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Abstract

Exploration in environments which differ across
episodes has received increasing attention in re-
cent years. Current methods use some combi-
nation of global novelty bonuses, computed us-
ing the agent’s entire training experience, and
episodic novelty bonuses, computed using only
experience from the current episode. However,
the use of these two types of bonuses has been
ad-hoc and poorly understood. In this work, we
shed light on the behavior of these two types
of bonuses through controlled experiments on
easily interpretable tasks as well as challeng-
ing pixel-based settings. We find that the two
types of bonuses succeed in different settings,
with episodic bonuses being most effective when
there is little shared structure across episodes
and global bonuses being effective when more
structure is shared. We develop a conceptual
framework which makes this notion of shared
structure precise by considering the variance of
the value function across contexts, and which
provides a unifying explanation of our empiri-
cal results. We furthermore find that combin-
ing the two bonuses can lead to more robust
performance across different degrees of shared
structure, and investigate different algorithmic
choices for defining and combining global and
episodic bonuses based on function approxima-
tion. This results in an algorithm which sets a
new state of the art across 16 tasks from the Mini-
Hack suite used in prior work, and also performs
robustly on Habitat and Montezuma’s Revenge.
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1. Introduction
Balancing exploration and exploitation is a long-standing
challenge in reinforcement learning (RL). A large body of
research has studied this problem within the Markov De-
cision Process (MDP) framework (Sutton & Barto, 2018),
both from a theoretical standpoint (Kearns & Singh, 2002;
Brafman & Tennenholtz, 2002; Agarwal et al., 2020) and
an empirical one. This has led to practical exploration algo-
rithms such as pseudocounts (Bellemare et al., 2016b), in-
trinsic curiosity modules (Pathak et al., 2017a) and random
network distillation (Burda et al., 2019b), yielding impres-
sive results on hard exploration problems like Montezuma’s
Revenge and PitFall (Bellemare et al., 2012).

More recently, there has been increasing interest in algo-
rithms which move beyond the MDP framework. The stan-
dard MDP framework assumes that the agent is initialized
in the same environment at each episode (we will refer to
these MDPs as singleton MDPs). However, several stud-
ies have found that agents trained in singleton MDPs ex-
hibit poor generalization, and that even minor changes to
the environment can cause substantial degradation in agent
performance (Justesen et al., 2018; Zhang et al., 2018a;b;
Packer et al., 2018; Farebrother et al., 2018; Cobbe et al.,
2019; Song et al., 2020; Kirk et al., 2021a). This has moti-
vated the use of contextual MDPs (CMDPs) (Hallak et al.,
2015), where different episodes correspond to different en-
vironments which nevertheless share structure. Examples
of CMDPs include procedurally-generated environments
(Chevalier-Boisvert et al., 2018; Samvelyan et al., 2021;
Küttler et al., 2020; Juliani et al., 2019; Cobbe et al., 2020;
Beattie et al., 2016; Hafner, 2021; Petrenko et al., 2021) or
embodied AI tasks where the agent must generalize across
different physical spaces (Savva et al., 2019; Shen et al.,
2020; Gan et al., 2020; Xiang et al., 2020).

While exploration is well-studied in the singleton MDP case,
it becomes more nuanced when dealing with CMDPs. For
singleton MDPs, a common and successful strategy consists
of defining an exploration bonus which is added to the re-
ward function being optimized. This exploration bonus typi-
cally represents how novel the current state is, where novelty
is computed with respect to the entirety of the agent’s ex-
perience across all episodes. However, it is unclear to what
extent this strategy is applicable in the CMDP setting—if
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two environments corresponding to different episodes are
very different, we might not want the experience gathered
in one to affect the novelty of a state observed in the other.
For example, if an agent is faced with procedurally gener-
ated maps with random start and goal locations, exploring
the top-left corner of one map does not necessarily mean it
should not visit the top-left corner of a different map, since
their contents may be different.

An alternative to using global bonuses is to use episodic
ones. Episodic bonuses define novelty with respect to the
experience gathered in the current episode alone, rather than
across all episodes. Recently, several works (Stanton &
Clune, 2018; Raileanu & Rocktäschel, 2020; Flet-Berliac
et al., 2021; Zhang et al., 2021b; Henaff et al., 2022; Wang
et al., 2023) have used episodic bonuses, with Henaff et al.
(2022) and Wang et al. (2023) showing that this is an es-
sential ingredient for solving many sparse reward CMDPs.
However, as we will show here, an episodic bonus alone
may not be optimal if there is considerable shared structure
across different episodes in the CMDP.

In this work, we study the strengths and weaknesses of
global and episodic novelty bonuses for exploration in
CMDPs, and investigate ways to mitigate their limitations.
First, through a series of easily interpretable examples, we
show that global bonuses, which are commonly used in sin-
gleton MDPs, can be poorly suited for CMDPs that share
little structure across episodes; however, episodic bonuses,
which are commonly used in CMDPs, can also fail in cases
where knowledge transfer across episodes is crucial. We
develop a conceptual framework which makes this notion of
shared structure precise by considering the variance of the
value function in representation space across contexts, pro-
viding a unifying explanation of our empirical results. Sec-
ond, we show that by multiplicatively combining episodic
and global bonuses, we are able to get more robust perfor-
mance on both contextual MDPs that share little structure
across episodes and singleton MDPs that are identical across
episodes. We furthermore validate our findings in two chal-
lenging pixel-based settings, Habitat (Savva et al., 2019) and
Montezuma’s Revenge (Bellemare et al., 2012), demonstrat-
ing that the tradeoffs between bonus types and advantages of
the combined bonus apply there as well. Third, motivated by
these observations, we comprehensively evaluate different
combinations of episodic and global bonuses which do not
rely on counts, as well as strategies for integrating them, on
a wide array of tasks from the MiniHack suite (Samvelyan
et al., 2021). Our investigations yield an algorithm which
combines the elliptical episodic bonus of Henaff et al. (2022)
and the RND global bonus of Burda et al. (2019b), and sets a
new state of the art across 16 tasks from the MiniHack envi-
ronment, solving the majority of them. Our code is available
at: www.github.com/facebookresearch/e3b.

2. Background
2.1. Contextual MDPs

We consider a contextual Markov Decision Process (CMDP)
defined by (S,A, C, P, r, µC , µS) where S is the state space,
A is the action space, C is the context space, P is the transi-
tion function, µS is the initial state distribution conditioned
on the context, and µC is the context distribution. At each
episode, we first sample a context c ∼ µC and an initial
state s0 ∼ µS(·|c). At each step t in the episode, the next
state is then sampled according to st+1 ∼ P (·|st, at, c) and
the reward is given by rt = r(st, at). Let dcπ represent the
distribution over states induced by following policy π with
context c. The goal is to learn a policy which maximizes the
expected return, averaged across contexts:

R = Ec∼µC ,s∼dcπ,a∼π(·|s)[r(s, a)]

Examples of CMDPs include procedurally-generated envi-
ronments, such as ProcGen (Cobbe et al., 2020), MiniGrid
(Chevalier-Boisvert et al., 2018), NetHack (Küttler et al.,
2020), or MiniHack (Samvelyan et al., 2021), where each
context c corresponds to the random seed used to generate
the environment. In this case, the number of contexts |C|
is effectively infinite and we will slightly abuse notation by
writing |C| = ∞. Other examples include embodied AI en-
vironments (Savva et al., 2019; Szot et al., 2021; Gan et al.,
2020; Shen et al., 2020; Xiang et al., 2020), where the agent
is placed in different simulated houses and must navigate
to a location or find an object. In this setting, each context
c ∈ C represents a house identifier and the number of houses
|C| is typically between 20 and 1000. For an in-depth re-
view of the literature on CMDPs and generalization in RL,
see (Kirk et al., 2021b). Singleton MDPs are a special case
of contextual MDPs with |C| = 1.

2.2. Exploration Bonuses

At a high level, exploration bonuses operate by estimating
the novelty of a given state, and assign a high bonus if the
state is novel according to some measure. The exploration
bonus is then combined with the extrinsic reward provided
by the environment, and the result is optimized using RL.
More precisely, the reward function optimized by the agent
is given by r̄(s, a) = r(s, a) + α · b(s, a), where r(s, a) is
the extrinsic reward, b(s, a) is the exploration bonus, and α
is a parameter governing the balance between exploration
and exploitation. Some bonuses do not depend on a or
additionally depend the next state s′, which will be clear
from the context. To account for the variations in scale
across different environments and times during training,
the exploration bonus is sometimes divided by a running
estimate of its standard deviation (Burda et al., 2019b).

In tabular domains with a small number of discrete states,
a common choice is to use the inverse counts: b(s) =

2

www.github.com/facebookresearch/e3b


A Study of Global and Episodic Bonuses for Exploration in Contextual MDPs

1/
√
N(s) (Strehl & Littman, 2006), where N(s) is the

number of times state s has been encountered by the agent.
However, in most settings of interest the number of states is
large or infinite, and many states will not be seen more than
once, rendering this bonus ineffective. This has motivated
alternative approaches using function approximation. The
methods below have proven successful on sparse reward sin-
gleton MDPs (RND) and/or sparse reward CMDPs (RIDE,
AGAC, NovelD and E3B).

Random Network Distillation (RND) (Burda et al., 2019b)
randomly initializes a neural network f̄ : S → Rk, and then
trains a second neural network f with the same architecture
to predict the outputs of f̄ on states encountered by the
agent. The exploration bonus associated with a given state
s is given by the mean squared error:

bRND(st) = ∥f(st)− f̄(st)∥22 (1)

The intuition is that for states similar to ones previously en-
countered by the agent, the error will be low, whereas it will
be high for very different states. RND has performed well
on hard singleton MDPs and is a commonly used component
of other exploration algorithms.

Novelty Difference (NovelD) (Zhang et al., 2021b) uses
the difference between RND bonuses at two consecutive
time steps, regulated by an episodic count-based bonus.
Specifically, its bonus is:

bNovelD(st, a, st+1) =[
bRND(st+1)− c · bRND(st)

]
+
· I[Ne(st+1) = 1] (2)

Here bRND represents the RND bonus defined above, and
Ne(s) represents the number of times s has been encoun-
tered within the current episode. The first term is a global
novelty bonus, which measures novelty with respect to cross-
episode experience, whereas the second term is an episodic
novelty bonus, which measures novelty with respect to ex-
perience within the current episode only.

Adversarially Guided Actor-Critic (AGAC) (Flet-Berliac
et al., 2021) also combines global and episodic novelty
bonuses. Its bonus is defined by:

bAGAC(st) = DKL(π(·|st)∥πadv(·|st))+β
1√

Ne(st)
(3)

where πadv is a policy trained to mimic the behavior policy
π (usually with a smaller learning rate). The motivation
is that this will encourage the policy to adopt different be-
haviors as it tries to remain different from the adversary.
The second term is an episodic bonus based on Ne(s), the
number of times the state s has been encountered within the
current episode.

Rewarding Impact-Driven Exploration (RIDE)
(Raileanu & Rocktäschel, 2020) uses an episodic novelty
bonus which is the product of two terms: a count-based
reward and the difference between two consecutive state
embeddings:

bRIDE(st) =
1√

Ne(st)
∥ϕ(st+1)− ϕ(st)∥2 (4)

Here the ϕ embedding is learned using a combination of
inverse and forward dynamics models. The motivation for
the second term in the bonus is to reward the agent for taking
actions which cause significant changes in the environment.
RIDE does not use a global novelty bonus.

Exploration via Elliptical Episodic Bonuses (E3B)
(Henaff et al., 2022) also uses an episodic novelty bonus
only, and is motivated by the following observation: while
the count-based episodic bonuses used in NovelD, RIDE
and AGAC are essential for good performance, they do not
scale to complex environments where each state is rarely
seen more than once. E3B uses a feature extractor ϕ learned
using an inverse dynamics model, and defines the episodic
bonus as follows:

bE3B(st) = ϕ(st)
⊤
[ t−1∑
i=t0

ϕ(si)ϕ(si)
⊤ + λI

]−1

ϕ(st) (5)

Here t0 denotes the start of the current episode. This can be
seen as a generalization of an episodic count-based bonus to
continuous state spaces, by noting that it reduces to inverse
episodic counts if ϕ is a one-hot encoding of the state.

3. When are Global and Episodic Novelty
Bonuses Useful?

Although RIDE, NovelD, AGAC and E3B all use differ-
ent combinations of episodic and global novelty bonuses,
their use in CMDPs has been largely heuristic. The RIDE
and NovelD papers simply state that the episodic bonus is
included to prevent the agent from going back and forth
between a sequence of states within the same episode. Fur-
thermore, the global novelty bonuses are justified using the
singleton MDP case, but it is unclear to what extent these
justifications carry over to the CMDP case. Therefore, a
closer investigation of when episodic and global novelty
bonuses are useful in CMDPs is required. All experiment
details for this section are included in Appendix E.1.

3.1. Advantages of Episodic Bonuses

We begin by providing an example of CMDPs where global
novelty bonuses fail and episodic bonuses succeed. Con-
sider the procedurally-generated MiniHack environment
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Figure 1. Two different contexts of the MultiRoom-N6-Lava
environment. Legend: @ : agent, < : start, > : goal, } : lava

shown in Figure 1. Here, each episode corresponds to a dif-
ferent map where the agent must navigate from the starting
location to the goal. The agent only receives reward if it
reaches the goal, and the episode terminates if it touches the
walls which are made of lava. Because of this, random ex-
ploration has a very small chance of reaching the goal before
the episode ends, and exploration bonuses are needed.

We ask the question: are global or episodic novelty bonuses
more appropriate here? For simplicity, we consider bonuses
based on counts of (x, y) locations, which have been
commonly used in prior work (Flet-Berliac et al., 2021;
Samvelyan et al., 2021; Zhang et al., 2021b) to avoid the
issue of each state being unique:

bglobal(s) =
1√

N(ψ(s))
, bepisodic(s) = I[Ne(ψ(s)) = 1]1

(6)

Here N represents counts over all the agent’s experience,
and Ne represents counts within the current episode only,
while ψ is a feature extractor which extracts the (x, y) co-
ordinates of the agent from the state. In general, methods
which do not require handcrafted features are preferable,
and we focus on them later on in this section and in Section
4. However, this simple bonus facilitates interpretability,
which is the present focus.

1We also tried 1√
Ne(ψ(s))

, but it performed worse.

Environment |C| ψ Global Episodic
MultiRoom 1 P 0.99± 0.00 0.83± 0.23
MultiRoom 3 P 0.59± 0.32 0.92± 0.13
MultiRoom 5 P 0.23± 0.39 0.98± 0.02
MultiRoom 10 P 0.02± 0.06 0.78± 0.17
MultiRoom ∞ P 0.00± 0.00 0.87± 0.10
Corridors 1 P 0.96± 0.03 0.10± 0.68
KeyRoom ∞ M 0.97± 0.00 0.89± 0.01
MultiRoom ∞ M 0.99± 0.01 0.59± 0.49

Table 1. Reward for global and episodic bonuses for different
CMDPs, averaged across 5 seeds. Performance is close to 0 for all
environments if no bonus is used. Here |C| denotes the number of
different contexts/maps which are sampled from at each episode.
The ψ column indicates which feature encodings are used (P for
positions, M for messages).

We train agents using the global and episodic bonuses in
equation 6 over different numbers of contexts |C| on the
MultiRoom environment shown in Figure 1. The number
of contexts represents the number of distinct maps, and one
of them is chosen at random at the start of each episode.
Results are shown in the top section of Table 1. The agent
using the global bonus consistently obtains near-perfect per-
formance for the singleton MDP setting where |C| = 1, but
performance steadily degrades as the number of contexts
increases. In contrast, when using the episodic bonus, per-
formance remains high as the number of contexts increases,
even when |C| = ∞ (no two maps are repeated during train-
ing). We observed similar trends on two other MiniHack
tasks (see Appendix G.1). In section 3.3, we provide a
framework which explains why the global bonus fails and
the episodic bonus is preferable here.

3.2. Advantages of Global Bonuses

We next provide an example where the episodic bonus fails
but the global bonus succeeds. Consider a singleton MDP
with M corridors which can be crossed in T steps, with a
single one containing reward at the end (shown in Figure 2).
If the episode length is T , then any policy which reaches the
end of any of the M corridors will get equivalent episodic
bonus, and hence the chance of success will be 1/M . On
the other hand, a global bonus will solve the task: after
sufficiently visiting one of the corridors, the global bonus
there will become depleted and the agent will move on to
another one, eventually visiting the corridor with the reward.

We illustrate this argument using a singleton version of the
MiniHack-Corridors-R5 environment (shown in Fig-
ure 3), where the agent must explore different corridors to
find its way to the exit. This is similar to the example in
Figure 2 in the sense that the agent will likely need to ex-
plore multiple dead ends before finding the goal. Table 1
(middle section) shows results for agents trained with the
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Figure 2. Simple example where episodic bonus fails.

Figure 3. Example map for MiniHack-Corridors-R5 envi-
roment. @ indicates agent, # corridors connecting rooms, <
start location and > goal.

episodic and global bonus on the Corridors environment.
In contrast to the previous example, but consistent with our
argument above, the global bonus succeeds across all seeds
whereas the episodic bonus produces inconsistent perfor-
mance across seeds, leading to poor performance overall.

Are global bonuses only useful in the special case of sin-
gleton MDPs? We next show that this is not the case, and
that they can also be useful in general CMDPs with large
|C|. We consider the KeyRoom environment, illustrated in
Figure 4. In this environment, the agent must pick up a key
and use it to open a door to a small room to reach the exit.
Here different contexts correspond to different placements
of the agent, key, room, door and exit. We define the ψ
feature extractor in equation 6 to extract the message rather
than the (x, y) coordinates (using coordinates does not solve
the task for either bonus). We also evaluate both global and
episodic bonuses on the MultiRoom environment where

Figure 4. Three example maps for MiniHack-KeyRoom-S10
enviroment. @ indicates agent, ( key, + door, < start location
and > goal. Each observation additionally includes a message
such as “You see here a key of Master Thievery” or “It’s a wall”.

ψ extracts messages rather than positions. Results in Table
1 (bottom section) show that the global bonus solves both
environments, even though |C| = ∞ in both cases.

3.3. A Framework for Understanding Global and
Episodic Novelty Bonuses

We now develop a framework for better understanding when
and why global and episodic bonuses are effective, and
which explains our results so far. Let ψ : S → Z be a
feature extractor mapping states to a space Z where novelty
bonuses will be computed. This mapping could be hard-
coded (as in the examples above) or learned, and states in
S could potentially be high dimensional. In Appendix H.1,
we show how a number of existing exploration algorithms
can be instantiated using this framework, including tabular
count-based algorithms, deep RL algorithms that use posi-
tion or message counts, kernel-based algorithms with global
elliptical bonuses, as well as the E3B algorithm which uses a
learned ψ and an episodic bonus. Now consider the function
V ⋆ψ,c : Z → [Rmin, Rmax], defined by:

V ⋆ψ,c(z) = inf
s∈ψ−1(z)

V ⋆(s) (7)

Here V ⋆ denotes the optimal value function, Rmin and
Rmax denote the minimum and maximum possible return,
and ψ−1(z) = {s ∈ Sc : ψ(s) = z}, where Sc is the set of
states reachable by the agent in context c. The function V ⋆ψ,c
can be thought of as a value function over Z corresponding
to context c. Note that the infimum ensures that high-value
regions in Z correspond to high-value regions in S. We
additionally assume that ψ is defined such that there is some
subset of Z for which V ⋆ψ,c(z) ≈ Rmax. This assumption is
necessary to rule out pathological cases such as ψ mapping
every state to the same point, and holds for all the examples
we consider here.
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Example 1: Consider the MultiRoom environment in
Figure 1 with positional encodings, i.e. ψ(s) = (x, y),
where (x, y) is the location of the agent. Then Z is a 2D
lattice the size of the map. The value function V ⋆ψ,c will be
high centered at the goal and propagate outwards. Note that
since the goal changes location for each map, V ⋆ψ,c varies
significantly across contexts. We verify this empirically and
provide visualizations in Figure 10 of Appendix H.2.

Example 2: Consider the KeyRoom environment shown
in Figure 4 with message encodings, i.e. ψ(s) returns the
message associated with state s. Here Z is the set of all
possible messages. The function V ⋆ψ,c(z) will then be high
for messages indicating that the door has been opened or
that the agent has found the key (such as “You see here a
Key of Master Thievery”) and low for other messages (“the
door is locked”), regardless of the context. Therefore, V ⋆ψ,c
varies little across contexts. See Figure 11 in Appendix H.2
for visualizations.

Example 3: Consider the MultiRoom environment with
message encodings. Here Z is the set of all possible mes-
sages, and V ⋆ψ,c will be high for messages indicating that
doors have been opened (such as “The door opens!”), since
this indicates the agent has moved to a new room and is
thus closer to the goal. Conversely, V ⋆ψ,c will be low for
other messages (like the blank message “ ”) which do not
indicate progress towards the goal. As in the previous ex-
ample, which messages have high or low values of V ⋆ψ,c
will not depend much on the context c, hence V ⋆ψ,c changes
little across contexts. See Figure 12 in Appendix H.2 for
visualizations.

Example 4: Consider any singleton MDP, such as the
Corridors example from the previous section. Trivially,
since the context is always identical, V ⋆ψ,c does not change
across contexts regardless of ψ.

We now argue that global bonuses will fail when V ⋆ψ,c
changes significantly across different contexts, and succeed
when it changes little. To see this, note that a global bonus
will induce a sequence of policies π1, π2, π3, ... which pro-
gressively visit different parts of the Z space. If V ⋆ψ,c varies
little across contexts c, then eventually some policy πj will
visit a part of the Z space which has high value across all
contexts c. Since high value regions in Z correspond to
high value regions in S, this means the policy obtains high
return across all contexts. On the other hand, if V ⋆ψ,c varies
significantly across contexts, it is more likely that a part of
the Z space which was previously visited by policy πi will
have high value for some context c which is sampled later
on during training. In this case, the agent will no longer
visit this region since the global bonus has been exhausted
there, thus missing a high-value region in S as well.

In contrast to the global bonus, the episodic bonus favors

policies which try to cover the entire Z space within each
episode. This is a harder task, and may in fact be impossible
if the time horizon is short (see the counterexample in Figure
2). However, if the agent is able to cover the entire Z space
within each episode, then they will always visit high-value
regions in Z (and thus in S), even if these regions change
from one episode to the next—thus avoiding the limitation
of the global bonus described above.

This framework provides a consistent explanation for our
results so far: recall that the global bonuses succeed in
examples 2, 3, 4 (where V ⋆ψ,c varies little) and fail in example
1, where V ⋆ψ,c varies a lot and the episodic bonus succeeds.
Note that since V ⋆ and ψ both appear in the definition of
V ⋆ψ,c in equation 7, the relative advantage of the global vs.
episodic bonuses will depend both on the structure of the
CMDP, and the feature extractor ψ used to compute the
novelty bonus. This framework may also serve to guide
practitioners: if sufficient knowledge of the CMDP and ψ
is available to estimate how much the V ⋆ψ,c function will
vary across contexts, this can inform whether to use the
global bonus (if it varies little) or the episodic bonus (if it
varies a lot). In Appendix H.3 we further discuss how the
variation of V ⋆ψ,c across episodes can be made precise, and
illustrate how it relates to the performance of the global
bonus empirically.

3.4. Combining Global and Episodic Bonuses

Our framework described in Section 3.3 can provide guid-
ance regarding which bonus to use, when knowledge of the
CMDP and feature extractor are available. However, for
complex CMDPs or learned feature extractors, it may be
difficult to predict how much the V ⋆ψ,c function will change
across contexts. This motivates the investigation of bonuses
which perform robustly across a wide range of CMDPs with
differing degrees of shared structure.

We next investigate a simple strategy whereby we combine
global and episodic bonuses via multiplication, which we
hypothesize would lead to more robust performance across
different regimes compared to either bonus alone. The
resulting combined bonus is given by:

bcombined(st) = I[Ne(ψ(st)) = 1] · 1√
N(ψ(st))

(8)

This is motivated by the following observations. First, let
us consider the MDP in Figure 2: note that following any of
the corridors will maximize the episodic bonus by providing
an episodic bonus of 1 at each step. The total combined
bonus in equation 8 is then equal to the global bonus, and
optimizing the global bonus causes the agent to visit each
of the corridors until it reaches the one with the reward,
solving the MDP.
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Environment C ψ Combined Bonus
MultiRoom ∞ P 0.83± 0.04
Corridors 1 P 0.91± 0.01
KeyRoom ∞ M 0.99± 0.00
MultiRoom ∞ M 0.97± 0.00

Table 2. Performance of combined bonus, averaged across 5 seeds.
|C| denotes number of contexts, P position encodings and M mes-
sage encodings for ψ.

Now let us consider the MultiRoom environment with
position encodings. If the agent is initialized roughly uni-
formly throughout the map, the global bonus will decay
roughly uniformly across regions over time. This means
that the bonus in equation 8 will be roughly equal to the
episodic bonus (scaled by a constant), which we know is
effective. Finally, in KeyRoom both the episodic and global
bonuses will assign high novelty to messages associated
with picking up the key, which aligns with the optimal pol-
icy, suggesting that their product will also be effective.

Results for all environments are shown in Table 2 (we use
the same ψ feature extractor as in previous experiments
for each environment). The combined bonus obtains good
performance on all environments, suggesting that it retains
the advantages of both the global and episodic bonus here.

3.5. Scaling to Pixel-Based Settings

We next test whether the tradeoffs we have observed be-
tween global and episodic bonuses, as well as the advantages
of the combined bonus, also apply in high-dimensional,
pixel-based settings. As an example of a pixel-based CMDP
with little shared structure across environments, we use
Habitat (Savva et al., 2019), a photorealistic simulator of
indoor environments. Habitat is conceptually similar to the
MultiRoom environment in the sense that at each episode,
the agent finds itself in a different indoor space consisting of
connected rooms. However, the maps in Habitat are consid-
erably more complex and the observations are pixel-based.
Here we compare global and episodic bonuses based on
function approximation, since counts are not meaningful
with high-dimensional images. We use the reward-free ex-
ploration setup described in Henaff et al. (2022), with results
shown in Figure 5(a). We see that, similarly to MultiRoom
with position encodings, the global bonuses (ICM and RND)
perform poorly whereas the episodic bonus (E3B) performs
well. See Appendix E.4 for experiment details.

We perform a second set of experiments using the Atari en-
vironment Montezuma’s Revenge (Bellemare et al., 2012), a
notoriously difficult hard exploration game. This is a single-
ton MDP where structure is completely shared across con-
texts, hence our previous results suggest that global bonuses
are preferable to episodic ones here. We again compare
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Figure 5. Comparison of global, episodic and combined bonuses
on Habitat and Montezuma’s Revenge. Errors bars correspond to
standard deviation across 3 seeds.

E3B to RND, with results shown in Figure 5(b). Consis-
tent with our previous results, we see that the global bonus
(RND) performs well, whereas the episodic bonus (E3B)
performs poorly. This provides evidence that the tradeoffs
we have identified apply more broadly. See Appendix E.5
for experiment details.

For both environments, we also tested a combined bonus
obtained by multiplying the episodic bonus from E3B with
the global bonus from RND. This approach nearly matches
RND’s performance on Montezuma’s Revenge, and im-
proves upon the global bonus’ performance on Habitat, al-
though it does not match the performance of the episodic
bonus. The combined bonus thus provides more robust per-
formance across scenarios here than an episodic or global
bonus alone, although it does not always match the optimal
bonus on each task.

4. Design Choices for Episodic and Global
Novelty Bonuses

The previous section has shown that global and episodic
bonuses succeed in different types of CMDPs, and that
combining them via multiplication can yield a bonus which
is more robustly effective across tasks. However, in order to
facilitate interpretability we used count-based bonuses for
our MiniHack experiments, which do not scale to complex
environments unless task-specific prior knowledge is used
(e.g. knowing how to extract (x, y) positions or messages).
In this section, we perform a thorough a study of global and
episodic bonus designs based on function approximation,
which do not require such prior knowledge, across a wide
range of tasks from the MiniHack suite (Samvelyan et al.,
2021).

4.1. Experimental Setup

As our experimental testbed, we use 16 procedurally-
generated tasks from the MiniHack suite (Samvelyan et al.,
2021) used in prior work (Henaff et al., 2022). The Mini-
Hack tasks are designed to precisely evaluate different ca-
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pabilities of a given agent, such as navigation, planning
or the ability to use objects. Furthermore, many of the
MiniHack tasks involve sparse rewards and complex obser-
vations which include irrelevant information. For evaluation,
we follow the protocol suggested by (Agarwal et al., 2021)
and report the mean, median and interquartile mean (IQM)
together with 95% confidence intervals using stratified boot-
strapping. We use 5 random seeds for each of the 16 tasks.
Our full experimental details can be found in Appendix E.1.

4.2. Results

We now investigate combining different global novelty
bonuses from AGAC, RND and NovelD with the ellipti-
cal episodic bonus. We use E3B’s elliptical bonus as our
episodic bonus instead of a count-based one, since prior
work has shown that count-based bonuses either fail in com-
plex environments, or are highly dependent on task-specific
feature extractors (Henaff et al., 2022). In contrast, the el-
liptical bonus has been shown to work well across a wide
range of environments without requiring task-specific prior
knowledge. We also experimented with the KNN-based
episodic bonus from the NGU agent (Badia et al., 2020),
but found that it worked poorly (see Appendix G.3 for more
details).

Two questions we aim to answer are: i) which global bonus
(if any) gives the most improvements when combined with
E3B’s episodic bonus, and ii) which strategy is best for
combining the two bonuses. To answer this, we consider
all possible combinations of E3B’s episodic bonus with the
global bonuses from RND, NovelD and AGAC, combined
either via addition or multiplication. The exact bonuses for
each algorithm are detailed in Appendix F. We compare to
E3B as a baseline since it was previously shown to outper-
form other methods such as IMPALA, RND, ICM, RIDE
and NovelD (Henaff et al., 2022).

0.84 0.87 0.90 0.93

E3B x RND
E3B x NovelD

E3B x AGAC
E3B + RND

E3B + NovelD
E3B + AGAC

E3B
Median

0.850 0.875 0.900 0.925

IQM

0.56 0.64 0.72

Mean

Episode Return

Figure 6. Aggregate performance on 16 MiniHack tasks. Bars
indicate 95% confidence intervals computed using stratified boot-
strapping over 5 seeds.

Results are shown in Figure 6. First, we see that additively
combining any of the global bonuses with the elliptical
episodic bonus does not provide a meaningful improve-
ment over E3B for any metric. However, multiplicatively
combining E3B with either RND or NovelD bonuses pro-
duces a large and statistically significant improvement in
both median and IQM performance over E3B (the more

robust metrics according to (Agarwal et al., 2021)). This
establishes a new state-of-the-art on MiniHack.

One explanation for the superior performance of the multi-
plicative combination over the additive one is that the scale
of the global bonus decreases significantly throughout train-
ing whereas the scale of the episodic bonus does not, since
it is reset each episode. Because of this, if we combine the
two bonuses via addition, the combined bonus will become
increasingly dominated by the episodic bonus. However, if
we are combining the two multiplicatively, the global bonus
will still have an effect regardless of its scale. See Appendix
G.2 for additional results and discussion.

5. Related Work
Exploration in singleton MDPs is a well-studied problem
in RL (Sutton & Barto, 2018; Schmidhuber, 1991; Oudeyer
et al., 2007; Oudeyer & Kaplan, 2009). Many theoretical
works exist which propose provably efficient algorithms for
tabular or linear MDPs (Kearns & Singh, 2002; Brafman &
Tennenholtz, 2002; Strehl & Littman, 2006; Jin et al., 2020;
Cai et al., 2020; Agarwal et al., 2020; Kolter & Ng, 2009;
Fruit & Lazaric, 2017; Fruit et al., 2018a;b; Tarbouriech
et al., 2020). A number of methods which combine deep RL
agents with exploration bonuses have also been proposed for
general MDPs (Stadie et al., 2015; Achiam & Sastry, 2017).
These include model-free methods such as RND (Burda
et al., 2019b), ICM (Pathak et al., 2017a) and pseudocounts
(Bellemare et al., 2016b; Strehl & Littman, 2008; Bellemare
et al., 2016a; Ostrovski et al., 2017; Martin et al., 2017; Tang
et al., 2017; Machado et al., 2020), as well as model-based
approaches (Shyam et al., 2019; Henaff, 2019; Sekar et al.,
2020; Zhang et al., 2021a; Manek & Kolter, 2021). However,
these are all designed for the singleton MDP setting and use
some form of global bonus which, as we show in Section 3,
is not always appropriate to the more general CMDP setting
we consider here. We also note the work of (Stanton &
Clune, 2018), which showed that episodic bonuses can aid
exploration in singleton MDPs.

More recently, RIDE (Raileanu & Rocktäschel, 2020),
AGAC (Flet-Berliac et al., 2021), NovelD (Zhang et al.,
2021b), its variants (Mu et al., 2022b), and others (Parisi
et al., 2021; Campero et al., 2020; Zhang et al., 2021a;
Seurin et al., 2021; Fickinger et al., 2021; Tam et al., 2022;
Jo et al., 2022; Ramesh et al., 2022) have begun to tackle ex-
ploration in procedurally-generated MDPs, a type of CMDP
commonly used in empirical research. These methods
use combinations of global bonuses designed for singleton
MDPs and count-based episodic bonuses. The recent works
of Henaff et al. (2022) and Wang et al. (2023) highlighted
the practical importance of episodic bonuses, with Henaff
et al. (2022) proposing the elliptical episodic bonus as a
solution to the limitations of count-based episodic bonuses,
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but they did not include a global bonus. Compared to these
prior works, our work makes two main contributions. First,
whereas previous works justified using global bonuses in
CMDPs by appealing to intuitions from singleton MDPs,
and provided little justification for using episodic bonuses
aside from their empirical performance, we provide clear
justifications for the use of each bonus in different types
of CMDPs and identify tradeoffs. In particular, we exper-
imentally examine the behavior of each bonus type across
different representative settings, and provide a new frame-
work for understanding each one’s effect on exploration.
This may additionally guide practitioners in choosing an
appropriate bonus for the problem at hand. Second, whereas
previous works have investigated different combinations
of global and episodic bonuses in isolation, there has not
been a systematic comparison of bonuses and combination
strategies, which we perform in Section 4. This investigation
results in a new algorithmic combination which outperforms
the previously proposed ones.

6. Conclusion
In this work, we have shed light on the tradeoffs between
global and episodic exploration bonuses in CMDPs through
experiments in both easily interpretable gridworlds and chal-
lenging pixel-based settings, and by developing a new frame-
work which provides a unifying explanation of our empirical
results. In particular, we find that the effectiveness of each
bonus depends on the degree of shared structure between
value functions in feature space across different contexts.
Episodic bonuses tend to be more effective when there is lit-
tle shared structure across contexts, whereas global bonuses
tend to succeed when more structure is shared. We further
show that multiplicatively combining global and episodic
bonuses can lead to more robust performance across differ-
ent settings than either bonus alone. Finally, we perform
a thorough investigation of design choices for global and
episodic bonuses, which leads to an algorithm that sets a
new state of the art on a wide range of tasks from the Mini-
Hack suite. This work opens up several avenues for future
research. Formally quantifying the tradeoffs between global
and episodic bonuses through sample complexity bounds
presents itself as an intriguing theoretical question. Another
promising direction is to investigate algorithms which more
effectively combine the different bonus types. While our
multiplicative bonus provides a first step in this direction,
it is still limited in the sense that it does not always match
the performance of the best bonus type on each individual
task. More broadly, we hypothesize that agents in rich and
ever-changing environments such as NetHack and Minecraft
will require both local and global exploration, in order to
acquire information at different timescales—how to best
achieve this remains an open question.
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Rocktäschel, T., and Grefenstette, E. Learning with
amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid, 2018.

Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and ac-
curate deep network learning by exponential linear units
(elus). In Bengio, Y. and LeCun, Y. (eds.), 4th Interna-
tional Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learning.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 1282–1289. PMLR, 09–15 Jun 2019.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In III, H. D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pp. 2048–2056. PMLR, 13–18 Jul 2020.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
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A. Broader Impact Statement
This work makes progress towards better understanding and designing methods which can efficiently explore contextual
MDPs, a very broad framework with applications in video games, virtual reality, autonomous driving, robotics and healthcare.
Efficient exploration typically reduces sample complexity, which make real-world application more feasible. Like any RL
algorithm, our approach aims to facilitate discovering a policy that maximizes some user-specified reward. Depending on
the reward function, executing such a policy could have positive or negative consequences.

B. Limitations
The main technical limitations of this work are twofold. First, although the multiplicative bonus is more robust than the
global or episodic bonus in terms of aggregate performance across tasks, it does not always match the best-performing
bonus on individual tasks. This is evidenced by our results on Habitat, where the combined bonus still performs worse
than the episodic one. We view the multiplicative bonus as a first step towards a method that works across all regimes,
but not as a definitive solution. Furthermore, we only consider simple combination strategies for the two bonuses like
addition/multiplication, and we do not consider adaptively combining the two based on environment interaction, which is
left for future work. Concerning potential negative societal impacts, exploration methods in general can potentially cause
harm if deployed in the real world without appropriate safety measures since they seek out novel states, possibly leading to
unpredicted behavior.

C. Reproducibility Statement
Our code can be found at: https://github.com/facebookresearch/e3b. Experiment details can be found in
Appendix E.

D. Additional Related Work
Exploration in singleton MDPs is a well-studied problem in RL (Sutton & Barto, 2018; Schmidhuber, 1991; Oudeyer
et al., 2007; Oudeyer & Kaplan, 2009). Many theoretical works exist which propose provably efficient algorithms for
tabular or linear MDPs (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Strehl & Littman, 2006; Jin et al., 2020;
Cai et al., 2020; Agarwal et al., 2020; Kolter & Ng, 2009; Fruit & Lazaric, 2017; Fruit et al., 2018a;b; Tarbouriech et al.,
2020). A number of methods which combine deep RL agents with exploration bonuses have also been proposed for general
MDPs (Stadie et al., 2015; Achiam & Sastry, 2017). These include model-free methods such as RND (Burda et al., 2019b),
ICM (Pathak et al., 2017a) and pseudocounts (Bellemare et al., 2016b; Strehl & Littman, 2008; Bellemare et al., 2016a;
Ostrovski et al., 2017; Martin et al., 2017; Tang et al., 2017; Machado et al., 2020), as well as model-based approaches
(Shyam et al., 2019; Henaff, 2019; Sekar et al., 2020; Zhang et al., 2021a; Manek & Kolter, 2021). However, these are all
designed for the singleton MDP setting and use some form of global bonus which, as we show in Section 3, is not always
appropriate to the more general CMDP setting we consider here. We also note the work of (Stanton & Clune, 2018) which
used episodic bonuses for singleton MDPs.

E. Experiment Details
E.1. MiniHack

We used the same architectures and hyperparameters for the experiments with count-based bonuses in Section 3 and with
function approximation in Section 4.

E.1.1. ARCHITECTURE DETAILS

We follow the policy network architecture described in (Samvelyan et al., 2021). The policy network has four trunks: i) a
5-layer convolutional trunk which maps the full symbol image (of size 79 × 21) to a hidden representation, ii) a second
5-layer convolutional trunk which maps a 9×9 crop centered at the agent to a hidden representation, iii) an MLP trunk which
maps the stats vector to a hidden representation, and iv) a 1-D convolutional trunk with interleaved max-pooling layers,
followed by a fully-connected network which maps the message to a hidden representation. The hidden representations
are then concatenated together, passed through a 2-layer fully-connected network followed by an LSTM (Hochreiter &
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Schmidhuber, 1997) layer. The output of the LSTM layer is then passed to linear layers which produce action probabilities
and a value function estimate.

The convolutional trunks i) and ii) have the following hyperparameters: 5 layers, filter size 3, symbol embedding dimension
64, stride 1, filter number 16 at each layer except the last, which is 8, and ELU non-linearities (Clevert et al., 2016). The
MLP trunk iii) has 2 hidden layers of 64 hidden units each with ReLU non-linearities. The trunk iv) for processing messages
has 6 convolutional layers, each with 64 input and output feature maps. The first two have kernel size 7 and the rest
have kernel size 3. All have stride 1 and there are max-pooling layers (kernel size 3, stride 3) after the 1st, 2nd and 6th
convolutional layers. The last two layers are fully-connected and have 128 hidden units and ReLU non-linearities.

For E3B, we used the same architecture as the policy encoder for the feature embedding ϕ, except we removed the last
layers mapping the hidden representation to the actions and value estimate. The inverse dynamics model is a single-layer
fully-connected network with 256 hidden units, mapping two concatenated ϕ outputs to a softmax distribution over actions.

For RND and NovelD, we also used the same architecture as above for the target and predictor networks. For AGAC, we
used the same network as the policy for the adversary.

E.2. RL Hyperparameters

For all algorithms we use IMPALA (Espeholt et al., 2018) as our base policy optimizer. Hyperparameters which are common
to all methods are shown in Table 3. All algorithms were trained for 50 million environment steps. We did not anneal
learning rates for any of the methods during training.

Hyperparameters specific to the E3B, RND, NovelD and AGAC components are shown in Tables 4, 5 and 6. For all
algorithms using an exploration bonus, we used a rolling normalization of the intrinsic reward similar to that proposed in
the RND paper (Burda et al., 2019b). Specifically, we maintained a running standard deviation σ of the intrinsic rewards
and divided the intrinsic rewards by σ before feeding them to the policy optimizer. For E3B and NovelD, we set the
hyperparameters to the values reported in (Henaff et al., 2022). For AGAC, we set the adversary learning rate to be 0.3×
the policy learning rate as was done in the official code release. We used the same coefficient for the adversary loss
(0.00004)–we also experimented with higher values of the adversary loss, but these performed less well.

Table 3. Common IMPALA Hyperparameters for MiniHack

Learning Rate 0.0001
RMSProp smoothing constant 0.99
RMSProp momentum 0
RMSProp ϵ 10−5

Unroll Length 80
Number of buffers 80
Number of learner threads 4
Number of actor threads 256
Max gradient norm 40
Entropy Cost 0.005
Baseline Cost 0.5
Discounting Factor 0.99

Table 4. E3B Hyperparameters

Ridge λ 0.1
Intrinsic Reward Normalization True
Intrinsic Reward Coefficient 1.0

For the experiments in Section 4.2, we tuned the β hyperparameter over the range {1, 10, 100, 1000, 10000, 100000}. In
initial experiments we noticed that the episodic bonus was several orders of magnitude smaller than the episodic bonus,
hence we used a high range of values for the β hyperparameter to bring the global bonus to a similar range.
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Table 5. RND Hyperparameters

Predictor Learning Rate 0.0001
Intrinsic Reward Normalization True
Intrinsic Reward Coefficient 1.0

Table 6. NovelD Hyperparameters

Predictor Learning Rate 0.0001
Scaling Factor c 0.1
Intrinsic Reward Normalization True
Intrinsic Reward Coefficient 1.0

Table 7. AGAC Hyperparameters

Adversary Learning Rate 0.00003
Adversary loss term 0.00004
Intrinsic Reward Normalization True
Intrinsic Reward Coefficient 1.0
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E.3. Task Details

We used the following set of 16 MiniHack tasks: ’MiniHack-MultiRoom-N4-Locked-v0’,
’MiniHack-MultiRoom-N6-Lava-v0’, ’MiniHack-MultiRoom-N6-Lava-OpenDoor-v0’,
’MiniHack-MultiRoom-N6-LavaMonsters-v0’, ’MiniHack-MultiRoom-N10-v0’,
’MiniHack-MultiRoom-N10-OpenDoor-v0’, ’MiniHack-MultiRoom-N10-Lava-v0’,
’MiniHack-MultiRoom-N10-Lava-OpenDoor-v0’, ’MiniHack-LavaCrossingS19N13-v0’,
’MiniHack-LavaCrossingS19N17-v0’, ’MiniHack-Labyrinth-Big-v0’,
’MiniHack-Levitate-Potion-Restricted-v0’, ’MiniHack-Levitate-Boots-Restricted-v0’,
’MiniHack-Freeze-Horn-Restricted-v0’, ’MiniHack-Freeze-Wand-Restricted-v0’,
’MiniHack-Freeze-Random-Restricted-v0’.

Note that the -Restricted- versions of the tasks have restricted action spaces, as described in (Henaff et al., 2022).

E.4. Habitat

E.4.1. ENVIRONMENT DETAILS

We used the HM3D (Ramakrishnan et al., 2021) dataset, which consists of 1000 high-quality renderings of indoor scenes.
Observations consist of 4 modalities: an RGB and depth image (shown in Figure 7a), GPS coordinates and the compass
heading. The action space consists of 4 actions: A = {stop episode, move forward (0.25m), turn left
(10◦), turn right (10◦)}. The dataset scenes are split into 800/100/100 train/validation/test splits. Since the test
split is not publicly available, we evaluate all models on the validation split. Each scene corresponds to a different context
c ∈ C in the CMDP framework.

To measure exploration coverage, we compute the area revealed by the agent’s line of site using the function provided by the
Habitat codebase 2, which uses a modified version of Bresenham’s line cover algorithm. We define the exploration coverage
to be:

coverage =
revealed area

total area

See Figure 7b) for an illustration. For the results in Figure 5(a), we evaluated exploration performance for each algorithm by
measuring its coverage on 100 episodes using scenes from the validation set (which were not used for training).

(a)

revealed area unrevealed area

(b)

Figure 7. a) Visual observations in Habitat b) Exploration is measured as the proportion of the environment revealed by the agent’s line of
sight over the course of the episode.

2https://github.com/facebookresearch/habitat-lab/blob/main/habitat/utils/visualizations/
fog_of_war.py
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E.4.2. ARCHITECTURE DETAILS

For all Habitat experiments we used the same policy network as in (Wijmans et al., 2020), which includes a ResNet50 visual
encoder (He et al., 2015) and a 2-layer LSTM (Hochreiter & Schmidhuber, 1997) policy. In addition to RGB and Depth
images, the agent also receives GPS coordinates and compass orientation, represented by 3 scalars total, which are fed into
the policy. See the official code release at https://github.com/facebookresearch/habitat-lab/tree/
main/habitat_baselines for full details.

For exploration algorithms which use inverse dynamics models ( and ICM), we set the architecture of the encoder ϕ to be
identical to that of the policy network, except that the last layer mapping hidden units to actions is removed. The inverse
dynamics model was a single layer MLP with 256 hidden units and ReLU non-linearities.

For exploration algorithms which use random network distillation (RND and NovelD), we set the architecture of the random
network to be identical to that of the policy network.

E.4.3. RL HYPERPARAMETERS

The DD-PPO hyperparameters which are common to all the algorithms are listed in Table 8. The hyperparameters which are
specific to each algorithm are listed in Table 9, 10, 6. For NovelD’s count-based bonus, hashing the full image was too
slow to be practical, so we subsampled images by a factor of 1000 used that for the count-based bonus, along with the GPS
coordinates and compass direction.

Table 8. Common PPO/DD-PPO Hyperparameters for Habitat

Clipping 0.2
PPO epochs 2
Number of minibatches 2
Value loss coefficient 0.5
Entropy coefficient 0.00005
Learning rate 0.00025
ϵ 10−5

Max gradient norm 0.2
Rollout steps 128
Use GAE True
γ 0.99
τ 0.95
Use linear clip decay False
Use linear LR decay False
Use normalized advantage False
Hidden size 512
DD-PPO Sync fraction 0.6

E.4.4. COMPUTE DETAILS

Each job was run for 225 million steps, which took approximately 3 days on 32 GPUs with 10 CPU threads.
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Table 9. Hyperparameters for E3B on Habitat
Hyperparameter Values considered Final Value
Ridge regularizer λ {0.1} 0.1
Intrinsic reward coefficient β {1.0, 0.1, 0.01, 0.001, 0.0001 0.1
Inverse Dynamics Model updates per PPO epoch 3 3

Table 10. Hyperparameters for RND on Habitat
Hyperparameter Values considered Final Value
Intrinsic reward coefficient β {1.0, 0.1, 0.01, 0.001, 0.0001 0.1
Predictor Model updates per PPO epoch 3 3

Table 11. Hyperparameters for ICM on Habitat
Hyperparameter Values considered Final Value
Intrinsic reward coefficient β {1.0, 0.1, 0.01, 0.001, 0.0001 0.1
Forward Dynamics Model loss coefficient {1.0} 1.0
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E.5. Experiment Details for Montezuma’s Revenge

We used the PyTorch RND implementation from https://github.com/jcwleo/
random-network-distillation-pytorch as our base codebase, which reimplements Burda et al. (2019b).
The policy network consists of 3 convolutional layers with 32/64/64 feature maps followed by an MLP with 3 hidden
layers with 256/448/448 hidden units respectively and ReLU non-linearities. The RND predictor network consists of 3
convolutional layers with 32/64/64 feature maps and Leaky ReLUs followed by a 2-layer MLP with 512 hidden units and
standard ReLUs. The target network is the same as the predictor network, except it only has a single hidden layer MLP
following the convolutional layers.

For E3B we used the same network architecture as for the predictor network for the ψ encoder. We experimented with both
learning the ψ encoder using an inverse dynamics model and using a fixed random network, which has been shown to work
well in certain cases (Burda et al., 2019a), and found that using a fixed random network worked best. We tuned the ridge
regularization for the covariance matrix over the range {0.01, 0.1, 1.0} and kept 1.0 as the final value.

Table 12. Hyperparameters for PPO+RND on Montezuma’s Revenge
Hyperparameter Value
Max Step Per Episode 4500
Extrinsic Reward Coefficient 2
Intrinsic Reward Coefficient 1.
Learning Rate 1e-4
Num. Env 128
Rollout length 128
γ 0.999
Intrinsic γ 0.99
λ 0.95
StableEps 1e-8
Frame Stack 4
Image Height 84
Image Width 84
UseGAE True
Gradient Clipping Norm 0.5
Entropy 0.001
Epoch 4
MiniBatch 4
PPOEps 0.1
ActionProb 0.25
UpdateProportion 0.25
ObsNormStep 50
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F. Algorithm Details for MiniHack Experiments
The bonuses for each algorithm we consider are detailed below:

bE3B×AGAC(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
·DKL(π(·|st)∥πadv(·|st))

bE3B×RND(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
· ∥f(st)− f̄(st)∥22

bE3B×NovelD(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
·
[
∥f(st+1)− f̄(st+1)∥22 − c∥f(st)− f̄(st)∥22

]
+

bE3B+AGAC(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
+ βDKL(π(·|st)∥πadv(·|st))

bE3B+RND(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
+ β∥f(st)− f̄(st)∥22

bE3B+NovelD(st) =
[
ϕ(st)

⊤C−1
t−1ϕ(st)

]
+ β

[
∥f(st+1)− f̄(st+1)∥22 − c∥f(st)− f̄(st)∥22

]
+

Here ϕ is learned online using an inverse dynamics model. The algorithms above include all possible combinations of global
bonuses (second term) with the elliptical bonus (first term), and combining the two by multiplication or by taking a weighted
sum. For the algorithms which take a weighted sum, we tuned the β term on a subset of tasks, and report the best value on
all 16 tasks.

G. Additional Experiment Results
G.1. Additional MiniHack Results

In Table 13 we report results for two additional MiniHack variants of the MultiRoom environment. The first features
locked doors which the agent must kick down in order to move to the next room and eventually reach the exit. The second
features moving monsters which the agent must fight or avoid while navigating towards the exit. In both cases, we see
similar phenomena as in Section 3.1: the global bonus exhibits a severe performance drop when going from |C| = 1 to
|C| = ∞, whereas the episodic bonus’ performance is largely unchanged.

Environment |C| ψ Global Episodic
MultiRoom-N4-Locked-v0 1 P 0.722± 0.446 0.948± 0.01
MultiRoom-N4-Locked-v0 ∞ P −0.230± 0.039 0.925± 0.01

MultiRoom-N6-LavaMonsters-v0 1 P 0.994± 0.001 0.76± 0.38
MultiRoom-N6-LavaMonsters-v0 ∞ P 0.00± 0.00 0.75± 0.21

Table 13. Reward for global and episodic bonuses for different CMDPs, averaged across 5 seeds. Here |C| denotes the number of different
contexts/maps which are sampled from at each episode. The ψ column indicates which feature encodings are used (P for positions, M for
messages).

G.2. Evolution of Global and Episodic bonuses

In this section we show the evolution of the global and episodic bonus terms for the E3BXNOVELD algorithm for four of the
MiniHack tasks (see Figure 8). The first row displays the inverse dynamics model loss used for learning the ϕ embedding in
E3B’s episodic bonus, the second row shows the E3B episodic bonus itself, the third shows the NovelD global bonus, and
the fourth shows the true extrinsic reward provided by the environment.

First, note that the global bonus spans a much larger range of values than the episodic bonus does, initially starting at a
high value, exhibiting a first rapid decay, and then further decaying at a slower rate. In contrast, the episodic bonus spans a
more limited range, and during most of the training it has higher magnitude than the global bonus. For the episodic bonus,
we first see an initial decrease in magnitude, which is likely due to the ϕ features stabilizing (note that this coincides with
the stabilization of the inverse dynamics loss used for learning ϕ). After this, the episodic bonus increases, indicating that
the agent’s policy is learning to maximize the episodic bonus. The episodic bonus then decreases again once the extrinsic
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reward starts to increase, indicating that the agent has found the true environment reward and is switching to exploitation
rather than exploration.

We hypothesize that additively combining the episodic and global bonuses does not offer much benefit over the episodic
bonus alone because the magnitude of the global bonus decays significantly over time. Recall that the global bonus is
computed using all the agent’s experience, so it eventually becomes exhausted. Since the episodic bonus is reset each
episode, it does not become exhausted the same way, as evidenced by the fact that it increases once the feature encoder ϕ
has stabilized. If we add the two together, eventually the contribution of the global bonus will be small compared to the
contribution of the episodic bonus. However, if we combine the two multiplicatively the global bonus will still have an
effect regardless of its scale.
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Figure 8. Evolution of inverse dynamics loss, episodic bonus, global bonus and extrinsic reward throughout training for E3BXNOVELD.

G.3. Results with NGU episodic bonus

In this section we report results for the KNN-based episodic bonus from the Never-Give-Up (NGU) agent proposed in
(Badia et al., 2020). Like the E3B bonus, the NGU bonus operates in the embedding space induced by an inverse dynamics
model. A key difference is that it is based on the euclidean norm between the current state’s embedding and its neareset
neighbors within the episode, whereas E3B’s bonus is computed using the metric induced by the episodic covariance matrix.

Results for a combination of NGU’s episodic bonus with NovelD’s global bonus are shown in Figure 9. Although this
approach performs better than not including an exploration bonus (which gives average return of 0), it performs considerably
worse than the variants which use E3B. Note that our results are consistent with (Wang et al., 2023), who also report poor
results for NGU’s episodic bonus on MiniGrid.

One possible explanation may be that since NGU’s KNN-based bonus uses the euclidean norm, if one dimension has higher
scale than others it may dominate and reduce the effect of other more informative features. Therefore, this bonus may be
more sensitive to spurious features in embedding space. On the other hand, E3B automatically adjusts the scale of each
feature by normalizing by the inverse covariance matrix, and may therefore be more robust.
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Figure 9. Performance for all methods including using NGU’s episodic bonus.
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H. Additional Discussion
In this section we provide additional discussion and examples for the framework described in Section 3.3.

H.1. Examples of ψ functions and Z spaces

1. Tabular Algorithms: In classical tabular algorithms with a UCB-style bonus (Kearns & Singh, 2002; Brafman &
Tennenholtz, 2002; Strehl & Littman, 2006; Jin et al., 2018), ψ is simply the identity and Z = S. The bonus is of the
form b(s) = 1/

√
N(ψ(s)) = 1/

√
N(s).

2. Deep RL Algorithms with position-based counts: A number of recent exploration algorithms have used inverse
counts of (x, y) locations to drive exploration in gridworlds, for example RIDE (Raileanu & Rocktäschel, 2020;
Samvelyan et al., 2021), AGAC (Flet-Berliac et al., 2021) and NovelD (Zhang et al., 2021b; Henaff et al., 2022). We
use this approach for our experiments on MiniHack-MultiRoom and MiniHack-Corridor in Section 3. In
this case, ψ(st) = (xt, yt), the coordinates of the agent at time t, and the bonus is defined as b(s) = 1/

√
N(ψ(st)).

The space Z is a 2D lattice the size of the map, i.e.

Z = {(i, j) : 1 ≤ i ≤W, 1 ≤ j ≤ H}

where W,H correspond to the maximum width and height of the map across all contexts.

3. Deep RL Algorithms with message-based counts: Some recent methods have used inverse counts based on textual
messages (Mu et al., 2022a; Henaff et al., 2022) for environments where these are available, such as MiniGrid or
MiniHack. We use this approach for the MiniHack-KeyRoom environment shown in Figure 4. In this case, ψ
extracts the message from the state and the bonus is computed as b(s) = 1/

√
N(ψ(s)). The space Z then consists of

all possible messages for the given environment. For example, for the MiniHack-KeyRoom environment, we have

Z = {"You can’t move diagonally out of an intact doorway.",

"Be careful! New moon tonight.",

" ",

"It’s a wall.",

"You see here a key named The Master Key of Thievery.",

"h - a key named The Master Key of Thievery.",

"The stairs are solidly fixed to the floor.",

"It won’t come off the hinges.",

"You can’t move diagonally into an intact doorway.",

"This door is locked.",

"Never mind.",

"There is nothing here to pick up."

}

4. Elliptical Global Bonuses with kernel functions The examples above have used count-based bonuses in feature
space. However, our framework also captures algorithms which use exploration bonuses other than counts, such as
elliptical bonuses. For example, the work of (Agarwal et al., 2020) uses an elliptical bonus in the space induced by
an RBF kernel. In this case, ψ is the mapping to kernel space, Z = Rn (where n is the number of points used to
compute the RBF kernel) and the bonus is given by b(st) = ψ(st)

⊤C−1
t−1ψ(st). Here Ct−1 =

∑t−1
i=1 ψ(si)ψ(si)

⊤ is
the (unnormalized) covariance matrix computed using all the agent’s experience.

5. Elliptical Episodic Bonuses with learned embedding The recent E3B algorithm (Henaff et al., 2022) can be described
within our framework as well. Here ψ : S → Z is learned using an inverse dynamics model, and Z = Rk is the
embedding space. The bonus is given by b(s) = ψ(st)

⊤C−1
t ψ(st), where Ct−1 =

∑t−1
i=t0

ψ(si)ψ(si)
⊤ is the episodic

covariance matrix (with t0 denoting the start of the current episode). Here ψ is learned using an inverse dynamics
model (Pathak et al., 2017b).
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(a) c = 1 (b) c = 2 (c) c = 3

Figure 10. Top row: Value maps V ⋆ψ,c for 3 different contexts of the MultiRoom environment. For each z = (x, y) location on the map,
we display V ⋆ψ,c(z) = γk(x,y), where k(x, y) is the shortest path from the (x, y) location to the goal and γ = 0.9. Bottom row shows
corresponding maps. Note that V ⋆ψ,c changes significantly with different values of c.

H.2. Visualizations of V ⋆ψ,c functions

We now provide visualizations of the V ⋆ψ,c functions defined in Examples 1 and 2 of Section 3.3. Figure 10 shows the
functions V ⋆ψ,c for three different contexts c in Example 1, corresponding to different maps, with ψ : S → Z given by
ψ(st) = (xt, yt). Note that here Z is a 2D lattice consisting of all possible (x, y) positions on the map. For each z = (x, y),
we have V ⋆ψ,c(z) = γk(x,y), where k(x, y) denotes the shortest path to the goal computed using graph search. We use
γ = 0.9 for these visualizations. The function V ⋆ψ,c changes significantly for different contexts (maps) c, since the geometry
of the map and the goal location change from one context to the other.

Next, in Figure 11 we visualize the V ⋆ψ,c function for the MiniHack-KeyRoom environment (shown in Figure 4), with
ψ : S → Z extracting messages from states. In this case Z consists of the set of all possible messages which can be
seen in this environment. We show V ⋆ψ,c for 3 different contexts c. Unlike in the previous example, here V ⋆ψ,c has similar
shape across all contexts. Messages which can only occur once the door has opened, such as "It won’t come off
the hinges" and "You can’t move diagonally out of an intact doorway", have the highest value.
Messages corresponding to the agent visiting or picking up the key, which is necessary for opening the door, have medium
value (e.g. "You see here a key names The Master Key of Thievery", "h - a key named The
Master Key of Thievery". The remaining messages, such as " ", "This door is locked", "It’s a
wall", do not indicate that the agent has made progress on the task and have the lowest value.
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Figure 11. Visualization of value maps V ⋆ψ,c for 3 different contexts for the KeyRoom environment where ψ encodes messages. Here
V ⋆ψ,c changes little with different contexts.
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Figure 12. Visualization of value maps V ⋆ψ,c for 3 different contexts for the MultiRoom environment where ψ encodes messages. Here
V ⋆ψ,c changes little with different contexts.
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Example Environment ψ Average Cosine Similarity
1 MultiRoom positions 0.198
2 KeyRoom messages 0.991
3 MultiRoom messages 0.951

Table 14. Average cosine similarity for different examples from Section 3.3.

H.3. Quantifying the Variation of V ⋆ψ,c across episodes

One way in which the variation of V ⋆ψ,c across contexts can be made precise is to take the average cosine similarity between
V ⋆ψ,c and V ⋆ψ,c′ for randomly sampled contexts c, c′. Note that this is well-defined if Z is finite or infinite—if Z is infinite,
we replace dot products between vectors by inner products between functions:

average cosine similarity = Ec,c′∼µC

[ ⟨V ⋆ψ,c, V ⋆ψ,c′⟩
∥V ⋆ψ,c∥ · ∥V ⋆ψ,c′∥

]
(9)

Average cosine similarities for all three examples in Section 3.3 are given in Table 14. This is consistent with what we
observe in the visualizations in Appendix H.2, where the V ⋆ψ,c for Example 1 appear very different across contexts whereas
those for Examples 2 and 3 appear very similar. It is also consistent with our experimental results where the episodic bonus
succeeds for Example 1 and the global bonus succeeds for Examples 2 and 3.

It is difficult to say in general at what exact rate the global performance will degrade with decreasing average cosine similarity
of V ⋆ψ,c across contexts. However, to get some idea we can check this empirically for our MultiRoom experiments with
position encodings and different |C| from Table 1. In Table 15 below we compute the average cosine similarity of V ⋆ψ,c
across contexts and compare this to the global bonus performance. Again, we see that the global bonus performs worse in
settings with low average cosine similarity.

Environment ψ |C| Average Cosine Similarity Global Bonus Performance
MultiRoom position 1 1.000 0.99
MultiRoom position 3 0.465 0.59
MultiRoom position 5 0.358 0.23
MultiRoom position 10 0.278 0.02
MultiRoom position ∞ 0.198 0.00

Table 15. Average cosine similarity vs. global bonus performance on MultiRoom for different numbers of contexts.
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