
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

YOU DO NOT FULLY UTILIZE TRANSFORMER’S REP-
RESENTATION CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

In contrast to RNNs, which compress their history into a single hidden state,
Transformers can attend to all past tokens directly. However, standard Transform-
ers rely solely on the hidden state from the previous layer to represent the entire
context. We show that this design choice induces representation collapse and de-
grades performance. To address this issue, we introduce Layer-Integrated Mem-
ory (LIMe), a lightweight extension that leverages existing key–value buffers and
learns per-head, per-layer routing weights to integrate representations from all pre-
vious layers with negligible overhead. Through extensive experiments—including
language modeling, synthetic reasoning benchmarks, and very deep architec-
tures—LIMe consistently achieves faster convergence, lower perplexity per FLOP,
and substantial accuracy improvements on synthetic tasks while preserving higher
value–vector entropy and improved token separability. Finally, our analysis of the
learned routing weights reveals systematic reuse of both local and long-distance
features, demonstrating how LIMe mitigates collapse, unlocks richer representa-
tions without increasing hidden-state size, and points to promising directions for
future research.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become a central architecture in modern machine learn-
ing, powering state-of-the-art solutions in language modeling, computer vision, and beyond. Their
ability to capture complex patterns arises from deeply stacked layers that refine contextual represen-
tations. However, despite their success, standard Transformer decoders maintain a single residual
stream per layer, forcing the model to compress all previously learned features into the immediately
preceding hidden state (Srivastava et al., 2015; He et al., 2015). This design choice can lead to rep-
resentation collapse—a phenomenon in which different tokens or features become indistinguishable
in deeper layers (Voita et al., 2019; Barbero et al., 2024; Arefin et al., 2024). The problem is particu-
larly pronounced when learning from lengthy sequences, where subtle token distinctions risk being
squeezed out by limited floating-point precision and finite hidden-state capacity.

In this paper, we propose Layer-Integrated Memory (LIMe), a lightweight extension to multi-head
self-attention that enables each attention head to retrieve and integrate representations from all pre-
ceding layers—rather than relying solely on the most recent hidden state. LIMe accomplishes this by
learning a per-layer, per-head routing mechanism that efficiently blends multi-layer Key–Value fea-
tures, all while preserving the core Transformer structure and adding negligible overhead by reusing
already allocated Key–Value buffers.

Our key contributions are:

• Layer-Integrated Routing. A trainable router that, for each head at every layer, dynami-
cally weights and mixes buffered Key–Value representations from all earlier layers, without
increasing hidden-state dimensions or memory footprint.

• Strong Empirical Gains. LIMe converges 15.3% (8.9% with GQA) faster in FLOPs
and achieves 1.15% (0.91% with GQA) lower perplexity than 1B-parameter LLaMa-based
(Grattafiori et al., 2024) transformer, yields up to +8% on ProsQA (Hao et al., 2024) and
+30% on arithmetic reasoning benchmarks (Arefin et al., 2024; Feng et al., 2023). In deep
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settings (32, 64, 128 layers), a 64-layer LIMe matches a 128-layer baseline, indicating
superior scaling behavior.

• Mitigating Collapse. An empirical analysis showing that LIMe preserves higher Rényi
entropy (Arefin et al., 2024) and better token separability (Voita et al., 2019) in value spaces,
effectively alleviating representation collapse.

Together, these results confirm that by distributing representational burden across persistent
Key–Value buffers and learning to route information across layers, LIMe substantially improves
both optimization efficiency and representational capacity, especially in tasks requiring long-range
or multi-step reasoning, opening the door of utilizing LIMe for cutting-edge area of latent-space
reasoning.

2 RELATED WORK

Early works on training very deep networks highlighted the need for mechanisms to ease gradient
flow and information propagation. Highway Networks introduce gated skip connections to regulate
information flow across layers (Srivastava et al., 2015). Deep Residual Networks further simplify
this by adding identity shortcuts, enabling networks to exceed a hundred layers without suffering
from vanishing gradients (He et al., 2015). Transformers adopt a similar residual-plus-normalization
design, which underpins their success in language and vision tasks (Vaswani et al., 2017; Grattafiori
et al., 2024; Jiang et al., 2023; Qwen et al., 2024; DeepSeek-AI et al., 2024).

Although residual streams facilitate training, they still force each layer to compress all prior features
into a single vector, which can lead to representation collapse—distinct inputs becoming indistin-
guishable in deeper layers. Tenney et al. (2019) found that BERT’s deeper layers refine earlier
predictions using higher-level context. Voita et al. (2019) empirically demonstrated that Transform-
ers’ top layers lose fine-grained token distinctions. Theoretically, Barbero et al. (2024) proved that
decoder-only Transformers can exhibit arbitrarily close final-token representations for different in-
puts, a phenomenon akin to over-squashing. Building on this, Hahn & Rofin (2024) showed that the
loss landscape of Transformers biases them toward low-sensitivity functions, exacerbating collapse.
Recently, Arefin et al. (2024) introduced Seq-VCR, a variance–covariance regularizer that preserves
intermediate representation diversity and significantly improves multi-step reasoning performance.

To mitigate collapse, several works have explored aggregating information across layers. Cross-
Layer Retrospective Retrieving learns dynamic attention weights over prior layer outputs for each
head (Fang et al., 2023). Hyper-Connections augment Transformers with multiple residual streams
that interact via learned projections, preventing collapse at the cost of increased hidden-state
size (Zhu et al., 2024). LAuReL (Learned Augmented Residual Layer) generalizes the residual
stream by introducing learned augmentations of the skip and, in variants that aggregate previous
activations, by accessing hidden states from earlier layers during inference (Menghani et al., 2025).
DenseFormer proposes using a weighted average of the previous layers’ outputs as the input to
each subsequent layer (Pagliardini et al., 2024). Value Residual Learning (ResFormer / SVFormer)
reuses the first layer’s value vectors across depth to improve attention concentration and KV effi-
ciency (Zhou et al., 2025). Although Mixture-of-Depths (Raposo et al., 2024) focuses on reducing
FLOPs by skipping token computations layer-wise, its dynamic routing approach resonates with our
per-head, per-layer routing mechanism; unlike MoD, LIMe retains full dense computation while
enriching representational capacity through routing over pre-allocated key–value buffers. Differ-
ent architectures based on usage of previous representations were proposed in (Huang et al., 2018;
Bapna et al., 2018; Wu et al., 2023). Despite these advances, most methods require substantial ar-
chitectural changes or extra memory. Our method, Layer-Integrated Memory (LIMe), instead reuses
existing key–value buffers and learns per-head, per-layer routing to mix multi-layer representations
with negligible memory and speed overhead (see Appendix I).

3 PRELIMINARIES

Notation. Let t denote the sequence length (temporal dimension), d the model dimension, H the
number of attention heads, dhead = d/H the dimension of each head, and L the total number of
layers. We denote by Xℓ−1 ∈ Rt×d the residual stream entering layer ℓ, with ℓ = 1, . . . , L.
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Figure 1: Training loss per FLOPs for LLaMa and LIMe. LIMe has a substantially lower loss with
a similar amount of FLOPs. See Section 5.1 for more details.

Causal Self-Attention. Let
Q = XW(Q), K = XW(K), V = XW(V ),

with W(Q),W(K),W(V ) ∈ Rd×d. Splitting into H heads of dimension dh = d/H yields
{Qi,Ki,Vi}Hi=1. For head i,

headi = softmax
(

Qi K
⊤
i√

dh
+M

)
Vi ∈ Rt×dh ,

where M masks future positions. The heads are concatenated across the last dimension and pro-
jected:

MultiHeadAttn(X) = Concat(head1, . . . ,headH)W(O), W(O) ∈ Rd×d.

Residual connections. Denoting a sub-layer function F(·) and input X, the pre-norm residual
update is

X′ = X+ F
(
RMSNorm(X)

)
.

4 METHOD

We introduce Layer-Integrated Memory (LIMe), a lightweight mechanism to augment a decoder-
only Transformer with inter-layer, learnable information flow. Unlike standard multi-head attention
(MHA), which attends only to the current layer’s residual stream, LIMe enables each head to retrieve
and fuse Key–Value representations from all earlier layers. This enriches the model’s representation
capacity without increasing memory use, since we reuse the Key–Value buffers already allocated by
vanilla Transformers.

At a high level, each LIMe attention layer performs three steps:

1. Compute and buffer per-head Key–Value projections from the current residual stream.
2. Route by forming a learned mixture of all buffered Key and Value heads’ states up to the

current layer.
3. Compute attention between the current layer’s Queries and the routed Key–Value mixture.

Visualisation of the architecture can be found in Appendix K.

1. Key–Value Buffering. At layer ℓ, we compute per-head Key and Value tensors in the usual
way:

Kℓ = Xℓ−1 W
(K)
ℓ , Vℓ = Xℓ−1 W

(V )
ℓ , Kℓ, Vℓ ∈ Rt×H×dh . (1)

We then store these in the pre-allocated buffers
B(K), B(V ) ∈ RL×H×t×dh ,

for Keys and Values respectively. No extra memory is required, since vanilla Transformers already
maintain all per-layer Key–Value states for training and cache them during inference for generation
efficiency. See Appendix I for details.
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2. Inter-Layer Routing. To enable each head at layer ℓ to mix information from all previous
layers, we introduce a trainable router tensor R(ℓ) ∈ Rℓ×H×H , where R

(ℓ)
ℓ′,h′,h is a weight from

head h′ at layer ℓ′ into head h at layer ℓ.

Using buffer we route keys and values for each head h:

K̃ℓ,h =

ℓ∑
ℓ′=1

H∑
h′=1

R
(ℓ)
ℓ′,h′,h B(K)

ℓ′,h′ , and Ṽℓ,h =

ℓ∑
ℓ′=1

H∑
h′=1

R
(ℓ)
ℓ′,h′,h B(V )

ℓ′,h′ . (2)

3. Attention with Layer-Integrated Memory. We compute the usual per-head Queries,

Qℓ,h = Xℓ−1 W
(Q)
ℓ,h , Qℓ,h ∈ Rt×dh ,

and then perform scaled dot-product attention for each head between Qℓ,h and the routed
K̃ℓ,h, Ṽℓ,h.

LIMe Advantages. By routing through all prior layers, LIMe endows each head with a learn-
able, layer-wise memory. Unlike fixed skip connections or naive averaging, LIMe learns per-head,
per-layer weightings, enabling selective retrieval and forgetting of past representations. Despite this
added flexibility, the extra computation is only linear in sequence length. Crucially, LIMe is fully
compatible with efficient MHA implementations such as FlashAttention (Dao, 2024), and it intro-
duces negligible additional memory footprint by reusing existing Key–Value buffers (see Appendix I
for details), and can be effectively used under pipeline parallelism (see Appendix J for details). In
Appendix F, we include an ablation study on restricted router weights, demonstrating the importance
of the trained router in LIMe.

5 EXPERIMENTS

5.1 LANGUAGE MODELING

We evaluate the effectiveness of LIMe against three baselines: LLaMa (Grattafiori et al., 2024),
DenseFormer (Pagliardini et al., 2024), and Hyper Connections (Zhu et al., 2024). All models have
approximately 1B parameters and share the same underlying transformer architecture (see Table 4).
We trained each model from scratch on the FineWeb Edu (Penedo et al., 2024) subset with about
50B tokens. The full training setup can be found in Appendix A.

Figure 1 displays the iso-flops training loss curves, demonstrating that LIMe converges more rapidly
and achieves lower perplexities than LLaMa, indicating improved parameter efficiency. Details on
model efficiency and FLOPs calculations can be found in Appendix I. Table 1 presents results on
the 3-shot LM Eval Harness benchmarks Wang et al. (2018; 2019); Srivastava et al. (2023), further
highlighting the advantages conferred by LIMe on language modeling over baseline models. For
more benchmarks see Appendix C. In the next section, we go deeper into the factors driving these
gains.

Model MultiRC WiC QNLI ARC-E ARC-C KV Induction Avg

LLaMA 43.24 50.00 49.49 70.45 38.70 45.94 54.20 50.29
DenseFormer 45.92 49.69 50.08 70.60 36.48 50.30 51.30 50.62

HC 54.34 49.72 49.43 71.15 37.63 51.68 51.59 52.22
LIMe 56.15 50.44 51.43 71.15 39.30 55.64 55.36 54.21

Table 1: LM Evaluation Harness benchmarks results on 1B models with GQA in 3-shot setup. LIMe
outperforms LLaMA, DenseFormer, and Hyper-Connections baselines. See details in Section 5.1
and additional benchmarks in Appendix C.

5.2 MATH WORD PROBLEMS (GSM8K)

To assess multi-step numerical reasoning in natural language, we evaluate on GSM8K (Cobbe et al.,
2021). We fully fine-tune both LLaMA and LIMe (training details in Appendix A). LIMe clearly out-
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Figure 2: (a) Matrix entropy of values on the FineWeb Edu subset by layer. LIMe has more diverse
values than LLaMa, which indicates that more information is stored in its hidden states. (b) Values’
classification accuracy, with standard deviation over five cross-validation folds. Values in later layers
obtained from LIMe can be linearly separated with nearly 1.0 accuracy, whereas the accuracy for
values from LLaMa is much lower. See Section 5.3 for more details.

performs LLaMA, achieving an exact-match accuracy of 0.167 vs. 0.140 for LLaMA— a +19.28%
relative improvement.

5.3 MEASURING REPRESENTATION COLLAPSE

Recent work has shown that large language models (LLMs) can suffer from representation collapse
when representing long sequences, thereby forcing subtle token distinctions to become inseparable
in deeper layers (Voita et al., 2019; Arefin et al., 2024). We investigate this phenomenon by compar-
ing LLaMa (Grattafiori et al., 2024) and LIMe via two complementary approaches: (i) quantifying
the diversity of hidden states and values with matrix-based Rényi entropy (Arefin et al., 2024) and
(ii) measuring and visualizing the linear separability of layer-wise embeddings of closely related
tokens (is, are, was, were) (Voita et al., 2019). These two methodologies directly measure
representation collapse in language models.

Unlike Arefin et al. (2024), we evaluate both residual-stream hidden states and value representa-
tions. We expect weaker linear separability in hidden states (because the model need not pack all
information there) and stronger separation in value vectors. For matrix entropy, we anticipate little
change at the hidden-state level but a clear difference for value representations. At each layer ℓ, we
record value states (i.e., the output of the W (V )

ℓ linear projection) and hidden states (i.e., the residual
stream Xℓ).

Matrix-Based Rényi Entropy. Following Arefin et al. (2024), we measure the diversity of repre-
sentations at layer ℓ by forming the Gram matrix K = Z(ℓ) Z(ℓ)⊤ ∈ Rt×t, where Z(ℓ) contains the
d-dimensional representations of t tokens. Let {λi(K)}ti=1 be the eigenvalues of K. We define the

α-order Rényi entropy as Sα

(
Z(ℓ)

)
= 1

1−α log

[ ∑t
i=1

(
λi(K)
tr(K)

)α
]
. Each eigenvalue is normal-

ized by tr(K), ensuring the probabilities sum to 1. Higher Sα indicates greater variance (i.e., lower
collapse).

Figure 2(a) shows that LIMe yields significantly higher matrix entropy of gathered MHA values
compared with LLaMa and shows no significant difference when evaluating hidden states (see Fig-
ure 7(a)).

Layer-Wise Token Separability. To more directly evaluate the level of representation collapse,
we replicate the methodology of Voita et al. (2019), extracting 1668 occurrences each of is, are,
was, were from the FineWeb Edu corpus. To quantify information collapse, we train a linear four-
way classifier (for is, are, was, were) on layer-wise representations. Figure 2(b) shows mean
classification accuracies (with five-fold cross-validation) for value representations layer by layer. We
observe that LIMe consistently exhibits higher classification accuracy than LLaMa, confirming that
LIMe’s value representations avoid collapse. As hypothesized, hidden states became less separable
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Figure 3: t-SNE of similar tokens’ values among layers shows higher separability for LIMe’s repre-
sentations. See Section 5.3 for more details.

for LIMe, indicating that there was no need to store all necessary information in a single hidden
state (see Figure 7(b)).

Additionally, we project representations into a two-dimensional space via t-SNE and visualize how
well value states and hidden states can be clustered (Figure 3). In contrast to LIMe, deeper-layer
representations in LLaMa for such similar tokens often collapse into overlapping regions, reflecting
the inclination of the vanilla transformer to heavily compress relevant information into a single
representation and therefore blur small yet important differences.

Linear Probing. We evaluate whether layer-wise representations encode basic grammaticality us-
ing BLiMP (Warstadt et al., 2020). For each BLiMP task, we freeze the LM and train a binary
logistic-regression probe that predicts whether a single sentence is grammatical (“Good”) or un-
grammatical (“Bad”). Concretely, at each layer ℓ we extract (i) attention values (the value projec-
tions) and (ii) hidden states (the residual stream), mean-pool them over tokens to obtain a fixed vec-
tor per sentence, and fit a logistic regression on these vectors. We perform 5-fold cross-validation,
splitting by minimal pair so that both members of a pair fall in the same fold, and report accuracy in
Table 2. At test time the probe receives one sentence and outputs a grammaticality label; accuracy
is the fraction of correct Good/Bad judgments.

Layer Values (acc.) Hiddens (acc.)
LLaMA LIMe LLaMA LIMe

10 0.892 ± 0.018 0.914 ± 0.015 0.914 ± 0.015 0.933 ± 0.013
14 0.881 ± 0.015 0.921 ± 0.013 0.895 ± 0.015 0.918 ± 0.014
16 0.864 ± 0.016 0.918 ± 0.010 0.880 ± 0.016 0.897 ± 0.014

Table 2: BLiMP probing accuracy (5-fold CV) at selected layers (for complete results see Ap-
pendix D). LIMe consistently outperforms LLaMA, with gains up to 5 p.p. on value features and 3
p.p. on hidden states, indicating more linearly separable (and thus more expressive) representations.

Discussion. Together, these results corroborate our theoretical motivation: by allowing each head
to attend directly to earlier-layer representations, LIMe expands the overall representational capac-
ity. This multi-layer routing reduces collapse in the values while freeing deeper hidden states from
the burden of storing all lexical nuances—leading to higher overall entropy on values (Figure 2(a))
and improved model performance (Table 1). In the next section, we evaluate LIMe on synthetic
benchmarks where the model’s ability to store complex information in limited state capacity is cru-
cial.
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Figure 4: (a) LIMe exhibits consistently higher entropy of value vectors across layers, particu-
larly in the final layer, indicating reduced representation collapse compared to LLaMa. (b) On the
Arithmetic Expressions task, LIMe significantly outperforms the LLaMa baseline, maintaining high
accuracy even as the number of operands increases, while LLaMa’s performance deteriorates. For
details, see Section 5.4.2.

5.4 EVALUATING REPRESENTATION COLLAPSE ON SYNTHETIC TASKS

5.4.1 PLANNING AND SEARCH CAPABILITIES

We fine-tune models on ProsQA (Proof with Search Question-Answering) (Hao et al., 2024). Each
ProsQA instance presents a set of fictional concepts described via natural-language conditions ar-
ranged in a DAG, requiring models to determine the veracity of a target statement by exploring
multiple reasoning paths over the graph (examples in Appendix B). Unlike linear chain-of-thought
methods (Wei et al., 2022), ProsQA demands maintaining and evaluating parallel hypothesis streams
akin to breadth-first search in latent reasoning (Hao et al., 2024). In our experiments we evaluate
both fine-tuned models on ProsQA task via open-ended reasoning generation. LLaMA achieves
69.4% accuracy, meanwhile LIMe achieves 77.8% accuracy, outperforming LLaMA by 8.4%.
Since correct prediction requires searching over paths in the graph of input statements, baseline
transformers suffer representation collapse from storing multiple reasoning chains in their hidden
states, particularly for longer inference sequences. LIMe mitigates this by distributing the reasoning
process across layers — early layers may store primitive inferences while deeper layers compose
them, maintaining better separation between similar reasoning paths.

5.4.2 ARITHMETIC EXPRESSION BENCHMARK

Standard one-shot QA benchmarks mainly test final-token prediction, which can often be solved
via shallow pattern matching or retrieval, masking the role of intermediate representation quality
in reasoning. To isolate the impact of multi-step computation, we adopt the Arithmetic Expression
Task (AET) (Arefin et al., 2024; Feng et al., 2023), a synthetic benchmark presenting expressions
over integer operands with operators +,−,×,÷, along with solution steps and requiring the exact
integer result. See examples in Appendix B.

Following Arefin et al. (2024), we generate 3 difficulty tiers comprising expressions with 4, 5,
and 6 operands, accompanied by step-by-step solutions (details in Appendix A). While performing
similarly to LLaMa on 4 operands, LIMe achieves significantly higher accuracy after increasing
number of operands to 5 and 6 (Figure 4(b)). LIMe (71.6%) outperforms LLaMa (41.3%) by over
30% in accuracy on 6 operands. These results go along with lower representation collapse which
is illustrated by higher entropy of value representations shown in Figure 4(a). Also, LIMe exhibits
better separability of close numbers which leads to lower error rate in intermediate calculations, see
Figure 8 in Appendix.

Arithmetic Expressions Task requires intermediate calculations to be performed correctly in order
to get the correct final answer. The problem of representation collapse results in representations of
close numbers being similar which leads to incorrect intermediate results, and thus the wrong final
answer. Since LIMe has access to previous representations at each layer, it preserves finer numerical
distinctions in comparison with standard transformer architectures like LLaMa. Moreover, LIMe
has ability to store information in earlier representations, i.e. performing computations at some

7
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Figure 5: Mean retrieval weight for each buffered representation across subsequent layers. Larger
diagonal values confirm reliance on the current residual stream, while the pronounced off-diagonal
weights for the earliest buffers and the repeated reuse of intermediate ones show that the model
systematically retrieves earlier features, providing auxiliary memory and helping to mitigate repre-
sentation collapse. See Section 5.5 for more details.

early or intermediate layer, but using it further only in later layers, which also boosts its reasoning
capabilities and leads to better results on tasks that require intermediate steps.

5.5 ANALYZING LEARNED ROUTINGS IN LIME

To understand how LIMe routes information across layers and thereby mitigates representation col-
lapse, we inspect the learned router weights. Since the router weights can be both positive and
negative—and because random initialization of the key, value, and output projections renders their
sign semantically ambiguous—we analyze the absolute magnitudes of these weights to quantify
each buffered representation’s relative contribution in a sign-agnostic manner.

For each layer ℓ ≥ 2, we take the absolute magnitude of its router weights, average over heads
for each buffered representation j ≤ ℓ, and then normalize these averages per layer. The resulting
heatmap in Figure 5 shows the normalized mean weight: cell (ℓ, j) measures the average contribu-
tion of the keys and values generated at layer j to the attention computation in layer ℓ. In a standard
Transformer without routing, each layer would attend solely to its own keys and values, yielding a
heatmap with ones on the diagonal and zeros elsewhere; LIMe departs markedly from this behavior.

Several clear patterns emerge:

• Strong reliance on embeddings in early layers: Layers 2-4 allocate much of their at-
tention to the buffered representations from the embedding layer. This corroborates the
view that the initial attention layers focus on capturing local and morphological relation-
ships among tokens, and that LIMe grants additional flexibility in reusing these low-level
features.

• Auxiliary memory via neighboring layers: Early and middle layers place a share of
attention on the buffered KV states of its immediate predecessor. This indicates that they
can treat them as an auxiliary memory bank, effectively extending the subspace of features
it can manipulate by leveraging projections made by other heads.

• Long-distance retrieval from early buffers: Higher layers also attend nontrivially to the
first two buffered representations. The effect is especially pronounced in the final layers,
suggesting that late-stage prediction benefits from revisiting the original token embeddings
and shallow features.

By allowing flexible retrieval of features from arbitrarily distant layers, LIMe relieves each resid-
ual stream from having to carry the entire contextual signal forward. Instead, information can be
distributed across a set of persistent buffers, preserving a richer and more diverse feature set through-
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out the network’s depth and thereby mitigating representation collapse. For the full, detailed set of
normalized router weights, see Appendix Figure 9.

5.6 DEEP NETWORKS PERFORMANCE

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Tokens
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Lo
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Training Loss
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LIMe 32L
LLaMa 64L
LIMe 64L
LLaMa 128L
LIMe 128L

Figure 6: Training losses for deep architectures. The LIMe models consistently outperform their
LLaMA counterparts across all depths, with LIMe with 64 layers outperforming LLaMa with 128
layers. See Section 5.6 for details.

Transformers scaled to increasing depths often suffer from representation collapse, which motivates
our evaluation of LIMe in 32-, 64-, and 128-layer configurations. We compare LIMe against the
baseline LLaMA, each using 8 attention heads per layer, and observe that LIMe outperforms LLaMA
at every tested depth (Fig. 6). Furthermore, LIMe exhibits superior scaling behavior: as depth
increases, its loss decreases more rapidly than LLaMA’s, implying that direct routing of earlier-layer
features enhances the model’s effective representational capacity, whereas LLaMA’s single-stream
residual architecture struggles to preserve fine-grained features across layers. Notably, a 64-layer
LIMe model outperforms a 128-layer LLaMA model, despite the latter requiring roughly twice the
FLOPs and parameters. In the 128-layer regime, the naive LIMe router that mixes all previous layers
yields a substantial perplexity reduction over LLaMA but introduces a noticeable per-step latency
increase. However, simpler structured routers (such as dilated routing and variants that restrict
each layer to attend only to the set of j earliest layers) incur only negligible latency overhead and
essentially no extra memory while still achieving significantly better perplexity than the 128-layer
LLaMA baseline (see Appendix F for details). This suggests that the optimal scaling strategy for
transformers may deviate from conventional practice, potentially favoring much deeper models with
smaller hidden dimensions. We leave further investigation of these scaling dynamics to future work.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed Layer-Integrated Memory (LIMe), a lightweight extension to multi-head
self-attention that enables each attention head to retrieve and integrate representations from all pre-
ceding layers. Through extensive experiments on language modeling, synthetic reasoning bench-
marks, and deep transformer configurations, we demonstrated that LIMe (i) accelerates convergence
in FLOPs by up to 15.3% and reduces perplexity by up to 1.15% compared to standard Transformer
decoders, yields improvements of up to +8% on the challenging ProsQA task and +30% on Arith-
metic Reasoning Task; (ii) mitigates representation collapse by preserving higher entropy in value
vectors and maintaining token separability in deeper layers; and (iii) enables shallower models to
match or exceed the performance of double-sized deeper baselines. Our analysis of the learned
routing weights further revealed that LIMe systematically leverages both local and long-distance
feature reuse, effectively distributing contextual information across layers without increasing the
hidden-state size.

Limitations. While our method consistently yields better results on both benchmarks and language
modeling tasks, it could lead to additional communication between GPUs in pipeline parallel setup.
Also, vanilla implementation of the method has O(L2) asymptotic, and some heuristics proposed in
Appendix F might be useful for scaling.
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Looking forward, two research directions emerge as particularly promising. First, a comprehensive
exploration of the width–depth trade-off in LIMe architectures could unveil optimal scaling regimes
tailored to diverse tasks and computational budgets. Second, a rigorous theoretical analysis of the
routing mechanism may inform principled designs for multi-layer memory, thereby enabling models
to perform advanced latent-space reasoning grounded in Layer-Integrated Memory.
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A EXPERIMENTAL SETUP DETAILS

Language Modeling. We observe that omitting weight decay on the LIMe router weights enjoys
better performance and setting the router’s learning rate to 1 × 10−2 boosts model performance by
speeding up router convergence and circuit formation. To preserve the standard Transformer’s infor-
mation flow at the start of the training, we initialize the slice R(ℓ)

ℓ,h′,h = δh′,h (identity across heads).
Other coefficients are initialized randomly via Kaiming uniform to stabilize mixtures at the start of
the training. Random initialization of all weights resulted in worse overall model performance. For
DenseFormer and HyperConnections baselines we use the strongest configurations recommended by
the original papers: DenseFormer with dilation = 1 and period = 1, and the Dynamic HyperCon-
nections variant with expansion rate 4. Hyperparameter values are summarized in Table 3, and the
detailed model architecture is given in Table 4. Additional training loss visualizations are available
in Figure 11 for full attention and in Figure 10 for Grouped Query Attention.

We used NVIDIA H100 GPUs and spent about 2400 GPU-days on all experiments including pre-
liminary research.

GSM8K Fine-tuning. We fine-tune pretrained 1.2B-parameter LLaMa and LIMe models on the
GSM8K training split for 20 epochs and report exact-match accuracy on the test set. Learning rates
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are tuned per model for best performance—1× 10−4 for LLaMa and 5× 10−5 for LIMe—with an
effective batch size of 32 in both cases.

ProsQA Fine-Tuning. We fine-tune pretrained LLaMa 150M and LIMe 150M on approximately
18,000 sequences for 10 epochs. We use learning rate of 1 × 10−4 with linear decay and warmup
during the first epoch, effective batch size is 128. Trained models are then evaluated on the test
subset via open generation of reasoning steps and answers.

Arithmetic Expression Task. We train models and evaluate them on open-ended generation of
solutions given initial expression, from which we extract the answers and calculate accuracy on the
test subset. We train 4-layer models (with 4 attention heads and model dim is 32) on datasets with
50,000 samples per each number of operands for 200 epochs. Learning rate is 1× 10−3 with linear
decay.

Hyperparameter Value
Optimizer AdamW
Learning Rate 0.001
LIMe Router Learning Rate 0.01
Weight Decay 0.1
β1 0.9
β2 0.95
ϵ 1× 10−8

Scheduler cosine
Warmup Steps 200
Min LR 1× 10−6

Mixed Precision bf16
Gradient Clipping 1.0

Sequence Length 2048
Batch Size 1024
Training Steps 20,000

Table 3: Key training hyperparameters used in experiments.

Parameter Value
Vocab Size 50,257
Hidden Size 2048
Intermediate Size 8192
Number of Hidden Layers 16
Number of Attention Heads 32
Number of Key-Value Heads 8 (GQA) and 32 (otherwise)
Tie Word Embeddings True

Table 4: Base model architecture at 1B scale.
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B SYNTHETIC BENCHMARKS

ProsQA

Question: "Every shumpus is a rempus. Every shumpus is a
yimpus. Every terpus is a fompus. Every terpus is a gerpus.
Every gerpus is a brimpus. Alex is a rempus. Every rorpus
is a scrompus. Every rorpus is a yimpus. Every terpus is a
brimpus. Every brimpus is a lempus. Tom is a terpus. Every
shumpus is a timpus. Every yimpus is a boompus. Davis is
a shumpus. Every gerpus is a lorpus. Davis is a fompus.
Every shumpus is a boompus. Every shumpus is a rorpus.
Every terpus is a lorpus. Every boompus is a timpus. Every
fompus is a yerpus. Tom is a dumpus. Every rempus is a
rorpus. Is Tom a lempus or scrompus?"

Steps: "Tom is a terpus. Every terpus is a brimpus. Every
brimpus is a lempus."

Answer: "Tom is a lempus."

Arithmetic Expression Task

Input:

(7 + 5) ÷ (6 + 4× 3 − 2× 7) =

Output:

12 ÷ (6 + 4× 3− 2× 7) = 12 ÷ (6 + 12− 2× 7)

= 12 ÷ (18− 2× 7)

= 12 ÷ (18− 14)

= 12 ÷ 4

= 3
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Figure 7: (a) Matrix entropy of the hidden states across layers on the FineWeb Edu subset. We do
not observe a significant difference between LIMe and LLaMa in this experiment. (b) Classification
accuracy of the hidden states, with standard deviation, measured over five cross-validation folds.
Because the hidden states in LIMe do not need to store all the information in the residual stream,
they become less separable. See Section 5.3 for more details.
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Figure 8: t-SNE of close numbers’ values representations of models trained on Arithmetic Expres-
sions Task. (a) For 1, 2, 3, 4. (b) For 100, 101, 102, 103. See Section 5.4.2.
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Figure 9: Magnitudes of router weights averaged
among buffered heads and normalized among
buffered layers. Each cell represents ratio of at-
tention for each buffered representation in the
specific head.
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Figure 10: Training loss per tokens trained on
for LLaMa and LIMe with GQA. It shows that
LIMe is more data efficient. See Section 5.1 for
more details.
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Figure 11: Training loss for LLaMa and LIMe
without GQA. (a) shows that LIMe has a sub-
stantially lower loss with a similar amount of
FLOPs. (b) shows that LIMe is more data effi-
cient. See Section 5.1 for more details.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL BENCHMARKS

Model COPA (50) MultiRC (50) WiC (50) QNLI (50) WNLI (50) Avg (50)

LLaMA 75.80±1.92 43.24±0.32 50.00±0.89 49.49±0.30 51.27±2.66 53.96
DenseFormer 74.00±1.96 45.92±0.32 49.69±0.89 50.08±0.30 52.11±2.66 54.36

HC 74.00±1.96 54.34±0.32 49.72±0.89 49.43±0.30 56.34±2.64 56.77
LIMe 75.20±1.93 56.15±0.32 50.44±0.89 51.43±0.30 56.06±2.64 57.86

Table 5: GLUE and SuperGLUE benchmarks accuracies (%) on 1B GQA models (3-shot), with
average over the five tasks. Random baselines in parentheses.

Model ARC-E (25) ARC-C (25) HellaSwag (25) OBQA (25) Avg (25)

LLaMA 70.45±0.42 38.70±0.64 52.55±0.22 37.68±0.97 49.85
DenseFormer 70.60±0.42 36.48±0.63 41.46±0.22 26.84±0.89 43.85

HC 71.15±0.42 37.63±0.63 54.04±0.22 40.08±0.98 50.73
LIMe 71.15±0.42 39.30±0.64 52.85±0.22 39.68±0.98 50.75

Table 6: QA benchmarks accuracies (%) on 1B GQA models (3-shot), with average over the four
tasks. Random baselines in parentheses.

Model KV (50) Induction (50) IR (0.04) CO (0.06) Avg (25.03)

LLaMA 45.94±2.22 54.20±2.69 12.94±1.63 16.97±0.38 32.51
DenseFormer 50.30±2.23 51.30±2.69 15.76±1.77 18.59±0.39 33.99

HC 51.68±2.23 51.59±2.69 15.29±1.75 18.48±0.39 34.26
LIMe 55.64±2.21 55.36±2.68 14.82±1.73 17.39±0.38 35.80

Table 7: Accuracies (%) of 3-shot 1B GQA models on BIG-Bench tasks: Key–Value Maps (KV),
Mathematical Induction, Implicit Relations (IR), and Reasoning About Colored Objects (CO). Ran-
dom baselines in parentheses.

D LINEAR PROBING RESULTS

We evaluate linguistic sensitivity using ten BLiMP minimal-pair tasks (Warstadt et al., 2020). For
each task, we use a representative pair (Good/Bad) to illustrate the contrast; full datasets are from
the public BLiMP repository. Below, the numbered list (1–10) gives task names, and the Table 8
maps each task to a representative example.

1. Determiner–Noun Agreement with Adjective (Irregular), set 1

2. Complex NP Island

3. Subject–Verb Agreement with Regular Plurals, set 2

4. Determiner–Noun Agreement with Adjective, set 2

5. Determiner–Noun Agreement, set 1

6. Determiner–Noun Agreement, set 2

7. Subject–Verb Agreement with Irregular Plurals, set 1

8. Subject–Verb Agreement with Irregular Plurals, set 2

9. Agreement with Distractor (Relational Noun)

10. Determiner–Noun Agreement with Adjective, set 1
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# Good Bad

1 Some waiters broke this lost foot. Some waiters broke this lost feet.
2 Who aren’t most hospitals that hadn’t talked about most wait-

resses alarming?
Who aren’t most waitresses alarming most hospitals that hadn’t
talked about?

3 The students perform. The student perform.
4 Cynthia scans these hard books. Cynthia scans this hard books.
5 Raymond is selling this sketch. Raymond is selling this sketches.
6 Some dog stunned this committee. Some dog stunned these committee.
7 Those radii have scared that teenager. Those radii has scared that teenager.
8 The women meet. The woman meet.
9 A niece of most senators hasn’t descended most slopes. A niece of most senators haven’t descended most slopes.
10 Rebecca was criticizing those good documentaries. Rebecca was criticizing those good documentary.

Table 8: Representative BLiMP minimal pairs (one per task). Row numbers 1–10 correspond to the
task names listed above.

Layer Values (acc.) Hiddens (acc.)
LLaMA LIMe LLaMA LIMe

10 0.892 ± 0.018 0.914 ± 0.015 0.914 ± 0.015 0.933 ± 0.013
11 0.892 ± 0.016 0.912 ± 0.016 0.912 ± 0.013 0.929 ± 0.012
12 0.889 ± 0.013 0.925 ± 0.012 0.908 ± 0.012 0.930 ± 0.015
13 0.883 ± 0.016 0.921 ± 0.016 0.903 ± 0.013 0.926 ± 0.015
14 0.881 ± 0.015 0.921 ± 0.013 0.895 ± 0.015 0.918 ± 0.014
15 0.871 ± 0.016 0.924 ± 0.011 0.886 ± 0.014 0.910 ± 0.012
16 0.864 ± 0.016 0.918 ± 0.010 0.880 ± 0.016 0.897 ± 0.014

Table 9: BLiMP (Warstadt et al., 2020) probing accuracy (5-fold CV) across layers 10–16. LIMe
improves both value and hidden representations.

E INPUT-DEPENDENT ROUTING

We additionally implemented a Dynamic LIMe variant, in which routing weights are generated by
projecting the current hidden state (queries) against per-layer, per-head learnable keys. This yields a
fully dynamic routing matrix of shape H × (L ·H). While more expressive, this variant introduced
substantially higher parameter count, FLOPs, and memory consumption.

Moreover, in early experiments, it achieved marginally worse perplexity than the static LIMe variant.
Given our core design objective of maximizing efficiency with minimal overhead, we have chosen
to emphasize the static routing mechanism in the final version.

F ROUTER ABLATION

We conduct an ablation study to assess the importance of learning full per-layer, per-head router
weights in LIMe. Specifically, we compare the standard LIMe routing against several constrained
variants on the 150M-parameter model, evaluating their impact on perplexity:

• Fixed Average (average): Aggregates all buffered Key–Value representations via a uni-
form average, without any learned head-specific weighting.

• Recent–j (last-j): Restricts each layer ℓ to attend only to the most recent min(ℓ, j)
buffered representations; router weights for these representations are learned.

• Initial–j (first-j): Restricts each layer ℓ to attend only to the first min(ℓ, j) buffers
plus the immediately preceding layer; router weights for these are learned.

In addition to constraining which layers can be routed (last-j and first-j), we also ablate the
structure of the router weights themselves. In particular, we ask whether LIMe benefits primarily
from mixing information across heads, or whether it is sufficient to restrict routing to the same
head index across layers, and whether making the router more expressive at the per-dimension level
improves performance.
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Model Perplexity Change to LIMe

LLaMA 16.4611 +3.36%
LIMe average 16.4611 +3.36%
LIMe last-2 16.2810 +2.22%
LIMe last-4 16.1675 +1.51%
LIMe last-6 16.1351 +1.31%
LIMe first-2 15.9746 +0.30%
LIMe first-4 15.9586 +0.20%
LIMe first-6 15.9906 +0.40%
LIMe 15.9267 —

Table 10: Impact of constrained routing schemes on validation perplexity for the 150M-parameter
model. Table reports perplexity for each scheme and the relative change with respect to the full LIMe
model. The average variant fails to improve over the LLaMA baseline, indicating that uniform
pooling of past representations is insufficient. Constraining attention to fixed windows of layers
(last-j and first-j) yields modest gains but still underperforms the unrestricted router. By
contrast, the full LIMe routing achieves the lowest perplexity (15.9267), corresponding to a 3.36%
reduction relative to LLaMA, thereby confirming the necessity of learning full, per-head, per-layer
router weights for optimal performance.

We therefore compare the default LIMe router against two additional variants on the same 150M
setup:

• No head mixing (no-head-mix): each head in layer ℓ only mixes Key–Value states from
the same head index across previous layers (router shape [H,L] instead of [H,L ·H]). This
removes all cross-head interactions in the router.

• Per-dimension mixing (per-dim): each previous head is weighted by a dhead-
dimensional vector instead of a scalar (router shape [H,L · H · dhead]), making the router
strictly more expressive and increasing the number of routing parameters by a factor of
dhead.

Setup Loss Perplexity

LLaMA 2.80043 16.45
LIMe (default) 2.76889 15.94 (–3.1%)
LIMe no-head-mix 2.83235 16.99 (+3.3%)
LIMe per-dim 2.77911 16.10 (–2.1%)

Table 11: Router-structure ablation at 150M scale. The no-head-mix variant restricts routing to
the same head index across layers and removes cross-head interactions; it not only eliminates LIMe’s
gains but performs worse than the LLaMA baseline. The per-dim variant uses per-dimension
router weights and is strictly more expressive (and more expensive) than the default scalar per-head
router, yet remains worse than default LIMe.

Two conclusions follow. First, mixing across heads is crucial: the no-head-mix variant, which
only aggregates the same head across layers, degrades perplexity to 16.99 (+3.3% vs. LLaMA),
indicating that LIMe’s benefit comes from cross-head interactions across layers rather than merely
accessing deeper same-head features. Second, per-dimension routing does not help in this regime:
although per-dim improves over LLaMA (16.10 vs. 16.45), it is still worse than the much simpler
scalar per-head router (15.94), while introducing on the order of dhead more routing parameters and
higher cost. This suggests that a lightweight per-head scalar router is sufficient and more effective
under our training budget, reinforcing the design choice used in the main experiments.
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G ROUTING VARIANTS IN DEEP MODELS

The ablations in Appendix F study constrained routing schemes at 150M scale. Here we complement
them with a deep 128-layer setup (see Section 5.6), where the naive LIMe router that mixes all
previous layers has a more pronounced computational cost. We compare full LIMe to structured
variants that sparsify the set of routed layers but keep the same overall architecture.

In addition to the 128-layer LLaMA baseline and full LIMe, we consider:

• Dilated-d (dil-d): each layer routes only to a sparsified set of previous layers with fixed
dilation factor d (e.g., every 8th or 16th layer), so that each layer sees roughly L/d routed
sources instead of all L.

• First-j (first-j, deep): each layer routes only to the first j layers plus itself, reusing
early, stable representations while ignoring later intermediate layers when forming the
routed Key–Value mixture. In the deep setting we use j ∈ {7, 15} for L = 128.

Table 12 reports per-iteration time, peak memory, and perplexity for the 128-layer configuration:

Model Time / iter (ms) Peak Mem (MB) Perplexity

LLaMA 70.21 2054.26 23.73
LIMe full 80.85 (+15.2%) 2062.38 (+0.4%) 20.72 (–12.7%)
LIMe dil-8 71.59 (+2.0%) 2055.38 (+0.05%) 21.61 (–8.9%)
LIMe dil-16 71.57 (+1.9%) 2054.88 (+0.03%) 21.84 (–8.0%)
LIMe first-7 71.79 (+2.3%) 2054.85 (+0.03%) 20.55 (–13.4%)
LIMe first-15 72.69 (+3.5%) 2055.76 (+0.07%) 20.50 (–13.6%)

Table 12: Routing variants for 128-layer models. Percentages are relative to the 128-layer LLaMA
baseline. Full LIMe yields the largest perplexity improvement but also a noticeable increase in per-
step time. Simpler structured routers (dilated and first-j) retain most or all of the perplexity
gains while keeping latency overhead in the low single digits and memory essentially unchanged.

Several trends emerge. First, full LIMe significantly improves perplexity in the deep regime (from
23.73 to 20.72) but increases step time by about 15%. Second, the first-7 and first-15
variants achieve slightly better perplexity than full LIMe (down to 20.50) while increasing latency
by only 2–3.5% and leaving peak memory virtually unchanged. Finally, the dilated variants dil-8
and dil-16 offer an intermediate trade-off: they reduce latency overhead to about 2% while still
providing 8–9% perplexity reductions over LLaMA.

These observations align with the router-weight heatmaps in Fig. 5, where later layers place most
of their mass on early buffers. In very deep models, forcing each layer to consider all L previous
layers can make the router partially adapt to noisy mid-layer states. Restricting routing to early
layers (first-j) or to a sparse subset of layers (dil-d) effectively keeps the informative early
Key–Value buffers while discarding less useful mid-layer signals, which explains why these struc-
tured variants match or slightly outperform full LIMe in perplexity while having negligible overhead.
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H LIME PSEUDOCODE

1 class KVBuffer:
2 def __init__(self):
3 self.mat = None # [(layers_so_far * kv_h), 2 * b * t * hd]
4

5 def add_(self, key_states, value_states):
6 # key_states/value_states: (b, kv_h, t, hd)
7 b, kv_h, t, hd = key_states.shape
8 kv = torch.cat([key_states, value_states], dim=-1) # (b, kv_h, t, 2*hd)
9 kv = kv.permute(1, 0, 2, 3).reshape(kv_h, b * t * 2 * hd) # (kv_h, b*t*2*hd)

10 self.mat = kv if self.mat is None else torch.cat([self.mat, kv], dim=0)
11

12 class LIMeRouter(nn.Module):
13 def __init__(self, config, layer_idx):
14 super().__init__()
15 bound = math.sqrt(
16 3 / (layer_idx + 1) * config.num_kv_heads
17 )
18 weights = torch.empty(
19 config.num_kv_heads,
20 (layer_idx + 1) * config.num_kv_heads,
21 ).uniform_(-bound, bound)
22 weights[:, -config.num_kv_heads:] = torch.eye(
23 config.num_kv_heads
24 )
25 self.weights = nn.Parameter(weights)
26

27 def forward(self, kv_buffer):
28 # kv_buffer shape = [(layer_idx + 1) * kv_h, 2 * b * t * hd]
29 return self.weights.mm(kv_buffer)
30

31

32 class LIMeAttention(LlamaAttention):
33 def __init__(self, config, layer_idx):
34 super().__init__(config, layer_idx)
35 if layer_idx > 0:
36 self.lime_router = LIMeRouter(config, layer_idx)
37

38 def forward(self, hidden_states, kv_buffer):
39 query_states = self.q_proj(hidden_states).reshape(b, h, t, hd)
40 key_states = self.k_proj(hidden_states).reshape(b, kv_h, t, hd)
41 value_states = self.v_proj(hidden_states).reshape(b, kv_h, t, hd)
42 kv_buffer.add_(key_states, value_states)
43 if self.layer_idx > 0:
44 key_states, value_states = self.lime_router(kv_buffer)
45 attn_output = scaled_dot_product_attention(
46 query_states, key_states, value_states
47 )
48 attn_output = self.o_proj(
49 attn_output.transpose(1, 2).reshape(b, t, -1)
50 )
51 return attn_output, kv_buffer
52

53

54 class LIMeLayer(LlamaDecoderLayer):
55 def __init__(self, config, layer_idx):
56 super().__init__(config, layer_idx)
57 self.self_attn = LIMeAttention(config, layer_idx)
58

59 def forward(self, hidden_states, kv_buffer):
60 residual = hidden_states
61 hidden_states = self.input_layernorm(hidden_states)
62 attn_out, kv_buffer = self.self_attn(hidden_states, kv_buffer)
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63 hidden_states = residual + attn_out
64

65 residual = hidden_states
66 hidden_states = self.post_attention_layernorm(hidden_states)
67 hidden_states = self.mlp(hidden_states)
68 hidden_states = residual + hidden_states
69

70 return hidden_states, kv_buffer
71

72

73 class LIMeModel(LlamaModel):
74 def __init__(self, config):
75 super().__init__(config)
76 self.layers = [
77 LIMeLayer(config, i) for i in range(config.num_hidden_layers)
78 ]
79

80 def forward(self, input_ids):
81 hidden_states = self.embed_tokens(input_ids)
82 kv_buffer = KVBuffer()
83 for layer in self.layers:
84 hidden_states, kv_buffer = layer(hidden_states, kv_buffer)
85 return hidden_states
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I EFFICIENCY

MHA Model # Parameters (B) FLOPs (T)

GQA

LLaMa 1.07607 2.7615
DenseFormer 1.07607 (+0.00%) 2.7622 (+0.02%)

LIMe 1.07608 (+0.00%) 2.7638 (+0.08%)
HC 1.07640 (+0.03%) 2.7701 (+0.31%)

Full

LLaMa 1.17674 2.9679
DenseFormer 1.17674 (+0.00%) 2.9685 (+0.02%)

LIMe 1.17687 (+0.01%) 3.0041 (+1.22%)
HC 1.17706 (+0.03%) 2.9764 (+0.29%)

Table 13: Model size (# parameters, in billions) and forward FLOPs for LIMe, Hyper-connections
(HC), and DenseFormer relative to LLaMa under grouped-query attention (GQA) and full attention.
We used torch.jit.trace to record all operations and estimated FLOPs via the fvcore li-
brary, based on tensor shapes and ATen operators. Total training FLOPs are approximated as 3×
forward FLOPs, accounting for both forward and backward passes (Anthony et al., 2023).

MHA RO Model Step Time (ms) Train Peak
Memory (GB)

GQA

+

LLaMa 65.770 16.035
LIMe 66.533 (+1.16%) 16.035 (+0.00%)

DenseFormer 75.032 (+14.08%) 16.812 (+4.85%)
HC 81.003 (+23.16%) 16.040 (+0.03%)

–

LLaMa 66.404 20.489
LIMe 67.449 (+1.57%) 20.490 (+0.00%)

DenseFormer 75.739 (+14.06%) 21.646 (+5.65%)
HC 83.265 (+25.39%) 21.693 (+5.88%)

Full

+

LLaMa 69.776 17.535
LIMe 77.093 (+10.49%) 17.537 (+0.01%)

DenseFormer 79.157 (+13.44%) 18.348 (+4.64%)
HC 84.990 (+21.80%) 17.540 (+0.03%)

–

LLaMa 70.258 22.364
LIMe 77.607 (+10.46%) 22.367 (+0.01%)

DenseFormer 79.733 (+13.49%) 23.566 (+5.37%)
HC 86.314 (+22.85%) 23.007 (+2.87%)

Table 14: Per-step latency and peak GPU memory usage of LIMe, DenseFormer, and Hyper-
connections (HC) in comparison to LLaMa under grouped-query attention (GQA) and full attention
(Full), measured with PyTorch Inductor in default (–) and reduced-overhead (+) modes.
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J PIPELINE PARALLELISM

Under standard DDP training, LIMe does not incur any additional memory overhead—routing oc-
curs via existing KV caches. Under pipeline parallelism (PP), the KV cache must be communi-
cated across stages. However, we show that this can be efficiently implemented using asynchronous
scheduling. Specifically, each pipeline stage:

• Computes its transformer layer output on already acquired micro-batch routed states.
• Routes KV buffers for later layers via non-blocking ops.

This dual-pipeline structure (forward pass + KV routing) allows communication and computation to
be efficiently overlapped, minimizing idle time and avoiding runtime bottlenecks. Such scheduling
strategies are well-established in modern pipeline parallelism frameworks, including DeepSpeed’s
PipeTransformer (He et al., 2021) and Megatron-LM (Shoeybi et al., 2019). While implementing a
fully optimized schedule requires non-trivial engineering effort, we leave this for future work. To
provide preliminary empirical evidence of scalability, we implemented pipeline parallelism for the
8B model using a straightforward 1F1B schedule across 8 stages (8 GPUs). In our measurements
LIMe incurs only a 7.8% training latency overhead (1130 vs. 1048 ms/step), indicating that PP
communication for routed KV can be efficiently hidden in practice.

K LIME VISUALISATION

Sequence 
Length

LIMe Router 

Layers

...
Residual

Figure 12: LIMe routing scheme.

L LLM USAGE

We used LLMs for writing and text polishing.
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