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Abstract

Stable diffusion networks have emerged as a groundbreaking development for1

their ability to produce realistic and detailed visual content. This characteristic2

renders them ideal decoders, capable of producing high-quality and aesthetically3

pleasing reconstructions. In this paper, we introduce the first diffusion-based point4

cloud compression method, dubbed Diff-PCC, to leverage the expressive power of5

the diffusion model for generative and aesthetically superior decoding. Different6

from the conventional autoencoder fashion, a dual-space latent representation7

is devised in this paper, in which a compressor composed of two independent8

encoding backbones is considered to extract expressive shape latents from distinct9

latent spaces. At the decoding side, a diffusion-based generator is devised to10

produce high-quality reconstructions by considering the shape latents as guidance11

to stochastically denoise the noisy point clouds. Experiments demonstrate that the12

proposed Diff-PCC achieves state-of-the-art compression performance (e.g., 7.71113

dB BD-PSNR gains against the latest G-PCC standard at ultra-low bitrate) while14

attaining superior subjective quality. Source code will be made publicly available.15

1 Introduction16

Point clouds, composed of numerous discrete points with coordinates (x, y, z) and optional attributes,17

offer a flexible representation of diverse 3D shapes and are extensively applied in various fields such18

as autonomous driving [8], game rendering [35], robotics [7], and others. With the rapid advancement19

of point cloud acquisition technologies and 3D applications, effective point cloud compression20

techniques have become indispensable to reduce transmission and storage costs.21

1.1 Background22

Prior to the widespread adoption of deep learning techniques, the most prominent traditional point23

cloud compression methods were the G-PCC [39] and V-PCC [40] proposed by the Moving Picture24

Experts Group(MPEG). G-PCC compresses point clouds by converting them into a compact tree25

structure, whereas V-PCC projects point clouds onto a 2D plane for compression. In recent years,26

numerous deep learning-based methods have been proposed [50, 45, 11, 12, 7, 30, 46, 14, 42],27

which primarily employ the Variational Autoencoder (VAE) [1, 2] architecture. By learning a prior28

distribution of the data, the VAE projects the original input into a higher-dimensional latent space,29

and reconstructs the latent representation effectively using a posterior distribution. However, previous30

VAE-based point cloud compression architectures still face recognized limitations: 1) Assuming a31

single Gaussian distribution N(µ, σ2) in the latent space may prove inadequate to capture the intricate32

diversity of point cloud shapes, yielding blurry and detail-deficient reconstructions [56, 10]; 2) The33

Multilayer Perceptron (MLP) based decoders [50, 45, 11, 12, 46] suffer from feature homogenization,34

which leads to point clustering and detail degradations in the decoded point cloud surfaces, lacking the35
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Figure 1: Diff-PCC pipeline. Xt and X̄t represents the tth original point cloud and noisy point cloud,
respectively; p refers to the forward process and q refers to the reverse process; N(0, I) means the
pure noise. Entropy model and arithmetic coding is omitted for a concise explanation.

ability to produce high-quality reconstructions. Recently, Diffusion models (DMs) [5] have attracted36

considerable attention in the field of generative modeling [34, 48, 41, 19] due to their outstanding37

performance in generating high-quality samples and adapting to intricate data distributions, thus38

presenting a novel and exciting opportunity within the domain of neural compression [33, 44, 25].39

By generating a more refined and realistic 3D point cloud shape, DMs offer a distinctive approach to40

reduce the heavy dependence of reconstruction quality on the information loss of bottleneck layers.41

1.2 Our Approach42

Building on the preceding discussion, we introduce Diff-PCC, a novel lossy point cloud compression43

framework that leverages diffusion models to achieve superior rate-distortion performance with44

exceptional reconstruction quality. Specifically, to enhance the representation ability of simplistic45

Gaussian priors in VAEs, this paper devises a dual-space latent representation that employs two46

independent encoding backbones to extract complementary shape latents from distinct latent spaces.47

At the decoding side, a diffusion-based generator is devised to produce high-quality reconstructions by48

considering the shape latents as guidance to stochastically denoise the noisy point clouds. Experiments49

demonstrate that the proposed Diff-PCC achieves state-of-the-art compression performance (e.g.,50

7.711 dB BD-PSNR gains against the latest G-PCC standard at ultra-low bitrate) while attaining51

superior subjective quality.52

1.3 Contribution53

Main contributions of this paper are summarized as follows:54

• We propose Diff-PCC, a novel diffusion-based lossy point cloud compression framework.55

To the best of our knowledge, this study presents the first exploration of diffusion-based56

neural compression for 3D point clouds.57

• We introduce a dual-space latent representation to enhance the representation ability of the58

conventional Gaussian priors in VAEs, enabling the Diff-PCC to extract expressive shape59

latents and facilitate the following diffusion-based decoding process.60

• We devise an effective diffusion-based generator to produce high-quality noises by consider-61

ing the shape latents as guidance to stochastically denoise the noisy point clouds.62

2 Related Work63

2.1 Point Cloud Compression64

Classic point cloud compression standards, such as G-PCC, employ octree[29] to compress point65

cloud geometric information. In recent years, inspired by deep learning methods in point cloud66

analysis[26, 27] and image compression[1, 2, 22], researchers have turned their attention to learning-67

based point cloud compression. Currently, point cloud compression methods can be primarily divided68

into two branches: voxel-based and point-based approaches. Voxel-based methods further branch into69
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sparse convolution[36, 37, 38, 49, 51, 52] and octree[9, 24, 31]. Among them, sparse convolution de-70

rives from 2D-pixel representations but optimizes for voxel sparsity. On the other hand, octree-based71

methods, utilize tree structures to eliminate redundant voxels, representing only the occupied ones.72

Point-based methods[11, 50, 45, 46] are draw inspiration from PointNet [26], utilizing symmetric73

operators (max pooling, average pooling, attention pooling) to handle permutation-invariant point74

clouds and capture geometric shapes. For compression, different quantization operations categorize75

point cloud compression into lossy and lossless types. In this paper, we focus on lossy compression76

to achieve higher compression ratios by sacrificing some precision in the original data.77

2.2 Diffusion Models for Point Cloud78

Recently, diffusion models have ignited the image generation field[58, 17, 32], inspiring researchers79

to explore their potential in point cloud applications. DPM[20] pioneered the introduction of diffusion80

models in this domain. Starting from DPM, PVD[57] combines the strengths of point cloud and81

voxel representations, establishing a baseline based on PVCNN. LION[47] employs two diffusion82

models to separately learn shape representations in latent space and point representations in 3D83

space. Dit-3D[23] innovates by integrating transformers into DDPM, directly operating on voxelized84

point clouds during the denoising process. PDR[21] employs diffusion model twice during the85

process of generating coarse point clouds and refined point clouds. Point·E[] utilizes three diffusion86

models for the following processes: text-to-image generation, image-to-point cloud generation, and87

point cloud upsampling. PointInfinity[13] utilizes cross-attention mechanism to decouple fixed-size88

shape latent and variable-size position latent, enabling the model to train on low-resolution point89

clouds while generating high-resolution point clouds during inference. DiffComplete[4] enhances90

control over the denoising process by incorporating ControlNet[53], achieving new state-of-the-art91

performances. These advancements demonstrate the promise of DMs in point cloud generation tasks,92

which motivates our exploring its applicability in point cloud compression. Our research objective is93

to explore the effective utilization of diffusion models for point cloud compression while preserving94

its critical structural features.95

3 Method96

Figure 1 illustrates the pipeline of the proposed Diff-PCC, which can also represent the general work-97

flow of diffusion-based neural compression. A concise review for Denoising Diffusion Probabilistic98

Models (DDPMs) and Neural Network (NN) based point cloud compression is first provided in99

Sec. 3.1; The proposed Diff-PCC is detailed in Sec. 3.2.100

3.1 Preliminaries101

Denoising Diffusion Probabilistic Models (DDPMs) comprise two Markov chains of length T:102

diffusion process and denoising process. Diffusion process adds noise to clean data x0, resulting in103

a series of noisy samples {x1,x2...xT }. When T is large enough, xT ∼ N(0, I). The denoising104

process is the reverse process, gradually removing the noise added during the diffusion process. We105

formulate them as follows:106

q(x1, · · · ,xT |x0) =

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

pθ(x0, · · · ,xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), where pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I)

(2)

where β is a hyperparameter representing noise level. t ∼ Unif{1, . . . , T} represents time step. Via107

reparameterization trick, we can sample from q(xt|xt−1) and pθ(xt−1|xt) as following:108

xt =
√

1− βtxt−1 +
√
βtϵ (3)

xt−1 = µθ(xt, t) + σtϵ =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+

√
1− ᾱt−1

1− ᾱt
βtϵ (4)
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Figure 2: Detailed Structure of the Utilized Compressor and Generator. yl and yh refer to the
low-frequency shape latent and high-frequency detail latent, respectively; z means hyperprior latent;
Q refers to the quantization; AE and AD represents the arithmetic encoding and decoding.

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, ϵ denotes random noise sampled from N(0, I). Note that109

ϵθ(xt, t) is a neural network used to predict noise during the denoising process, and xt can be110

directly sampled via xt =
√
ᾱtx0 +

√
1− ᾱtϵ.111

DDPMs train the reverse process by optimizing the model parameters θ through noise distortion. The112

loss function L(θ,x0) is defined as the expected squared difference between the predicted noise and113

the actual noise, with the mathematical expression as follows:114

L(θ,x0) = Et,ϵ||ϵ− ϵθ(xt, t)||2 (5)

3.2 DIFF-PCC115

3.2.1 Overview116

As shown in Fig. 2, two key components, i.e., compressor and generator, are respectively utilized117

in the diffusion process and denoising process. In Diff-PCC, the diffusion process is identified as118

the encoding, in which a compressor extracts latents from the point cloud and compresses latents119

into bitstreams; at the decoding side, the generator accepts the latents as a condition and gradually120

restoring point cloud shape from noisy samples.121

3.2.2 Dual-Space Latent Encoding122

Several research have demonstrated that a simplistic Gaussian distribution in the latent space may123

prove inadequate to capture the complex visual signals [56, 3, 6, 10]. Although previous works have124

proposed to solve these problems using different technologies such as non-gaussian prior [15] or125

coupling between the prior and the data distribution [10], these techniques may not be able to directly126

employed on neural compression tasks.127

In this paper, a simple yet effective compressor is introduced, which composed of two independent128

encoding backbones to extract expressive shape latents from distinct latent spaces. Motivated by129

PointPN [55], which excels in capturing high-frequency 3D point cloud structures characterized by130

sharp variations, we design a dual-space latent encoding approach that utilizes PointNet to extract131

low-frequency shape latent and leverages PointPN to characterize complementary latent from high132

frequency domain. Let x be the original input point cloud, we formulate the above process as:133

{yl, yh} = {El(x), Eh(x)} (6)
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where yl ∈ R1×C and yh ∈ RS×C represent the low-frequency and high-frequency latent features,134

respectively; El and Eh refer to the PointNet and PointPN backbones, respectively. Next, the135

quantization process Q is applied on the obtained features ȳl and ȳh, i.e.,136

{ȳl, ȳh} = {Q(yl), Q(yh)} (7)

where function Q refers to the operation of adding uniform noise during training [1] and the rounding137

operation during test.138

Then, fully factorized density model [1] and the hyperprior density model [2] are employed to fit the139

distribution of quantized features ȳl and ȳh, respectively. Particularly, the hyperprior density model140

pφ(ȳh) can be described as:141

pφ(ȳh) =

(
N(µ, σ2) ∗ U

(
−1

2
,
1

2

))
(ȳh) (8)

where U
(
− 1

2 ,
1
2

)
refers to the uniform noise ranging from − 1

2 to 1
2 ; N(µ, σ2) refers to the normal142

distribution with expectation µ and standard deviation σ, which can be further estimated by a143

hyperprior encoder Ehyper and decoder Dhyper:144

(µ, σ2) = Dhyper(z̄) = Dhyper(Q(z)) = Dhyper(Q(Ehyper(yh))) (9)

In this way, a triplet containing quantized low-frequency feature ȳl, quantized high-frequency feature145

ȳh, and quantized hyperprior z̄ will be compressed into three separate streams. Let p(·) and p(... )(·)146

respectively represents the actual distribution and estimated distribution of latent features, then the147

bitrate R can be estimated as follows:148

R = Eȳl∼p(ȳl) [− log2 pθ(ȳl)] + Eȳh∼p(ȳh) [− log2 pφ(ȳh)] + Ez̄∼p(z̄) [− log2 pϕ(z̄)] (10)

3.2.3 Diffusion-based Generator149

The generator takes noisy point cloud xt at time t and necessary conditional information C as input.150

We hope generator to learn positional distribution F of xt and fully integrate F with C to predict151

noise ϵt at time t. In this paper, we consider all information that could potentially guide the generator152

as conditional information, including time t, class label l, noise coefficient βt, and decoded latent153

features (ȳl and ȳh).154

DiffComplete [4] uses ControlNet [54] to achieve refined noise generation. However, the denoiser of155

DiffComplete is a 3D-Unet, adapted from its 2D version [16]. This structure is not suitable for our156

method, because we directly deal with points, instead of voxels. We embraced this idea and specially157

designed a hierarchical feature fusion mechanism to adapt to our method. Note that 3D-Unet can158

directly downsample features F through 3D convolution with a stride greater than one. It is very159

complex for point-based methods to achieve equivalent processing. Therefore, we did not replicate160

the same structure as DiffComplete does, but directly used AdaLN to inject conditional information,161

formulated as:162

AdaLN(Fin, C) = Norm(Fin)⊙ Linear(C) + Linear(C) (11)

where Fin denotes the original features in the Generator and C denotes the condition information.163

Now we detail the structure: First, we need to exact the shape latent of noise point cloud xt and we164

choose PointNet for structural consistency. However, in the early stages of the denoising process,165

xt lacks a regular surface shape for the generator to learn. Therefore, we adopt the suggestion from166

PDR [23], adding positional encoding to each noise point so that the generator can understand the167

absolute position of each point in 3D space. Then we inject shape latent ȳl from the compressor via168

ADaLN. We formulate the above process as:169

Fxt = PointNet(xt) + PE(xt) (12)

F
′

xt = AdaLN(Fxt
, C) (13)

Next, we need to fuse high-frequency features. We extract the local high-frequency features of xt170

using PointPN and add them to F from the previous step, Then we inject the high-frequency features171

from the compressor via AdaLN. We use K-Nearest Neighbor (KNN) operation to partition locally172
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and set the number of neighbor points to 8, which allows the generator to learn local details. We173

formulate the above process as:174

F
′
= PointPN(xt) + FPS(Fin) (14)

Fout = AdaLN(F
′
, C) (15)

After that, we use the self-attention mechanism to interact with information from different local areas.175

And through a feature up-sampling module, we generate features for n points. Finally, we output176

noise through a linear layer. We formulate the above process as:177

F
′
= SA(Fin) (16)

F
′′
= UP (F

′
) (17)

ϵt = Linear(F
′′
) (18)

3.2.4 Training Objective178

We follow the conventional rate-distortion trade-off as our loss function as follows:179

L = D + λR (19)

where D refers to the evaluated distortion; R represents bitrate as shown in Eq. 10; λ serves as the180

balance the distortion and bitrate. Specifically, a combined form of distortion D is used in this paper,181

which considers both intermediate noises (ϵ, ϵ̄) and global shapes (x0, x̄0):182

D = DMSE(ϵ, ϵ̄) + γDCD(x0, x̄0) (20)

where DMSE denotes the Mean Squared Error (MSE) distance; DCD refers to the Chamfer Distance;183

γ means the weighting factor. Here, the overall point cloud shape is additively supervised under the184

Chamfer Distance DCD(x0, x̄0) to provide a global optimization. The following function is utilized185

to predict the reconstructed point cloud x̄0 in practice:186

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt, t, c)

)
(21)

where ᾱt means the noise level; xt refers to the noisy point cloud at time step t; ϵθ denotes the187

predicted noise from the generator; c represent the conditional information we inject into the generator.188

4 Experiments189

4.1 Experimental Setup190

Datasets Based on previous work, we used ShapeNet as our training set, sourced from [20]. This191

dataset contains 51,127 point clouds, across 55 categories, which we allocated in an 8:1:1 ratio for192

training, validation, and testing. Each point cloud has 15K points, and following the suggestions from193

[28], we randomly select 2K points from each for training. Additionally, we also used ModelNet10194

and ModelNet40 as our test sets, sourced from [43]. These datasets contain 10 categories and195

40 categories respectively, totaling 10,582 point clouds. During training and testing, we perform196

individual normalization on the shape of each point cloud.197

Baselines & Metric We compare our method with the state-of-the-art non-learning-based method:198

G-PCC, and the latest learning-based methods from the past two years: IPDAE, PCT-PCC, Following199

[45, 46], we use point-to-point PSNR to measure the geometric accuracy and the number of bits per200

point to measure the compression ratio.201

Implementation Our model is implemented using PyTorch [27] and CompressAI [4], trained on the202

NVIDIA 4090X GPU (24GB Memory) for 80,000 steps with a batch size of 48. We utilize the Adam203

optimizer [21] with an initial learning rate of 1e-4 and a decay factor of 0.5 every 30,000 steps, with204

β1 set to 0.9 and β2 set to 0.999. Since the positional encoding method requires the dimension (dim)205

to be a multiple of 6, we designed the bottleneck layer size to be 288. For diffusion, we employ a206

cosine preset noise parameter, setting the denoising steps T to 200, which is used for both training207

and testing.208
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Table 1: Objective comparison using BD-PSNR and BD-Rate metrics. G-PCC serves as the anchor.
The best and second-best results are highlighted in bold and underlined, respectively.

Dataset Metric G-PCC IPDAE PCT-PCC Diff-PCC

ShapeNet BD-Rate (%) - -34.594 -87.563 -99.999
BD-PSNR (dB) - +3.518 +8.651 +11.906

ModelNet10 BD-Rate (%) - -35.640 -68.899 -56.910
BD-PSNR (dB) - +4.060 +6.333 +5.876

ModelNet40 BD-Rate (%) - -53.231 -34.127 -56.451
BD-PSNR (dB) - +4.245 +6.167 +5.350

Avg. BD-Rate (%) - -41.550 -63.530 -71.117
BD-PSNR (dB) - +3.941 +4.384 +7.711

Time (s/frame) Encoding 0.002 0.004 0.046 0.152
Decoding 0.001 0.006 0.001 1.913

Figure 3: Rate-distortion curves for performance comparison. From left to right: ShapeNet, Model-
Net10, and ModelNet40 dataset.

4.2 Baseline Comparisons209

Objective Quality Comparison Table 1 shows the quantitative indicators using BD-Rate and BD-210

PSNR, and Fig. 3 demonstrates the rate-distortion curves of different methods. It can be seen211

that, under identical reconstruction quality conditions, our method achieves superior rate-distortion212

performance, conserving between 56% to 99% of the bitstream compared to G-PCC. At the most213

minimal bit rates, point ot point PSNR of our proposed method surpasses that of G-PCC by 7.711 dB.214

Subjective Quality Comparison Fig 4 presents the ground truth and decoded point clouds from215

different methods. We choose three point cloud:airplane, chair ,and mug. to be tested across a216

comparable bits per pixel (bpp) range. The comparative analysis reveals that at the lowest code rate,217

our method preserves the ground truth’s shape information to the greatest extent while simultaneously218

achieving the highest Peak Signal-to-Noise Ratio (PSNR).219

4.3 Ablation Studies220

We conduct ablation studies to examine the impact of key components in the model. Specifically,221

we investigate the effectiveness of low-frequency features, high-frequency features, and the loss222

function designed in Sec. 3.2.4. As shown in Table 2, utilizing solely low-frequency features to223

guide the reconstruction of the diffusion model results in a 20% reduction in the code rate, along224

with a decrease in the reconstruction quality by 0.397dB. This indicates that high-frequency features225

play an effective role in guiding the model during the reconstruction process. Conversely, discarding226

the low-frequency features, which represent the shape of the point cloud, leads to a reduction in227

the code rate and significantly diminishes the reconstruction quality. Therefore, we argue that the228

loss of the shape variable is not worth it. Lastly, we ascertain the impact of DCD(x0, x̄0), and the229

results indicate that this loss marginally increases the bits per point (bpp) while diminishing the230

reconstruction quality.231
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GT G-PCC PTU-PCCOurs IPDAE

Bpp / D1 PSNR

Bpp / D1 PSNR

Bpp / D1 PSNR

0.078 / 44.135

0.078 / 37.299

0.118 / 30.022 0.102 / 36.399 0.094 / 38.497

0.094 / 31.823 0.104 / 36.204 0.094 / 31.627

0.078 / 38.190 0.104 / 36.332 0.089 / 32.1380.108 / 26.691

Figure 4: Subjective quality comparison. Example point clouds are selected from the ShapeNet
dataset, each with 2k points.

Table 2: Ablation study of the proposed method. The original Diff-PCC serves as the anchor.

El backbone Eh backbone DCD(x0, x̄0) BD-PSNR (dB) BD-Rate (%)
" % " -0.397 -20.637
% " " -2.276 -16.523
" " % -0.132 +4.658

5 Limitations232

Although our method has achieved advanced rate distortion performance and excellent visual re-233

construction results, there are several limitations that warrant discussion. Firstly, the encoding and234

decoding time are relatively long, which could potentially be improved by the acceleration techniques235

employed in several explorations [18, 19]. Secondly, the model is currently limited to compressing236

small-scale point clouds, and further research is required to enhance its capability to handle large-scale237

instances.238

6 Conclusion239

We propose a diffusion-based point cloud compression method, dubbed Diff-PCC, to leverage the240

expressive power of the diffusion model for generative and aesthetically superior decoding. We241

introduce a dual-space latent representation to enhance the representation ability of the conventional242

Gaussian priors in VAEs, enabling the Diff-PCC to extract expressive shape latents and facilitate243

the following diffusion-based decoding process. At the decoding side, an effective diffusion-based244

generator produces high-quality reconstructions by considering the shape latents as guidance to245

stochastically denoise the noisy point clouds. The proposed method achieves state-of-the-art com-246

pression performance while attaining superior subjective quality. Future works may include reducing247

the coding complexity and extending to large-scale point cloud instances.248
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• The experimental setting should be presented in the core of the paper to a level of detail530

that is necessary to appreciate the results and make sense of them.531

• The full details can be provided either with the code, in appendix, or as supplemental532

material.533

7. Experiment Statistical Significance534

Question: Does the paper report error bars suitably and correctly defined or other appropriate535

information about the statistical significance of the experiments?536

Answer: [No]537

Justification: Error bars are not reported due to the specificity of the compression task. The538

rate-distortion curve (Fig. 3) and Bjontegaard metric (Tab. 1) could be convincing enough.539

Guidelines:540

• The answer NA means that the paper does not include experiments.541

• The authors should answer "Yes" if the results are accompanied by error bars, confi-542

dence intervals, or statistical significance tests, at least for the experiments that support543

the main claims of the paper.544

• The factors of variability that the error bars are capturing should be clearly stated (for545

example, train/test split, initialization, random drawing of some parameter, or overall546

run with given experimental conditions).547

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,548
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• If error bars are reported in tables or plots, The authors should explain in the text how559
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8. Experiments Compute Resources561

Question: For each experiment, does the paper provide sufficient information on the com-562

puter resources (type of compute workers, memory, time of execution) needed to reproduce563

the experiments?564

Answer: [Yes]565

Justification: Sufficient information on the computer resources is disclosed in the experiment566

setting (Sec. 4.1).567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,570

or cloud provider, including relevant memory and storage.571

• The paper should provide the amount of compute required for each of the individual572

experimental runs as well as estimate the total compute.573

• The paper should disclose whether the full research project required more compute574

than the experiments reported in the paper (e.g., preliminary or failed experiments that575

didn’t make it into the paper).576

9. Code Of Ethics577

Question: Does the research conducted in the paper conform, in every respect, with the578

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?579

Answer: [Yes]580

Justification: This research does not involve human subjects or participants. This paper581

conform with the Code of Ethics in every respect.582

Guidelines:583

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.584

• If the authors answer No, they should explain the special circumstances that require a585

deviation from the Code of Ethics.586

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-587

eration due to laws or regulations in their jurisdiction).588

10. Broader Impacts589

Question: Does the paper discuss both potential positive societal impacts and negative590

societal impacts of the work performed?591

Answer: [NA]592

Justification: There is no societal impact of the work. The proposed method is limited to593

compression and reconstruction and cannot be used to generate deepfakes or disinformation.594

Guidelines:595

• The answer NA means that there is no societal impact of the work performed.596
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impact or why the paper does not address societal impact.598
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• Examples of negative societal impacts include potential malicious or unintended uses599

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations600

(e.g., deployment of technologies that could make decisions that unfairly impact specific601
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• The conference expects that many papers will be foundational research and not tied603

to particular applications, let alone deployments. However, if there is a direct path to604

any negative applications, the authors should point it out. For example, it is legitimate605

to point out that an improvement in the quality of generative models could be used to606

generate deepfakes for disinformation. On the other hand, it is not needed to point out607
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models that generate Deepfakes faster.609

• The authors should consider possible harms that could arise when the technology is610

being used as intended and functioning correctly, harms that could arise when the611

technology is being used as intended but gives incorrect results, and harms following612

from (intentional or unintentional) misuse of the technology.613

• If there are negative societal impacts, the authors could also discuss possible mitigation614

strategies (e.g., gated release of models, providing defenses in addition to attacks,615

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from616

feedback over time, improving the efficiency and accessibility of ML).617

11. Safeguards618

Question: Does the paper describe safeguards that have been put in place for responsible619

release of data or models that have a high risk for misuse (e.g., pretrained language models,620

image generators, or scraped datasets)?621

Answer: [NA]622

Justification: This paper poses no safeguard risks.623

Guidelines:624

• The answer NA means that the paper poses no such risks.625
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that users adhere to usage guidelines or restrictions to access the model or implementing628
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should describe how they avoided releasing unsafe images.631

• We recognize that providing effective safeguards is challenging, and many papers do632

not require this, but we encourage authors to take this into account and make a best633

faith effort.634

12. Licenses for existing assets635

Question: Are the creators or original owners of assets (e.g., code, data, models), used in636

the paper, properly credited and are the license and terms of use explicitly mentioned and637
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Answer: [Yes]639

Justification: This paper follows the license of the datasets used. Original papers are properly640

cited.641
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• The authors should cite the original paper that produced the code package or dataset.644

• The authors should state which version of the asset is used and, if possible, include a645

URL.646
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• The answer NA means that the paper does not release new assets.664

• Researchers should communicate the details of the dataset/code/model as part of their665

submissions via structured templates. This includes details about training, license,666

limitations, etc.667
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• At submission time, remember to anonymize your assets (if applicable). You can either670

create an anonymized URL or include an anonymized zip file.671
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Justification: This paper does not involve crowdsourcing nor research with human subjects.677

Guidelines:678
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may be required for any human subjects research. If you obtained IRB approval, you699
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• We recognize that the procedures for this may vary significantly between institutions701

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the702

guidelines for their institution.703

• For initial submissions, do not include any information that would break anonymity (if704

applicable), such as the institution conducting the review.705
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