
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

YOU DO NOT FULLY UTILIZE TRANSFORMER’S REP-
RESENTATION CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

In contrast to RNNs, which compress their history into a single hidden state,
Transformers can attend to all past tokens directly. However, standard Transform-
ers rely solely on the hidden state from the previous layer to represent the entire
context. We show that this design choice induces representation collapse and de-
grades performance. To address this issue, we introduce Layer-Integrated Mem-
ory (LIMe), a lightweight extension that leverages existing key–value buffers and
learns per-head, per-layer routing weights to integrate representations from all pre-
vious layers with negligible overhead. Through extensive experiments—including
language modeling, synthetic reasoning benchmarks, and very deep architec-
tures—LIMe consistently achieves faster convergence, lower perplexity per FLOP,
and substantial accuracy improvements on synthetic tasks while preserving higher
value–vector entropy and improved token separability. Finally, our analysis of the
learned routing weights reveals systematic reuse of both local and long-distance
features, demonstrating how LIMe mitigates collapse, unlocks richer representa-
tions without increasing hidden-state size, and points to promising directions for
future research.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become a central architecture in modern machine learn-
ing, powering state-of-the-art solutions in language modeling, computer vision, and beyond. Their
ability to capture complex patterns arises from deeply stacked layers that refine contextual represen-
tations. However, despite their success, standard Transformer decoders maintain a single residual
stream per layer, forcing the model to compress all previously learned features into the immediately
preceding hidden state (Srivastava et al., 2015; He et al., 2015). This design choice can lead to rep-
resentation collapse—a phenomenon in which different tokens or features become indistinguishable
in deeper layers (Voita et al., 2019; Barbero et al., 2024; Arefin et al., 2024). The problem is particu-
larly pronounced when learning from lengthy sequences, where subtle token distinctions risk being
squeezed out by limited floating-point precision and finite hidden-state capacity.

In this paper, we propose Layer-Integrated Memory (LIMe), a lightweight extension to multi-head
self-attention that enables each attention head to retrieve and integrate representations from all pre-
ceding layers—rather than relying solely on the most recent hidden state. LIMe accomplishes this by
learning a per-layer, per-head routing mechanism that efficiently blends multi-layer Key–Value fea-
tures, all while preserving the core Transformer structure and adding negligible overhead by reusing
already allocated Key–Value buffers.

Our key contributions are:

• Layer-Integrated Routing. A trainable router that, for each head at every layer, dynami-
cally weights and mixes buffered Key–Value representations from all earlier layers, without
increasing hidden-state dimensions or memory footprint.

• Strong Empirical Gains. LIMe converges 15.3% (8.9% with GQA) faster in FLOPs
and achieves 1.15% (0.91% with GQA) lower perplexity than 1B-parameter LLaMa-based
(Grattafiori et al., 2024) transformer, yields up to +8% on ProsQA (Hao et al., 2024) and
+30% on arithmetic reasoning benchmarks (Arefin et al., 2024; Feng et al., 2023). In deep

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

settings (32, 64, 128 layers), a 64-layer LIMe matches a 128-layer baseline, indicating
superior scaling behavior.

• Mitigating Collapse. An empirical analysis showing that LIMe preserves higher Rényi
entropy (Arefin et al., 2024) and better token separability (Voita et al., 2019) in value spaces,
effectively alleviating representation collapse.

Together, these results confirm that by distributing representational burden across persistent
Key–Value buffers and learning to route information across layers, LIMe substantially improves
both optimization efficiency and representational capacity, especially in tasks requiring long-range
or multi-step reasoning, opening the door of utilizing LIMe for cutting-edge area of latent-space
reasoning.

2 RELATED WORK

Early works on training very deep networks highlighted the need for mechanisms to ease gradient
flow and information propagation. Highway Networks introduce gated skip connections to regulate
information flow across layers (Srivastava et al., 2015). Deep Residual Networks further simplify
this by adding identity shortcuts, enabling networks to exceed a hundred layers without suffering
from vanishing gradients (He et al., 2015). Transformers adopt a similar residual-plus-normalization
design, which underpins their success in language and vision tasks (Vaswani et al., 2017; Grattafiori
et al., 2024; Jiang et al., 2023; Qwen et al., 2024; DeepSeek-AI et al., 2024).

Although residual streams facilitate training, they still force each layer to compress all prior features
into a single vector, which can lead to representation collapse—distinct inputs becoming indistin-
guishable in deeper layers. Tenney et al. (2019) found that BERT’s deeper layers refine earlier
predictions using higher-level context. Voita et al. (2019) empirically demonstrated that Transform-
ers’ top layers lose fine-grained token distinctions. Theoretically, Barbero et al. (2024) proved that
decoder-only Transformers can exhibit arbitrarily close final-token representations for different in-
puts, a phenomenon akin to over-squashing. Building on this, Hahn & Rofin (2024) showed that the
loss landscape of Transformers biases them toward low-sensitivity functions, exacerbating collapse.
Recently, Arefin et al. (2024) introduced Seq-VCR, a variance–covariance regularizer that preserves
intermediate representation diversity and significantly improves multi-step reasoning performance.

To mitigate collapse, several works have explored aggregating information across layers. Cross-
Layer Retrospective Retrieving learns dynamic attention weights over prior layer outputs for each
head (Fang et al., 2023). Hyper-Connections augment Transformers with multiple residual streams
that interact via learned projections, preventing collapse at the cost of increased hidden-state
size (Zhu et al., 2024). LAuReL (Learned Augmented Residual Layer) generalizes the residual
stream by introducing learned augmentations of the skip and, in variants that aggregate previous
activations, by accessing hidden states from earlier layers during inference (Menghani et al., 2025).
DenseFormer proposes using a weighted average of the previous layers’ outputs as the input to
each subsequent layer (Pagliardini et al., 2024). Value Residual Learning (ResFormer / SVFormer)
reuses the first layer’s value vectors across depth to improve attention concentration and KV effi-
ciency (Zhou et al., 2025). Although Mixture-of-Depths (Raposo et al., 2024) focuses on reducing
FLOPs by skipping token computations layer-wise, its dynamic routing approach resonates with our
per-head, per-layer routing mechanism; unlike MoD, LIMe retains full dense computation while
enriching representational capacity through routing over pre-allocated key–value buffers. Differ-
ent architectures based on usage of previous representations were proposed in (Huang et al., 2018;
Bapna et al., 2018; Wu et al., 2023). Despite these advances, most methods require substantial ar-
chitectural changes or extra memory. Our method, Layer-Integrated Memory (LIMe), instead reuses
existing key–value buffers and learns per-head, per-layer routing to mix multi-layer representations
with negligible memory and speed overhead (see Appendix I).

3 PRELIMINARIES

Notation. Let t denote the sequence length (temporal dimension), d the model dimension, H the
number of attention heads, dhead = d/H the dimension of each head, and L the total number of
layers. We denote by Xℓ−1 ∈ Rt×d the residual stream entering layer ℓ, with ℓ = 1, . . . , L.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.4 0.6 0.8 1.0 1.2 1.4 1.6
FLOPs

2.45

2.50

2.55

2.60

2.65

2.70

2.75

Lo
ss

1e20

Training Loss
LLaMa GQA
LIMe GQA

Figure 1: Training loss per FLOPs for LLaMa and LIMe. LIMe has a substantially lower loss with
a similar amount of FLOPs. See Section 5.1 for more details.

Causal Self-Attention. Let
Q = XW(Q), K = XW(K), V = XW(V),

with W(Q),W(K),W(V) ∈ Rd×d. Splitting into H heads of dimension dh = d/H yields
{Qi,Ki,Vi}Hi=1. For head i,

headi = softmax
(

Qi K
⊤
i√

dh
+M

)
Vi ∈ Rt×dh ,

where M masks future positions. The heads are concatenated across the last dimension and pro-
jected:

MultiHeadAttn(X) = Concat(head1, . . . ,headH)W(O), W(O) ∈ Rd×d.

Residual connections. Denoting a sub-layer function F(·) and input X, the pre-norm residual
update is

X′ = X+ F
(
RMSNorm(X)

)
.

4 METHOD

We introduce Layer-Integrated Memory (LIMe), a lightweight mechanism to augment a decoder-
only Transformer with inter-layer, learnable information flow. Unlike standard multi-head attention
(MHA), which attends only to the current layer’s residual stream, LIMe enables each head to retrieve
and fuse Key–Value representations from all earlier layers. This enriches the model’s representation
capacity without increasing memory use, since we reuse the Key–Value buffers already allocated by
vanilla Transformers.

At a high level, each LIMe attention layer performs three steps:

1. Compute and buffer per-head Key–Value projections from the current residual stream.
2. Route by forming a learned mixture of all buffered Key and Value heads’ states up to the

current layer.
3. Compute attention between the current layer’s Queries and the routed Key–Value mixture.

Visualisation of the architecture can be found in Appendix K.

1. Key–Value Buffering. At layer ℓ, we compute per-head Key and Value tensors in the usual
way:

Kℓ = Xℓ−1 W
(K)
ℓ , Vℓ = Xℓ−1 W

(V)
ℓ , Kℓ, Vℓ ∈ Rt×H×dh . (1)

We then store these in the pre-allocated buffers
B(K), B(V) ∈ RL×H×t×dh ,

for Keys and Values respectively. No extra memory is required, since vanilla Transformers already
maintain all per-layer Key–Value states for training and cache them during inference for generation
efficiency. See Appendix I for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. Inter-Layer Routing. To enable each head at layer ℓ to mix information from all previous
layers, we introduce a trainable router tensor R(ℓ) ∈ Rℓ×H×H , where R

(ℓ)
ℓ′,h′,h is a weight from

head h′ at layer ℓ′ into head h at layer ℓ.

Using buffer we route keys and values for each head h:

K̃ℓ,h =

ℓ∑
ℓ′=1

H∑
h′=1

R
(ℓ)
ℓ′,h′,h B(K)

ℓ′,h′ , and Ṽℓ,h =

ℓ∑
ℓ′=1

H∑
h′=1

R
(ℓ)
ℓ′,h′,h B(V)

ℓ′,h′ . (2)

3. Attention with Layer-Integrated Memory. We compute the usual per-head Queries,

Qℓ,h = Xℓ−1 W
(Q)
ℓ,h , Qℓ,h ∈ Rt×dh ,

and then perform scaled dot-product attention for each head between Qℓ,h and the routed
K̃ℓ,h, Ṽℓ,h.

LIMe Advantages. By routing through all prior layers, LIMe endows each head with a learn-
able, layer-wise memory. Unlike fixed skip connections or naive averaging, LIMe learns per-head,
per-layer weightings, enabling selective retrieval and forgetting of past representations. Despite this
added flexibility, the extra computation is only linear in sequence length. Crucially, LIMe is fully
compatible with efficient MHA implementations such as FlashAttention (Dao, 2024), and it intro-
duces negligible additional memory footprint by reusing existing Key–Value buffers (see Appendix I
for details), and can be effectively used under pipeline parallelism (see Appendix J for details). In
Appendix F, we include an ablation study on restricted router weights, demonstrating the importance
of the trained router in LIMe.

5 EXPERIMENTS

5.1 LANGUAGE MODELING

We evaluate the effectiveness of LIMe against three baselines: LLaMa (Grattafiori et al., 2024),
DenseFormer (Pagliardini et al., 2024), and Hyper Connections (Zhu et al., 2024). All models have
approximately 1B parameters and share the same underlying transformer architecture (see Table 4).
We trained each model from scratch on the FineWeb Edu (Penedo et al., 2024) subset with about
50B tokens. The full training setup can be found in Appendix A.

Figure 1 displays the iso-flops training loss curves, demonstrating that LIMe converges more rapidly
and achieves lower perplexities than LLaMa, indicating improved parameter efficiency. Details on
model efficiency and FLOPs calculations can be found in Appendix I. Table 1 presents results on
the 3-shot LM Eval Harness benchmarks Wang et al. (2018; 2019); Srivastava et al. (2023), further
highlighting the advantages conferred by LIMe on language modeling over baseline models. For
more benchmarks see Appendix C. In the next section, we go deeper into the factors driving these
gains.

Model MultiRC WiC QNLI ARC-E ARC-C KV Induction Avg

LLaMA 43.24 50.00 49.49 70.45 38.70 45.94 54.20 50.29
DenseFormer 45.92 49.69 50.08 70.60 36.48 50.30 51.30 50.62

HC 54.34 49.72 49.43 71.15 37.63 51.68 51.59 52.22
LIMe 56.15 50.44 51.43 71.15 39.30 55.64 55.36 54.21

Table 1: LM Evaluation Harness benchmarks results on 1B models with GQA in 3-shot setup. LIMe
outperforms LLaMA, DenseFormer, and Hyper-Connections baselines. See details in Section 5.1
and additional benchmarks in Appendix C.

5.2 MATH WORD PROBLEMS (GSM8K)

To assess multi-step numerical reasoning in natural language, we evaluate on GSM8K (Cobbe et al.,
2021). We fully fine-tune both LLaMA and LIMe (training details in Appendix A). LIMe clearly out-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

5.6

5.8

6.0

6.2

6.4

6.6

E
nt

ro
py

Entropy of Values
LLaMa
LIMe

(a)

2 4 6 8 10 12 14 16
Layer

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Accuracy of Values Classification

LLaMa
LIMe

(b)

Figure 2: (a) Matrix entropy of values on the FineWeb Edu subset by layer. LIMe has more diverse
values than LLaMa, which indicates that more information is stored in its hidden states. (b) Values’
classification accuracy, with standard deviation over five cross-validation folds. Values in later layers
obtained from LIMe can be linearly separated with nearly 1.0 accuracy, whereas the accuracy for
values from LLaMa is much lower. See Section 5.3 for more details.

performs LLaMA, achieving an exact-match accuracy of 0.167 vs. 0.140 for LLaMA— a +19.28%
relative improvement.

5.3 MEASURING REPRESENTATION COLLAPSE

Recent work has shown that large language models (LLMs) can suffer from representation collapse
when representing long sequences, thereby forcing subtle token distinctions to become inseparable
in deeper layers (Voita et al., 2019; Arefin et al., 2024). We investigate this phenomenon by compar-
ing LLaMa (Grattafiori et al., 2024) and LIMe via two complementary approaches: (i) quantifying
the diversity of hidden states and values with matrix-based Rényi entropy (Arefin et al., 2024) and
(ii) measuring and visualizing the linear separability of layer-wise embeddings of closely related
tokens (is, are, was, were) (Voita et al., 2019). These two methodologies directly measure
representation collapse in language models.

Unlike Arefin et al. (2024), we evaluate both residual-stream hidden states and value representa-
tions. We expect weaker linear separability in hidden states (because the model need not pack all
information there) and stronger separation in value vectors. For matrix entropy, we anticipate little
change at the hidden-state level but a clear difference for value representations. At each layer ℓ, we
record value states (i.e., the output of the W (V)

ℓ linear projection) and hidden states (i.e., the residual
stream Xℓ).

Matrix-Based Rényi Entropy. Following Arefin et al. (2024), we measure the diversity of repre-
sentations at layer ℓ by forming the Gram matrix K = Z(ℓ) Z(ℓ)⊤ ∈ Rt×t, where Z(ℓ) contains the
d-dimensional representations of t tokens. Let {λi(K)}ti=1 be the eigenvalues of K. We define the

α-order Rényi entropy as Sα

(
Z(ℓ)

)
= 1

1−α log

[∑t
i=1

(
λi(K)
tr(K)

)α
]
. Each eigenvalue is normal-

ized by tr(K), ensuring the probabilities sum to 1. Higher Sα indicates greater variance (i.e., lower
collapse).

Figure 2(a) shows that LIMe yields significantly higher matrix entropy of gathered MHA values
compared with LLaMa and shows no significant difference when evaluating hidden states (see Fig-
ure 7(a)).

Layer-Wise Token Separability. To more directly evaluate the level of representation collapse,
we replicate the methodology of Voita et al. (2019), extracting 1668 occurrences each of is, are,
was, were from the FineWeb Edu corpus. To quantify information collapse, we train a linear four-
way classifier (for is, are, was, were) on layer-wise representations. Figure 2(b) shows mean
classification accuracies (with five-fold cross-validation) for value representations layer by layer. We
observe that LIMe consistently exhibits higher classification accuracy than LLaMa, confirming that
LIMe’s value representations avoid collapse. As hypothesized, hidden states became less separable

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

is are were was

Values Representations

Layer 2 Layer 4 Layer 7 Layer 12 Layer 15 Layer 16

L
L
a
M

a
L
IM

e
 (

O
u
r
s
)

Figure 3: t-SNE of similar tokens’ values among layers shows higher separability for LIMe’s repre-
sentations. See Section 5.3 for more details.

for LIMe, indicating that there was no need to store all necessary information in a single hidden
state (see Figure 7(b)).

Additionally, we project representations into a two-dimensional space via t-SNE and visualize how
well value states and hidden states can be clustered (Figure 3). In contrast to LIMe, deeper-layer
representations in LLaMa for such similar tokens often collapse into overlapping regions, reflecting
the inclination of the vanilla transformer to heavily compress relevant information into a single
representation and therefore blur small yet important differences.

Linear Probing. We evaluate whether layer-wise representations encode basic grammaticality us-
ing BLiMP (Warstadt et al., 2020). For each BLiMP task, we freeze the LM and train a binary
logistic-regression probe that predicts whether a single sentence is grammatical (“Good”) or un-
grammatical (“Bad”). Concretely, at each layer ℓ we extract (i) attention values (the value projec-
tions) and (ii) hidden states (the residual stream), mean-pool them over tokens to obtain a fixed vec-
tor per sentence, and fit a logistic regression on these vectors. We perform 5-fold cross-validation,
splitting by minimal pair so that both members of a pair fall in the same fold, and report accuracy in
Table 2. At test time the probe receives one sentence and outputs a grammaticality label; accuracy
is the fraction of correct Good/Bad judgments.

Layer Values (acc.) Hiddens (acc.)
LLaMA LIMe LLaMA LIMe

10 0.892 ± 0.018 0.914 ± 0.015 0.914 ± 0.015 0.933 ± 0.013
14 0.881 ± 0.015 0.921 ± 0.013 0.895 ± 0.015 0.918 ± 0.014
16 0.864 ± 0.016 0.918 ± 0.010 0.880 ± 0.016 0.897 ± 0.014

Table 2: BLiMP probing accuracy (5-fold CV) at selected layers (for complete results see Ap-
pendix D). LIMe consistently outperforms LLaMA, with gains up to 5 p.p. on value features and 3
p.p. on hidden states, indicating more linearly separable (and thus more expressive) representations.

Discussion. Together, these results corroborate our theoretical motivation: by allowing each head
to attend directly to earlier-layer representations, LIMe expands the overall representational capac-
ity. This multi-layer routing reduces collapse in the values while freeing deeper hidden states from
the burden of storing all lexical nuances—leading to higher overall entropy on values (Figure 2(a))
and improved model performance (Table 1). In the next section, we evaluate LIMe on synthetic
benchmarks where the model’s ability to store complex information in limited state capacity is cru-
cial.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4
Layer

2.2

2.3

2.4

2.5

2.6

2.7

2.8

E
nt

ro
py

Entropy of Values, 6 Operands
LLaMa
LIMe

(a)

4 5 6
Num Operands

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy on Arithmetic Expressions Task
LLaMa
LIMe

(b)

Figure 4: (a) LIMe exhibits consistently higher entropy of value vectors across layers, particu-
larly in the final layer, indicating reduced representation collapse compared to LLaMa. (b) On the
Arithmetic Expressions task, LIMe significantly outperforms the LLaMa baseline, maintaining high
accuracy even as the number of operands increases, while LLaMa’s performance deteriorates. For
details, see Section 5.4.2.

5.4 EVALUATING REPRESENTATION COLLAPSE ON SYNTHETIC TASKS

5.4.1 PLANNING AND SEARCH CAPABILITIES

We fine-tune models on ProsQA (Proof with Search Question-Answering) (Hao et al., 2024). Each
ProsQA instance presents a set of fictional concepts described via natural-language conditions ar-
ranged in a DAG, requiring models to determine the veracity of a target statement by exploring
multiple reasoning paths over the graph (examples in Appendix B). Unlike linear chain-of-thought
methods (Wei et al., 2022), ProsQA demands maintaining and evaluating parallel hypothesis streams
akin to breadth-first search in latent reasoning (Hao et al., 2024). In our experiments we evaluate
both fine-tuned models on ProsQA task via open-ended reasoning generation. LLaMA achieves
69.4% accuracy, meanwhile LIMe achieves 77.8% accuracy, outperforming LLaMA by 8.4%.
Since correct prediction requires searching over paths in the graph of input statements, baseline
transformers suffer representation collapse from storing multiple reasoning chains in their hidden
states, particularly for longer inference sequences. LIMe mitigates this by distributing the reasoning
process across layers — early layers may store primitive inferences while deeper layers compose
them, maintaining better separation between similar reasoning paths.

5.4.2 ARITHMETIC EXPRESSION BENCHMARK

Standard one-shot QA benchmarks mainly test final-token prediction, which can often be solved
via shallow pattern matching or retrieval, masking the role of intermediate representation quality
in reasoning. To isolate the impact of multi-step computation, we adopt the Arithmetic Expression
Task (AET) (Arefin et al., 2024; Feng et al., 2023), a synthetic benchmark presenting expressions
over integer operands with operators +,−,×,÷, along with solution steps and requiring the exact
integer result. See examples in Appendix B.

Following Arefin et al. (2024), we generate 3 difficulty tiers comprising expressions with 4, 5,
and 6 operands, accompanied by step-by-step solutions (details in Appendix A). While performing
similarly to LLaMa on 4 operands, LIMe achieves significantly higher accuracy after increasing
number of operands to 5 and 6 (Figure 4(b)). LIMe (71.6%) outperforms LLaMa (41.3%) by over
30% in accuracy on 6 operands. These results go along with lower representation collapse which
is illustrated by higher entropy of value representations shown in Figure 4(a). Also, LIMe exhibits
better separability of close numbers which leads to lower error rate in intermediate calculations, see
Figure 8 in Appendix.

Arithmetic Expressions Task requires intermediate calculations to be performed correctly in order
to get the correct final answer. The problem of representation collapse results in representations of
close numbers being similar which leads to incorrect intermediate results, and thus the wrong final
answer. Since LIMe has access to previous representations at each layer, it preserves finer numerical
distinctions in comparison with standard transformer architectures like LLaMa. Moreover, LIMe
has ability to store information in earlier representations, i.e. performing computations at some

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Buffered Representation

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
La

ye
r

Normalized Absolute Mean Weights of Representations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5: Mean retrieval weight for each buffered representation across subsequent layers. Larger
diagonal values confirm reliance on the current residual stream, while the pronounced off-diagonal
weights for the earliest buffers and the repeated reuse of intermediate ones show that the model
systematically retrieves earlier features, providing auxiliary memory and helping to mitigate repre-
sentation collapse. See Section 5.5 for more details.

early or intermediate layer, but using it further only in later layers, which also boosts its reasoning
capabilities and leads to better results on tasks that require intermediate steps.

5.5 ANALYZING LEARNED ROUTINGS IN LIME

To understand how LIMe routes information across layers and thereby mitigates representation col-
lapse, we inspect the learned router weights. Since the router weights can be both positive and
negative—and because random initialization of the key, value, and output projections renders their
sign semantically ambiguous—we analyze the absolute magnitudes of these weights to quantify
each buffered representation’s relative contribution in a sign-agnostic manner.

For each layer ℓ ≥ 2, we take the absolute magnitude of its router weights, average over heads
for each buffered representation j ≤ ℓ, and then normalize these averages per layer. The resulting
heatmap in Figure 5 shows the normalized mean weight: cell (ℓ, j) measures the average contribu-
tion of the keys and values generated at layer j to the attention computation in layer ℓ. In a standard
Transformer without routing, each layer would attend solely to its own keys and values, yielding a
heatmap with ones on the diagonal and zeros elsewhere; LIMe departs markedly from this behavior.

Several clear patterns emerge:

• Strong reliance on embeddings in early layers: Layers 2-4 allocate much of their at-
tention to the buffered representations from the embedding layer. This corroborates the
view that the initial attention layers focus on capturing local and morphological relation-
ships among tokens, and that LIMe grants additional flexibility in reusing these low-level
features.

• Auxiliary memory via neighboring layers: Early and middle layers place a share of
attention on the buffered KV states of its immediate predecessor. This indicates that they
can treat them as an auxiliary memory bank, effectively extending the subspace of features
it can manipulate by leveraging projections made by other heads.

• Long-distance retrieval from early buffers: Higher layers also attend nontrivially to the
first two buffered representations. The effect is especially pronounced in the final layers,
suggesting that late-stage prediction benefits from revisiting the original token embeddings
and shallow features.

By allowing flexible retrieval of features from arbitrarily distant layers, LIMe relieves each resid-
ual stream from having to carry the entire contextual signal forward. Instead, information can be
distributed across a set of persistent buffers, preserving a richer and more diverse feature set through-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

out the network’s depth and thereby mitigating representation collapse. For the full, detailed set of
normalized router weights, see Appendix Figure 9.

5.6 DEEP NETWORKS PERFORMANCE

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Tokens

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

1e9

Training Loss
LLaMa 32L
LIMe 32L
LLaMa 64L
LIMe 64L
LLaMa 128L
LIMe 128L

Figure 6: Training losses for deep architectures. The LIMe models consistently outperform their
LLaMA counterparts across all depths, with LIMe with 64 layers outperforming LLaMa with 128
layers. See Section 5.6 for details.

Transformers scaled to increasing depths often suffer from representation collapse, which motivates
our evaluation of LIMe in 32-, 64-, and 128-layer configurations. We compare LIMe against the
baseline LLaMA, each using 8 attention heads per layer, and observe that LIMe outperforms LLaMA
at every tested depth (Fig. 6). Furthermore, LIMe exhibits superior scaling behavior: as depth
increases, its loss decreases more rapidly than LLaMA’s, implying that direct routing of earlier-layer
features enhances the model’s effective representational capacity, whereas LLaMA’s single-stream
residual architecture struggles to preserve fine-grained features across layers. Notably, a 64-layer
LIMe model outperforms a 128-layer LLaMA model, despite the latter requiring roughly twice the
FLOPs and parameters. In the 128-layer regime, the naive LIMe router that mixes all previous layers
yields a substantial perplexity reduction over LLaMA but introduces a noticeable per-step latency
increase. However, simpler structured routers (such as dilated routing and variants that restrict
each layer to attend only to the set of j earliest layers) incur only negligible latency overhead and
essentially no extra memory while still achieving significantly better perplexity than the 128-layer
LLaMA baseline (see Appendix F for details). This suggests that the optimal scaling strategy for
transformers may deviate from conventional practice, potentially favoring much deeper models with
smaller hidden dimensions. We leave further investigation of these scaling dynamics to future work.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed Layer-Integrated Memory (LIMe), a lightweight extension to multi-head
self-attention that enables each attention head to retrieve and integrate representations from all pre-
ceding layers. Through extensive experiments on language modeling, synthetic reasoning bench-
marks, and deep transformer configurations, we demonstrated that LIMe (i) accelerates convergence
in FLOPs by up to 15.3% and reduces perplexity by up to 1.15% compared to standard Transformer
decoders, yields improvements of up to +8% on the challenging ProsQA task and +30% on Arith-
metic Reasoning Task; (ii) mitigates representation collapse by preserving higher entropy in value
vectors and maintaining token separability in deeper layers; and (iii) enables shallower models to
match or exceed the performance of double-sized deeper baselines. Our analysis of the learned
routing weights further revealed that LIMe systematically leverages both local and long-distance
feature reuse, effectively distributing contextual information across layers without increasing the
hidden-state size.

Limitations. While our method consistently yields better results on both benchmarks and language
modeling tasks, it could lead to additional communication between GPUs in pipeline parallel setup.
Also, vanilla implementation of the method has O(L2) asymptotic, and some heuristics proposed in
Appendix F might be useful for scaling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Looking forward, two research directions emerge as particularly promising. First, a comprehensive
exploration of the width–depth trade-off in LIMe architectures could unveil optimal scaling regimes
tailored to diverse tasks and computational budgets. Second, a rigorous theoretical analysis of the
routing mechanism may inform principled designs for multi-layer memory, thereby enabling models
to perform advanced latent-space reasoning grounded in Layer-Integrated Memory.

REFERENCES

Quentin Anthony, Stella Biderman, and Hailey Schoelkopf. Transformer math 101. blog.eleuther.ai/,
2023. URL https://blog.eleuther.ai/transformer-math/.

Md Rifat Arefin, Gopeshh Subbaraj, Nicolas Gontier, Yann LeCun, Irina Rish, Ravid Shwartz-Ziv,
and Christopher Pal. Seq-vcr: Preventing collapse in intermediate transformer representations for
enhanced reasoning. arXiv preprint arXiv: 2411.02344, 2024.

Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper neural machine
translation models with transparent attention. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 3028–3033, 2018. doi: 10.18653/
v1/D18-1338. URL https://arxiv.org/abs/1808.07561. arXiv:1808.07561.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G. M. Araújo,
Alex Vitvitskyi, Razvan Pascanu, and Petar Velicković. Transformers need glasses! information
over-squashing in language tasks. arXiv preprint arXiv: 2406.04267, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
arXiv preprint arXiv: 2405.04434, 2024.

Yanwen Fang, Yuxi Cai, Jintai Chen, Jingyu Zhao, Guangjian Tian, and Guodong Li. Cross-layer
retrospective retrieving via layer attention. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=pvgEL1yS3Ql.

10

https://blog.eleuther.ai/transformer-math/
https://arxiv.org/abs/1808.07561
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=pvgEL1yS3Ql

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective, 2023. URL https://arxiv.
org/abs/2305.15408.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,

11

https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2305.15408

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu,
Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models. arXiv preprint arXiv:
2407.21783, 2024.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 14973–15008, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
800. URL https://aclanthology.org/2024.acl-long.800/.

Shibo Hao, Sainbayar Sukhbaatar, Dijia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
elastic pipelining for distributed training of transformers. CoRR, abs/2102.03161, 2021. URL
https://arxiv.org/abs/2102.03161.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv: 1512.03385, 2015.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2018. URL https://arxiv.org/abs/1608.06993.

12

https://aclanthology.org/2024.acl-long.800/
https://arxiv.org/abs/2102.03161
https://arxiv.org/abs/1608.06993

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv: 2310.06825,
2023.

Gaurav Menghani, Ravi Kumar, and Sanjiv Kumar. Laurel: Learned augmented residual layer, 2025.
URL https://arxiv.org/abs/2411.07501.

Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
Enhancing information flow in transformers via depth weighted averaging, 2024. URL https:
//arxiv.org/abs/2402.02622.

Guilherme Penedo, Hynek Kydlı́cek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv: 2412.15115, 2024.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models, 2024. URL https://arxiv.org/abs/2404.02258.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
La, Andrew K. Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Bartlomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cèsar Ferri Ramı́rez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
Daniel Moseguı́ González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliz-
abeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut
Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan Kim, Eunice En-
gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martı́nez-Plumed,
Francesca Happé, François Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Ger-
ard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah

13

https://arxiv.org/abs/2411.07501
https://arxiv.org/abs/2402.02622
https://arxiv.org/abs/2402.02622
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2404.02258
http://arxiv.org/abs/1909.08053

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze,
Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse H.
Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
José Hernández-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
Kory W. Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras
Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten
Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan,
Marco Marelli, Marco Maru, Marı́a José Ramı́rez-Quintana, Marie Tolkiehn, Mario Giulianelli,
Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina
Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
Michael I. Ivanitskiy, Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilac-
qua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T.,
Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
Nitish Shirish Keskar, Niveditha Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Milkowski, Piyush
Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib
Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel
Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A.
Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Se-
bastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry
Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal,
Shyam Upadhyay, Shyamolima (Shammie) Debnath, Siamak Shakeri, Simon Thormeyer, Simone
Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar,
Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad,
Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop
Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo
Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick,
Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar
Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak,
Vinay V. Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus,
William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi
Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin
Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai,
Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Trans. Mach.
Learn. Res., 2023, 2023. URL https://openreview.net/forum?id=uyTL5Bvosj.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv: 1505.00387, 2015.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline.
In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4593–4601, Florence, Italy, July

14

https://openreview.net/forum?id=uyTL5Bvosj

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https:
//aclanthology.org/P19-1452/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NEURIPS, 2017.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 4396–4406, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1448. URL
https://aclanthology.org/D19-1448/.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. Ws,
2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Neural Information Processing Systems, 2019.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. Trans-
actions of the Association for Computational Linguistics, 8:377–392, 2020. doi: 10.1162/
tacl a 00321. URL https://aclanthology.org/2020.tacl-1.25/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

Xixin Wu, Hui Lu, Kun Li, Zhiyong Wu, Xunying Liu, and Helen Meng. Hiformer: Sequence
modeling networks with hierarchical attention mechanisms. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31:3993–4003, 2023. doi: 10.1109/TASLP.2023.3313428.
URL https://doi.org/10.1109/TASLP.2023.3313428.

Zhanchao Zhou, Tianyi Wu, Zhiyun Jiang, Fares Obeid, and Zhenzhong Lan. Value residual learn-
ing, 2025. URL https://arxiv.org/abs/2410.17897.

Defa Zhu, Hongzhi Huang, Zihao Huang, Yutao Zeng, Yunyao Mao, Banggu Wu, Qiyang Min, and
Xun Zhou. Hyper-connections. arXiv preprint arXiv: 2409.19606, 2024.

A EXPERIMENTAL SETUP DETAILS

Language Modeling. We observe that omitting weight decay on the LIMe router weights enjoys
better performance and setting the router’s learning rate to 1 × 10−2 boosts model performance by
speeding up router convergence and circuit formation. To preserve the standard Transformer’s infor-
mation flow at the start of the training, we initialize the slice R(ℓ)

ℓ,h′,h = δh′,h (identity across heads).
Other coefficients are initialized randomly via Kaiming uniform to stabilize mixtures at the start of
the training. Random initialization of all weights resulted in worse overall model performance. For
DenseFormer and HyperConnections baselines we use the strongest configurations recommended by
the original papers: DenseFormer with dilation = 1 and period = 1, and the Dynamic HyperCon-
nections variant with expansion rate 4. Hyperparameter values are summarized in Table 3, and the
detailed model architecture is given in Table 4. Additional training loss visualizations are available
in Figure 11 for full attention and in Figure 10 for Grouped Query Attention.

We used NVIDIA H100 GPUs and spent about 2400 GPU-days on all experiments including pre-
liminary research.

GSM8K Fine-tuning. We fine-tune pretrained 1.2B-parameter LLaMa and LIMe models on the
GSM8K training split for 20 epochs and report exact-match accuracy on the test set. Learning rates

15

https://aclanthology.org/P19-1452/
https://aclanthology.org/P19-1452/
https://aclanthology.org/D19-1448/
https://aclanthology.org/2020.tacl-1.25/
https://doi.org/10.1109/TASLP.2023.3313428
https://arxiv.org/abs/2410.17897

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

are tuned per model for best performance—1× 10−4 for LLaMa and 5× 10−5 for LIMe—with an
effective batch size of 32 in both cases.

ProsQA Fine-Tuning. We fine-tune pretrained LLaMa 150M and LIMe 150M on approximately
18,000 sequences for 10 epochs. We use learning rate of 1 × 10−4 with linear decay and warmup
during the first epoch, effective batch size is 128. Trained models are then evaluated on the test
subset via open generation of reasoning steps and answers.

Arithmetic Expression Task. We train models and evaluate them on open-ended generation of
solutions given initial expression, from which we extract the answers and calculate accuracy on the
test subset. We train 4-layer models (with 4 attention heads and model dim is 32) on datasets with
50,000 samples per each number of operands for 200 epochs. Learning rate is 1× 10−3 with linear
decay.

Hyperparameter Value
Optimizer AdamW
Learning Rate 0.001
LIMe Router Learning Rate 0.01
Weight Decay 0.1
β1 0.9
β2 0.95
ϵ 1× 10−8

Scheduler cosine
Warmup Steps 200
Min LR 1× 10−6

Mixed Precision bf16
Gradient Clipping 1.0

Sequence Length 2048
Batch Size 1024
Training Steps 20,000

Table 3: Key training hyperparameters used in experiments.

Parameter Value
Vocab Size 50,257
Hidden Size 2048
Intermediate Size 8192
Number of Hidden Layers 16
Number of Attention Heads 32
Number of Key-Value Heads 8 (GQA) and 32 (otherwise)
Tie Word Embeddings True

Table 4: Base model architecture at 1B scale.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B SYNTHETIC BENCHMARKS

ProsQA

Question: "Every shumpus is a rempus. Every shumpus is a
yimpus. Every terpus is a fompus. Every terpus is a gerpus.
Every gerpus is a brimpus. Alex is a rempus. Every rorpus
is a scrompus. Every rorpus is a yimpus. Every terpus is a
brimpus. Every brimpus is a lempus. Tom is a terpus. Every
shumpus is a timpus. Every yimpus is a boompus. Davis is
a shumpus. Every gerpus is a lorpus. Davis is a fompus.
Every shumpus is a boompus. Every shumpus is a rorpus.
Every terpus is a lorpus. Every boompus is a timpus. Every
fompus is a yerpus. Tom is a dumpus. Every rempus is a
rorpus. Is Tom a lempus or scrompus?"

Steps: "Tom is a terpus. Every terpus is a brimpus. Every
brimpus is a lempus."

Answer: "Tom is a lempus."

Arithmetic Expression Task

Input:

(7 + 5) ÷ (6 + 4× 3 − 2× 7) =

Output:

12 ÷ (6 + 4× 3− 2× 7) = 12 ÷ (6 + 12− 2× 7)

= 12 ÷ (18− 2× 7)

= 12 ÷ (18− 14)

= 12 ÷ 4

= 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

6.0

6.2

6.4

6.6

6.8

E
nt

ro
py

Entropy of Hidden States
LLaMa
LIMe

(a)

2 4 6 8 10 12 14 16
Layer

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Accuracy of Hidden States Classification
LLaMa
LIMe

(b)

Figure 7: (a) Matrix entropy of the hidden states across layers on the FineWeb Edu subset. We do
not observe a significant difference between LIMe and LLaMa in this experiment. (b) Classification
accuracy of the hidden states, with standard deviation, measured over five cross-validation folds.
Because the hidden states in LIMe do not need to store all the information in the residual stream,
they become less separable. See Section 5.3 for more details.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 2 3 4

Values Representations

Layer 2 Layer 3 Layer 4

L
L
a
M

a
L
IM

e
 (

O
u
r
s
)

(a)

100 101 102 103

Values Representations

Layer 2 Layer 3 Layer 4

L
L
a
M

a
L
IM

e
 (

O
u
r
s
)

(b)

Figure 8: t-SNE of close numbers’ values representations of models trained on Arithmetic Expres-
sions Task. (a) For 1, 2, 3, 4. (b) For 100, 101, 102, 103. See Section 5.4.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

15131197531
Buffered Representation

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

La
ye

r

Normalized Absolute Router Weights

0.0

0.2

0.4

0.6

0.8

Figure 9: Magnitudes of router weights averaged
among buffered heads and normalized among
buffered layers. Each cell represents ratio of at-
tention for each buffered representation in the
specific head.

10 15 20 25 30 35 40
Tokens

2.45

2.50

2.55

2.60

2.65

2.70

2.75

Lo
ss

1e9

Training Loss
LLaMa GQA
LIMe GQA

Figure 10: Training loss per tokens trained on
for LLaMa and LIMe with GQA. It shows that
LIMe is more data efficient. See Section 5.1 for
more details.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
FLOPs

2.40

2.45

2.50

2.55

2.60

2.65

2.70

Lo
ss

1e20

Training Loss
LLaMa
LIMe

(a)

10 15 20 25 30 35 40
Tokens

2.40

2.45

2.50

2.55

2.60

2.65

2.70

Lo
ss

1e9

Training Loss
LLaMa
LIMe

(b)

Figure 11: Training loss for LLaMa and LIMe
without GQA. (a) shows that LIMe has a sub-
stantially lower loss with a similar amount of
FLOPs. (b) shows that LIMe is more data effi-
cient. See Section 5.1 for more details.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL BENCHMARKS

Model COPA (50) MultiRC (50) WiC (50) QNLI (50) WNLI (50) Avg (50)

LLaMA 75.80±1.92 43.24±0.32 50.00±0.89 49.49±0.30 51.27±2.66 53.96
DenseFormer 74.00±1.96 45.92±0.32 49.69±0.89 50.08±0.30 52.11±2.66 54.36

HC 74.00±1.96 54.34±0.32 49.72±0.89 49.43±0.30 56.34±2.64 56.77
LIMe 75.20±1.93 56.15±0.32 50.44±0.89 51.43±0.30 56.06±2.64 57.86

Table 5: GLUE and SuperGLUE benchmarks accuracies (%) on 1B GQA models (3-shot), with
average over the five tasks. Random baselines in parentheses.

Model ARC-E (25) ARC-C (25) HellaSwag (25) OBQA (25) Avg (25)

LLaMA 70.45±0.42 38.70±0.64 52.55±0.22 37.68±0.97 49.85
DenseFormer 70.60±0.42 36.48±0.63 41.46±0.22 26.84±0.89 43.85

HC 71.15±0.42 37.63±0.63 54.04±0.22 40.08±0.98 50.73
LIMe 71.15±0.42 39.30±0.64 52.85±0.22 39.68±0.98 50.75

Table 6: QA benchmarks accuracies (%) on 1B GQA models (3-shot), with average over the four
tasks. Random baselines in parentheses.

Model KV (50) Induction (50) IR (0.04) CO (0.06) Avg (25.03)

LLaMA 45.94±2.22 54.20±2.69 12.94±1.63 16.97±0.38 32.51
DenseFormer 50.30±2.23 51.30±2.69 15.76±1.77 18.59±0.39 33.99

HC 51.68±2.23 51.59±2.69 15.29±1.75 18.48±0.39 34.26
LIMe 55.64±2.21 55.36±2.68 14.82±1.73 17.39±0.38 35.80

Table 7: Accuracies (%) of 3-shot 1B GQA models on BIG-Bench tasks: Key–Value Maps (KV),
Mathematical Induction, Implicit Relations (IR), and Reasoning About Colored Objects (CO). Ran-
dom baselines in parentheses.

D LINEAR PROBING RESULTS

We evaluate linguistic sensitivity using ten BLiMP minimal-pair tasks (Warstadt et al., 2020). For
each task, we use a representative pair (Good/Bad) to illustrate the contrast; full datasets are from
the public BLiMP repository. Below, the numbered list (1–10) gives task names, and the Table 8
maps each task to a representative example.

1. Determiner–Noun Agreement with Adjective (Irregular), set 1

2. Complex NP Island

3. Subject–Verb Agreement with Regular Plurals, set 2

4. Determiner–Noun Agreement with Adjective, set 2

5. Determiner–Noun Agreement, set 1

6. Determiner–Noun Agreement, set 2

7. Subject–Verb Agreement with Irregular Plurals, set 1

8. Subject–Verb Agreement with Irregular Plurals, set 2

9. Agreement with Distractor (Relational Noun)

10. Determiner–Noun Agreement with Adjective, set 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Good Bad

1 Some waiters broke this lost foot. Some waiters broke this lost feet.
2 Who aren’t most hospitals that hadn’t talked about most wait-

resses alarming?
Who aren’t most waitresses alarming most hospitals that hadn’t
talked about?

3 The students perform. The student perform.
4 Cynthia scans these hard books. Cynthia scans this hard books.
5 Raymond is selling this sketch. Raymond is selling this sketches.
6 Some dog stunned this committee. Some dog stunned these committee.
7 Those radii have scared that teenager. Those radii has scared that teenager.
8 The women meet. The woman meet.
9 A niece of most senators hasn’t descended most slopes. A niece of most senators haven’t descended most slopes.
10 Rebecca was criticizing those good documentaries. Rebecca was criticizing those good documentary.

Table 8: Representative BLiMP minimal pairs (one per task). Row numbers 1–10 correspond to the
task names listed above.

Layer Values (acc.) Hiddens (acc.)
LLaMA LIMe LLaMA LIMe

10 0.892 ± 0.018 0.914 ± 0.015 0.914 ± 0.015 0.933 ± 0.013
11 0.892 ± 0.016 0.912 ± 0.016 0.912 ± 0.013 0.929 ± 0.012
12 0.889 ± 0.013 0.925 ± 0.012 0.908 ± 0.012 0.930 ± 0.015
13 0.883 ± 0.016 0.921 ± 0.016 0.903 ± 0.013 0.926 ± 0.015
14 0.881 ± 0.015 0.921 ± 0.013 0.895 ± 0.015 0.918 ± 0.014
15 0.871 ± 0.016 0.924 ± 0.011 0.886 ± 0.014 0.910 ± 0.012
16 0.864 ± 0.016 0.918 ± 0.010 0.880 ± 0.016 0.897 ± 0.014

Table 9: BLiMP (Warstadt et al., 2020) probing accuracy (5-fold CV) across layers 10–16. LIMe
improves both value and hidden representations.

E INPUT-DEPENDENT ROUTING

We additionally implemented a Dynamic LIMe variant, in which routing weights are generated by
projecting the current hidden state (queries) against per-layer, per-head learnable keys. This yields a
fully dynamic routing matrix of shape H × (L ·H). While more expressive, this variant introduced
substantially higher parameter count, FLOPs, and memory consumption.

Moreover, in early experiments, it achieved marginally worse perplexity than the static LIMe variant.
Given our core design objective of maximizing efficiency with minimal overhead, we have chosen
to emphasize the static routing mechanism in the final version.

F ROUTER ABLATION

We conduct an ablation study to assess the importance of learning full per-layer, per-head router
weights in LIMe. Specifically, we compare the standard LIMe routing against several constrained
variants on the 150M-parameter model, evaluating their impact on perplexity:

• Fixed Average (average): Aggregates all buffered Key–Value representations via a uni-
form average, without any learned head-specific weighting.

• Recent–j (last-j): Restricts each layer ℓ to attend only to the most recent min(ℓ, j)
buffered representations; router weights for these representations are learned.

• Initial–j (first-j): Restricts each layer ℓ to attend only to the first min(ℓ, j) buffers
plus the immediately preceding layer; router weights for these are learned.

In addition to constraining which layers can be routed (last-j and first-j), we also ablate the
structure of the router weights themselves. In particular, we ask whether LIMe benefits primarily
from mixing information across heads, or whether it is sufficient to restrict routing to the same
head index across layers, and whether making the router more expressive at the per-dimension level
improves performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Model Perplexity Change to LIMe

LLaMA 16.4611 +3.36%
LIMe average 16.4611 +3.36%
LIMe last-2 16.2810 +2.22%
LIMe last-4 16.1675 +1.51%
LIMe last-6 16.1351 +1.31%
LIMe first-2 15.9746 +0.30%
LIMe first-4 15.9586 +0.20%
LIMe first-6 15.9906 +0.40%
LIMe 15.9267 —

Table 10: Impact of constrained routing schemes on validation perplexity for the 150M-parameter
model. Table reports perplexity for each scheme and the relative change with respect to the full LIMe
model. The average variant fails to improve over the LLaMA baseline, indicating that uniform
pooling of past representations is insufficient. Constraining attention to fixed windows of layers
(last-j and first-j) yields modest gains but still underperforms the unrestricted router. By
contrast, the full LIMe routing achieves the lowest perplexity (15.9267), corresponding to a 3.36%
reduction relative to LLaMA, thereby confirming the necessity of learning full, per-head, per-layer
router weights for optimal performance.

We therefore compare the default LIMe router against two additional variants on the same 150M
setup:

• No head mixing (no-head-mix): each head in layer ℓ only mixes Key–Value states from
the same head index across previous layers (router shape [H,L] instead of [H,L ·H]). This
removes all cross-head interactions in the router.

• Per-dimension mixing (per-dim): each previous head is weighted by a dhead-
dimensional vector instead of a scalar (router shape [H,L · H · dhead]), making the router
strictly more expressive and increasing the number of routing parameters by a factor of
dhead.

Setup Loss Perplexity

LLaMA 2.80043 16.45
LIMe (default) 2.76889 15.94 (–3.1%)
LIMe no-head-mix 2.83235 16.99 (+3.3%)
LIMe per-dim 2.77911 16.10 (–2.1%)

Table 11: Router-structure ablation at 150M scale. The no-head-mix variant restricts routing to
the same head index across layers and removes cross-head interactions; it not only eliminates LIMe’s
gains but performs worse than the LLaMA baseline. The per-dim variant uses per-dimension
router weights and is strictly more expressive (and more expensive) than the default scalar per-head
router, yet remains worse than default LIMe.

Two conclusions follow. First, mixing across heads is crucial: the no-head-mix variant, which
only aggregates the same head across layers, degrades perplexity to 16.99 (+3.3% vs. LLaMA),
indicating that LIMe’s benefit comes from cross-head interactions across layers rather than merely
accessing deeper same-head features. Second, per-dimension routing does not help in this regime:
although per-dim improves over LLaMA (16.10 vs. 16.45), it is still worse than the much simpler
scalar per-head router (15.94), while introducing on the order of dhead more routing parameters and
higher cost. This suggests that a lightweight per-head scalar router is sufficient and more effective
under our training budget, reinforcing the design choice used in the main experiments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G ROUTING VARIANTS IN DEEP MODELS

The ablations in Appendix F study constrained routing schemes at 150M scale. Here we complement
them with a deep 128-layer setup (see Section 5.6), where the naive LIMe router that mixes all
previous layers has a more pronounced computational cost. We compare full LIMe to structured
variants that sparsify the set of routed layers but keep the same overall architecture.

In addition to the 128-layer LLaMA baseline and full LIMe, we consider:

• Dilated-d (dil-d): each layer routes only to a sparsified set of previous layers with fixed
dilation factor d (e.g., every 8th or 16th layer), so that each layer sees roughly L/d routed
sources instead of all L.

• First-j (first-j, deep): each layer routes only to the first j layers plus itself, reusing
early, stable representations while ignoring later intermediate layers when forming the
routed Key–Value mixture. In the deep setting we use j ∈ {7, 15} for L = 128.

Table 12 reports per-iteration time, peak memory, and perplexity for the 128-layer configuration:

Model Time / iter (ms) Peak Mem (MB) Perplexity

LLaMA 70.21 2054.26 23.73
LIMe full 80.85 (+15.2%) 2062.38 (+0.4%) 20.72 (–12.7%)
LIMe dil-8 71.59 (+2.0%) 2055.38 (+0.05%) 21.61 (–8.9%)
LIMe dil-16 71.57 (+1.9%) 2054.88 (+0.03%) 21.84 (–8.0%)
LIMe first-7 71.79 (+2.3%) 2054.85 (+0.03%) 20.55 (–13.4%)
LIMe first-15 72.69 (+3.5%) 2055.76 (+0.07%) 20.50 (–13.6%)

Table 12: Routing variants for 128-layer models. Percentages are relative to the 128-layer LLaMA
baseline. Full LIMe yields the largest perplexity improvement but also a noticeable increase in per-
step time. Simpler structured routers (dilated and first-j) retain most or all of the perplexity
gains while keeping latency overhead in the low single digits and memory essentially unchanged.

Several trends emerge. First, full LIMe significantly improves perplexity in the deep regime (from
23.73 to 20.72) but increases step time by about 15%. Second, the first-7 and first-15
variants achieve slightly better perplexity than full LIMe (down to 20.50) while increasing latency
by only 2–3.5% and leaving peak memory virtually unchanged. Finally, the dilated variants dil-8
and dil-16 offer an intermediate trade-off: they reduce latency overhead to about 2% while still
providing 8–9% perplexity reductions over LLaMA.

These observations align with the router-weight heatmaps in Fig. 5, where later layers place most
of their mass on early buffers. In very deep models, forcing each layer to consider all L previous
layers can make the router partially adapt to noisy mid-layer states. Restricting routing to early
layers (first-j) or to a sparse subset of layers (dil-d) effectively keeps the informative early
Key–Value buffers while discarding less useful mid-layer signals, which explains why these struc-
tured variants match or slightly outperform full LIMe in perplexity while having negligible overhead.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

H LIME PSEUDOCODE

1 class KVBuffer:
2 def __init__(self):
3 self.mat = None # [(layers_so_far * kv_h), 2 * b * t * hd]
4

5 def add_(self, key_states, value_states):
6 # key_states/value_states: (b, kv_h, t, hd)
7 b, kv_h, t, hd = key_states.shape
8 kv = torch.cat([key_states, value_states], dim=-1) # (b, kv_h, t, 2*hd)
9 kv = kv.permute(1, 0, 2, 3).reshape(kv_h, b * t * 2 * hd) # (kv_h, b*t*2*hd)

10 self.mat = kv if self.mat is None else torch.cat([self.mat, kv], dim=0)
11

12 class LIMeRouter(nn.Module):
13 def __init__(self, config, layer_idx):
14 super().__init__()
15 bound = math.sqrt(
16 3 / (layer_idx + 1) * config.num_kv_heads
17)
18 weights = torch.empty(
19 config.num_kv_heads,
20 (layer_idx + 1) * config.num_kv_heads,
21).uniform_(-bound, bound)
22 weights[:, -config.num_kv_heads:] = torch.eye(
23 config.num_kv_heads
24)
25 self.weights = nn.Parameter(weights)
26

27 def forward(self, kv_buffer):
28 # kv_buffer shape = [(layer_idx + 1) * kv_h, 2 * b * t * hd]
29 return self.weights.mm(kv_buffer)
30

31

32 class LIMeAttention(LlamaAttention):
33 def __init__(self, config, layer_idx):
34 super().__init__(config, layer_idx)
35 if layer_idx > 0:
36 self.lime_router = LIMeRouter(config, layer_idx)
37

38 def forward(self, hidden_states, kv_buffer):
39 query_states = self.q_proj(hidden_states).reshape(b, h, t, hd)
40 key_states = self.k_proj(hidden_states).reshape(b, kv_h, t, hd)
41 value_states = self.v_proj(hidden_states).reshape(b, kv_h, t, hd)
42 kv_buffer.add_(key_states, value_states)
43 if self.layer_idx > 0:
44 key_states, value_states = self.lime_router(kv_buffer)
45 attn_output = scaled_dot_product_attention(
46 query_states, key_states, value_states
47)
48 attn_output = self.o_proj(
49 attn_output.transpose(1, 2).reshape(b, t, -1)
50)
51 return attn_output, kv_buffer
52

53

54 class LIMeLayer(LlamaDecoderLayer):
55 def __init__(self, config, layer_idx):
56 super().__init__(config, layer_idx)
57 self.self_attn = LIMeAttention(config, layer_idx)
58

59 def forward(self, hidden_states, kv_buffer):
60 residual = hidden_states
61 hidden_states = self.input_layernorm(hidden_states)
62 attn_out, kv_buffer = self.self_attn(hidden_states, kv_buffer)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

63 hidden_states = residual + attn_out
64

65 residual = hidden_states
66 hidden_states = self.post_attention_layernorm(hidden_states)
67 hidden_states = self.mlp(hidden_states)
68 hidden_states = residual + hidden_states
69

70 return hidden_states, kv_buffer
71

72

73 class LIMeModel(LlamaModel):
74 def __init__(self, config):
75 super().__init__(config)
76 self.layers = [
77 LIMeLayer(config, i) for i in range(config.num_hidden_layers)
78]
79

80 def forward(self, input_ids):
81 hidden_states = self.embed_tokens(input_ids)
82 kv_buffer = KVBuffer()
83 for layer in self.layers:
84 hidden_states, kv_buffer = layer(hidden_states, kv_buffer)
85 return hidden_states

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I EFFICIENCY

MHA Model # Parameters (B) FLOPs (T)

GQA

LLaMa 1.07607 2.7615
DenseFormer 1.07607 (+0.00%) 2.7622 (+0.02%)

LIMe 1.07608 (+0.00%) 2.7638 (+0.08%)
HC 1.07640 (+0.03%) 2.7701 (+0.31%)

Full

LLaMa 1.17674 2.9679
DenseFormer 1.17674 (+0.00%) 2.9685 (+0.02%)

LIMe 1.17687 (+0.01%) 3.0041 (+1.22%)
HC 1.17706 (+0.03%) 2.9764 (+0.29%)

Table 13: Model size (# parameters, in billions) and forward FLOPs for LIMe, Hyper-connections
(HC), and DenseFormer relative to LLaMa under grouped-query attention (GQA) and full attention.
We used torch.jit.trace to record all operations and estimated FLOPs via the fvcore li-
brary, based on tensor shapes and ATen operators. Total training FLOPs are approximated as 3×
forward FLOPs, accounting for both forward and backward passes (Anthony et al., 2023).

MHA RO Model Step Time (ms) Train Peak
Memory (GB)

GQA

+

LLaMa 65.770 16.035
LIMe 66.533 (+1.16%) 16.035 (+0.00%)

DenseFormer 75.032 (+14.08%) 16.812 (+4.85%)
HC 81.003 (+23.16%) 16.040 (+0.03%)

–

LLaMa 66.404 20.489
LIMe 67.449 (+1.57%) 20.490 (+0.00%)

DenseFormer 75.739 (+14.06%) 21.646 (+5.65%)
HC 83.265 (+25.39%) 21.693 (+5.88%)

Full

+

LLaMa 69.776 17.535
LIMe 77.093 (+10.49%) 17.537 (+0.01%)

DenseFormer 79.157 (+13.44%) 18.348 (+4.64%)
HC 84.990 (+21.80%) 17.540 (+0.03%)

–

LLaMa 70.258 22.364
LIMe 77.607 (+10.46%) 22.367 (+0.01%)

DenseFormer 79.733 (+13.49%) 23.566 (+5.37%)
HC 86.314 (+22.85%) 23.007 (+2.87%)

Table 14: Per-step latency and peak GPU memory usage of LIMe, DenseFormer, and Hyper-
connections (HC) in comparison to LLaMa under grouped-query attention (GQA) and full attention
(Full), measured with PyTorch Inductor in default (–) and reduced-overhead (+) modes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J PIPELINE PARALLELISM

Under standard DDP training, LIMe does not incur any additional memory overhead—routing oc-
curs via existing KV caches. Under pipeline parallelism (PP), the KV cache must be communi-
cated across stages. However, we show that this can be efficiently implemented using asynchronous
scheduling. Specifically, each pipeline stage:

• Computes its transformer layer output on already acquired micro-batch routed states.
• Routes KV buffers for later layers via non-blocking ops.

This dual-pipeline structure (forward pass + KV routing) allows communication and computation to
be efficiently overlapped, minimizing idle time and avoiding runtime bottlenecks. Such scheduling
strategies are well-established in modern pipeline parallelism frameworks, including DeepSpeed’s
PipeTransformer (He et al., 2021) and Megatron-LM (Shoeybi et al., 2019). While implementing a
fully optimized schedule requires non-trivial engineering effort, we leave this for future work. To
provide preliminary empirical evidence of scalability, we implemented pipeline parallelism for the
8B model using a straightforward 1F1B schedule across 8 stages (8 GPUs). In our measurements
LIMe incurs only a 7.8% training latency overhead (1130 vs. 1048 ms/step), indicating that PP
communication for routed KV can be efficiently hidden in practice.

K LIME VISUALISATION

Sequence 
Length

LIMe Router

Layers

...
Residual

Figure 12: LIMe routing scheme.

L LLM USAGE

We used LLMs for writing and text polishing.

27

	Introduction
	Related Work
	Preliminaries
	Method
	Experiments
	Language Modeling
	Math Word Problems (GSM8K)
	Measuring Representation Collapse
	Evaluating Representation Collapse on Synthetic Tasks
	Planning and Search Capabilities
	Arithmetic Expression Benchmark

	Analyzing Learned Routings in LIMe
	Deep Networks Performance

	Conclusion and Future Work
	Experimental Setup Details
	Synthetic Benchmarks
	Additional Benchmarks
	Linear Probing Results
	Input-Dependent Routing
	Router Ablation
	Routing Variants in Deep Models
	LIMe Pseudocode
	Efficiency
	Pipeline Parallelism
	LIMe Visualisation
	LLM Usage

