

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOU DO NOT FULLY UTILIZE TRANSFORMER’S REPRESEN-TA-TION CAPACITY

Anonymous authors

Paper under double-blind review

ABSTRACT

In contrast to RNNs, which compress their history into a single hidden state, Transformers can attend to all past tokens directly. However, standard Transformers rely solely on the hidden state from the previous layer to represent the entire context. We show that this design choice induces representation collapse and degrades performance. To address this issue, we introduce *Layer-Integrated Memory* (LIMe), a lightweight extension that leverages existing key–value buffers and learns per-head, per-layer routing weights to integrate representations from all previous layers with negligible overhead. Through extensive experiments—including language modeling, synthetic reasoning benchmarks, and very deep architectures—LIMe consistently achieves faster convergence, lower perplexity per FLOP, and substantial accuracy improvements on synthetic tasks while preserving higher value–vector entropy and improved token separability. Finally, our analysis of the learned routing weights reveals systematic reuse of both local and long-distance features, demonstrating how LIMe mitigates collapse, unlocks richer representations without increasing hidden-state size, and points to promising directions for future research.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become a central architecture in modern machine learning, powering state-of-the-art solutions in language modeling, computer vision, and beyond. Their ability to capture complex patterns arises from deeply stacked layers that refine contextual representations. However, despite their success, standard Transformer decoders maintain a single residual stream per layer, forcing the model to compress all previously learned features into the immediately preceding hidden state (Srivastava et al., 2015; He et al., 2015). This design choice can lead to *representation collapse*—a phenomenon in which different tokens or features become indistinguishable in deeper layers (Voita et al., 2019; Barbero et al., 2024; Arefin et al., 2024). The problem is particularly pronounced when learning from lengthy sequences, where subtle token distinctions risk being squeezed out by limited floating-point precision and finite hidden-state capacity.

In this paper, we propose *Layer-Integrated Memory* (LIMe), a lightweight extension to multi-head self-attention that enables each attention head to retrieve and integrate representations from all preceding layers—rather than relying solely on the most recent hidden state. LIMe accomplishes this by learning a per-layer, per-head routing mechanism that efficiently blends multi-layer Key–Value features, all while preserving the core Transformer structure and adding negligible overhead by reusing already allocated Key–Value buffers.

Our key contributions are:

- **Layer-Integrated Routing.** A trainable router that, for each head at every layer, dynamically weights and mixes buffered Key–Value representations from all earlier layers, without increasing hidden-state dimensions or memory footprint.
- **Strong Empirical Gains.** LIMe converges 15.3% (8.9% with GQA) faster in FLOPs and achieves 1.15% (0.91% with GQA) lower perplexity than 1B-parameter LLaMa-based (Grattafiori et al., 2024) transformer, yields up to +8% on ProsQA (Hao et al., 2024) and +30% on arithmetic reasoning benchmarks (Arefin et al., 2024; Feng et al., 2023). In deep

054 settings (32, 64, 128 layers), a 64-layer LIMe matches a 128-layer baseline, indicating
 055 superior scaling behavior.
 056

- **Mitigating Collapse.** An empirical analysis showing that LIMe preserves higher Rényi entropy (Arefin et al., 2024) and better token separability (Voita et al., 2019) in value spaces, effectively alleviating representation collapse.

060 Together, these results confirm that by distributing representational burden across persistent
 061 Key-Value buffers and learning to route information across layers, LIMe substantially improves
 062 both optimization efficiency and representational capacity, especially in tasks requiring long-range
 063 or multi-step reasoning, opening the door of utilizing LIMe for cutting-edge area of latent-space
 064 reasoning.

066 2 RELATED WORK

068 Early works on training very deep networks highlighted the need for mechanisms to ease gradient
 069 flow and information propagation. Highway Networks introduce gated skip connections to regulate
 070 information flow across layers (Srivastava et al., 2015). Deep Residual Networks further simplify
 071 this by adding identity shortcuts, enabling networks to exceed a hundred layers without suffering
 072 from vanishing gradients (He et al., 2015). Transformers adopt a similar residual-plus-normalization
 073 design, which underpins their success in language and vision tasks (Vaswani et al., 2017; Grattafiori
 074 et al., 2024; Jiang et al., 2023; Qwen et al., 2024; DeepSeek-AI et al., 2024).

075 Although residual streams facilitate training, they still force each layer to compress all prior features
 076 into a single vector, which can lead to *representation collapse*—distinct inputs becoming indistin-
 077 guishable in deeper layers. Tenney et al. (2019) found that BERT’s deeper layers refine earlier
 078 predictions using higher-level context. Voita et al. (2019) empirically demonstrated that Transfor-
 079 mers’ top layers lose fine-grained token distinctions. Theoretically, Barbero et al. (2024) proved that
 080 decoder-only Transformers can exhibit arbitrarily close final-token representations for different in-
 081 puts, a phenomenon akin to *over-squashing*. Building on this, Hahn & Rofin (2024) showed that the
 082 loss landscape of Transformers biases them toward low-sensitivity functions, exacerbating collapse.
 083 Recently, Arefin et al. (2024) introduced Seq-VCR, a variance–covariance regularizer that preserves
 084 intermediate representation diversity and significantly improves multi-step reasoning performance.

085 To mitigate collapse, several works have explored aggregating information across layers. Cross-
 086 Layer Retrospective Retrieving learns dynamic attention weights over prior layer outputs for each
 087 head (Fang et al., 2023). Hyper-Connections augment Transformers with multiple residual streams
 088 that interact via learned projections, preventing collapse at the cost of increased hidden-state
 089 size (Zhu et al., 2024). **LAuReL (Learned Augmented Residual Layer)** generalizes the residual
 090 stream by introducing learned augmentations of the skip and, in variants that aggregate previous
 091 activations, by accessing hidden states from earlier layers during inference (Menghani et al., 2025).
 092 DenseFormer proposes using a weighted average of the previous layers’ outputs as the input to
 093 each subsequent layer (Pagliardini et al., 2024). **Value Residual Learning (ResFormer / SVFormer)**
 094 reuses the first layer’s value vectors across depth to improve attention concentration and KV effi-
 095 ciency (Zhou et al., 2025). Although Mixture-of-Depths (Raposo et al., 2024) focuses on reducing
 096 FLOPs by skipping token computations layer-wise, its dynamic routing approach resonates with our
 097 per-head, per-layer routing mechanism; unlike MoD, LIMe retains full dense computation while
 098 enriching representational capacity through routing over pre-allocated key–value buffers. Different
 099 architectures based on usage of previous representations were proposed in (Huang et al., 2018;
 100 Bapna et al., 2018; Wu et al., 2023). Despite these advances, most methods require substantial
 101 architectural changes or extra memory. Our method, Layer-Integrated Memory (LIMe), instead *reuses*
 102 existing key–value buffers and learns per-head, per-layer routing to mix multi-layer representations
 103 with negligible memory and speed overhead (see Appendix I).

104 3 PRELIMINARIES

106 **Notation.** Let t denote the sequence length (temporal dimension), d the model dimension, H the
 107 number of attention heads, $d_{\text{head}} = d/H$ the dimension of each head, and L the total number of
 108 layers. We denote by $\mathbf{X}_{\ell-1} \in \mathbb{R}^{t \times d}$ the residual stream entering layer ℓ , with $\ell = 1, \dots, L$.

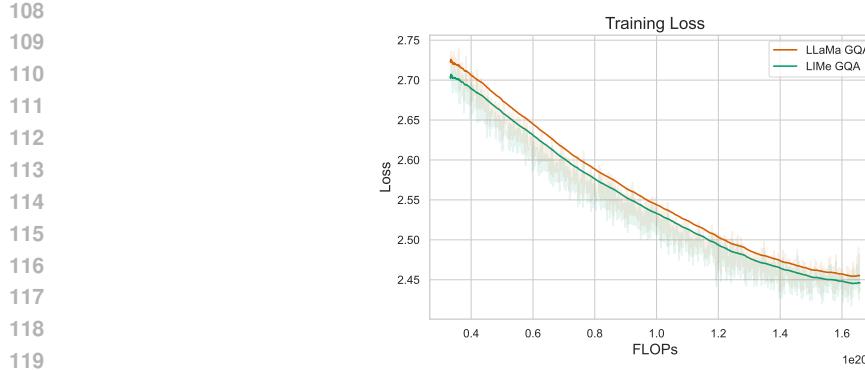


Figure 1: Training loss per FLOPs for LLaMa and LIME. LIME has a substantially lower loss with a similar amount of FLOPs. See Section 5.1 for more details.

Causal Self-Attention. Let

$\mathbf{Q} = \mathbf{X} \mathbf{W}^{(Q)}$, $\mathbf{K} = \mathbf{X} \mathbf{W}^{(K)}$, $\mathbf{V} = \mathbf{X} \mathbf{W}^{(V)}$, with $\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$. Splitting into H heads of dimension $d_h = d/H$ yields $\{\mathbf{Q}_i, \mathbf{K}_i, \mathbf{V}_i\}_{i=1}^H$. For head i ,

$$\text{head}_i = \text{softmax}\left(\frac{\mathbf{Q}_i \mathbf{K}_i^\top}{\sqrt{d_h}} + \mathbf{M}\right) \mathbf{V}_i \in \mathbb{R}^{t \times d_h},$$

where \mathbf{M} masks future positions. The heads are concatenated across the last dimension and projected:

$$\text{MultiHeadAttn}(\mathbf{X}) = \text{Concat}(\text{head}_1, \dots, \text{head}_H) \mathbf{W}^{(O)}, \quad \mathbf{W}^{(O)} \in \mathbb{R}^{d \times d}.$$

Residual connections. Denoting a sub-layer function $\mathcal{F}(\cdot)$ and input \mathbf{X} , the pre-norm residual update is

$$\mathbf{X}' = \mathbf{X} + \mathcal{F}(\text{RMSNorm}(\mathbf{X})).$$

4 METHOD

We introduce *Layer-Integrated Memory* (LIME), a lightweight mechanism to augment a decoder-only Transformer with inter-layer, learnable information flow. Unlike standard multi-head attention (MHA), which attends only to the current layer’s residual stream, LIME enables each head to retrieve and fuse Key–Value representations from all earlier layers. This enriches the model’s representation capacity without increasing memory use, since we reuse the Key–Value buffers already allocated by vanilla Transformers.

At a high level, each LIME attention layer performs three steps:

1. Compute and *buffer* per-head Key–Value projections from the current residual stream.
2. *Route* by forming a learned mixture of all buffered Key and Value heads’ states up to the current layer.
3. Compute attention between the current layer’s Queries and the routed Key–Value mixture.

Visualisation of the architecture can be found in Appendix K.

1. Key–Value Buffering. At layer ℓ , we compute per-head Key and Value tensors in the usual way:

$$\mathbf{K}_\ell = \mathbf{X}_{\ell-1} \mathbf{W}_\ell^{(K)}, \quad \mathbf{V}_\ell = \mathbf{X}_{\ell-1} \mathbf{W}_\ell^{(V)}, \quad \mathbf{K}_\ell, \mathbf{V}_\ell \in \mathbb{R}^{t \times H \times d_h}. \quad (1)$$

We then store these in the pre-allocated buffers

$$\mathcal{B}^{(K)}, \mathcal{B}^{(V)} \in \mathbb{R}^{L \times H \times t \times d_h},$$

for Keys and Values respectively. No extra memory is required, since vanilla Transformers already maintain all per-layer Key–Value states for training and cache them during inference for generation efficiency. See Appendix I for details.

162 **2. Inter-Layer Routing.** To enable each head at layer ℓ to *mix* information from all previous
 163 layers, we introduce a trainable router tensor $R^{(\ell)} \in \mathbb{R}^{\ell \times H \times H}$, where $R_{\ell',h',h}^{(\ell)}$ is a weight from
 164 head h' at layer ℓ' into head h at layer ℓ .
 165

166 Using buffer we route keys and values for each head h :

$$\tilde{\mathbf{K}}_{\ell,h} = \sum_{\ell'=1}^{\ell} \sum_{h'=1}^H R_{\ell',h',h}^{(\ell)} \mathcal{B}_{\ell',h'}^{(K)}, \quad \text{and} \quad \tilde{\mathbf{V}}_{\ell,h} = \sum_{\ell'=1}^{\ell} \sum_{h'=1}^H R_{\ell',h',h}^{(\ell)} \mathcal{B}_{\ell',h'}^{(V)}. \quad (2)$$

171 **3. Attention with Layer-Integrated Memory.** We compute the usual per-head Queries,
 172

$$\mathbf{Q}_{\ell,h} = \mathbf{X}_{\ell-1} W_{\ell,h}^{(Q)}, \quad \mathbf{Q}_{\ell,h} \in \mathbb{R}^{t \times d_h},$$

174 and then perform scaled dot-product attention for each head between $\mathbf{Q}_{\ell,h}$ and the routed
 175 $\tilde{\mathbf{K}}_{\ell,h}, \tilde{\mathbf{V}}_{\ell,h}$.
 176

177 **LIMe Advantages.** By routing through all prior layers, LIMe endows each head with a learnable,
 178 layer-wise memory. Unlike fixed skip connections or naive averaging, LIMe learns per-head,
 179 per-layer weightings, enabling selective retrieval and *forgetting* of past representations. Despite this
 180 added flexibility, the extra computation is only linear in sequence length. Crucially, LIMe is fully
 181 compatible with efficient MHA implementations such as FlashAttention (Dao, 2024), and it intro-
 182 duces negligible additional memory footprint by reusing existing Key–Value buffers (see Appendix I
 183 for details), and can be effectively used under pipeline parallelism (see Appendix J for details). In
 184 Appendix F, we include an ablation study on restricted router weights, demonstrating the importance
 185 of the trained router in LIMe.
 186

5 EXPERIMENTS

5.1 LANGUAGE MODELING

190 We evaluate the effectiveness of **LIMe** against three baselines: **LLaMa** (Grattafiori et al., 2024),
 191 **DenseFormer** (Pagliardini et al., 2024), and **Hyper Connections** (Zhu et al., 2024). All models have
 192 approximately 1B parameters and share the same underlying transformer architecture (see Table 4).
 193 We trained each model from scratch on the *FineWeb Edu* (Penedo et al., 2024) subset with about
 194 50B tokens. The full training setup can be found in Appendix A.
 195

196 Figure 1 displays the iso-flops training loss curves, demonstrating that LIMe converges more rapidly
 197 and achieves lower perplexities than LLaMa, indicating improved parameter efficiency. Details on
 198 model efficiency and FLOPs calculations can be found in Appendix I. Table 1 presents results on
 199 the 3-shot LM Eval Harness benchmarks Wang et al. (2018; 2019); Srivastava et al. (2023), further
 200 highlighting the advantages conferred by LIMe on language modeling over baseline models. For
 201 more benchmarks see Appendix C. In the next section, we go deeper into the factors driving these
 202 gains.
 203

Model	MultiRC	WiC	QNLI	ARC-E	ARC-C	KV	Induction	Avg
LLaMA	43.24	50.00	49.49	70.45	38.70	45.94	54.20	50.29
DenseFormer	45.92	49.69	50.08	70.60	36.48	50.30	51.30	50.62
HC	54.34	49.72	49.43	71.15	37.63	51.68	51.59	52.22
LIMe	56.15	50.44	51.43	71.15	39.30	55.64	55.36	54.21

208 Table 1: LM Evaluation Harness benchmarks results on 1B models with GQA in 3-shot setup. LIMe
 209 outperforms LLaMA, DenseFormer, and Hyper-Connections baselines. See details in Section 5.1
 210 and additional benchmarks in Appendix C.
 211

5.2 MATH WORD PROBLEMS (GSM8K)

212 To assess multi-step numerical reasoning in natural language, we evaluate on GSM8K (Cobbe et al.,
 213 2021). We *fully fine-tune* both LLaMA and LIMe (training details in Appendix A). LIMe clearly out-
 214

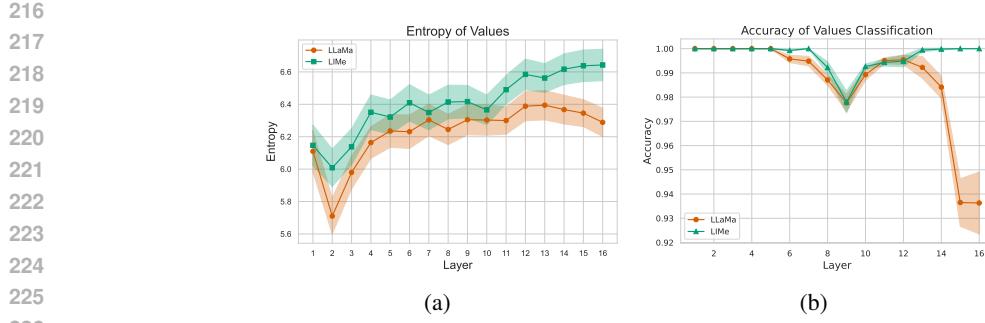


Figure 2: (a) Matrix entropy of values on the FineWeb Edu subset by layer. LIME has more diverse values than LLaMa, which indicates that more information is stored in its hidden states. (b) Values’ classification accuracy, with standard deviation over five cross-validation folds. Values in later layers obtained from LIME can be linearly separated with nearly 1.0 accuracy, whereas the accuracy for values from LLaMa is much lower. See Section 5.3 for more details.

performs LLaMA, achieving an exact-match accuracy of **0.167** vs. **0.140** for LLaMA—a **+19.28%** relative improvement.

5.3 MEASURING REPRESENTATION COLLAPSE

Recent work has shown that large language models (LLMs) can suffer from *representation collapse* when representing long sequences, thereby forcing subtle token distinctions to become inseparable in deeper layers (Voita et al., 2019; Arefin et al., 2024). We investigate this phenomenon by comparing LLaMa (Grattafiori et al., 2024) and LIME via two complementary approaches: (i) quantifying the diversity of hidden states and values with *matrix-based Rényi entropy* (Arefin et al., 2024) and (ii) measuring and visualizing the linear separability of layer-wise embeddings of closely related tokens (*is*, *are*, *was*, *were*) (Voita et al., 2019). These two methodologies directly measure representation collapse in language models.

Unlike Arefin et al. (2024), we evaluate both residual-stream hidden states and value representations. We expect weaker linear separability in hidden states (because the model need not pack all information there) and stronger separation in value vectors. For matrix entropy, we anticipate little change at the hidden-state level but a clear difference for value representations. At each layer ℓ , we record *value states* (i.e., the output of the $W_\ell^{(V)}$ linear projection) and *hidden states* (i.e., the residual stream \mathbf{X}_ℓ).

Matrix-Based Rényi Entropy. Following Arefin et al. (2024), we measure the diversity of representations at layer ℓ by forming the Gram matrix $\mathbf{K} = Z^{(\ell)} Z^{(\ell)\top} \in \mathbb{R}^{t \times t}$, where $Z^{(\ell)}$ contains the d -dimensional representations of t tokens. Let $\{\lambda_i(\mathbf{K})\}_{i=1}^t$ be the eigenvalues of \mathbf{K} . We define the α -order Rényi entropy as $S_\alpha(Z^{(\ell)}) = \frac{1}{1-\alpha} \log \left[\sum_{i=1}^t \left(\frac{\lambda_i(\mathbf{K})}{\text{tr}(\mathbf{K})} \right)^\alpha \right]$. Each eigenvalue is normalized by $\text{tr}(\mathbf{K})$, ensuring the probabilities sum to 1. Higher S_α indicates greater variance (i.e., lower collapse).

Figure 2(a) shows that LIME yields significantly higher matrix entropy of gathered MHA values compared with LLaMa and shows no significant difference when evaluating hidden states (see Figure 7(a)).

Layer-Wise Token Separability. To more directly evaluate the level of representation collapse, we replicate the methodology of Voita et al. (2019), extracting 1668 occurrences each of *is*, *are*, *was*, *were* from the *FineWeb Edu* corpus. To quantify information collapse, we train a linear four-way classifier (for *is*, *are*, *was*, *were*) on layer-wise representations. Figure 2(b) shows mean classification accuracies (with five-fold cross-validation) for value representations layer by layer. We observe that LIME consistently exhibits higher classification accuracy than LLaMa, confirming that LIME’s value representations avoid collapse. As hypothesized, hidden states became less separable

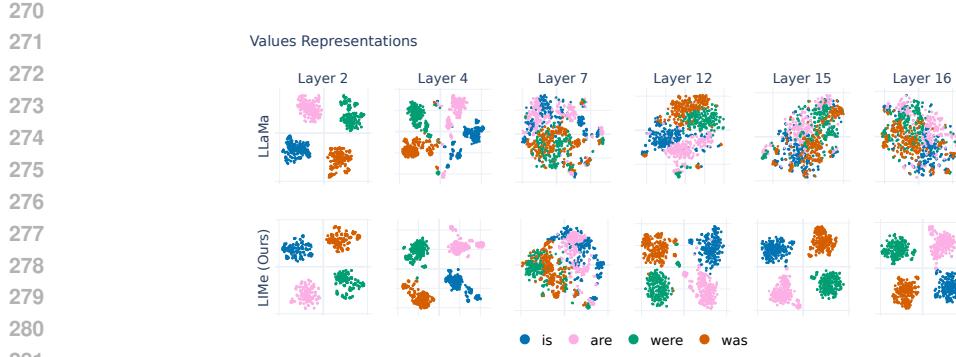


Figure 3: t-SNE of similar tokens’ values among layers shows higher separability for LIME’s representations. See Section 5.3 for more details.

for LIME, indicating that there was no need to store all necessary information in a single hidden state (see Figure 7(b)).

Additionally, we project representations into a two-dimensional space via t-SNE and visualize how well value states and hidden states can be clustered (Figure 3). In contrast to LIME, deeper-layer representations in LLaMA for such similar tokens often collapse into overlapping regions, reflecting the inclination of the vanilla transformer to heavily compress relevant information into a single representation and therefore blur small yet important differences.

Linear Probing. We evaluate whether layer-wise representations encode basic grammaticality using BLiMP (Warstadt et al., 2020). For each BLiMP task, we freeze the LM and train a *binary* logistic-regression probe that predicts whether a *single sentence* is grammatical (“Good”) or ungrammatical (“Bad”). Concretely, at each layer ℓ we extract (i) *attention values* (the value projections) and (ii) *hidden states* (the residual stream), mean-pool them over tokens to obtain a fixed vector per sentence, and fit a logistic regression on these vectors. We perform 5-fold cross-validation, splitting by minimal pair so that both members of a pair fall in the same fold, and report accuracy in Table 2. At test time the probe receives one sentence and outputs a grammaticality label; accuracy is the fraction of correct Good/Bad judgments.

Layer	Values (acc.)		Hiddens (acc.)	
	LLaMA	LIME	LLaMA	LIME
10	0.892 ± 0.018	0.914 ± 0.015	0.914 ± 0.015	0.933 ± 0.013
14	0.881 ± 0.015	0.921 ± 0.013	0.895 ± 0.015	0.918 ± 0.014
16	0.864 ± 0.016	0.918 ± 0.010	0.880 ± 0.016	0.897 ± 0.014

Table 2: BLiMP probing accuracy (5-fold CV) at selected layers (for complete results see Appendix D). LIME consistently outperforms LLaMA, with gains up to 5 p.p. on value features and 3 p.p. on hidden states, indicating more linearly separable (and thus more expressive) representations.

Discussion. Together, these results corroborate our theoretical motivation: by allowing each head to attend directly to earlier-layer representations, LIME expands the overall representational capacity. This multi-layer routing reduces collapse in the *values* while freeing deeper *hidden states* from the burden of storing all lexical nuances—leading to higher overall entropy on values (Figure 2(a)) and improved model performance (Table 1). In the next section, we evaluate LIME on synthetic benchmarks where the model’s ability to store complex information in limited state capacity is crucial.

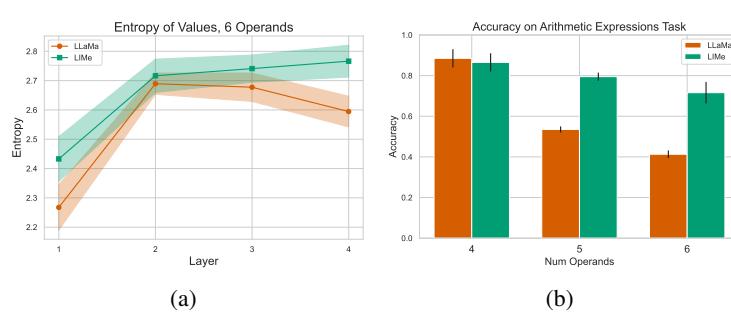


Figure 4: (a) LIME exhibits consistently higher entropy of value vectors across layers, particularly in the final layer, indicating reduced representation collapse compared to LLaMa. (b) On the Arithmetic Expressions task, LIME significantly outperforms the LLaMa baseline, maintaining high accuracy even as the number of operands increases, while LLaMa’s performance deteriorates. For details, see Section 5.4.2.

5.4 EVALUATING REPRESENTATION COLLAPSE ON SYNTHETIC TASKS

5.4.1 PLANNING AND SEARCH CAPABILITIES

We fine-tune models on ProsQA (Proof with Search Question-Answering) (Hao et al., 2024). Each ProsQA instance presents a set of fictional concepts described via natural-language conditions arranged in a DAG, requiring models to determine the veracity of a target statement by exploring multiple reasoning paths over the graph (examples in Appendix B). Unlike linear chain-of-thought methods (Wei et al., 2022), ProsQA demands maintaining and evaluating parallel hypothesis streams akin to breadth-first search in latent reasoning (Hao et al., 2024). In our experiments we evaluate both fine-tuned models on ProsQA task via open-ended reasoning generation. LLaMA achieves **69.4%** accuracy, meanwhile LIME achieves **77.8%** accuracy, outperforming LLaMA by **8.4%**. Since correct prediction requires searching over paths in the graph of input statements, baseline transformers suffer representation collapse from storing multiple reasoning chains in their hidden states, particularly for longer inference sequences. LIME mitigates this by distributing the reasoning process across layers — early layers may store primitive inferences while deeper layers compose them, maintaining better separation between similar reasoning paths.

5.4.2 ARITHMETIC EXPRESSION BENCHMARK

Standard one-shot QA benchmarks mainly test *final-token prediction*, which can often be solved via shallow pattern matching or retrieval, masking the role of intermediate representation quality in reasoning. To isolate the impact of multi-step computation, we adopt the Arithmetic Expression Task (AET) (Arefin et al., 2024; Feng et al., 2023), a synthetic benchmark presenting expressions over integer operands with operators $+, -, \times, \div$, along with solution steps and requiring the exact integer result. See examples in Appendix B.

Following Arefin et al. (2024), we generate 3 difficulty tiers comprising expressions with 4, 5, and 6 operands, accompanied by step-by-step solutions (details in Appendix A). While performing similarly to LLaMa on 4 operands, LIME achieves significantly higher accuracy after increasing number of operands to 5 and 6 (Figure 4(b)). LIME (**71.6%**) outperforms LLaMa (**41.3%**) by over **30%** in accuracy on 6 operands. These results go along with lower representation collapse which is illustrated by higher entropy of value representations shown in Figure 4(a). Also, LIME exhibits better separability of close numbers which leads to lower error rate in intermediate calculations, see Figure 8 in Appendix.

Arithmetic Expressions Task requires intermediate calculations to be performed correctly in order to get the correct final answer. The problem of representation collapse results in representations of close numbers being similar which leads to incorrect intermediate results, and thus the wrong final answer. Since LIME has access to previous representations at each layer, it preserves finer numerical distinctions in comparison with standard transformer architectures like LLaMa. Moreover, LIME has ability to store information in earlier representations, i.e. performing computations at some

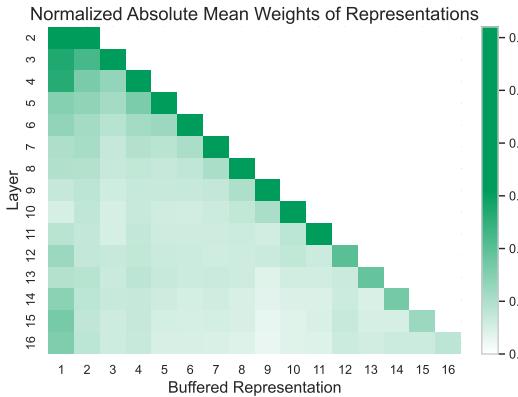


Figure 5: Mean retrieval weight for each buffered representation across subsequent layers. Larger diagonal values confirm reliance on the current residual stream, while the pronounced off-diagonal weights for the earliest buffers and the repeated reuse of intermediate ones show that the model systematically retrieves earlier features, providing auxiliary memory and helping to mitigate representation collapse. See Section 5.5 for more details.

early or intermediate layer, but using it further only in later layers, which also boosts its reasoning capabilities and leads to better results on tasks that require intermediate steps.

5.5 ANALYZING LEARNED ROUTINGS IN LIME

To understand *how* LIME routes information across layers and thereby mitigates representation collapse, we inspect the learned router weights. Since the router weights can be both positive and negative—and because random initialization of the key, value, and output projections renders their sign semantically ambiguous—we analyze the absolute magnitudes of these weights to quantify each buffered representation’s relative contribution in a sign-agnostic manner.

For each layer $\ell \geq 2$, we take the absolute magnitude of its router weights, average over heads for each buffered representation $j \leq \ell$, and then normalize these averages per layer. The resulting heatmap in Figure 5 shows the normalized mean weight: cell (ℓ, j) measures the average contribution of the keys and values generated at layer j to the attention computation in layer ℓ . In a standard Transformer without routing, each layer would attend solely to its own keys and values, yielding a heatmap with ones on the diagonal and zeros elsewhere; LIME departs markedly from this behavior.

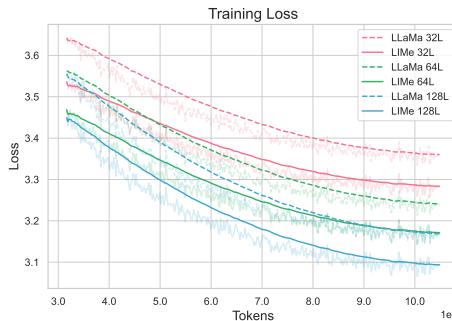
Several clear patterns emerge:

- **Strong reliance on embeddings in early layers:** Layers 2-4 allocate much of their attention to the buffered representations from the embedding layer. This corroborates the view that the initial attention layers focus on capturing local and morphological relationships among tokens, and that LIME grants additional flexibility in reusing these low-level features.
- **Auxiliary memory via neighboring layers:** Early and middle layers place a share of attention on the buffered KV states of its immediate predecessor. This indicates that they can treat them as an auxiliary memory bank, effectively extending the subspace of features it can manipulate by leveraging projections made by other heads.
- **Long-distance retrieval from early buffers:** Higher layers also attend nontrivially to the first two buffered representations. The effect is especially pronounced in the final layers, suggesting that late-stage prediction benefits from revisiting the original token embeddings and shallow features.

By allowing flexible retrieval of features from arbitrarily distant layers, LIME relieves each residual stream from having to carry the entire contextual signal forward. Instead, information can be distributed across a set of persistent buffers, preserving a richer and more diverse feature set through-

432 out the network’s depth and thereby mitigating representation collapse. For the full, detailed set of
 433 normalized router weights, see Appendix Figure 9.
 434

435 **5.6 DEEP NETWORKS PERFORMANCE**
 436



449 Figure 6: Training losses for deep architectures. The LIME models consistently outperform their
 450 LLaMA counterparts across all depths, with LIME with 64 layers outperforming LLaMA with 128
 451 layers. See Section 5.6 for details.

452

453 Transformers scaled to increasing depths often suffer from representation collapse, which motivates
 454 our evaluation of LIME in 32-, 64-, and 128-layer configurations. We compare LIME against the
 455 baseline LLaMA, each using 8 attention heads per layer, and observe that LIME outperforms LLaMA
 456 at every tested depth (Fig. 6). Furthermore, LIME exhibits superior scaling behavior: as depth
 457 increases, its loss decreases more rapidly than LLaMA’s, implying that direct routing of earlier-layer
 458 features enhances the model’s effective representational capacity, whereas LLaMA’s single-stream
 459 residual architecture struggles to preserve fine-grained features across layers. Notably, a 64-layer
 460 LIME model outperforms a 128-layer LLaMA model, despite the latter requiring roughly twice the
 461 FLOPs and parameters. In the 128-layer regime, the naive LIME router that mixes all previous layers
 462 yields a substantial perplexity reduction over LLaMA but introduces a noticeable per-step latency
 463 increase. However, simpler structured routers (such as dilated routing and variants that restrict
 464 each layer to attend only to the set of j earliest layers) incur only negligible latency overhead and
 465 essentially no extra memory while still achieving significantly better perplexity than the 128-layer
 466 LLaMA baseline (see Appendix F for details). This suggests that the optimal scaling strategy for
 467 transformers may deviate from conventional practice, potentially favoring much deeper models with
 468 smaller hidden dimensions. We leave further investigation of these scaling dynamics to future work.

469 **6 CONCLUSION AND FUTURE WORK**
 470

471 In this paper, we proposed *Layer-Integrated Memory* (LIME), a lightweight extension to multi-head
 472 self-attention that enables each attention head to retrieve and integrate representations from all pre-
 473 ceding layers. Through extensive experiments on language modeling, synthetic reasoning bench-
 474 marks, and deep transformer configurations, we demonstrated that LIME (i) accelerates convergence
 475 in FLOPs by up to 15.3% and reduces perplexity by up to 1.15% compared to standard Transformer
 476 decoders, yields improvements of up to +8% on the challenging ProsQA task and +30% on Arith-
 477 metic Reasoning Task; (ii) mitigates representation collapse by preserving higher entropy in value
 478 vectors and maintaining token separability in deeper layers; and (iii) enables shallower models to
 479 match or exceed the performance of double-sized deeper baselines. Our analysis of the learned
 480 routing weights further revealed that LIME systematically leverages both local and long-distance
 481 feature reuse, effectively distributing contextual information across layers without increasing the
 482 hidden-state size.

483 **Limitations.** While our method consistently yields better results on both benchmarks and language
 484 modeling tasks, it could lead to additional communication between GPUs in pipeline parallel setup.
 485 Also, vanilla implementation of the method has $\mathcal{O}(L^2)$ asymptotic, and some heuristics proposed in
 Appendix F might be useful for scaling.

486 Looking forward, two research directions emerge as particularly promising. First, a comprehensive
 487 exploration of the width-depth trade-off in LIME architectures could unveil optimal scaling regimes
 488 tailored to diverse tasks and computational budgets. Second, a rigorous theoretical analysis of the
 489 routing mechanism may inform principled designs for multi-layer memory, thereby enabling models
 490 to perform advanced latent-space reasoning grounded in Layer-Integrated Memory.
 491

492 **REFERENCES**
 493

494 Quentin Anthony, Stella Biderman, and Hailey Schoelkopf. Transformer math 101. blog.eleuther.ai/,
 495 2023. URL <https://blog.eleuther.ai/transformer-math/>.

496 Md Rifat Arefin, Gopesh Subbaraj, Nicolas Gontier, Yann LeCun, Irina Rish, Ravid Shwartz-Ziv,
 497 and Christopher Pal. Seq-vcr: Preventing collapse in intermediate transformer representations for
 498 enhanced reasoning. *arXiv preprint arXiv: 2411.02344*, 2024.

500 Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper neural machine
 501 translation models with transparent attention. In *Proceedings of the 2018 Conference on Empirical
 502 Methods in Natural Language Processing (EMNLP)*, pp. 3028–3033, 2018. doi: 10.18653/
 503 v1/D18-1338. URL <https://arxiv.org/abs/1808.07561>. arXiv:1808.07561.

504 Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G. M. Araújo,
 505 Alex Vitvitskyi, Razvan Pascanu, and Petar Velicković. Transformers need glasses! information
 506 over-squashing in language tasks. *arXiv preprint arXiv: 2406.04267*, 2024.

508 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 509 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 510 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

512 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *International
 513 Conference on Learning Representations (ICLR)*, 2024.

515 DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
 516 Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
 517 Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
 518 Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
 519 Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
 520 Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
 521 Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
 522 Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
 523 Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
 524 Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
 525 Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
 526 Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
 527 Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
 528 Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
 529 Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
 530 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
 531 Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
 532 Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
 533 Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
 534 Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
 535 Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
 536 Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
 537 *arXiv preprint arXiv: 2405.04434*, 2024.

538 Yanwen Fang, Yuxi Cai, Jintai Chen, Jingyu Zhao, Guangjian Tian, and Guodong Li. Cross-layer
 539 retrospective retrieving via layer attention. In *The Eleventh International Conference on Learning
 540 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
<https://openreview.net/forum?id=pgvEL1yS3Q1>.

540 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
 541 the mystery behind chain of thought: A theoretical perspective, 2023. URL <https://arxiv.org/abs/2305.15408>.
 542

543 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 544 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 545 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 546 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 547 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 548 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 549 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 550 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 551 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 552 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 553 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 554 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 555 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 556 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 557 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 558 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 559 soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 560 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 561 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 562 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 563 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 564 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 565 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 566 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 567 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 568 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 569 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 570 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 571 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 572 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 573 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 574 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 575 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 576 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 577 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 578 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 579 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 580 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 581 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 582 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 583 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 584 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 585 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 586 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 587 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 588 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 589 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 590 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 591 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 592 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 593 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,

594 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 595 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 596 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 597 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 598 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 599 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 600 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 601 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 602 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 603 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 604 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 605 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 606 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 607 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 608 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 609 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 610 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 611 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 612 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 613 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 614 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 615 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 616 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 617 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 618 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 619 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 620 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 621 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 622 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 623 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 624 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 625 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
 626 Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihalescu, Vladimir Ivanov, Wei Li,
 627 Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian Wu,
 628 Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 629 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
 630 Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
 631 Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models. *arXiv preprint arXiv:*
 632 [2407.21783](https://arxiv.org/abs/2407.21783), 2024.

633 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
 634 Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Associa-
 635 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 14973–15008, Bangkok, Thai-
 636 land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
 637 800. URL <https://aclanthology.org/2024.acl-long.800/>.

638 Shibo Hao, Sainbayar Sukhbaatar, Dijia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 639 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint
 640 arXiv:2412.06769*, 2024.

641 Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
 642 elastic pipelining for distributed training of transformers. *CoRR*, abs/2102.03161, 2021. URL
 643 <https://arxiv.org/abs/2102.03161>.

644 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 645 nition. *arXiv preprint arXiv: 1512.03385*, 2015.

646 Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
 647 convolutional networks, 2018. URL <https://arxiv.org/abs/1608.06993>.

648 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 649 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 650 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 651 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint arXiv: 2310.06825*,
 652 2023.

653 Gaurav Menghani, Ravi Kumar, and Sanjiv Kumar. Laurel: Learned augmented residual layer, 2025.
 654 URL <https://arxiv.org/abs/2411.07501>.

655 Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
 656 Enhancing information flow in transformers via depth weighted averaging, 2024. URL <https://arxiv.org/abs/2402.02622>.

657 Guilherme Penedo, Hynek Kydlícek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 658 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 659 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.

660 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 661 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 662 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 663 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 664 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 665 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*
 666 *arXiv: 2412.15115*, 2024.

667 David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
 668 Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
 669 guage models, 2024. URL <https://arxiv.org/abs/2404.02258>.

670 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 671 Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
 672 allelism. *CoRR*, abs/1909.08053, 2019. URL <http://arxiv.org/abs/1909.08053>.

673 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 674 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 675 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
 676 curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
 677 Askell, Amanda Dsouza, Ambrose Sloane, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen,
 678 Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K. Lampinen,
 679 Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli,
 680 Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher
 681 Mollokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakas, B. Ryan
 682 Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia,
 683 Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald,
 684 Bryan Orinion, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cèsar Ferri Ramírez,
 685 Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch,
 686 Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
 687 Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
 688 rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
 689 Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
 690 Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
 691 nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
 692 Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
 693 terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliz-
 694 abeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut
 695 Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan Kim, Eunice En-
 696 gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed,
 697 Francesca Happé, François Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Ger-
 698 ard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
 699 Gonzalo Jaimovich-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah

702 Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze,
 703 Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
 704 Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Si-
 705 mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
 706 Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
 707 ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse H.
 708 Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
 709 John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
 710 José Hernández-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
 711 Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
 712 ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
 713 Kory W. Mathewson, Kristen Chiaffulfo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
 714 Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras
 715 Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
 716 Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten
 717 Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan,
 718 Marco Marelli, Marco Maru, María José Ramírez-Quintana, Marie Tolkiehn, Mario Giulianelli,
 719 Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina
 720 Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
 721 Michael I. Ivanitskiy, Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilac-
 722 qua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
 723 Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T.,
 724 Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
 725 Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
 726 Nitish Shirish Keskar, Niveditha Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
 727 Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
 728 Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
 729 Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Milkowski, Piyush
 730 Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
 731 Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
 732 Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
 733 Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
 734 Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib
 735 Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel
 736 Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A.
 737 Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Se-
 738 bastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry
 739 Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal,
 740 Shyam Upadhyay, Shyamolima (Shammie) Debnath, Siamak Shakeri, Simon Thormeyer, Simone
 741 Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar,
 742 Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad,
 743 Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop
 744 Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo
 745 Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick,
 746 Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar
 747 Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak,
 748 Vinay V. Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus,
 749 William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi
 750 Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin
 751 Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai,
 752 Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the
 753 imitation game: Quantifying and extrapolating the capabilities of language models. *Trans. Mach.
 Learn. Res.*, 2023, 2023. URL <https://openreview.net/forum?id=uyTL5Bvosj>.

754 Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. *arXiv preprint
 755 arXiv: 1505.00387*, 2015.

756 Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline.
 757 In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual
 758 Meeting of the Association for Computational Linguistics*, pp. 4593–4601, Florence, Italy, July

756 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL <https://aclanthology.org/P19-1452/>.

757

758

759 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
760 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NEURIPS*, 2017.

761

762 Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
763 transformer: A study with machine translation and language modeling objectives. In Kentaro
764 Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on*
765 *Empirical Methods in Natural Language Processing and the 9th International Joint Conference*
766 *on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4396–4406, Hong Kong, China,
767 November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1448. URL
768 <https://aclanthology.org/D19-1448/>.

769

770 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. *Ws*,
2018.

771

772 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
773 Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language
774 understanding systems. *Neural Information Processing Systems*, 2019.

775

776 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
777 Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. *Trans-*
778 *actions of the Association for Computational Linguistics*, 8:377–392, 2020. doi: 10.1162/
779 tacl_a_00321. URL <https://aclanthology.org/2020.tacl-1.25/>.

780

781 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
782 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
783 models. *Advances in Neural Information Processing Systems*, 35:24824–24837, 2022.

784

785 Xixin Wu, Hui Lu, Kun Li, Zhiyong Wu, Xunying Liu, and Helen Meng. Hiformer: Sequence
786 modeling networks with hierarchical attention mechanisms. *IEEE/ACM Transactions on Audio,*
787 *Speech, and Language Processing*, 31:3993–4003, 2023. doi: 10.1109/TASLP.2023.3313428.
788 URL <https://doi.org/10.1109/TASLP.2023.3313428>.

789

790 Zhanhao Zhou, Tianyi Wu, Zhiyun Jiang, Fares Obeid, and Zhenzhong Lan. Value residual learn-
791 ing, 2025. URL <https://arxiv.org/abs/2410.17897>.

792

793 Defa Zhu, Hongzhi Huang, Zihao Huang, Yutao Zeng, Yunyao Mao, Banggu Wu, Qiyang Min, and
794 Xun Zhou. Hyper-connections. *arXiv preprint arXiv: 2409.19606*, 2024.

795

A EXPERIMENTAL SETUP DETAILS

Language Modeling. We observe that omitting weight decay on the LIME router weights enjoys better performance and setting the router’s learning rate to 1×10^{-2} boosts model performance by speeding up router convergence and circuit formation. To preserve the standard Transformer’s information flow at the start of the training, we initialize the slice $R_{\ell,h',h}^{(\ell)} = \delta_{h',h}$ (identity across heads). Other coefficients are initialized randomly via Kaiming uniform to stabilize mixtures at the start of the training. Random initialization of all weights resulted in worse overall model performance. **For DenseFormer and HyperConnections baselines we use the strongest configurations recommended by the original papers: DenseFormer with dilation = 1 and period = 1, and the Dynamic HyperConnections variant with expansion rate 4.** Hyperparameter values are summarized in Table 3, and the detailed model architecture is given in Table 4. Additional training loss visualizations are available in Figure 11 for full attention and in Figure 10 for Grouped Query Attention.

We used NVIDIA H100 GPUs and spent about 2400 GPU-days on all experiments including preliminary research.

GSM8K Fine-tuning. We fine-tune pretrained 1.2B-parameter LLaMa and LIME models on the GSM8K training split for 20 epochs and report exact-match accuracy on the test set. Learning rates

810 are tuned per model for best performance— 1×10^{-4} for LLaMa and 5×10^{-5} for LIME—with an
 811 effective batch size of 32 in both cases.

812 **ProsQA Fine-Tuning.** We fine-tune pretrained LLaMa 150M and LIME 150M on approximately
 813 18,000 sequences for 10 epochs. We use learning rate of 1×10^{-4} with linear decay and warmup
 814 during the first epoch, effective batch size is 128. Trained models are then evaluated on the test
 815 subset via open generation of reasoning steps and answers.

816 **Arithmetic Expression Task.** We train models and evaluate them on open-ended generation of
 817 solutions given initial expression, from which we extract the answers and calculate accuracy on the
 818 test subset. We train 4-layer models (with 4 attention heads and model dim is 32) on datasets with
 819 50,000 samples per each number of operands for 200 epochs. Learning rate is 1×10^{-3} with linear
 820 decay.

Hyperparameter	Value
Optimizer	AdamW
Learning Rate	0.001
LIME Router Learning Rate	0.01
Weight Decay	0.1
β_1	0.9
β_2	0.95
ϵ	1×10^{-8}
Scheduler	cosine
Warmup Steps	200
Min LR	1×10^{-6}
Mixed Precision	bf16
Gradient Clipping	1.0
Sequence Length	2048
Batch Size	1024
Training Steps	20,000

843 Table 3: Key training hyperparameters used in experiments.

Parameter	Value
Vocab Size	50,257
Hidden Size	2048
Intermediate Size	8192
Number of Hidden Layers	16
Number of Attention Heads	32
Number of Key-Value Heads	8 (GQA) and 32 (otherwise)
Tie Word Embeddings	True

860 Table 4: Base model architecture at 1B scale.

864 B SYNTHETIC BENCHMARKS
865866 ProsQA
867

868 Question: "Every shumpus is a rempus. Every shumpus is a
869 yimpus. Every terpus is a fompus. Every terpus is a gerpus.
870 Every gerpus is a brimpus. Alex is a rempus. Every rorpus
871 is a scrompus. Every rorpus is a yimpus. Every terpus is a
872 brimpus. Every brimpus is a lempus. Tom is a terpus. Every
873 shumpus is a timpus. Every yimpus is a boompus. Davis is
874 a shumpus. Every gerpus is a lorpus. Davis is a fompus.
875 Every shumpus is a boompus. Every shumpus is a rorpus.
876 Every terpus is a lorpus. Every boompus is a timpus. Every
877 fompus is a yerpus. Tom is a dumpus. Every rempus is a
878 rorpus. Is Tom a lempus or scrompus?"

879 Steps: "Tom is a terpus. Every terpus is a brimpus. Every
880 brimpus is a lempus."

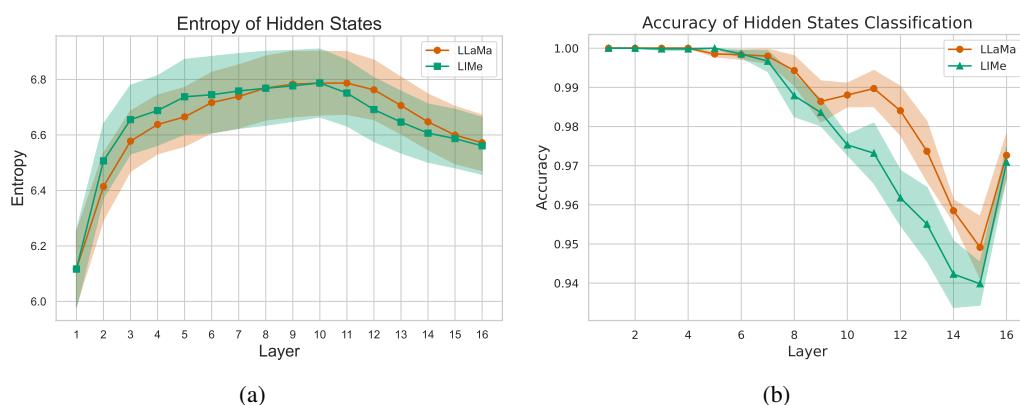
882 Answer: "Tom is a lempus."

884 Arithmetic Expression Task
885886 **Input:**

$$888 (7 + 5) \div (6 + 4 \times 3 - 2 \times 7) =$$

889 **Output:**

$$891 12 \div (6 + 4 \times 3 - 2 \times 7) = 12 \div (6 + 12 - 2 \times 7) \\ 892 = 12 \div (18 - 2 \times 7) \\ 893 = 12 \div (18 - 14) \\ 894 = 12 \div 4 \\ 895 = 3$$



912 Figure 7: (a) Matrix entropy of the hidden states across layers on the FineWeb Edu subset. We do
913 not observe a significant difference between LiMe and LLaMa in this experiment. (b) Classification
914 accuracy of the hidden states, with standard deviation, measured over five cross-validation folds.
915 Because the hidden states in LiMe do not need to store all the information in the residual stream,
916 they become less separable. See Section 5.3 for more details.

917

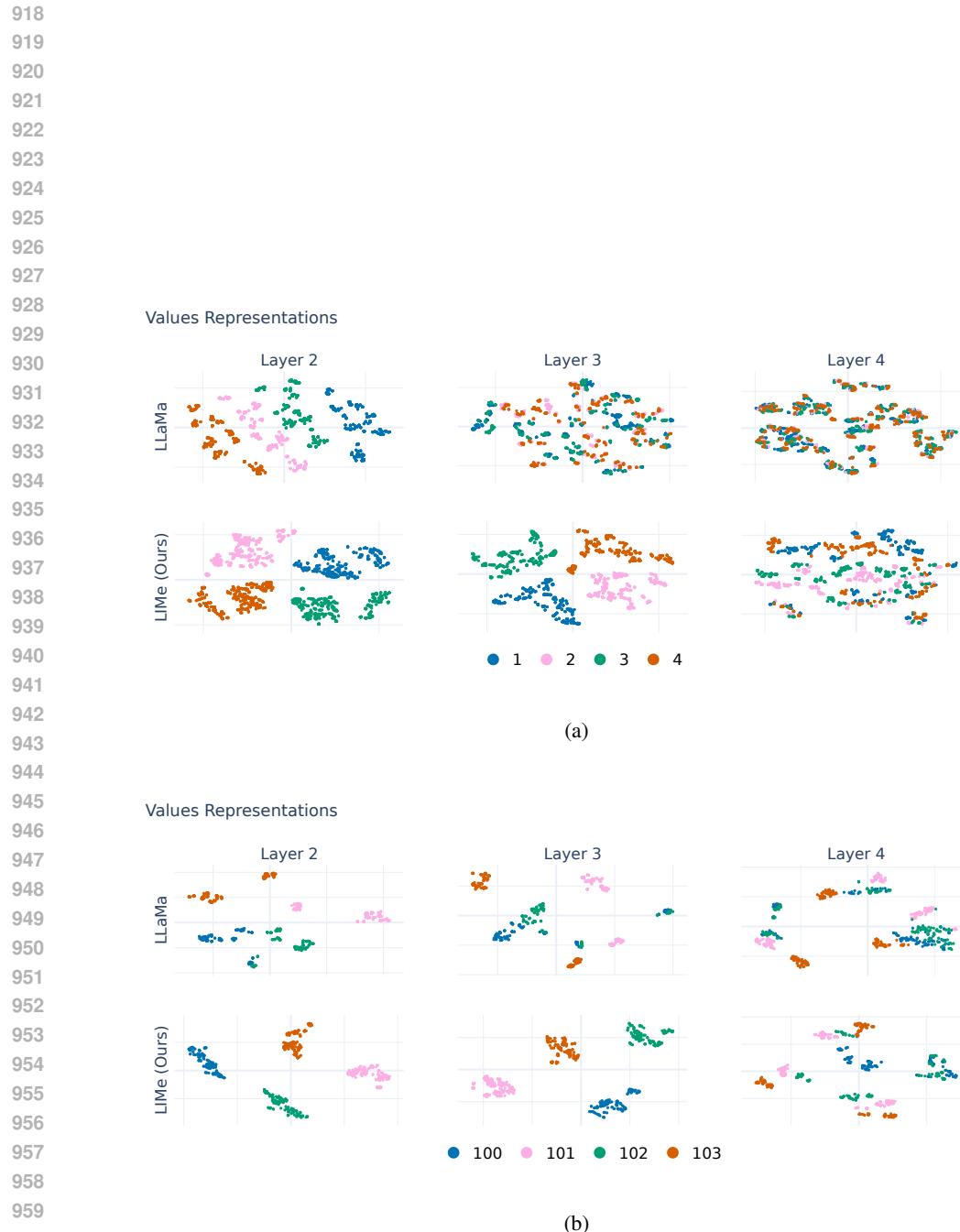


Figure 8: t-SNE of close numbers' values representations of models trained on Arithmetic Expressions Task. (a) For 1, 2, 3, 4. (b) For 100, 101, 102, 103. See Section 5.4.2.

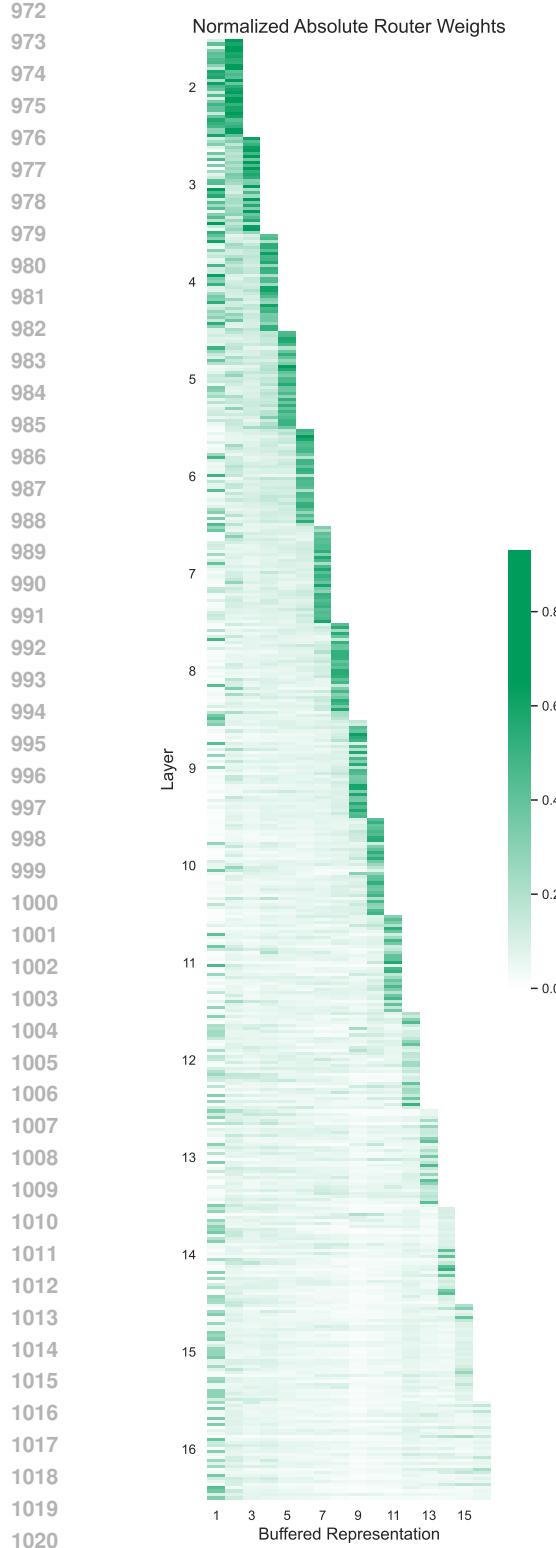


Figure 9: Magnitudes of router weights averaged among buffered heads and normalized among buffered layers. Each cell represents ratio of attention for each buffered representation in the specific head.

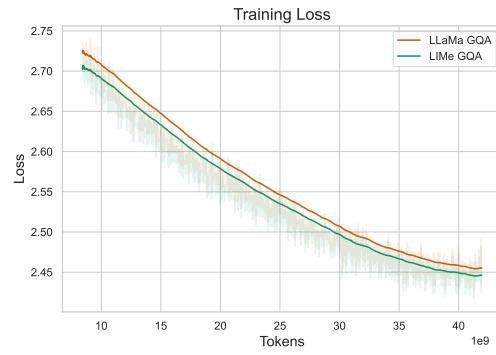


Figure 10: Training loss per tokens trained on for LLaMa and LiMe with GQA. It shows that LiMe is more data efficient. See Section 5.1 for more details.

(a)



(b)

Figure 11: Training loss for LLaMa and LiMe without GQA. (a) shows that LiMe has a substantially lower loss with a similar amount of FLOPs. (b) shows that LiMe is more data efficient. See Section 5.1 for more details.

C ADDITIONAL BENCHMARKS

Model	COPA (50)	MultiRC (50)	WiC (50)	QNLI (50)	WNLI (50)	Avg (50)
LLaMA	75.80 \pm 1.92	43.24 \pm 0.32	50.00 \pm 0.89	49.49 \pm 0.30	51.27 \pm 2.66	53.96
DenseFormer	74.00 \pm 1.96	45.92 \pm 0.32	49.69 \pm 0.89	50.08 \pm 0.30	52.11 \pm 2.66	54.36
HC	74.00 \pm 1.96	54.34 \pm 0.32	49.72 \pm 0.89	49.43 \pm 0.30	56.34 \pm 2.64	56.77
LIMe	75.20 \pm 1.93	56.15 \pm 0.32	50.44 \pm 0.89	51.43 \pm 0.30	56.06 \pm 2.64	57.86

Table 5: GLUE and SuperGLUE benchmarks accuracies (%) on 1B GQA models (3-shot), with average over the five tasks. Random baselines in parentheses.

Model	ARC-E (25)	ARC-C (25)	HellaSwag (25)	OBQA (25)	Avg (25)
LLaMA	70.45 \pm 0.42	38.70 \pm 0.64	52.55 \pm 0.22	37.68 \pm 0.97	49.85
DenseFormer	70.60 \pm 0.42	36.48 \pm 0.63	41.46 \pm 0.22	26.84 \pm 0.89	43.85
HC	71.15 \pm 0.42	37.63 \pm 0.63	54.04 \pm 0.22	40.08 \pm 0.98	50.73
LIMe	71.15 \pm 0.42	39.30 \pm 0.64	52.85 \pm 0.22	39.68 \pm 0.98	50.75

Table 6: QA benchmarks accuracies (%) on 1B GQA models (3-shot), with average over the four tasks. Random baselines in parentheses.

Model	KV (50)	Induction (50)	IR (0.04)	CO (0.06)	Avg (25.03)
LLaMA	45.94 \pm 2.22	54.20 \pm 2.69	12.94 \pm 1.63	16.97 \pm 0.38	32.51
DenseFormer	50.30 \pm 2.23	51.30 \pm 2.69	15.76 \pm 1.77	18.59 \pm 0.39	33.99
HC	51.68 \pm 2.23	51.59 \pm 2.69	15.29 \pm 1.75	18.48 \pm 0.39	34.26
LIMe	55.64 \pm 2.21	55.36 \pm 2.68	14.82 \pm 1.73	17.39 \pm 0.38	35.80

Table 7: Accuracies (%) of 3-shot 1B GQA models on BIG-Bench tasks: Key–Value Maps (KV), Mathematical Induction, Implicit Relations (IR), and Reasoning About Colored Objects (CO). Random baselines in parentheses.

D LINEAR PROBING RESULTS

We evaluate linguistic sensitivity using ten BLiMP minimal-pair tasks (Warstadt et al., 2020). For each task, we use a representative pair (Good/Bad) to illustrate the contrast; full datasets are from the public BLiMP repository. Below, the numbered list (1–10) gives task names, and the Table 8 maps each task to a representative example.

1. Determiner–Noun Agreement with Adjective (Irregular), set 1
2. Complex NP Island
3. Subject–Verb Agreement with Regular Plurals, set 2
4. Determiner–Noun Agreement with Adjective, set 2
5. Determiner–Noun Agreement, set 1
6. Determiner–Noun Agreement, set 2
7. Subject–Verb Agreement with Irregular Plurals, set 1
8. Subject–Verb Agreement with Irregular Plurals, set 2
9. Agreement with Distractor (Relational Noun)
10. Determiner–Noun Agreement with Adjective, set 1

#	Good	Bad
1	Some waiters broke this lost foot.	Some waiters broke this lost feet.
2	Who aren't most hospitals that hadn't talked about most waitresses alarming?	Who aren't most waitresses alarming most hospitals that hadn't talked about?
3	The students perform.	The student perform.
4	Cynthia scans these hard books.	Cynthia scans this hard books.
5	Raymond is selling this sketch.	Raymond is selling this sketches.
6	Some dog stunned this committee.	Some dog stunned these committee.
7	Those radii have scared that teenager.	Those radii has scared that teenager.
8	The women meet.	The woman meet.
9	A niece of most senators hasn't descended most slopes.	A niece of most senators haven't descended most slopes.
10	Rebecca was criticizing those good documentaries.	Rebecca was criticizing those good documentary.

Table 8: Representative BLiMP minimal pairs (one per task). Row numbers 1–10 correspond to the task names listed above.

Layer	Values (acc.)		Hiddens (acc.)	
	LLaMA	LIME	LLaMA	LIME
10	0.892 ± 0.018	0.914 ± 0.015	0.914 ± 0.015	0.933 ± 0.013
11	0.892 ± 0.016	0.912 ± 0.016	0.912 ± 0.013	0.929 ± 0.012
12	0.889 ± 0.013	0.925 ± 0.012	0.908 ± 0.012	0.930 ± 0.015
13	0.883 ± 0.016	0.921 ± 0.016	0.903 ± 0.013	0.926 ± 0.015
14	0.881 ± 0.015	0.921 ± 0.013	0.895 ± 0.015	0.918 ± 0.014
15	0.871 ± 0.016	0.924 ± 0.011	0.886 ± 0.014	0.910 ± 0.012
16	0.864 ± 0.016	0.918 ± 0.010	0.880 ± 0.016	0.897 ± 0.014

Table 9: BLiMP (Warstadt et al., 2020) probing accuracy (5-fold CV) across layers 10–16. LIME improves both value and hidden representations.

E INPUT-DEPENDENT ROUTING

We additionally implemented a Dynamic LIME variant, in which routing weights are generated by projecting the current hidden state (queries) against per-layer, per-head learnable keys. This yields a fully dynamic routing matrix of shape $H \times (L \cdot H)$. While more expressive, this variant introduced substantially higher parameter count, FLOPs, and memory consumption.

Moreover, in early experiments, it achieved marginally worse perplexity than the static LIME variant. Given our core design objective of maximizing efficiency with minimal overhead, we have chosen to emphasize the static routing mechanism in the final version.

F ROUTER ABLATION

We conduct an ablation study to assess the importance of learning full per-layer, per-head router weights in LIME. Specifically, we compare the standard LIME routing against several constrained variants on the 150M-parameter model, evaluating their impact on perplexity:

- **Fixed Average (average):** Aggregates all buffered Key–Value representations via a uniform average, without any learned head-specific weighting.
- **Recent- j (last- j):** Restricts each layer ℓ to attend only to the most recent $\min(\ell, j)$ buffered representations; router weights for these representations are learned.
- **Initial- j (first- j):** Restricts each layer ℓ to attend only to the first $\min(\ell, j)$ buffers plus the immediately preceding layer; router weights for these are learned.

In addition to constraining which *layers* can be routed (last- j and first- j), we also ablate the structure of the router weights themselves. In particular, we ask whether LIME benefits primarily from mixing information *across heads*, or whether it is sufficient to restrict routing to the same head index across layers, and whether making the router more expressive at the per-dimension level improves performance.

	Model	Perplexity	Change to LIMe
1134	LLaMA	16.4611	+3.36%
1135	LIMe average	16.4611	+3.36%
1136	LIMe last-2	16.2810	+2.22%
1137	LIMe last-4	16.1675	+1.51%
1138	LIMe last-6	16.1351	+1.31%
1139	LIMe first-2	15.9746	+0.30%
1140	LIMe first-4	15.9586	+0.20%
1141	LIMe first-6	15.9906	+0.40%
1142	LIMe	15.9267	—
1143			
1144			

1145 Table 10: Impact of constrained routing schemes on validation perplexity for the 150M-parameter
 1146 model. Table reports perplexity for each scheme and the relative change with respect to the full LIMe
 1147 model. The average variant fails to improve over the LLaMA baseline, indicating that uniform
 1148 pooling of past representations is insufficient. Constraining attention to fixed windows of layers
 1149 (last- j and first- j) yields modest gains but still underperforms the unrestricted router. By
 1150 contrast, the full LIMe routing achieves the lowest perplexity (15.9267), corresponding to a 3.36%
 1151 reduction relative to LLaMA, thereby confirming the necessity of learning full, per-head, per-layer
 1152 router weights for optimal performance.

1153
 1154 We therefore compare the default LIMe router against two additional variants on the same 150M
 1155 setup:

1156

- 1157 • **No head mixing** (no-head-mix): each head in layer ℓ only mixes Key–Value states from
 1158 the *same* head index across previous layers (router shape $[H, L]$ instead of $[H, L \cdot H]$). This
 1159 removes all cross-head interactions in the router.
- 1160 • **Per-dimension mixing** (per-dim): each previous head is weighted by a d_{head} -
 1161 dimensional vector instead of a scalar (router shape $[H, L \cdot H \cdot d_{\text{head}}]$), making the router
 1162 strictly more expressive and increasing the number of routing parameters by a factor of
 1163 d_{head} .

1165	Setup	Loss	Perplexity
1166	LLaMA	2.80043	16.45
1167	LIMe (default)	2.76889	15.94 (-3.1%)
1168	LIMe no-head-mix	2.83235	16.99 (+3.3%)
1169	LIMe per-dim	2.77911	16.10 (-2.1%)

1170 Table 11: Router-structure ablation at 150M scale. The no-head-mix variant restricts routing to
 1171 the same head index across layers and removes cross-head interactions; it not only eliminates LIMe’s
 1172 gains but performs worse than the LLaMA baseline. The per-dim variant uses per-dimension
 1173 router weights and is strictly more expressive (and more expensive) than the default scalar per-head
 1174 router, yet remains worse than default LIMe.

1175
 1176 Two conclusions follow. First, *mixing across heads is crucial*: the no-head-mix variant, which
 1177 only aggregates the same head across layers, degrades perplexity to 16.99 (+3.3% vs. LLaMA),
 1178 indicating that LIMe’s benefit comes from cross-head interactions across layers rather than merely
 1179 accessing deeper same-head features. Second, *per-dimension routing does not help in this regime*:
 1180 although per-dim improves over LLaMA (16.10 vs. 16.45), it is still worse than the much simpler
 1181 scalar per-head router (15.94), while introducing on the order of d_{head} more routing parameters and
 1182 higher cost. This suggests that a lightweight per-head scalar router is sufficient and more effective
 1183 under our training budget, reinforcing the design choice used in the main experiments.

1188

1189

1190

1191

G ROUTING VARIANTS IN DEEP MODELS

1192

1193 The ablations in Appendix F study constrained routing schemes at 150M scale. Here we complement
1194 them with a deep 128-layer setup (see Section 5.6), where the naive LIME router that mixes all
1195 previous layers has a more pronounced computational cost. We compare full LIME to structured
1196 variants that sparsify the set of routed layers but keep the same overall architecture.
11971198 In addition to the 128-layer LLaMA baseline and full LIME, we consider:
11991200

- **Dilated- d (`dil-d`):** each layer routes only to a sparsified set of previous layers with fixed
dilation factor d (e.g., every 8th or 16th layer), so that each layer sees roughly L/d routed
sources instead of all L .
- **First- j (`first-j`, **deep**):** each layer routes only to the first j layers plus itself, reusing
early, stable representations while ignoring later intermediate layers when forming the
routed Key–Value mixture. In the deep setting we use $j \in \{7, 15\}$ for $L = 128$.

12011202 Table 12 reports per-iteration time, peak memory, and perplexity for the 128-layer configuration:
12031204

Model	Time / iter (ms)	Peak Mem (MB)	Perplexity
LLaMA	70.21	2054.26	23.73
LIME full	80.85 (+15.2%)	2062.38 (+0.4%)	20.72 (-12.7%)
LIME <code>dil-8</code>	71.59 (+2.0%)	2055.38 (+0.05%)	21.61 (-8.9%)
LIME <code>dil-16</code>	71.57 (+1.9%)	2054.88 (+0.03%)	21.84 (-8.0%)
LIME <code>first-7</code>	71.79 (+2.3%)	2054.85 (+0.03%)	20.55 (-13.4%)
LIME <code>first-15</code>	72.69 (+3.5%)	2055.76 (+0.07%)	20.50 (-13.6%)

1205 Table 12: Routing variants for 128-layer models. Percentages are relative to the 128-layer LLaMA
1206 baseline. Full LIME yields the largest perplexity improvement but also a noticeable increase in per-
1207 step time. Simpler structured routers (`dilated` and `first-j`) retain most or all of the perplexity
1208 gains while keeping latency overhead in the low single digits and memory essentially unchanged.
12091210 Several trends emerge. First, full LIME significantly improves perplexity in the deep regime (from
1211 23.73 to 20.72) but increases step time by about 15%. Second, the `first-7` and `first-15`
1212 variants achieve slightly *better* perplexity than full LIME (down to 20.50) while increasing latency
1213 by only 2–3.5% and leaving peak memory virtually unchanged. Finally, the dilated variants `dil-8`
1214 and `dil-16` offer an intermediate trade-off: they reduce latency overhead to about 2% while still
1215 providing 8–9% perplexity reductions over LLaMA.
12161217 These observations align with the router-weight heatmaps in Fig. 5, where later layers place most
1218 of their mass on early buffers. In very deep models, forcing each layer to consider all L previous
1219 layers can make the router partially adapt to noisy mid-layer states. Restricting routing to early
1220 layers (`first-j`) or to a sparse subset of layers (`dil-d`) effectively keeps the informative early
1221 Key–Value buffers while discarding less useful mid-layer signals, which explains why these struc-
1222 tured variants match or slightly outperform full LIME in perplexity while having negligible overhead.
1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 H LIME PSEUDOCODE

```

1243
1244
1245 1 class KVBuffer:
1246 2     def __init__(self):
1247 3         self.mat = None # [(layers_so_far * kv_h), 2 * b * t * hd]
1248 4
1249 5     def add_(self, key_states, value_states):
1250 6         # key_states/value_states: (b, kv_h, t, hd)
1251 7         b, kv_h, t, hd = key_states.shape
1252 8         kv = torch.cat([key_states, value_states], dim=-1) # (b, kv_h, t, 2*hd)
1253 9         kv = kv.permute(1, 0, 2, 3).reshape(kv_h, b * t * 2 * hd) # (kv_h, b*t*2*hd)
125410         self.mat = kv if self.mat is None else torch.cat([self.mat, kv], dim=0)
125511
125612 class LIMERouter(nn.Module):
125713     def __init__(self, config, layer_idx):
125814         super().__init__()
125915         bound = math.sqrt(
126016             3 / (layer_idx + 1) * config.num_kv_heads
126117         )
126218         weights = torch.empty(
126319             config.num_kv_heads,
126420             (layer_idx + 1) * config.num_kv_heads,
126521         ).uniform_(-bound, bound)
126622         weights[:, -config.num_kv_heads:] = torch.eye(
126723             config.num_kv_heads
126824         )
126925         self.weights = nn.Parameter(weights)
127026
127127     def forward(self, kv_buffer):
127228         # kv_buffer shape = [(layer_idx + 1) * kv_h, 2 * b * t * hd]
127329         return self.weights.mm(kv_buffer)
127430
127531
127632 class LIMEAttention(LlamaAttention):
127733     def __init__(self, config, layer_idx):
127834         super().__init__(config, layer_idx)
127935         if layer_idx > 0:
128036             self.lime_router = LIMERouter(config, layer_idx)
128137
128238     def forward(self, hidden_states, kv_buffer):
128339         query_states = self.q_proj(hidden_states).reshape(b, h, t, hd)
128440         key_states = self.k_proj(hidden_states).reshape(b, kv_h, t, hd)
128541         value_states = self.v_proj(hidden_states).reshape(b, kv_h, t, hd)
128642         kv_buffer.add_(key_states, value_states)
128743         if self.layer_idx > 0:
128844             key_states, value_states = self.lime_router(kv_buffer)
128945             attn_output = scaled_dot_product_attention(
129046                 query_states, key_states, value_states
129147             )
129248             attn_output = self.o_proj(
129349                 attn_output.transpose(1, 2).reshape(b, t, -1)
129450             )
129551         return attn_output, kv_buffer
129652
129753
129854 class LIMELayer(LlamaDecoderLayer):
129955     def __init__(self, config, layer_idx):
130056         super().__init__(config, layer_idx)
130157         self.self_attn = LIMEAttention(config, layer_idx)
130258
130359     def forward(self, hidden_states, kv_buffer):
130460         residual = hidden_states
130561         hidden_states = self.input_layernorm(hidden_states)
130662         attn_out, kv_buffer = self.self_attn(hidden_states, kv_buffer)

```

```

1296             hidden_states = residual + attn_out
1297
1298             residual = hidden_states
1299             hidden_states = self.post_attention_layernorm(hidden_states)
1300             hidden_states = self.mlp(hidden_states)
1301             hidden_states = residual + hidden_states
1302
1303             return hidden_states, kv_buffer
1304
1305     class LIMEModel(LlamaModel):
1306         def __init__(self, config):
1307             super().__init__(config)
1308             self.layers = [
1309                 LIMELayer(config, i) for i in range(config.num_hidden_layers)
1310             ]
1311
1312         def forward(self, input_ids):
1313             hidden_states = self.embed_tokens(input_ids)
1314             kv_buffer = KVBuffer()
1315             for layer in self.layers:
1316                 hidden_states, kv_buffer = layer(hidden_states, kv_buffer)
1317             return hidden_states
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

1350 I EFFICIENCY
1351

MHA	Model	# Parameters (B)	FLOPs (T)
GQA	LLaMa	1.07607	2.7615
	DenseFormer	1.07607 (+0.00%)	2.7622 (+0.02%)
	LIME	1.07608 (+0.00%)	2.7638 (+0.08%)
	HC	1.07640 (+0.03%)	2.7701 (+0.31%)
Full	LLaMa	1.17674	2.9679
	DenseFormer	1.17674 (+0.00%)	2.9685 (+0.02%)
	LIME	1.17687 (+0.01%)	3.0041 (+1.22%)
	HC	1.17706 (+0.03%)	2.9764 (+0.29%)

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Table 13: Model size (# parameters, in billions) and forward FLOPs for LIME, Hyper-connections (HC), and DenseFormer relative to LLaMa under grouped-query attention (GQA) and full attention. We used `torch.jit.trace` to record all operations and estimated FLOPs via the `fvcore` library, based on tensor shapes and ATen operators. Total training FLOPs are approximated as $3 \times$ forward FLOPs, accounting for both forward and backward passes (Anthony et al., 2023).

MHA	RO	Model	Step Time (ms)	Train Peak Memory (GB)
GQA	+	LLaMa	65.770	16.035
		LIME	66.533 (+1.16%)	16.035 (+0.00%)
		DenseFormer	75.032 (+14.08%)	16.812 (+4.85%)
		HC	81.003 (+23.16%)	16.040 (+0.03%)
	-	LLaMa	66.404	20.489
		LIME	67.449 (+1.57%)	20.490 (+0.00%)
		DenseFormer	75.739 (+14.06%)	21.646 (+5.65%)
		HC	83.265 (+25.39%)	21.693 (+5.88%)
Full	+	LLaMa	69.776	17.535
		LIME	77.093 (+10.49%)	17.537 (+0.01%)
		DenseFormer	79.157 (+13.44%)	18.348 (+4.64%)
		HC	84.990 (+21.80%)	17.540 (+0.03%)
	-	LLaMa	70.258	22.364
		LIME	77.607 (+10.46%)	22.367 (+0.01%)
		DenseFormer	79.733 (+13.49%)	23.566 (+5.37%)
		HC	86.314 (+22.85%)	23.007 (+2.87%)

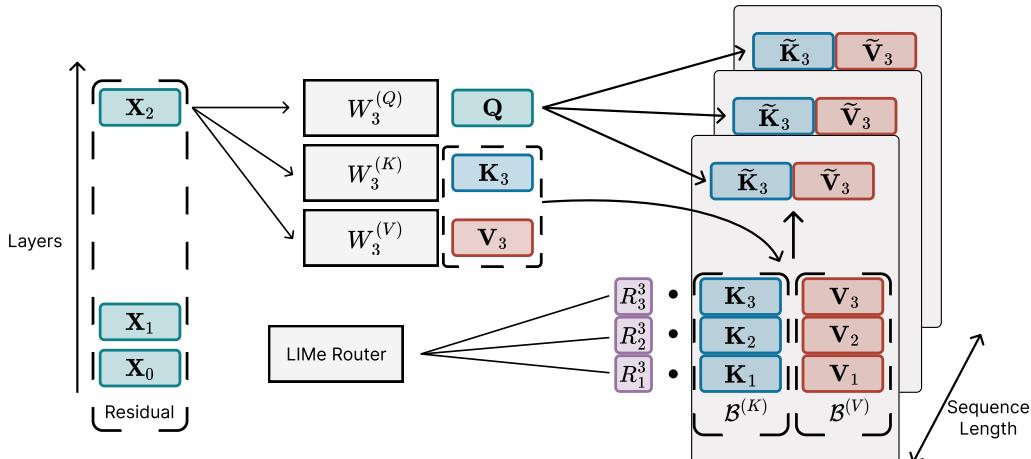
Table 14: Per-step latency and peak GPU memory usage of LIME, DenseFormer, and Hyper-connections (HC) in comparison to LLaMa under grouped-query attention (GQA) and full attention (Full), measured with PyTorch Inductor in default (–) and reduced-overhead (+) modes.

1404 **J PIPELINE PARALLELISM**
1405

1406 Under standard DDP training, LIMe does not incur any additional memory overhead—routing occurs via existing KV caches. Under pipeline parallelism (PP), the KV cache must be communicated across stages. However, we show that this can be efficiently implemented using asynchronous
1407 scheduling. Specifically, each pipeline stage:

1408
1409
1410
1411 • Computes its transformer layer output on already acquired micro-batch routed states.
1412 • Routes KV buffers for later layers via non-blocking ops.
1413

1414 This dual-pipeline structure (forward pass + KV routing) allows communication and computation to
1415 be efficiently overlapped, minimizing idle time and avoiding runtime bottlenecks. Such scheduling
1416 strategies are well-established in modern pipeline parallelism frameworks, including DeepSpeed’s
1417 PipeTransformer (He et al., 2021) and Megatron-LM (Shoeybi et al., 2019). While implementing a
1418 fully optimized schedule requires non-trivial engineering effort, we leave this for future work. To
1419 provide preliminary empirical evidence of scalability, we implemented pipeline parallelism for the
1420 8B model using a straightforward 1F1B schedule across 8 stages (8 GPUs). In our measurements
1421 LIMe incurs only a **7.8%** training latency overhead (**1130** vs. **1048** ms/step), indicating that PP
1422 communication for routed KV can be efficiently hidden in practice.
1423

1424 **K LIME VISUALISATION**
14251441 Figure 12: LIMe routing scheme.
14421443 **L LLM USAGE**
1444

1445 We used LLMs for writing and text polishing.
1446

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457