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ABSTRACT

Precise brain tumor segmentation from MRI scans is essential for successful di-
agnosis, treatment planning, and follow-up. Through this research, we developed
a new model, ARU-GD+MCD by incorporating Monte Carlo Dropout layers into
the Attention Res-UNet with Guided Decoder (ARU-GD), a state-of-the-art archi-
tecture for brain tumor segmentation. These dropout layers enable the model to
estimate uncertainty by capturing variability during prediction, thereby generat-
ing uncertainty maps that indicate regions of low confidence in the segmentation
results. This provides doctors with informative insights into the reliability of the
model’s outputs. Tested on the BraTS 2019 dataset with four MRI modalities
(FLAIR, T1, T1CE, T2), the improved ARU-GD attained Dice scores of 0.886,
0.899, and 0.856, and IoU scores of 0.793, 0.818, and 0.748 for whole tumor,
tumor core, and enhancing tumor regions, respectively. Our method compares
favorably to baseline models such as UNet and Res-UNet not only in terms of
segmentation accuracy but also through the addition of an important interpretabil-
ity layer. These advances enable more confident and better-informed clinical
decision-making, ultimately leading to improved patient outcomes.

1 INTRODUCTION

Brain tumor segmentation from MRI scans plays a critical role in diagnosis, treatment planning, and
follow-up care. In clinical settings, even with the aid of automated segmentation models, doctors
manually analyze the complete predicted tumor regions to finalize the tumor boundaries. This man-
ual inspection is time-consuming and can delay treatment decisions. Various deep networks have
been applied for brain tumor segmentation Havaei et al. (2017).

While recent work has focused heavily on improving segmentation accuracy, there still exists a gap
because doctors must manually review the entire predicted segmentation. This is necessary since
they do not know which parts of the prediction are correct and which are uncertain. Without infor-
mation about the model’s confidence in different regions, doctors cannot fully trust the automated
results, leading to increased time spent on verification and potential risks to patient care.

To meet this challenge, we have developed a solution that not only provides precise tumor segmen-
tation but also generates uncertainty maps indicating the model’s confidence across various regions
of the output. These maps give doctors a quick and intuitive sense of which areas of the prediction
are reliable and which may require closer inspection. By highlighting areas of low confidence, un-
certainty maps minimize the time doctors devote to manual verification and enable them to focus on
the most critical details of the scan, leading to enhanced diagnostic efficiency and improved patient
care Jungo & Reyes (2020).

Our work improves upon the current Attention Res-UNet with Guided Decoder (ARU-GD) model
by incorporating Monte Carlo dropout layers. This addition enables the model to learn predictive
uncertainty and produce useful uncertainty estimates during inference. Our approach bridges the
gap between high accuracy and real-world clinical usability, enabling more informed, faster, and
safer medical decisions.
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2 OVERVIEW

2.1 ARU-GD ARCHITECTURE

The Attention Res-UNet with Guided Decoder (ARU-GD) is an effective deep learning model for
medical image segmentation. It extends the U-Net architecture for better segmentation accuracy
Ronneberger et al. (2015)Oktay et al. (2018)Long et al. (2015) by adding residual connections,
attention gates, and a guided decoder. Unlike automated and self-configuring segmentation frame-
works such as nnU-Net Isensee et al. (2021), ARU-GD incorporates explicitly designed architectural
enhancements tailored for medical imaging tasks. The residual blocks assist in training deeper net-
works by preventing vanishing gradient problems, while the attention gates allow the model to high-
light important spatial features Oktay et al. (2018) by suppressing unimportant background noise
Woo et al. (2018). Spatial attention also improves segmentation around tumour edges Guo et al.
(2021). The guided decoder improves feature learning by controlling intermediate layers, enhanc-
ing the quality of the final segmentation. ARU-GD demonstrates excellent performance in medical
segmentation tasks, especially in brain tumor segmentation Maji et al. (2020).

2.2 BAYESIAN UNCERTAINTY AND MONTE CARLO DROPOUT

Traditional deep learning models often provide a single deterministic output without indicating how
confident the model is in its prediction. This can be problematic in critical applications like health-
care. To address this, Bayesian deep learning introduces the concept of modeling uncertainty.
Bayesian neural networks enable modeling uncertainty through probabilistic weights Konathala
(2019), often implemented via variational inference techniques Graves (2011). One practical ap-
proach to approximate Bayesian inference in neural networks is using Monte Carlo dropout Gal
& Ghahramani (2015), though other approaches like auto-encoding variational inference have also
been proposed Kingma & Welling (2013).

Monte Carlo dropout serves as a practical approximation to Bayesian inference Kendall & Gal
(2015). Other techniques such as variational dropout with local reparameterization have also been
introduced for more efficient uncertainty modeling Molchanov et al. (2017)Kingma et al. (2015)
in Monte Carlo, dropout layers (normally used during training to prevent overfitting) are also kept
active during inference. By passing the same input through the model multiple times with dropout
enabled, a distribution of predictions is obtained. From this distribution, predictive uncertainty
can be quantified, typically using metrics like predictive entropy. This enables capturing epistemic
uncertainty Blundell et al. (2015), uncertainty arising due to limited training data or model knowl-
edge, making the approach especially suitable for high-stakes domains like medical imaging Gal &
Ghahramani (2016). Moreover, distinguishing between uncertainties that stem from data variability
(aleatoric) and those due to model limitations (epistemic) is crucial for robust decision-making in
such sensitive contexts Kendall & Gal (2017). This uncertainty information helps highlight areas
in the model output where it is less confident-crucial for medical applications where interpretability
and trust are essential.

3 METHODOLOGY

3.1 DATASET SELECTION

This work utilized the BraTS 2019 dataset, an official dataset used for brain tumor segmentation.
There are 259 high-grade glioma (HGG) patient cases with four types of MRIs (FLAIR, T1, T1CE,
T2) and ground truth segmentation masks per case. Each MRI and mask are a 3D volume of size
155×240×240 pixels, with four-class labels: background (0), tumor core (1), edema (2), and en-
hancing tumor (4). The data was split into 188 train patients (4700 slices), 31 validation patients
(775 slices), and 40 test patients (1000 slices) to make an unbiased evaluation. The BraTS challenge
provides a benchmark for tumor segmentation and has been instrumental in advancing research in
this field Bakas et al. (2018)Menze et al. (2015).
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3.2 PREPROCESSING

The MRI data was prepared by selecting 25 slices from the middle of each patient’s 3D volume
(indices 50 to 98) to focus on key tumor areas and reduce processing needs. The four MRI types
were combined into a 4-channel input of shape 25×240×240×4. Each channel was normalized
using Z-score normalization, calculated as:

xnorm =
x− µ

σ + ϵ
(1)

where x is the pixel intensity, µ is the mean, σ is the standard deviation, and ϵ = 10−8 avoids division
by zero. Ground truth masks were converted to a 4-channel format (25×240×240×4) matching the
four classes. Preprocessed data was saved in HDF5 files to avoid repeating the preprocessing for
each run, with separate files for training, validation, and test sets.

3.3 MODEL ARCHITECTURE

The Attention Res-UNet with Guided Decoder (ARU-GD) is a deep learning model designed for
brain tumor segmentation, utilizing a U-Net-based architecture enhanced with residual connections,
attention mechanisms, and guided decoding to improve feature extraction and segmentation accu-
racy. The model processes multi-modal MRI images of size 240×240×4, corresponding to four
modalities (FLAIR, T1, T1ce, and T2), and produces four segmentation maps of size 240×240×4,
representing four tumor classes (background, necrotic core, edema, and enhancing tumor). The
architecture comprises an encoder, a bridge, a decoder with attention gates, dropout layers for un-
certainty estimation, and multi-stage outputs for deep supervision.

Figure 1: Aru-GD+MCD model architecture.

3.3.1 ENCODER

The encoder extracts hierarchical features from the input through a series of downsampling residual
blocks, progressively reducing spatial dimensions while increasing the depth of feature representa-
tions. As shown in Figure 1 each encoder block applies two 3×3 convolutional layers with batch
normalization and LeakyReLU activation (α = 0.2), followed by a residual connection using a 1×1
convolution to preserve information flow. Max-pooling (2×2, stride 2) is applied between blocks to
downsample the spatial dimensions by a factor of 2, enabling the capture of multi-scale contextual
information. The encoder consists of four blocks with the following output dimensions:

• E1: 240×240×64
• E2: 120×120×128
• E3: 60×60×256
• E4: 30×30×512

The encoder’s output at each stage is passed to the corresponding decoder block via skip connec-
tions, facilitating the integration of low-level and high-level features during upsampling.
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3.3.2 BRIDGE

The bridge serves as the bottleneck, connecting the encoder and decoder paths, and processes the
output of the final encoder block to produce the deepest feature representation, capturing global con-
textual information. It applies max-pooling (2×2, stride 2) to downsample the spatial dimensions,
followed by a residual block consisting of two 3×3 convolutional layers with batch normalization,
LeakyReLU activation (α = 0.2), and a 1×1 convolution for the residual connection to ensure stable
gradient flow. The bridge output dimension is:

• Bridge: 15x15x1024

This deep representation is then passed to the decoder for upsampling and refinement.

3.3.3 DECODER

The decoder reconstructs the segmentation map by upsampling the bridge output and integrating
features from the encoder via attention gates. Each decoder block upsamples the feature maps using
2×2 transposed convolutions (stride 2), doubling the spatial dimensions while reducing the number
of filters. Dropout layers with a rate of 0.2 are applied after the residual block in each decoder stage
(D1 to D4). Attention gates focus on relevant encoder features by reducing them to intermediate
filter sizes (256 for D1, 128 for D2, 64 for D3, 32 for D4) using 2×2 (stride 2) and 1×1 convolu-
tions, followed by additive fusion, LeakyReLU (α = 0.2), a 1×1 convolution, sigmoid activation,
upsampling, and element-wise multiplication with encoder features. The upsampled and attention-
weighted features are concatenated and processed through a residual block (two 3×3 convolutions
with batch normalization and LeakyReLU), followed by dropout to enable uncertainty estimation.
The decoder consists of four blocks with the following output dimensions:

• D1: 30×30×512 (dropout applied)
• D2: 60×60×256 (dropout applied)
• D3: 120×120×128 (dropout applied)
• D4: 240×240×64 (dropout applied)

3.3.4 GUIDED DECODER AND MULTI-STAGE OUTPUTS.

The guided decoder generates intermediate segmentation maps (out1, out2, and out3) from decoder
stages D1, D2, and D3, respectively. This provides deep supervision, which improves gradient flow
during training. These intermediate outputs are upsampled to the input resolution of 240×240 and
processed through a 1×1 convolution with a softmax activation to produce segmentation maps of
size 240×240×4. The upsampling steps for each map are as follows:

• out1 (from D1): Upsampled through three steps
(30×30 → 60×60 → 120×120 → 240×240)

• out2 (from D2): Upsampled through two steps
(60×60 → 120×120 → 240×240)

• out3 (from D3): Upsampled once
(120×120 → 240×240)

The final output, final output, is produced directly from the last decoder stage D4 at a resolu-
tion of 240×240×4, serving as the primary segmentation map. Together, these four outputs provide
a comprehensive basis for accurate tumor segmentation.

3.3.5 OUTPUT

The ARU-GD model produces four segmentation maps, the primary output, final output (from
D4), and three intermediate outputs, out1, out2, and out3 (from D1, D2, and D3, respectively).
Each output is a 240×240×4 tensor that represents the probability distribution over the four tu-
mor classes. This multi-map output facilitates both accurate segmentation and robust uncertainty
estimation through Monte Carlo dropout.
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3.4 DROPOUT INTEGRATION FOR UNCERTAINTY

Dropout layers with a rate of 0.2 are applied after the residual block in each decoder stage (D1
to D4). During training, dropout would randomly deactivate 20% of the neurons in each forward
pass, introducing stochasticity to prevent overfitting and improve model generalization Srivastava
et al. (2014) by reducing co-dependency among neurons. This regularization ensures that the model
learns robust features across the decoder stages, which is critical for handling the complex and
heterogeneous nature of brain tumor MRI data.

During inference, dropout is typically disabled in standard models to produce deterministic pre-
dictions. However, in the ARU-GD+MCD model, dropout is retained at inference time to enable
uncertainty estimation via Monte Carlo dropout, a Bayesian approximation technique. This involves
performing 20 forward passes with dropout enabled, generating a set of stochastic predictions for
each pixel across the segmentation maps (final output, out1, out2, out3). Each forward pass
yields a different segmentation map due to the random deactivation of neurons, simulating samples
from the model’s posterior distribution over the weights. The mean of these predictions provides
the final segmentation map, while the variance or entropy of the predictions quantifies epistemic
uncertainty capturing uncertainty in the model parameters themselves Gal & Ghahramani (2016).
Uncertainty was quantified using predictive entropy across multiple passes Brosse et al. (2021). This
approach is particularly valuable in medical imaging, as it highlights ambiguous regions (e.g., tumor
boundaries) that may require further clinical evaluation, enhancing the reliability and interpretability
of the segmentation results.

3.5 TRAINING DETAILS

The model was trained on the 4700 training slices using a batch size of 8 for 100 epochs, with 587
steps per epoch. Data augmentation (random rotations by 10◦, flips, shifts by 10%, shear by 10%)
was used to make the model robust Shorten & Khoshgoftaar (2019). The 775 validation slices were
checked with 96 steps per epoch. The model was trained on a system with an Intel i9 processor,
16 GB RAM, and an NVIDIA RTX 4070 GPU with 8 GB VRAM. The Adam optimizer (learning
rate 0.0001) Kingma & Ba (2015) and a LossScaleOptimizer Micikevicius et al. (2018) were used.
The loss combined weighted dice loss and log loss, defined as:

Lgen = Lweighted dice + Lweighted log (2)

where the weighted dice loss component is given by:

Lweighted dice = 1−
∑

wc · Dicec∑
wc

(3)

with weights wc = [1, 5, 2, 4], and Lweighted log is a weighted categorical cross-entropy. The weighted
Dice loss compensates for class imbalance Sudre et al. (2017). Loss weights were 0.5 for the main
output and 0.125 for each extra output (out3, out2, out1). The best model was saved based on
training loss.

3.6 UNCERTAINTY MAP GENERATION.

Uncertainty maps were created using the dropout predictions. For each test sample, 20 forward
passes with active dropout produced a set of probability maps. The mean probability, pmean(x),
across these passes was calculated as:

pmean(x) =
1

T

T∑
t=1

pt(x) (4)

where T = 20 and pt(x) is the prediction for a given sample from pass t.

Predictive entropy, a measure of uncertainty, was computed as DeVries & Taylor (2018):

H(x) = −
3∑

c=0

pmean(x, c) log(pmean(x, c)) (5)
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where the sum is over the four class channels (c). The resulting uncertainty maps range from 0
(low uncertainty) to 1 (high uncertainty). Displaying these maps alongside the segmentation output
provides insight into where the model is more or less confident, supporting clinical interpretation
and helping identify areas that may require further review Jungo & Reyes (2020)Nair et al. (2020).

4 RESULT

We evaluated our models on the BraTS dataset using 1,000 test slices. Performance was measured
using Dice Score and Intersection over Union (IoU) across the three tumor regions: whole tumor
(WT), tumor core (TC), and enhancing tumor (ET).

The detailed results are presented in Table 1 for Dice Scores and IoU Scores. As shown in Table 1,
adding the Monte Carlo Dropout (MCD) layer to our model led to a significant improvement in
the Dice scores for the TC and ET regions. This indicates that the model became much better at
accurately segmenting these smaller and more complex tumor areas. Meanwhile, the performance
on the WT region remained comparable to the best baseline model, demonstrating that the addition
of MCD did not negatively affect the segmentation of larger tumor regions.

Table 1: Comparison of dice score and IoU for different models across tumor regions.

Model Dice score IoU
WT TC ET WT TC ET

UNet 0.858 0.822 0.700 0.752 0.699 0.539
Res-UNet 0.871 0.803 0.725 0.772 0.672 0.570
AG Res-UNet 0.893 0.857 0.761 0.807 0.750 0.614
ARUNet+GD 0.911 0.876 0.801 0.838 0.781 0.668
ARUNet+GD+MCD 0.886 0.899 0.856 0.793 0.818 0.748

Figure 2 shows sample input MRI slices alongside their ground truth, corresponding segmentation
results and uncertainty maps predicted by our ARU+GD+MCD model. The model accurately de-
lineates the tumor regions, highlighting its ability to capture both large and small tumor structures
effectively.

Our model’s final output gives not only the tumor segmentation but also uncertainty maps. These
maps show which parts of the image the model is unsure about. This helps doctors see where the
model’s predictions might need a closer look. The uncertainty maps use colors from red to green
to show how confident the model is. Red means high uncertainty, the model is not sure about
these areas. Green means low uncertainty-the model is confident and likely correct there. This
color coding makes it easy to spot parts of the tumor where the model might have made mistakes.
Figure 2 shows examples of the uncertainty maps generated by our model. These were computed
by aggregating stochastic predictions from multiple passes with dropout active, allowing the model
to reflect epistemic uncertainty in regions of complex structure or sparse data Gal & Ghahramani
(2016).

If you look closely at the uncertainty map in Figure 2, you’ll see that it not only shows what the
model predicted, but also how confident it is about those predictions. The green regions represent
areas where the model is very sure, and these are also the areas where the model’s predictions are
correct. So, green means the model is confident and got it right.

Now, notice the red regions. These are where the model is not confident, and importantly, these
are also the parts where the model has made mistakes, the predictions in the red areas are incorrect.
These red zones mostly appear around the edges of the tumor, which makes sense because bound-
aries are often the trickiest to detect accurately. The tissue at the edges might be blurry or mixed
with surrounding areas, making it harder for the model to decide what’s what.

Such visualizations have been shown to be an effective way of communicating prediction reliabil-
ity in clinical settings, helping clinicians prioritize which regions need the most attention during
diagnosis and verification Jungo & Reyes (2020).
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Figure 2: Sample images of Input MRI Scan, Ground Truth, Predicted and the Uncertainty Maps

5 DISCUSSION

Although newer versions of the BraTS dataset, such as BraTS 2021, 2022, and 2023 are available,
we chose to train our model on BraTS 2019. Our objective was to build a model that provides
uncertainty maps along with up-to-the-mark accuracy, rather than solely pushing for marginal gains
on the latest benchmarks. Since the focus is on estimating uncertainty, especially around tumor
boundaries, the specific dataset version does not significantly impact the validity of our approach.
Moreover, BraTS 2019 remains a robust, well-annotated, and widely-adopted benchmark, making it
well-suited for both segmentation and uncertainty evaluation tasks.

6 CONTRIBUTION

• Primary focus on uncertainty estimation:
The main objective of our model is to generate uncertainty maps along with tumor segmen-
tation. These maps highlight regions where the model is less confident, typically around
tumor boundaries, helping doctors make better-informed decisions, improving treatment
planning, and saving valuable time during manual verification.

• Improved accuracy with uncertainty integration:
Even after integrating Monte Carlo dropout for uncertainty estimation, the model maintains
strong segmentation performance. Accuracy is improved in tumor core (TC) and enhancing
tumor (ET) regions, and remains comparable in the whole tumor (WT) region.

• Robust and consistent results:
Trained on a large and well-annotated dataset, the BraTS 2019, the model demonstrates
consistent and reliable performance across diverse MRI scans, enhancing its potential for
real-world clinical use.
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7 CONCLUSION

The main focus of this research was to introduce uncertainty estimation into brain tumor segmenta-
tion, allowing the model not only to predict tumor regions but also to indicate how confident it is in
each part of its prediction. By generating uncertainty maps as a final output, our model helps identify
areas of low confidence, especially around tumor boundaries which are often the most error-prone.
This additional layer of information provides a practical advantage in medical settings, as it enables
doctors to quickly focus on the uncertain regions, saving time and improving trust in automated
segmentation.

To achieve this, we integrated Monte Carlo dropout into the architecture without sacrificing seg-
mentation performance. In fact, our results showed that this addition not only preserved the model’s
accuracy but actually improved performance on challenging regions like the tumor core (TC) and
enhancing tumor (ET), while maintaining strong results on the whole tumor (WT). Deep learning
has brought significant advancements in medical image analysis Li et al. (2017).

Overall, the proposed ARG-UNet+MCD model offers both high-quality segmentation and reliable
uncertainty estimation, making it a valuable and efficient tool for real-world clinical use.
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