17.0
) 0180 3 10.127 0.212 0.140 0.184 0.132 0.138 | 0.134 0.125
10 [ 0.137 0.187 0.135 0.136 0.132 0.140 | 0.134 0.126
3(sales) 150 3] 295 1198 218 / 386 158 175 175
10| 295 699 295 / 429 211 125 125
3(cons) | 32.1 31704 203 47.6 / 161 136 80.0 27.6
10| 684 301 42.4 / 47.1 29.6 24.0 240
4 257 31169 18.1 16.7 / 17.7 17.0 16.8 15.8
10| 179 175 15.8 / 17.0 19.4 162 158

Table 8: The RMSE on the test set for four real-data experiments. As a baseline, we also include the result of
applying MARS directly to the original data (i.e., no projection is applied, denoted as “No proj”). For datasets
3 and 4, the DR method yielded very large RMSEs, so we omitted the results (denoted by /).

DECLARATION OF LLM USAGE

We used large language models solely to aid and polish writing (grammar, clarity, and phrasing) and
code presentation (readability and consistency), without altering the logic. LLMs were not used for
research ideation, retrieval, or discovery. The authors take full responsibility for the content of this

paper.

33



	Introduction
	Related work

	Statistical setting and methodology
	Random projection ensemble dimension reduction

	Practical considerations
	Random projection generating distribution
	Choice of L, M and d
	Choice of d0 hat
	Double random projection ensemble dimension reduction

	Numerical simulations
	Discussion and extensions
	Further practical considerations
	Choice of base regression method
	Choice of L, M and d
	Choice of n1
	Computational considerations
	Demonstration of double random projection ensemble dimension reduction

	Proofs of our technical results
	Full simulation results
	Dimension d0 known
	Dimension d0 unknown
	Computational cost

	Real data application

