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Abstract

Cross-view geo-localization (CVGL) aims to estimate the geographic location of a
street image by matching it with a corresponding aerial image. This is critical for
autonomous navigation and mapping in complex real-world scenarios. However,
the task remains challenging due to significant viewpoint differences and the
influence of confounding factors. To tackle these issues, we propose the Causal
Learning and Geometric Topology (CLGT) framework, which integrates two key
components: a Causal Feature Extractor (CFE) that mitigates the influence of
confounding factors by leveraging causal intervention to encourage the model
to focus on stable, task-relevant semantics; and a Geometric Topology Fusion
(GT Fusion) module that injects Bird’s Eye View (BEV) road topology into street
features to alleviate cross-view inconsistencies caused by extreme perspective
changes. Additionally, we introduce a Data-Adaptive Pooling (DA Pooling) module
to enhance the representation of semantically rich regions. Extensive experiments
on CVUSA, CVACT, and their robustness-enhanced variants (CVUSA-C-ALL and
CVACT-C-ALL) demonstrate that CLGT achieves state-of-the-art performance,
particularly under challenging real-world corruptions. Our codes are available at

CLGT.

1 Introduction

Cross-view geo-localization (CVGL) aims to es-
timate the geographic location of a street image
by matching it to a corresponding aerial image.
This task plays a crucial role in applications such
as autonomous driving, robotic navigation, and
urban mapping [24; [2; 27]. However, it remains
highly challenging due to the extreme differences
in perspective, scale, appearance, confounders and
occlusion between street and aerial views. Previ-
ous studies have mainly explored three directions
to improve cross-view matching: viewpoint mod-
eling [28]], spatial alignment [21], and hard nega-
tive mining [[1]. Despite these efforts, cross-view
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Figure 1: Structural Causal Model (SCM) for
cross-view geo-localization. Nodes represent
variables and arrows denote dependencies.

geo-localization remains challenging due to weather changes, misalignment, and occlusions, all
of which demand stronger generalization and discriminative feature learning. To address these
limitations, |[Mi et al.[13]] introduced feature consistency constraints to enhance robustness to orienta-
tion and field-of-view variations. To better reflect real-world conditions, Zhang et al.[32] proposed
corruption-rich benchmarks for robust evaluation, while |Ye et al.[28]] leveraged a Bird’s Eye View
(BEV) representation as an intermediate domain to bridge the large cross-view gap.
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Figure 2: Visualization of low, mid, and high frequency components of a street image. Low and
high frequencies emphasize domain-specific information such as style, while the mid-frequency band
retains domain-invariant cues such as structure and shape.

Building upon the aforementioned challenges and recent advances, we propose a framework to address
cross-view geo-localization from both causal perspectives and geometric. Inspired by instances where
classification models mistakenly associate sheep with grass, we argue that the CVGL task should
not rely on confounding factors such as background or lighting. To mitigate the interference of
confounding (non-causal) factors and spurious correlations, while enhancing model generalization,
we introduce causal learning concepts into the CVGL task. Drawing on previous causal modeling
work and considering the characteristics of street images, we establish the first Structural Causal
Model (SCM) for CVGL, and perform causal intervention guided by the SCM. Since domain-specific
(non-causal) signals often reside in extreme low and high frequency bands, while mid-frequency
components typically preserve structure-relevant, discriminative information [7]] (Figure [2)), we
design our Causal Feature Extractor as a do-operation in the frequency domain. This allows us to
implement a back-door adjustment -akin to causal interventions -that increases the model’s attention
to causal factors while reducing interference from non-causal factors. To further enhance the model’s
geometric awareness and mitigate the impact of large viewpoint gaps, we propose the Geometric
Topology Fusion (GT Fusion) module, which robustly integrates BEV road topology into street
features, leveraging clearer and more localized road topology compared to complex street images.

At the feature level, conventional pooling layers often fail to capture rich semantic cues. To address
this, we propose a DA Pooling module that dynamically refines feature representations, enabling the
model to capture more context-aware information across diverse scenes and viewpoints.

In summary, our main contributions are:

* We are the first to introduce causal learning concepts into CVGL tasks by applying causal
interventions to latent confounding factors, thereby reducing their influence on feature
learning. This mechanism enables the model to focus on causally relevant information, such
as building structures and road layouts, leading to improved robustness and generalization
in complex environments.

* We propose a GT Fusion module that enhances the model’s ability to perceive geometric
information, mitigating the issue of large viewpoint discrepancies in CVGL tasks and
providing more robust localization performance for CVGL.

* We design a DA Pooling to extract rich semantic information and enhance semantic repre-
sentations across different environments.

Our work highlights the importance of structural reasoning and causal robustness in bridging the
cross-view domain gap, setting a new direction for future research in geo-localization.



2 Related Work

2.1 Cross-view Geo-localization

Contrastive Learning-based methods. Contrastive learning has been widely applied in cross-
view geolocation tasks [[1; 255 [265 215 28 [31]]. It helps mitigate feature distribution discrepancies
between different viewpoints. For example, ConGeo [13] leveraged both single-view and cross-
view contrastive losses while incorporating view-specific augmentation strategies. This effectively
extracts robust feature representations, enabling the model to maintain high matching accuracy despite
viewpoint limitations and orientation deviations. Moreover, Sample4Geo [[1] proposed a simplified
yet effective contrastive learning framework with a symmetric InfoNCE [19] loss, which fully utilizes
all negative samples to accelerate model convergence.

Incorporation of Geometric Information. To address the challenges posed by drastic viewpoint
variations, some approaches focused on extracting geometric layout information or leveraging BEV
images to enforce geometric consistency constraints. For instance, GeoDTR [33] employed a ge-
ometric layout extractor to learn spatial correlations between aerial and street features, preventing
overfitting to low-level details. Similarly, EP-BEV [28] and HC-Net [21] integrated BEV represen-
tations into cross-view geolocation to bridge the substantial differences between views. EP-BEV
utilized a dual-branch structure to impose geometric consistency constraints, while HC-Net [21]
directly reformulated cross-view geolocation as an image alignment problem.

2.2 Causality in Computer Vision

This limitation underscores the motivation for causal inference in visual learning: relying solely
on statistical correlations in data is insufficient for reliably predicting counterfactual outcomes and
may amplify spurious associations. Causal inference, by modeling the underlying data-generating
mechanisms, aims to isolate invariant causal factors and thereby enhance generalization to unseen
domains and conditions. To mitigate the interference of non-causal features and extract invariant
causal representations, causal mechanisms have been widely adopted in computer vision [[18;3; 17}
305 l6]].

In cross-view geo-localization tasks, it is essential to first establish causal relationships and then
apply causal inference—including interventional estimation and counterfactual analysis—to eliminate
confounding contextual factors and domain shifts. This approach enhances model robustness against
domain variations and weather conditions, which pose significant challenges in this task. Drawing
on previous causal modeling work [[12; [10]] and considering the characteristics of street images,
we formally define the causal relationships cross-view geo-localization as shown in FigurdI] and
employ interventional estimation to block the direct influence of confounders, significantly improving
generalization. There are two common methods for causal intervention: front-door adjustment
and back-door adjustment. Front-door adjustment is used when non-causal factors (confounders)
are unobserved, requiring the introduction of an intermediate variable M to reduce the influence
of confounding factors. When confounders are observable, back-door adjustment is used, where
confounding factors are directly intervened to reduce their impact.

3 Method: CLGT

This paper proposes a novel framework for cross-view geo-localization. A multi-head attention-based
fusion module, which robustly integrates BEV features into street features via cross-attention and
dual dynamic fusion, enforces geometric consistency constraints. To enhance causal features in
street representations while mitigating the interference of non-causal features, we employ causal
inference-based estimation and intervention. Furthermore, we introduce a DA pooling module to
refine the fused features with rich semantic information. The overall model architecture is shown in
Figure[3] The following sections provide a detailed introduction to our proposed method.

3.1 Preliminary

BEYV Generation. Various methods exist for generating BEV images, including geometry-based
transformations [21; 28], Transformer-based [35]], and diffusion-based methods [29]. To balance
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Figure 3: Overview of the proposed Causal Learning and Geometric Topology (CLGT) framework.
The road topology information from BEV is fused via the GT Fusion module to obtain the fused
features, which are then used for location matching with aerial image features. The causally enhanced
street features from the CFE module provide causal supervision, and the DA Pooling module performs
final feature extraction.

efficiency and memory use, we adopt the geometric transformation from [21]], which directly
computes BEV point positions via geometric back-projection from panoramic images. This explicit
mapping projects street-view images into BEV space without relying on depth estimation or camera
parameters, enabling a simple and efficient street-to-BEV transformation.

Structural Causal Model. As illustrated in Figure [I] our SCM is grounded on the following
assumptions:

* The street image X, is mainly generated from two sources: semantic content C' and a
domain confounder D (e.g., background, lighting), denoted as C' — X < D.

* The content C' contains both discriminative and non-discriminative parts. Together with
D, the non-discriminative part contributes to the generation of non-causal features F), via
D — F,, < C. The CFE module perturbs a portion of these non-causal components.

* The causal features F, are derived from the discriminative part of C' via C' — Fr.

* The full feature representation Z = {F,, F,,} influences the final prediction Y via Z — Y,
where Y is the matching label.

The overall cross-view matching process can be expressed as X, — f(X) = Y « f(X) « X,
where X, denotes the aerial image. In this context, the SCM formulation 7 — Y is a causal
abstraction of the model’s computational path X, — f(X) — Y.

3.2 Causal Learning

The complete process of Causal Learning is illustrated in the top-right corner of Figure [3] where
Query™* is obtained through the Causal Features Extractor.

Causal Features Extractor. As shown in Figure[2] roads and buildings in street-view images tend
to occupy the mid-frequency spectrum, while style variations are concentrated in the high and low
ends, respectively. This aligns with the nature of CVGL, where structural elements are crucial for
localization, and view-specific cues often act as noise. To isolate task-relevant features, we leverage
the Discrete Cosine Transform (DCT) in our Causal Feature Extractor. Then our Content-aware Mask
(CaM) constructs three concentric circular masks with initial radii of 71, 73, and r3, dividing the
frequency spectrum into four regions. Unlike prior work [23] that used fixed spectral thresholds, these
radii are linearly increased based on image gradient magnitude (via Sobel operator), so that images
with stronger gradients preserve more mid-frequency components, enabling better retention of causal
information. Larger radii correspond to stronger Gaussian perturbations in outer frequency bands.
This allows the model to adaptively preserve mid-frequency, causal components while suppressing
non-causal signals. The masked frequencies are then transformed back via inverse DCT. The entire
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Figure 4: Tllustration of the Causal Feature Extractor (CFE). The input image is transformed into the
frequency domain via Discrete Cosine Transform (DCT). A Content-aware Mask (CaM) strategy
dynamically separates mid-frequency causal components from low- and high-frequency non-causal
components. A Gaussian function is applied to only to the non-causal components (e.g., lighting and
brightness) to reduce their influence. Both causal and non-causal parts are then reconstructed via
inverse (IDCT) to obtain the causally enhanced image.

process of CFE is shown in Figure[d The Causal Features Extractor is defined as:

CFE(x)=F"[(1—-M(r)) - F(z)+ G(M(r) - F(z)) 1)

Causal Non-Causal Randomized

where F denotes the Discrete Cosine Transform and F 1 is its inverse. M () is a content-aware
circular band-pass mask with radius r. G(-) denotes a randomization function, defined as G(X) =
X - (1+N(0,1)).

After obtaining Query* through the CFE module (do(X, := X)), we impose a supervision loss
between the causally enhanced features derived from Query™ and the fused features to weaken the
path C — X; — f(X) — Y (where C denotes confounding variables that influence the generation
of X), achieving the effect similar to back-door adjustment in causal interventions.

3.3 Geometric Topology Learning

To guide the fusion of street and BEV features,
we propose the GT Fusion module. This module
effectively leverages the BEV road topology infor-
mation while enriching the street features output
by the backbone, dynamically injecting road topol-
ogy information without compromising the street
details.

GT Fusion. As shown in Figure 5] (left), our fu- e —
sion module first applies a 3 x 3 depthwise comvo- o * o = o 0 O 0.
lution to backbone outputs X, X, € R*#% : ‘ ’

to extract local features, maintaining the feature
shape. To capture global context, instead of the
common Spatial Reduction Attention (SRA) [[11]],
which disrupts boundary spatial structure via non-
overlapping token reduction, we adopt Overlap-
ping Spatial Reduction (OSR) to preserve spatial
coherence. Finally, X acts as the query and X,
as key and value in a cross-attention module, ef-
fectively fusing street-view and BEV features.

Figure 5: Overview of the GT Fusion and
DA Pooling modules. GT Fusion uses cross-
attention to exchange semantic information be-
tween street and BEV features, then uses Dual
Dynamic Fusion (DDF) to enhance fusion robust-
ness. DA Pooling employs a gating mechanism
to adaptively weight features, highlighting the
most informative ones.

Inspired by [4]], we further introduce a Dual Dy-
namic Fusion (DDF) strategy to robustly integrate the original street features (denoted as F*) and



their geometry-enhanced counterparts(denoted as F¢). DDF is defined as:

w = o (7 (AvgPool(F*® + F*#)))
Adaptive(F) = (W - AvgPool(F)) - F 2)
Fiusea = Adaptive (Conv([w - F*, (1 — w) - F¢]))
where F* denotes the original street-view feature. W is a 1 x 1 convolution, while Conv refers to
a 3 x 3 convolution. [, ] denotes the concatenation operation along the channel dimension. v is a

linear transformation, and o denotes the sigmoid activation function. The GT Fusion module can be
formulated as follows:

X, = proj(Xs) + X, Xj, = proj(X) + X, 3)

Q = LM(OSR(X)) + X!); K,V = LM(OSR(X,) + X}) 4)
QKT

Z = SOﬂmaX \/g + B Va Ffused = DDF(Xsa Z) + Xs (5)

where proj refers to the 3 x 3 depthwise convolution, with X and X}, representing the street and
BEV features output by the backbone, respectively. LM denotes a Layer Normalization. O.S R stands
for Overlapping Spatial Reduction, which is used for global information extraction. B is a relative
position bias matrix that encodes the spatial relationships within the attention maps, d represents the
number of channels in each attention head, and DDF denotes a dual dynamic fusion module.

Data-Adaptive Pooling. As shown on the right side of Figure|5] our Data-Adaptive Pooling module
improves upon conventional pooling methods such as global max pooling, global average pooling, and
adaptive pooling. These traditional pooling techniques, when used as the final feature aggregation step,
fail to effectively capture the rich semantic information of the features. To enhance the representation
capability, we combine global max pooling, global average pooling, and geometric mean (Gem)
pooling into a single Gate Pooling module. This allows the model to autonomously learn the pooling
output, and improve the quality of the final token, thus enhancing both the model’s representational
power and robustness, which can also be formulated as:

Fraz = MaxPool(Z), Fuyg = AvgPool(Z), Fyer, = Gem(Z) (6)
Foutput = Gate(Linear(Faz + Favg + Fyem)) @)

where M ax Pool is global max pooling, AvgPool is global average pooling, Gem denotes a geo-
metric mean pooling, Linear is a Linear Functiion, and Gate denotes a gating mechanism.

3.4 Loss Function

We apply InfoNCE loss between the fused features and the aerial image features, which serves as the
primary supervision signal to optimize our model. The InfoNCE loss is defined as:

L(f, ) mioncE = — 1o exp(f - r+/7))
(f, S)infoNCE gzioexp(f.”/ﬂ)

where f denotes the fused feature guided by the query street image, and S is the set of encoded aerial
images with one positive 7 matching f. The InfoNCE loss computes the dot-product similarity
between f and each r;, maximizing similarity with ;. and minimizing it with negatives. The
temperature 7 controls distribution sharpness and can be fixed or learned.

®)

As stated in Section we apply InfoNCE loss between the causally enhanced features and the
fused features to achieve a similar effect to back-door adjustment, encouraging the fused features
to focus on causal components. Prior to fusion, to encourage the BEV and street features to lie in
a geometrically consistent space, we also apply InfoNCE loss between the two. To preserve their
complementarity, we apply a scaling factor to control their learning balance. Thus, we obtain the
overall loss of CLGT by computing the weighted sum of them as follows:

Lorar = L(f,S)infonce +YL(f, s )infoncE + aL(S,b)infoncE )

where « and ~y are scaling coefficients, s* denotes the causally enhanced street features, s represents
the original street features, and b is the BEV feature.



4 Experiment

In our evaluation we conduct experiments on four standard benchmarks, namely CVUSA [22],
CVACT [8], VIGOR [36] and CVACT _val-C-ALL, CVACT _test-C-ALL, CVUSA-C-ALL [32]. In
the subsequent tables we compare our approach with previous work.

4.1 Dataset and Evaluation Protocol

Dataset. We evaluate our model on three widely-used cross-view geo-localization bench-
marks—CVUSA, CVACT, and VIGOR—as well as their robust variants: CVACT _val-C-ALL,
CVACT _test-C-ALL, and CVUSA-C-ALL, which introduce various real-world corruptions to test
model robustness under challenging conditions. CVUSA and CVACT each provide 35,532 train-
ing and 8,884 testing image pairs with a strict 1-to-1 ground-to-aerial correspondence. In addition,
CVACT offers an extra 92,802 GPS-tagged query images for large-scale retrieval evaluation, making it
suitable for both standard and large-scale testing scenarios. VIGOR is a more challenging benchmark
that spans four metropolitan areas—New York, Seattle, San Francisco, and Chicago—and includes
105,214 query and 90,618 reference images. Unlike CVUSA and CVACT, VIGOR introduces a
harder retrieval setup by assigning each query one true positive and three semi-positive samples, thus
increasing the difficulty of discriminative matching. It also supports both same-city and cross-city
evaluation settings to assess generalization. To further assess model robustness in realistic condi-
tions, we employ corruption-augmented datasets: CVACT_val-C-ALL, CVACT _test-C-ALL, and
CVUSA-C-ALL. These variants simulate 16 types of visual degradations, generating approximately
1.5 million corrupted images in total. They provide a rigorous benchmark for evaluating the model’s
ability to maintain performance under various environmental and sensor-induced perturbations.

Evaluation Protocol. We adopt Recall @K as the primary evaluation metric, where K € {1, 5,10},
as well as Recall@1%. A query is considered correctly localized if its corresponding aerial image
appears among the top-K retrieved candidates for a given street panorama.

4.2 TImplementation Details

During the retrieval stage, we adopt ConvNeXt-

B as the backbone encoder for both street images

and aerial images. Our baseline is EP-BEV. To Table 1: Ablation study on causal learning: com-
reduce computational cost and memory usage, parisons of performance on the CVACT _val-C-
we set the image resolution to 384 x 384, con- ALL and CVACT_test-C-ALL datasets.

sistent with EP-BEV. The model is optimized Model CVACT_val-C-ALL  CVACT_test-C-ALL
using AdamW with an initial learning rate of R@l R@5 R@10 R@1 R@5 R@10
0.5 x 1073, We train the network for 40 epochs
with a batch size of 128. The training is con-
ducted on eight 32GB NVIDIA V100 GPUs.
For both « and v in Equation 0] we set their
values to 0.1 to provide auxiliary supervision
without overwhelming the main optimization objective. When we increase the value of -, the model
performance improves across various datasets. However, to prevent the value from becoming too large
and causing model collapse, which would negatively affect the matching between street and aerial
images, we set a default value of 0.1, although this collapse was not observed during training. The
optimal value is 0.5, and we will also provide hyperparameter experiments and model performance
with v = 0.5 in the supplementary materials. We set the initial three radii for the content-aware mask
to 0.1, 0.3, and 0.6, respectively. We also observe that performance is stable under small variations in
the initial radius. Other training settings follow those used in Sample4Geo.

Ours 88.68 95.58 96.66 69.06 90.12 92.70
Only CL 88.11 9491 96.04 67.88 89.31 91.85
Baseline 85.94 9452 9593 64.62 87.75 90.78

4.3 Comparing with State-of-the-art Models

Cross-view Image retrieval. As shown in Table[2] our method achieves the best overall performance
across CVUSA, CVACT _val, and CVACT_test datasets. Compared with the strong baseline EP-BEV,
our model improves Recall@1 from 97.41% to 98.85% on CVUSA, and from 90.61% to 91.97%
on CVACT _val. On the more realistic CVACT_test set, we achieve 73.22% Recall@1, surpassing
EP-BEV by 1.81% points.These consistent gains demonstrate the effectiveness of our design. The



integration of BEV-based geometric topology helps capture structured layout cues, while the causal
learning strategy improves robustness by suppressing spurious visual signals. Together, they enable
more discriminative and generalizable representations for cross-view geo-localization. Results on the
VIGOR dataset are provided in the supplementary materials.

Table 2: Comparisons with state-of-the-art models on the CVUSA, CVACT _val and CVACT _test
datasets. (fmethods that use polar transformation.)
CVUSA CVACT _val CVACT_test

R@l R@5 R@10 R@1% R@l R@5 R@l0 R@1% R@l R@5 R@I0 R@I%

Model

SAFAT [14) 89.84 9693  98.14 99.64  81.03 92.80 94.84 - - - - -

LPN [20] 85.79 9538  96.98 99.41 79.99 90.63  92.56 - - - - -
LPN" [20] 92.83 98.00  98.85 99.78 83.66 94.14  95.92 98.41 - - -
DSM [16] 91.96 97.50 98.54 99.67 82.49 9244  93.99 97.32 - - -

TransGeo [37] 94.08 9836  99.04 99.77 8495 94.14  95.78 98.37 - - -

GeoDTR [33] 93.76  98.47  99.22 99.85 8543 9481 96.11 9826 6296 8735 90.70 98.61
GeoDTR+ [34] 95.05 9842  98.92 99.77 8776 9550  96.50 9832 67.75 90.15 92.73 98.53
GeoDTRT [33] 9543  98.86 99.34 99.86  86.21 9544  96.72 98.77 6452 8859  91.96 98.74
SampledG [1] 98.68 99.68  99.78 99.87  90.81 96.74 97.48 98.77  71.51 9242 9445 98.70
ConGeo [13] 98.30 - - 99.90  90.10 - . 3
EP-BEV [28] 97.41 99.40  99.60 99.76  90.61 96.57 97.32 98.71 71.41 9238  94.37 98.77
Ours 98.73  99.71  99.80 99.84  91.61 9693 97.72 98.77  73.03 93.03 94.81 98.63
Ours (y = 0.5) 98.85 99.71 99.81 99.86  91.97 9695 97.72 98.77 7322 9350 9523 98.79

Robustness Evaluation. As shown in Table [3] our method consistently outperforms baselines
across robust datasets, with an average improvement of 5.00%. Notably, it achieves a 6.62% gain
on CVUSA-C-ALL, highlighting the model’s ability to extract localization-relevant cues such as
edge textures of buildings and road structures, while suppressing non-causal noise like lighting
and weather conditions. On challenging splits such as CVACT_val-C-ALL, CVACT _test-C-ALL,
and CVUSA-C-ALL, our approach demonstrates strong robustness by mitigating the impact of 16
common perturbations and improving retrieval accuracy. Furthermore, in cross-dataset evaluation
(trained on CVUSA, tested on CVACT), our method improves performance by 5.50% and 2.84%
(Table[6), further validating its generalization and robustness under distribution shifts.

Table 3: Comparisons with state-of-the-art models on the CVUSA-C-ALL, CVACT_val-C-ALL and
CVACT _test-C-ALL datasets.

Model CVUSA-C-ALL CVACT _val-C-ALL CVACT _test-C-ALL

R@l R@5 R@I10 R@1% R@l R@5 R@I0 R@I1% R@l R@5 R@I0 R@I%

CVM-Net [3] 6.09 16.05  23.14 52.51 - - - - - - -
OriCNN [9] 9.38 2226 30.04 58.99 1531 2831 3521 58.39 3.69 8.33 11.04 43.93

SAFA [14] 63.68 78.08  82.82 93.91 56.72  73.60  78.59 91.32  31.18 52,06 58.60 90.41
CVFT [15] 41.05 64.01 72.64 9137 4569 66.45 7297 88.38 2282 4348 51.07 88.99
DSM [16] 7527 86.26  89.42 95.07  70.04 82.81 85.86 93.51 47.13 6841 7352 93.18
L2LTR [25] 8793 9545 97.01 99.01 82.13 9334 9493 98.10  57.20 8259  87.23 98.09

TransGeo [37] 82.72 9195 94.03 9792 7404 86.19 89.10 9498  52.18 7435 78.99 95.03
GeoDTR [33] 84.64 9329 95.01 9824 7740 8895 91.28 9591 52.87 78.84  83.17 95.84
EP-BEV [28] 86.22 94.86 96.58 99.00 8594 9452 9593 98.21 64.62 8775 90.78 98.43
Ours 92.64 9721 98.21 99.35  88.68 9558  96.66 98.49  69.06 90.12  92.70 98.41
Ours (v = 0.5) 92.84 97.61 98.41 99.35 8949 9584 96.92 98.49  69.71 91.05 93.30 98.85

Table 4: Ablation study on DA Pooling: compar- Table 5: Ablation study of the CLGT on
ison with other pooling methods on CVACT. CVACT _val.
Method CVACT _val CVACT _test Method CVACT _val
R@l R@5 R@I0 R@l R@5 ReI0 R@l R@5 R@I0 R@I%
DA pooling 91.61 9693 97.72 73.03 93.03 94.81 CLGT 91.61 9693 9772  98.77
Gem 89.24 95.64 9665 69.78 9218  93.78 wio GT Fusion 9124 9677 9741  98.65
Avg 9119 9652 9733 7158 9252 9451 w/o CFE 91.01  96.66 9751  98.64
Max 90.55 9651 97.25 7078 9220 9423 Baseline 90.61 9657 97.32 9871

Ablation Study. We conduct comprehensive ablation studies on CVACT_val, CVACT _val-C-ALL,
and CVACT _test-C-ALL to evaluate the individual contributions of each proposed component.
As reported in Table [5] employing only the Geometric Topology Fusion (GT Fusion) module



yields a Recall@1 of 91.01% on CVACT_val. This result highlights the importance of geometric
consistency learning, which enables the model to better capture road layouts and spatial structures,
thereby improving the alignment between ground-level and aerial images.When using only the CFE
module, the model achieves a Recall@1 of 91.24%, illustrating its capability to suppress spurious
correlations and guide the model toward learning causally relevant and semantically stable features.
This enhancement plays a crucial role in resisting interference from latent confounders. As shown in
Table[d, our DA Pooling consistently outperforms traditional pooling schemes across all evaluation
metrics. Specifically, compared to GeM, DA Pooling improves Recall@1 on CVACT by +2.37%,
showing its advantage in dynamically emphasizing informative spatial regions. This confirms the
importance of adaptivity in multi-view feature aggregation.

Table 6: Results on different cross-view transfer tasks. Each task is evaluated with representative
methods. (tMethods using polar transformation.)

Task Method R@l R@5 R@I0 R@I1%
L2LTR [23] 4755 7058 - 91.39
L2LTRT [23] 5258  75.81 - 93.51

CVUSA s CVACT val  GeoDTR [33] 4779 7052 - 92.20
GeoDTR' [33]  53.16  75.62 - 93.80
Samp4G [T 56.62 7779 87.02  94.69
EP-BEV [28] 5932 80.79  86.02  94.69
Ours 60.70 8140  86.10  95.16
Ours(y = 0.5) 64.82 8438 8877  96.16
L2LTR [23] - - -
L2LTRT [25] -

CVUSA —s CVACT test ~ G¢0DTR [33]
GeoDTR' [33] 2209 3222 3959  85.53

Samp4G [1] 27.78  52.08 60.33 94.88
EP-BEV [28] 32.68  58.62 65.34 95.21
Ours 3323 59.59 67.53 95.31

Ours (y = 0.5) 3552  63.37 71.40 96.35

Furthermore, as shown in Table [T} causal learning alone brings significant improvements on the more
challenging and corrupted test sets: Recall@1 increases by 2.23% on CVACT_val-C-ALL and by
3.20% on CVACT _test-C-ALL. In addition to Recall@1, other evaluation metrics such as Recall@5
and Recall@10 also show consistent improvements, closely approaching the performance of the full
CLGT model. These results confirm the effectiveness of our causal learning strategy in improving
robustness under real-world corruptions and diverse input conditions. Overall, the ablation results
validate that both modules—GT Fusion and CFE—contribute meaningfully and complement each
other in addressing the challenges of cross-view geo-localization.

Visualization Analysis. To qualitatively assess the effectiveness of CLGT, we visualize attention
heatmaps generated by the baseline and CLGT models on test images from the CVUSA dataset. As
shown in Figure[6] we first visualize the heatmaps on clean images. It can be seen that the baseline
model’s attention is more scattered, even focusing on the sky and other background noise, while
CLGT consistently attends to task-relevant information, especially road structures. Under heavy snow
conditions, compared to the baseline, the regions attended by our model remain almost unchanged,
whereas the baseline’s focus is completely misaligned. This shows that our CLGT consistently
attends to semantically meaningful structures, such as road intersections and corner layouts, which
are more stable across views. This demonstrates the effectiveness of our design in guiding the
model to prioritize task-relevant features and suppress distractions, leading to improved cross-
view discriminability. Visualizations for other corruption types can be found in the supplementary
materials.

Complexity Analysis. As shown in Table |7| we report both GFLOPs and average inference time
(in milliseconds per batch of 128 images) on the CVACT _val set. The results demonstrate that our
method achieves the best R@1 accuracy with only marginal computational overhead compared to
other methods.



Table 7: Comparison of GFLOPs and average inference time per batch (batch size = 128) on
CVACT _val. Avg inference time (ms) represents the mean time to process one batch.

Method GFLOPs Avg Inference Time (ms) CVACT_val R@1
Sample4Geo 90.54 2367.55 90.81
EP-BEV 90.54 2396.53 90.61
Ours 90.56 2374.76 91.61

Ours Baseline
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Figure 6: Heatmap visualizations on CVUSA under clean and snow settings. Compared to the
baseline, our method focuses more on task-relevant structural information. Under heavy snow
conditions, our method remains highly robust, with attention regions largely unchanged, whereas the
baseline’s attention is completely misaligned.

5 Conclusion and Future Work

In this work, we present a novel cross-view geo-localization framework that integrates BEV-street
view fusion with causal learning mechanism. Unlike previous methods that utilize BEV merely as an
auxiliary representation, our approach enables feature-level interaction that effectively and robustly
incorporate road topology. To further improve generalization, we introduce a causal intervention
module, thereby enhancing filters out non-causal information and enhances model robustness under
various conditions. Experimental results on both standard and challenging datasets demonstrate
consistent performance gains. Nonetheless, the BEV representations derived from geometric transfor-
mations contains considerable noise, which limits further the performance improvements. Future
work will explore more advanced causal inference strategies tailored to the dynamics of complex
cross-view localization tasks.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction align well with the method-
ologies, experiments, and findings presented in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitations of the paper in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theoretical result is accompanied by clearly stated assumptions and
complete, rigorous proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Thi paper provides detailed descriptions of the experimental setup, model
architecture, training procedures, and evaluation metrics necessary to reproduce the main
results.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide the code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have specified all training and testing details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We have not conducted experiments with error bars yet.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We have provided detailed information on the computing resources used for
each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research we conducted fully conforms to the NeurIPS Code of Ethics in
all respects.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts
of the work performed, addressing its broader implications responsibly.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: The paper does not involve any data or models that pose high risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators and original owners of all assets used
in the paper, and explicitly mentioned and respected their licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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