Machine learning on rigid classes of Euclidean clouds of unordered points

Abstract

Most real objects allow infinitely many different
representations. Robust machine learning aims
to use only invariant features independent of ob-
ject representations to guarantee that any output
(class label or predicted property) is preserved
if the same object is represented differently. For
Euclidean clouds of unordered points under rigid
motion, we introduce complete invariants (with no
false negatives, no false positives) and a Lipschitz
continuous distance that satisfies all metric ax-
ioms and is computable in polynomial time of the
number of points. The new realizability property
implies that the space of all rigid clouds is effi-
ciently parametrized by vectorial invariants like
geographic coordinates. The proposed invariants
distinguished all rigid classes of atomic clouds in
the world’s largest collections of molecules with
3D coordinates and predicted chemical elements
by pure geometry with over 98% accuracy.

1. Importance of complete and bi-continuous
invariants for ML on data with real values

This paper formalizes practically important conditions for
application-driven ML on real objects with ambiguous rep-
resentations and develops new canonical representations
satisfying these conditions for any clouds (finite sets) of
unordered points in Euclidean space R™. Such a cloud is
the most basic form of a real object from cars to molecules
(Wang & Solomon, 2019), e.g. a set of corners or atoms.

Many objects are rigid in the sense that their shape and prop-
erties are preserved under rigid motion composed of trans-
lations and rotations in R™ (Atz et al., 2021), which form
the group SE(n). The slightly weaker relation is by isome-
tries (distance-preserving transformations), which form the
group E(n). The practical cases are dimensions n < 3 and
larger numbers m (hundreds) of unordered points without
outliers (Shi et al., 2021) because atoms have stable nuclei.
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Any rigid cloud has infinitely many representations, e.g.
lists of point coordinates, but the shape and properties of an
object should be independent of a coordinate system. Points
are usually unordered and even simple molecules have many
indistinguishable atoms. Hence predictions should not de-
pend on point ordering. On another hand, different rigid
classes of chemically identical molecules can have different
functional properties such as solubility and hence therapeu-
tic effectiveness. If not all rigid classes are distinguished,
drugs can become useless, implying human suffering and
financial losses for manufacturers (Morissette et al., 2003).

A repeated scan or measurement of the same object can
produce a slightly different cloud that cannot be exactly
matched with the original one by rigid motion, also due to
atomic vibrations (Feynman, 1971). If noise is ignored up
to any threshold € > 0, sufficiently many tiny perturbations
make all clouds equivalent by the transitivity axiom: if
A~ Band B ~ C, then A ~ C (Brink et al., 1997).

Since all small deviations between rigid classes of point
clouds should be distinguished, all these classes live in a
continuous space of rigid clouds, see Fig. 1 (left). This space
was continuously parametrized only in dimension n = 1 or
for m = 3 points or Fig. 1 (right) leaving other cases open.

Figure 1. Left: rigid classes of m unordered points in R™ form
a continuous space, which had no complete and bi-continuous
invariants for m > 3, n > 1. Right: the space of 3 points under
isometry is parametrized by distances 0 < a < b <c<a+b.

Machine learning previously focused on discrete classifi-
cations or success measures for finite datasets, which can
be considered discrete samples (of measure 0) in contin-
uous spaces. For generalizability to all real data outside
finite datasets, application-driven ML needs new conditions
formalized in Problem 1.1 below. (Li et al., 2021; Dym &
Gortler, 2024; Maennel et al., 2024; Nigam et al., 2024)
studied complete invariants without realizability and Lips-
chitz bi-continuity (Morris et al., 2024; Cahill et al., 2024).
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Problem 1.1. Find a complete and bi-continuous invariant
I : {clouds of unordered points in R™} — a space X with
a distance d such that all the conditions below hold.

(a) Completeness: any clouds A, B of unordered points are
related by a rigid motion of R™ if and only if I(A) = I1(B).

(b) Metric axioms: 1) d(«,3) =0 a = 5, 2)d(a, B) =
d(ﬁv a); 3) d(av B)+d(ﬁ,’7) > d(a,v)forallmﬂ,y € X.

(c) Lipschitz continuity: there is a constant \ such that if
each point of a cloud A C R™ is perturbed up to Euclidean
distance ¢, then I(A) changes by at most e in the metric d.

(d) Realizability: the image {I(A) | clouds A C R™ of un-
ordered points} is parametrized so that one can reconstruct
A up to rigid motion from any realizable value of 1.

(e) Point matching: there is a constant | that guarantees
for any clouds A, B a rigid motion matching all points of
A, B up to Euclidean distance pud(I(A), I(B)).

(f) Computability: for a fixed dimension n, the invariant
I, the metric d, and all constructions in (d) and (e) are
computable in polynomial time of the number of points.

Clouds and rigid motion can be replaced with any data
(graphs, meshes) and equivalences (also allowing reflections
or uniform scaling), respectively, so Problem 1.1 makes
sense for any real data with ambiguous representations.

The completeness (or injectivity) in 1.1(a) fully answers the
question “same or different?” A complete invariant [ has
the ultimate expressive power and always distinguishes all
clouds A 2 B (not only from a finite dataset) that cannot
be matched by rigid motion, so [ is a descriptor with no
false negatives and no false positives. The universal approx-
imation aims for the completeness of infinite-size invariants
(Maron et al., 2019; Keriven & Peyré, 2019; Yarotsky, 2022),
so polynomial time in 1.1(f) makes all conditions harder.

A complete invariant can give a discontinuous metric, say
d(A, B) = 1 for all non-equivalent clouds without quan-
tifying the similarity of near-duplicates. The continuity
in 1.1(c) is necessary for smoothness and hence for any
gradient-based optimisation Due to the first axiom in 1.1(b),
any metric d detects rigidly equivalent clouds by checking
if d(A, B) = 0. Without the first axiom, many more dis-
tances including the zero d = 0 satisfy the other axioms and
are called pseudo-metrics (Brécheteau, 2019). If the third
axiom in 1.1(b) fails with any additive error € > 0, results
of clustering may not be trustworthy (Rass et al., 2024).

The realizability in 1.1(d) implies that the invariant I is an
invertible 1-1 map from the complicated Cloud Rigid Space
CRS(R™;m) of classes of clouds under rigid motion to the
explicitly parametrized space I(CRS(R™;m)) of realizable
values. Then with 100% certainty, we can sample any value
in I(CRS(R™; m)) and reconstruct its cloud A C R™.

The 1-1 point matching in 1.1(e) can be interpreted as the
Lipschitz continuity of the inverse map 1! so that any
close values I(A), I(B) guarantee the closeness of A, B
under rigid motion. Conditions 1.1(c,e) mean that [ is bi-
Lipschitz: e/u < d(I(A),I(B)) < Ae, where ¢ is the
minimum perturbation needed to match all points of A, B.

A partial matching, e.g. ignoring outliers, is harder to for-
malize. Indeed, if any clouds sharing all points except one
are called equivalent, the transitivity axiom allows us to
build a chain of equivalences A ~ --- ~ A changing one
point at a time, which can make all clouds equivalent.

One can define metrics satisfying 1.1(a,b,c) by minimizing
or deviations of unordered points over infinitely many trans-
formations but polynomial time in 1.1(f) makes Problem 1.1
notoriously hard, previously solved only for m = 3 points.

Conditions 1.1(a,b,c,f) and 1.1(d,e.f) formalize the discrimi-
native and generative goals, respectively. A full solution to
Problem 1.1 will imply that the rigid classes of clouds can be
efficiently visualized in the moduli space I(CRS(R™;m))
replacing any latent space of non-invariants or incomplete
(or discontinuous or non-realizable) invariants. Geographi-
cally, I(CRS(R™; m)) can be compared with Earth’s map,
where any location can be reconstructed with all properties
(altitude, precipitation, images, ...) from the latitude and
longitude coordinates in known (realizable) ranges.

Contributions. Problem 1.1 formalizes the necessary con-
ditions for any application-driven ML on real objects. The
new invariant Nested Distributed Projection solves Prob-
lem 1.1 for all clouds of m unordered points in dimension
n = 2. Any cloud A C R"™ can be reconstructed from
a small part of the invariant (a vector in R"("—(n+1)/2))
whose realizability in 1.1(d) is guaranteed by explicitly writ-
ten inequalities. Hence coordinates of this vector can be
chosen in known ranges like latitude and longitude on Earth
maps. The appendices cover all dimensions n > 2. The
Python/C++ code is in the supplementary materials.

2. Past work on continuous metrics for clouds

Ordered points. Kendall’s shape theory (Kendall et al.,
2009) studies m ordered points pi,...,p, € R™ under
isometries from E(n). In this case, a complete invariant is
the distance matrix (Schoenberg, 1935; Kruskal & Wish,
1978) or the Gram matrix of scalar products p; - p;, see
chapter 2.9 in (Weyl, 1946), (Villar et al., 2021). A brute-
force extension to m unordered points requires m! matrices
due to m! permutations, which is ruled out by 1.1(f).

Point cloud registration for unordered points samples ro-
tations (Lin et al., 1986; Yang et al., 2020) and uses scale-
invariant features (Lowe, 1999; 2004; Huang et al., 2006)
to approximately match clouds. If approximately matched
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clouds are called equivalent, sufficiently many gradual per-
turbations make all clouds equivalent due to the transitivity
axiom. Hence all rigid classes should be distinguished by
a distance d that becomes zero only on rigidly equivalent
clouds. Trying to sort points along a fixed direction or in a
clockwise order around their center of mass leads to discon-
tinuities because distant points can have equal projections to
a line or a circle. A basis (say, of principal directions) of a
cloud (Spezialetti et al., 2019; Zhu et al., 2022; Kurlin, 2024)
is similarly unstable under perturbations of points in cases
of high symmetry, e.g. when eigenvalues become equal,
which often happens for real molecules in our main appli-
cation. Converting a cloud by using extra parameters into
a more complex object such as a continuous field R?® — R
(Chauvin et al., 2022) or the persistent homology transform
leads to the harder analog of Problem 1.1 for continuous
surfaces instead of discrete clouds (Turner et al., 2014).

Neural networks (Bronstein et al., 2021) can guarantee
invariance or equivariance (Thomas et al., 2018; Kondor
& Trivedi, 2018; Cohen et al., 2019; Fuchs et al., 2020;
Deng et al., 2021). An equivariant descriptor E satisfies
the weaker condition E(f(A)) = Ty(E(A)) for any rigid
motion f of a cloud A, where Ty may not be the identity
as required for invariants (Satorras et al., 2021; Chen et al.,
2021; Aronsson, 2022; Assaad et al., 2023; Xu et al., 2022;
Su et al., 2022). Any linear combination of points such
as the center of mass is equivariant but cannot distinguish
clouds under translation. Equivariants were used for pre-
dicting forces acting on atoms to move them to a more
optimal configuration. These time-dependent clouds A, can
be studied directly by their invariant values I(A;) without
intermediate forces. So neural networks optimize millions
of parameters, see Table 4 in (Goyal et al., 2021), to im-
prove accuracies (Dong et al., 2018; Akhtar & Mian, 2018;
Laidlaw & Feizi, 2019; Guo et al., 2019; Colbrook et al.,
2022) but need re-training any for new data and will have
better generalizability if their inputs are invariants satisfying
the conditions of Problem 1.1 for all possible clouds in R™.

General metrics between fixed clouds extend to their rigid
classes by minimization over infinitely many rigid mo-
tions (Huttenlocher et al., 1993; Chew & Kedem, 1992;
Chew et al., 1999). In R2, the time O(m?®logm) (Chew
et al., 1997) for the Hausdorff distance (Hausdorff, 1919)
will be improved in Theorem 5.3 to O(m3-®logm) for a
new metric, see approximations in (Goodrich et al., 1999).
The Gromov-Hausdorff and Gromov-Wasserstein metrics
(Mémoli, 2011) are defined for metric-measure spaces also
by minimizing over infinitely many correspondences be-
tween points, but cannot be approximated with a factor
less than 3 in polynomial time unless P=NP, see Corol-
lary 3.8 in (Schmiedl, 2017) and polynomial algorithms for
partial cases in (Majhi et al., 2024). Also, computing a
metric between rigid classes of clouds is only a small part

of Problem 1.1. Indeed, to efficiently navigate on a real
planet, in addition to distances between cities, we need a
satellite-type view of the whole planet and hence a realiz-
able bi-continuous invariant I, which can be considered an
analog of the latitude and longitude coordinates on Earth.

Can we ‘sense’ a shape? Problem 1.1 asks the questions
‘same or different clouds, and how much different?” The
related problem ‘Can we hear the shape of a drum?’ (Kac,
1966) has the negative answer in terms of 2D polygons indis-
tinguishable by spectral invariants (Gordon et al., 1992a;b;
Reuter et al., 2006; Cosmo et al., 2019; Marin et al., 2021).
Problem 1.1 looks for stronger invariants that can com-
pletely ‘sense’ (not only ‘hear’) all rigid clouds in any R™.

The partial cases when Problem 1.1 was solved are only
n =1 orm < 3. In dimension n = 1, any rigid motion of
R is a translation, so the Cloud Rigid Space CRS(R;m)
of m points p1,...,p,, € R is the space RT71 of se-
quential inter-point distances d; = p;41 — p; > 0 for
i =1,...,m— 1. Including reflections, the Cloud Isometry
Space CIS(R; m) is the quotient of RT‘I under the cyclic
equivalence (dy,...,dm—1) ~ (dm-1,...,d1). For clouds
of m = 2 points in any dimension n > 1, CRS(R";2) is
parametrized by a single inter-point distance d > 0. The
final known case is m = 3 due to the SSS theorem say-
ing that any triangles are congruent (isometric) if and only
if they have the same side lengths. The space CIS(R™; 3)
of 3-point clouds has the geographic-style parametrization
{0 < a <b < c¢<a+ b} by inter-point distances a, b, ¢ so
that any (a, b, c) € CIS(R"™; 3) generates a uniquely trian-
gle under isometry. Problem 1.1 asks for a similarly explicit
parametrization of CRS(R"™; m) for all m > 4 and n > 2.

Recent advances are the extensions (Delle Rose et al., 2024;
Hordan et al., 2024) of the WL test (Leman & Weisfeiler,
1968), giving a binary answer (Brass & Knauer, 2000; 2004)
by distinguishing all non-isometric clouds but without Lips-
chitz continuous metrics for all clouds including degenerate
ones. Attempting to extend the SSS theorem, the Sorted
Distance Vector (SDV) of all W distances between
m > 4 unordered points distinguishes all non-isometric
clouds in general position in R™ (Boutin & Kemper, 2004)
but not infinitely many 4-point clouds in R, see Fig. 2.
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Figure 2. The infinite family of non-isometric clouds C* ¢ C~
sharing p1, p2, ps and depending on free parameters a, b, ¢, d.
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The SDV was strengthened (Widdowson & Kurlin, 2022)
to the Pointwise Distance Distribution (PDD), which still
cannot distinguish infinitely many non-isometric clouds in
R3, see Fig. S4 in (Pozdnyakov & Ceriotti, 2022). All these
counter-examples were distinguished by the Simplexwise
Centered Distributions from (Widdowson & Kurlin, 2023),
which satisfy 1.1(a,b,c,f) but not 1.1(d,e). Distance-based
invariants do not allow easy realizability already for m = 4
points in R? whose 6 inter-point distances should satisfy a
non-trivial polynomial equation saying that the tetrahedron
on 4 points has volume 0 in R%. Hence random distances
between m > 3 unordered points are realized by a point
cloud in R? with probability 0 (Duxbury et al., 2016).

3. Complete invariants of unordered clouds

Any point p = (21, ...

n

,Zn) € R™ has Euclidean norm

x?. Any points p and ¢ = (y1,. ..
i=1

are also interpreted as vectors, have the Euclidean distance

|p| = 7yn) e R"

n
|p — ¢| and the scalar (dot) product of p-q = > x;y;. Any
i=1

vectors p L g are orthogonal if and only if p - ¢ = 0.
While past representations used one basis (say, of principal
directions of a given cloud A C R™), this section intro-
duces a new representation based on variable projections
that depend on n — 1 ordered points in C' consisting of m
unordered points. For simplicity, we consider n = 2 when
we have only m choices for a single point p € A in Fig. 3.
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Figure 3. A Point-based Representation (PR) encodes a cloud A
in the basis of a point p € A. All PRs are combined into the
complete invariant NDP(A). NDPs are compared by the Nested
Bottleneck Metric (NBM) computed from a complete bipartite
graph I'( A, B) with weights equal to distances between PRs.

For any cloud A C R? of m unordered points, the center
1

of mass is O(A) = — > p. Shift A so that O(A) is the
M peA

origin 0 € R2. For any p = (71,22) € A, the vector

pt = (—x9, 1) is orthogonal to p, so p - p~ = 0, which

holds even if p = 0. If p is not at the origin (center of mass
of A), we use the orthogonal basis p, p~ to represent all
other points of A. Definition 3.1 makes sense for p = 0.

Definition 3.1 (point-based representation PR(A; p)). Let
A C R? be a cloud with the center of mass at the origin 0.
Fix a base point p = (x,y) € A, set p* = (—y, z). For any
q € A\ {p}, the 2 x (m — 1) matrix M (A; p) has a column
of the scalar products q - p, q - p-. The point-based repre-
sentation of A is the pair PR(A; p) = [ |p|?, M (4;p) ].

We use |p|? and scalar products to make all components
polynomial (smooth) in coordinates. The matrix M (A; p)
has two rows (ordered according to p, p) and m — 1 un-
ordered columns, and can be considered a fixed cloud of
m — 1 unordered points in R?, not under rigid.

Example 3.2 (regular polygons in R?). (a) For m > 2,

let A,, = {Rexpw} CR%i=1,...,m, bethe
vertex set of a regulaTm-sided polygon. Then A,, has
the center of mass O(A,,) = (0,0) at the origin and is
inscribed in the circle of the radius R = R(A,,). In Def-
inition 3.1, choose the point p = (R,0) € A,,, which
doesn’t affect PR(A,,;p) due to the rotational symmetry

of Ap,. Then the matrix M(A,,;p) consists of m — 1
R? cos(2mi/m) _
columns ( R? sin(2mi/m) =1,....,m — 1. The

R%cos 2z \™!
.. . — 2 i
pair is PR(Ap,;p) = [R ’(( R?sin 22t )i_l )}

(b) Let the cloud B,, C R? be A,, after adding the extra
point at the origin 0 € R2. For any point p € A,,, the new
point-based representation PR(B,,; p) is obtained from
PR(A,; p) above by adding the zero column to the matrix
M (A,,;p). For the extra point at the origin 0, the represen-
tation is PR(B,,; 0) = [0, M (B,,;0)], where M (B,;0) is
the 2 X m matrix consisting of zeros.

Theorem 3.3 (realizability of abstract PR). Let s > 0 and
M be any 2 x (m — 1) matrix for m > 2. The pair [s, M|
is realizable as a point-based representation PR(A; p) for
a cloud A C R™ of m unordered points with O(A) = 0 and

m—1 m—1
apointp € Aifandonly ifs+ > My; =0= ) Moy;.
j=1 j=1

In Theorem 3.3, s = |p|? is the squared distance from a
point p € A to 0 € R2. The equations say that the sums of
the scalar products (¢ - p) and (g - p*) for all ¢ € A equal
to 0, which is equivalent to Y ¢ € A = 0 meaning that the
center of mass O(A) is 0. Hence s > 0 and m — 2 columns
of M can be considered free parameters.

Definition 3.4 combines point-based representations
PR(A;p) for all points p € A into one invariant NDP
(Nested Distributed Projection) that will be proved to satisfy
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all conditions of Problem 1.1. The major advantage of NDP
is its applicability to all real clouds A C R? without any
requirement of general position. Some points of a cloud A
may coincide, so A can be a multiset of points.

Definition 3.4 (invariants NDP and NCP). Let A C R? be
any cloud of m unordered points. The Nested Distributed
Projection NDP(A) is the unordered set of PR(A; p) for
all p € A. If k > 1 representations PR(A; p) are equal
then we collapse them to one representation with the weight
k/m. The resulting set of unordered PRs with weights is
called the Nested Compressed Projection NCP(A).

Table 1. Acronyms and references of all key concepts in the paper.

PR POINT-BASED REPRESENTATION DEF 3.1
NDP  NESTED DISTRIBUTED PROJECTION  DEF 3.4
PRM  POINT-BASED REPRESENT. METRIC DEF 4.2
BMD BOTTLENECK MATCHING DISTANCE DEF 4.3
NBM  NESTED BOTTLENECK METRIC DEF 4.4

For the cloud A,,, from Example 3.2, the Nested Distributed
Projection NDP(A4,,,) consists of m identical representa-
tions, so NCP(A4,,) is the single representation PR(A,,; p)
with weight 1. The invariant NDP is an expanded ver-
sion of the NCP, where all PRs have equal weights 1/m.
The full invariant NDP(A) includes the faster (linear-time)
vector of squared distances |p|? from the center of mass
O(A) = 0 € R? to all points p € A. If A has a distin-
guished point p, e.g. a special atom in a molecule, the
point-based representation PR(A; p) is invariant.

Theorem 3.5 (completeness of NDP). The Nested Dis-
tributed Projection is complete in the sense that any clouds
A, B C R? of m unordered points are related by rigid mo-
tion in R? if and only if NDP(A) = NDP(B) so that there
is a bijection NDP(A) — NDP(B) matching all PRs.

Under a mirror reflection, for any p € A, one can assume
after applying rigid motion that the basis p, p~ maps to its
mirror image p, —p*. The mirror image A has NDP(A)
equal to NDP(A) that is obtained from NDP(A) by revers-
ing all signs in the last row of M (A;p) for each p € A.

The completeness of NDP(A) Theorem 3.5 implies the
completeness of the pair NDP(A), NDP(A) under isome-
try including reflections. Further work can simplify this pair
to a smaller invariant while keeping the completeness. Since
abijection NDP(A) — NDP(B) between all (uncollapsed)
PRs induces a bijection NCP(A) — NCP(B) respecting
all weights of collapsed PRs, Theorem 3.5 implies the com-
pleteness of NCP under rigid motion in R2.

4. A metric on complete invariants of clouds

This section will define the metric NBM on invariants NDP
by using the bottleneck distance BD in Definition 4.1, a met-
ric on point-based representations (PRs) in Definition 4.2,
and a bottleneck matching distance in Definition 4.3.

Definition 4.1 (bottleneck distance BD). For any v =
(v1,...,0,) € R™, the Minkowski norm is ||[v]||ec =
_max |v;|. For clouds A, B C R™ of m unordered points,
i=1,....,n

the bottleneck distance BD(A,B) = inf sup|lp —
g:AﬁBpeA

9(P)||oo is minimized over all bijections g : A — B.

Though the bottleneck distance is defined as a minimum
for m! bijections A — B between m-point clouds, Theo-
rem 6.5 in (Efrat et al., 2001) computes BD(A4, B) in time
O(m*® log® m) by filtering out distant points. The brute-
force extension of BD(A, B) under rigid motion need a
minimization for infinitely many rotations. NDP(A) con-
sists of only m point-based representations PR(A;p) =
[|p|?, M (A;p)], one for each p € A. The BD algorithm can
compare any 2 X (m — 1) matrices M (A;p) and M (B;q)
as fixed clouds of unordered columns (points in R?).

In Definition 4.2, the notation M/ R means that all elements
of the matrix M (A;p) are divided by the radius R(A) =
max |p| of a cloud A. Then PRM and further metrics have
pe

units of original points, e.g. in meters. One more division
by R(A) makes metrics invariant under uniform scaling.

Definition 4.2 (Point-Based Representation Metric PRM).
Let PR(A; p), PR(B; q) be point-based representations of
clouds A, B C R? of m unordered points for base points
p € Aand q € B, respectively, see Definition 3.1. The
Point-based Representation Metric between the PRs above
is PRM = max{ | |p|—|q| |, |R(A)— R(B)|, was }, where
M(A;p) M(B;q)
o =0 (2

), see Definition 4.1.

We defined PRM as the maximum of 3 metrics to guarantee
the metric axiom (if PRM = 0 then A & B) and the
simplest Lipschitz constant A = 2 in 1.1(d), see all proofs
in appendix D. Replacing the maximum with (say) a sum
gives a metric with a higher constant A depending on m.

Definition 4.3 (bottleneck matching distance BMD(I")).
Let T be a complete bipartite graph with m white vertices
and m black vertices so that every white vertex is connected
to every black vertex by an edge e of a weight w(e) > 0. A
vertex matching in I is a set E of m disjoint edges of I'. The
weight W(E) = max w(e) is the largest weight in E. The

bottleneck matching distance of the graph T is BMD(T') =
mbin W (E) is minimized over all vertex matchings.

Because T is bipartite, any edge from a vertex matching
E joins a white vertex with a black vertex. Then BMD(T")
is minimized for all bijections E between all white ver-
tices and all black vertices of I' similar to Definition 4.1.
Definition 4.4 builds a graph I'(A4, B) on all point-based
representations of A, B C R" and introduces the Nested
Bottleneck Metric NBM (A, B) as BMD of I'(4, B).
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Definition 4.4 (NBM : Nested Bottleneck Metric). Let
clouds A, B C R? consist of m unordered points. The com-
plete bipartite graph I'(A, B) has m white vertices (one for
each p € A) and m black vertices (one for each q € B).
Any edge e of T'(A, B) has endpoints associated with point-
based representations PR(A; p), PR(B; q), and the weight
w(e) = PRM( PR(A;p), PR(B;q) ). The Nested Bottle-
neck Metric is defined as NBM(A, B) = BMD(I'(A, B)).
Example 4.5 (4-point clouds C*). In R2, consider the 4-
point clouds C* = {py, pa, ps, pi }, where p1 = (4a,0),
p2 = (be), p3 = —p2 = (=b,—c), pf = (0,4d), and
py = (0,—4d) for parameters a,b,c,d > 0, see Fig. 2.
Appendix C will explicitly compute NDP (C¥) to distinguish
all clouds C* % C~. Fig. 4 shows the new metric NBM for
variable parameters a,b and fixed c,d. NBM > 0 implies
that Ct % C~, except in the singular cases below. If
a=0o0rd=0o0rb=c=0, the clouds are related by
a 2-fold rotation around the origin 0. If a = ? =~ 0.87,
b=0¢c=2 d= 0.5, then Ct consists of the vertices
(0,42), (2v/3,0) of an equilateral triangle, where (0,2) is
the double point ps = pi‘. Then C~ is the same equilateral
triangle but its vertex (0, —2) is the double point ps = p, .
Because these clouds are related by rotation, NBM = 0 in
the black pixel at a = ? ~ 0.87, b = 0 in Fig. 4.
c=2.0,d=0.5
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Figure 4. The Nested Bottleneck Metric NBM in Definition 4.4
for the clouds C'* < R? that depend on parameters a, b and are not
distinguished by 6 pairwise distances in Fig. 2, see Example C.1.

5. Bi-continuity and polynomial algorithms

For a fixed dimension n, all algorithms for m unordered
points will have polynomial times in m in the RAM model.

Theorem 5.1 (Lipschitz continuity of NBM). Let B C R?
be obtained from a cloud A C R? by perturbing every point
of A up to Euclidean distance c. Then NBM(A, B) < 6e.

To illustrate Theorem 5.1, we generated uniformly random

clouds A in the unit square and cube. To get a perturba-
tion B of A, we shifted every point of A by adding a uni-
formly random value in [—e, ] to each coordinate, where
e € [0.01,0.1] is a noise bound. Fig. 5 shows how the
Nested Bottleneck Metric (NBM, averaged over several
clouds) linearly increases with respect to the noise bound.

2D random clouds of 100 points in a unit box, 10 repeats

1754 — Matchdist
—— NDP_NBM
—— PDD_EMD
1.50 1 — spv_LINF
—— SRV_LINF
1.25 A
3
2 1.00
8
2}
©0.75 1
0.50
0.25
000 T T T T T
0.0 0.2 0.4 0.6 0.8
Noise bound

Figure 5. The metric NBM(NDP(A), NDP(B)) for a random
cloud A and its e-perturbation B increases at most linearly in the
noise bound € with a Lipschitz constant A2 < 6 as in Theorem 5.1.

Theorem 5.2 (NDP time). For any cloud A C R? of m un-
ordered points, the Nested Distributed Projection NDP(A)
is computed in time O(m?) with space O(m?).

Theorem 5.3 (NBM time). For any clouds A, B C R? of m
unordered points, the Nested Bottleneck Metric NBM(A, B)
is computable in time O(m3-5logm) with space O(m?).

NDP_NBM
PDD_EMD
SDV_LINF
7.5 1 SRV_LINF
5.0 /

2.5 1

10.0 4

0.0 1

—2.5 1

Time, log scale, microseconds

=5.0 A

-7.5 1

0 20 40 60 80
Number of points

Figure 6. Times (microseconds, log scale) of metrics on invariants.
Fig. 6 illustrates a polynomial dependence of the NBM time

in Theorem 5.3. Theorem 5.4 says that any m-point clouds
A, B C R2 can be matched up to a perturbation proportional
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to the Nested Bottleneck Metric d = NBM. If d is small, all
points of A, B can be matched up to a perturbation 3v/2d
by rigid motion. In section 6, the experimental maximum
of this approximate factor is 2.2 < 3+/2.

Theorem 5.4 (point matching). For any m-point clouds
A, B C R2, one can find in time O(m35logm) a rigid
motion f of R? and a bijection B : A — B such that the
match distance max |f(q) — B(q)| < 3v2NBM(A, B), see

the comparison of this distance with others in Fig. 5.

By Theorem 5.1, perturbing every atom up to € (due to
the ever-present thermal vibrations) changes NDP up to
6e in the metric NBM. Conversely, by Theorem 5.4, if
NBM(A4, B) = 6 > 01is small, the clouds A, B can be ap-
proximately matched by rigid motion up to 3v/26 pointwise.

If clouds A, B C R™ have ordered points, one can morph
(continuously transform) A to B by moving every i-th point
of A along a straight-line to the i-th point of B for i =
1,...,m. If m points are unordered, there are m! potential
transformations, one for each permutation of m points.

Associating every point p € A to its nearest neighbor ¢ € B
is justified only for fixed clouds because a rigid motion of
A can change a nearest neighbor of any point p € A in B.

6. Experiments on large molecular databases

The big databases of molecules with 3D conformers (em-
beddings in R?) are QM9 (130K+ entries) (Ramakrishnan
et al., 2014) and GD (GEOM_drugs, 31M+ entries) con-
taining hundreds of 3D conformers of unordered atoms for
each of 61607 chemical compositions (Axelrod & Gomez-
Bombarelli, 2022). The Protein Data Bank has backbones
of ordered atoms classified by simpler invariants (Anosova
et al., 2025). All experiments took a few hours on Ryzen 9
3950X 3.5 GHz, 64 MB of L3 cache, RAM 82GB.

The ICML guide for application-driven ML says that “novel
ideas that are simple to apply may be especially valuable”,
so we start with simpler and much faster invariants below.

Definition 6.1 (invariants SRV, SDV, PDD). Let A C R"
be a cloud of m unordered points with the center of mass
at 0 € R™. The Sorted Radial Vector SRV (A) has m radial
distances |p| in decreasing order for all p € A. The Sorted
Distance Vector SDV (A) is the vector of m(";l) pairwise
distances |p — q| in decreasing order for distinct p,q €
A. For any point p € A, let dy(p) < -+ < dp—1(p) be
Euclidean distances from p to all other points g € A\ {p}
in increasing order. These distance lists become rows of the
m x (m — 1) matrix D(S; k). Any l > 1 identical rows are
collapsed into a single row with the weight [ /m. The final
matrix with at most m unordered weighted rows and m — 1
ordered columns is the Pointwise Distance Distribution.

For a PDD on m points, we sort m distance lists in
time O(m?logm). Then PDDs are compared by the
Earth Mover’s Distance EMD (Rubner et al., 2000) in
time O(m?). Table 2 emphasizes that most clouds should
be first distinguished by simpler and faster invariants
SRV, SDV,PDD. The complete NDP is needed only in
rare cases but is still essential because any incomplete invari-
ant I has no chance to predict different properties on false
positives that are molecules A 2 B with I(A) = I(B).

Table 2. Invariants and metrics on cloud A C R? with m un-
ordered points: from the fastest (linear-time) to complete.

INVARIANT TIME ‘ METRIC TIME

SRV O(mlogm) | L O(m)

SDV O(m?) Loo O(m?)

PDD O(m?logm) | EMD O(m?)

NDP O(m?) NBM O(m*%logm)

For a fixed atom p € A and k& < m, the first k distances
to neighbors in the row of p in PDD(A) is an atomwise
version of SRV (A). This vector D(A, p; k) of k distances
was the only input for predicting the chemical element of
p. A default network in TensorFlow was trained on clouds
with the 80/20 split and achieved 98% accuracy for k = 4 in
Table 4 despite the unbalanced counts of frequent elements
in Table 3. Appendix A has all implementation details.

Table 3. Counts of atoms by chemical elements in QM9 (2,407,753
atoms), GDO (GEOM _drugs Oth conformers, 12,917,980 atoms).

QM9: H QMo9: C QM9: N QM9: O QMO9:F
1,230,122 846,557 139,764 187,996 3,314
GDO: H GDO: C GDO: N GD0: O GDO:F
5,660,986 5,267,096 842,562 854,400 64,299
GDO: P GDO: S GDO: C1 GDO: Br GDO: 1
1,350 159,648 53,404 14,010 225

Table 4. Accuracies in percentages for predicting chemical ele-
ments by a 4-layer network using only Euclidean distances from
an atomic center to its k nearest neighbors for QM9 and GDO.

data k=2 k=3 k=4 k=5 k=6
QM9 94.63 98.64 9824 9854 98.77
GDO 91.44 96.67 98.05 98.70 98.49

All past attempts by both ML and non-ML in chemistry
achieved only 86% on similar size data, see Table 7 sum-
marized in (Vasylenko et al., 2025), because the underlying
descriptors were not invariant, e.g. under permutations of
atoms, which creates exponentially many representations of
the same molecule, incomplete, or their similarities failed
the triangle axiom, e.g. see (Steck et al., 2024).
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High accuracies of D(A, p;4) in Table 4 are explained by
the following cascade computations. First, split all clouds
from Table 3 by the 1st distance (to the nearest neighbor of
a central atom p) rounded to 3 decimal places in A. This is a
typical experimental precision, where 1A = 10~ is the
smallest interatomic distance. Second, split each subset with
equal 1st distances by 2nd distances, and soonup to k = 5
distances. All clouds of different elements in QM9 and GDO
were separated by D (A, p;4) and D(A, p; 5), respectively.

We compared full molecules starting with the pseudo-metric
L, (max abs difference of corresponding coordinates) on
SRV of all 873,527,974 pairs of 3D atomic clouds having
equal numbers of atoms in QM9, then 8,735,279 distances
L, on SDVs of the 1% closest pairs, 87,352 EMDs on
PDDs of the 1% closest pairs, and NBMs on NDPs for the
final 10K closest pairs. In this hierarchical computation,
large values of L, (then EMD) guarantee that molecules
are distant and cannot be closely matched by rigid motion.
Tiny or zero values of pseudo-metrics guarantee nothing
because SDV and PDD can coincide for very different
clouds, see Fig. 2, Fig. S4 in (Pozdnyakov et al., 2020).

Table 5. Chemically different molecules (given by QM9 ids) are ge-
ometrically distinguished by SRV, SDV, PDD, NDP, see Fig. 8.

smallest distances in A, molecule A = molecule B

SRV, Lo, = 0.021, H,CsN,0(5365)#£H,C,N,0,(131923)
SDV, Lo, = 0.055, H;C,N4(123533)£H,CsN,0(24547)
EMD = 0.051, HyC,N5(123533)£H,C5N;0(24521)
NBM = 0.148, HyC,N;0,(28141):£H,C5N50(130099)

Fig. 7 compares the new metric y = NBM on complete
NDPs with the pseudo-metric z = PDD. All pairs A, B
with (z,y) close to the vertical axis in Fig. 7 (left) have
EMD = 0 because they are almost mirror images (indistin-
guishable by PDD) well distinguished by higher values of
NBM. Fig. 8 shows bonds by standard visualization, they
were not used for clouds of points without any edges.

For each of 31M+ entries (3D conformers) in the much
larger database GD, we took the cloud A of all atoms with-
out chemical elements and computed SRV (A4; k) of up to
k = 10 largest distances (rounded to 3 decimal places) from
the center of mass of A to all atoms. Similar to QM9, cas-
cade comparisons confirmed that SRV (A4; 7) distinguishes
all chemically different molecules, while only four pairs
have equal SRV (A; 6) rounded to 3 decimal places. This
transparent reconstruction of a full chemical composition
from precise enough geometry gives hope to explain other
molecular properties in terms of geometric invariants.

175 0.005
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(G.2), Angstroms
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°
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NBM_NDP

0.001

0.00{ =" i
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EMD_PDD, Angstroms 0.000 0.001

Figure 7. x = EMD(PDD(A),PDD(B)) vs y = NBM(A4, B)
on complete invariants NDP with zoomed-in comparisons on the
right, which all appear only for chemically identical molecules.

Figure 8. Left: chemically different QM9 molecules 28141 and
130099 have the smallest distances NBM ~ 0.15A. Right:
molecules 70954 and 74130 are almost mirror images with
EMD = 0.0004A but are well distinguished by NBM ~ 1.619A.

7. Discussion: conclusions and limitations

For clouds with different numbers of points, we can replace
the bottleneck distance BD in Definition 4.2 with any metric
between fixed clouds of different sizes, e.g. the Hausdorff
distance, to get a metric on PRs. Then we can compare
NDPs of any clouds as weighted distributions by EMD. The
limitation is the proof of Theorem 5.4 in dimension n = 2,
though the experiments indicate the Lipschitz continuity
of NDP~! in R3. All other conditions in Problem 1.1 are
proved in the appendices for any dimension n > 2.

The experiments imply that mapping any molecule to (the
rigid class of) its cloud of atomic centers is injective without
losing any chemical information, so all chemical elements
can be reconstructed from pure geometry. This result con-
firms our physical intuition that replacing atoms should
perturb geometry at least slightly, which was impossible
to establish without complete and Lipschitz continuous in-
variants. Hence all molecules of m atoms live at different
locations in the common Cloud Rigid Space CRS(R?;m)
of SE(3)-classes of all clouds of m unordered points.

Most significantly, a molecular structure can now be defined
not as a huge collection of vectors under rotations and atom
permutations, see Fig. 1 in (Lang et al., 2024), but as a
rigid (class of a) cloud of atomic centers (without chemical
elements), which is uniquely determined by an efficient
hierarchy of invariants from the fastest (linear-time) SRV to
the new complete invariant NDP solving Problem 1.1.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Introduction to appendices

The main contribution is the roadmap for any data challenge through well-motivated Problem 1.1, where clouds and rigid
motion can be replaced with any objects and equivalences. The conditions of completeness and Lipschitz continuity of an
invariant I cover the discriminative challenge. After these conditions 1.1(a,b,e) are satisfied, the invariant I can be inverted
in principle and opens the generative challenge of its realizability and inverse continuity in 1.1(c,d,e).

Problem 1.1 was stated for unordered clouds under rigid motion but was also solved for isometry and compositions of
these equivalences with uniform scaling in R". For m = 4 points, plane quadrilaterals were previously classified in
discrete classes in Fig. 1 (right), while appendix C shows the first continuous maps of the invariant space CRS(R?;4).
Conditions 1.1(d,e,f) enable a generation of real clouds in CRS(R"™; m) from their invariants. A full answer to the question
‘same or different, and how much different’ required complete invariants with Lipschitz continuous metrics.

The key contribution is a theoretically justified solution to Problem 1.1. The experiments on the databases QM9 and
GEOM._drugs are considered complementary. Example C.1 and its extension in Example C.2 prove that infinitely many
pairs of non-isometric clouds C* 2 C~ (depending on 4 free parameters and having the same 6 pairwise distances) are
distinguished by the new invariants. This result is impossible to justify by any finite experiment. Example C.1 demonstrated
the non-zero distances between the complete invariants of C* in Fig. ??.

The completeness and bi-Lipschitz continuity of the proposed invariants enabled the new experiments on 130K+ real
molecules in section 6, which were not previously possible because all past invariants did not satisfy all conditions of
Problem 1.1, especially the realizability condition that provides geographic-style maps on cloud spaces.

The full solution to Problem 1.1 for n = 2 is justified by Theorem 3.5 and Lemmas 3.3, 5.1, 5.2, 5.3. Theorem 3.3 enables a
visualization of cloud spaces, which were unknown even for m = 4 unordered points in R2.

e The Cloud Isometry Space CIS(R™; m) of clouds of m unordered points under isometry in R™.
e The Cloud Rigid Space CRS(R"™; m) of clouds of m unordered points under rigid motion in R™.

e The Cloud Similarity Space CSS(R™; m) of clouds of m unordered points under geometric similarity, which is a
composition of isometry and uniform scaling in R™.

e The Cloud Dilation Space DCS(R™; m) of clouds of m unordered points under orientation-preserving geometric similarity
(rigid motion and uniform scaling) in R™.

Here is a summary of the supplementary materials.

e Appendix A extends section 6 with more details of new invariants and metrics computed on the QM9 database and
compared with past pseudo-metrics.

o Appendix C discusses parametrization of CSS(R?;m) and includes Examples C.1 and C.2 computing the new invariants
NDP in detail for infinitely many 4-point clouds from Example C.1.

e Appendices B, D, E prove all theoretical results from sections 3, 4, 5, respectively.

e The zip folder with supplementary materials includes the code for computing all invariants and metrics as well as tables
with all coordinates of colorful maps of QM9 and distances.

A. Extra details of experiments in section 6

The default 4-layer network from TensorFlow used a ”sequential” mode, 3 epochs, and the settings in Table 6.

The only difference between QM9 and GD settings was in the number NV of chemical elements in tf.keras.layers.Dense(N),
where N = 5 for QM9 and N = 10 for GD.

The maps of QM9 in Fig. 9 are based on eigenvalues and too dense without clear separation. Even if we zoom in, these
incomplete invariants will not separate molecules because 3D clouds have at most 3 eigenvalues. The complete invariants
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Table 6. Parameters of the default 4-layer network for predictions in Table 4.

LAYER (TYPE) OUTPUT SHAPE NUMBER OF PARAMETERS
DENSE (DENSE) (NONE, 32) 352
BATCH_NORMALIZATION (NONE, 32) 128

RE_LU (RELU) (NONE, 32) 0

DENSE_1 (DENSE) (NONE, 5) 165
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Figure 9. Left: each dot represents one QM9 molecule whose atomic cloud has two largest roots I; > [> of eigenvalues (moments of
inertia (Nemec, 2022) or elongations in principal directions) in Angstroms (1A = 107 1%n ~ smallest interatomic distance). The color
represents the free energy GG characterizing molecular stability. Right: each dot represents one QM9 molecule whose atomic cloud has
coordinates x, y expressed via the roots [ > lo > I3 > 0 of three eigenvalues.
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Figure 10. Left: each dot is a comparison of closest atomic clouds A, B from QM9 by the distances Lo, on SRV vs Lo, on SDV. Right:
zoomed-in comparisons for very small distances.

NDP contain much more geometric information. Fig. 10 and 11 show that distances on stornger invariants have larger
values and hence better separate molecules, though all these distances have the same Lipschitz constant 2.

Fig. 12 (left) shows the simplest projections of the atomic clouds from QM9, see the familiar molecules such as H,O (water).
Any small region on such a map can be zoomed in and displayed in other invariants from Table 2, see Fig. 12 (right).
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Figure 11. Left: each dot is a comparison of closest atomic clouds A, B from QM9 by the distances Lo, on SDV vs EMD on PDD.
Right: zoomed-in comparisons for very small distances.
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Figure 12. QM9 maps: each dot colored by the free energy G represents an atomic cloud. Left: z = SRV, y = SRV; — SRV.. Right:
all molecules with SRV; = SRV (two equidistant atoms from the center of mass) are projected to x = SRV2, y = SRV, — SRV3.

Table 7. Past ML and non-ML predictions of chemical elements have lower accuracies than by distance invariants in Table 4.

ACCURACY REFERENCE

METHOD DESCRIPTION

LEAF LOCAL COORDINATION GEOMETRY 86% (VASYLENKO ET AL., 2025)
MATSCHOLAR  ML-DERIVED FROM LITERATURE 81% (WESTON ET AL., 2019)
MAT2VEC ML-DERIVED FROM LITERATURE 80% (TSHITOYAN ET AL., 2019)
ATOM2VEC ML-DERIVED FROM COMPOSITIONAL CONTENT 79% (ZHOU ET AL., 2018)
GNOME FREQUENCY OF ELEMENTS AT THE SAME ATOMIC SITES 79% (MERCHANT ET AL., 2023)
MAGPIE ELEMENTAL PHYSICAL CHARACTERISTICS 78% (WARD ET AL., 2016)
OLIYNYK ELEMENTAL PHYSICAL CHARACTERISTICS 75% (OLIYNYK ET AL., 2016)
MEGNET ML-DERIVED FROM ATOM, BOND AND GRAPH ATTRIBUTES 73% (CHEN ET AL., 2019)
SKIPATOM ML-DERIVED FROM ATOM CONNECTIVITY GRAPHS 68% (ANTUNES ET AL., 2022)

B. Generalization of section 3 and all proofs in dimensions n > 2

This appendix extends all concepts from section 3 to dimensions n > 2, extends Theorem 3.3 to Theorem B.7, which is
proved with Theorem B.9 for any n > 2.

15



Machine learning on rigid classes of Euclidean clouds

Lemma B.1 (vector p;- orthogonal to py,...,p,_1 in R"). Letey,...,e, be an orthonormal basis of R", so |e;| = 1 and

ei -ej = 0fori # j. Foranyn — 1 vectors py,...,pn—1 € R", there is a vector p;- that is orthogonal to all py, . .. ,py_1

and has coordinates that are degree n — 1 polynomials in the coordinates of p1, ..., Pn—1.

Proof of Lemma B.1. Below the ‘unusual determinant’ with the n — 1 vector columns p1, . .., p,—1 and the last column of
| e | €1

the n vectors eq, . . ., e, is only a short notation for the following expansion by the last column: Pl Pnei | T
| ... | én

ot

(—1)"*¢ det(i)e;, where det (i) is the usual (n — 1) x (n — 1) determinant obtained from the n — 1 vector columns

i=1

n .
P1,--.,Pn_1 by removing the i-th row, so we set p- = > (—1)"* det(i)e;.
i=1

For example, if n = 2 then p; = (21, x2) has the vector pé‘ = il Zl =219 — xoe; = (—wo,x1) L p1 If n =3,
2 €2
x e
_ dmo = h 1 Lo ! _ | T2 Y2 1 Y 1 Y _
p1 = (71,22, 73) and p2 = (y1,Y2,Y3), t enps = | T2 Y2 €2 | = T3 U e — T3 us €+ T2 s e3 =
r3 Y3 €3

p1 X po is the vector product of py, po.

n
To show that p;- is orthogonal to each p;, we compute the scalar product p;- - p; = > (—1)"*! det(i)e; - p;. Since e; - p;

i=
equals the ¢-th coordinate of the vector p;, the last sum is the expansion of the n x n determinant obtained from the original
p;- above by replacing the last column with p;. Since the resulting determinant contains two identical columns equal to p;,
we conclude that p;- - p; = 0. O

Lemma B.1 holds when given vectors pq,...,p,—1 € R" are linearly dependent, even if some p; = 0. Then pr = 0is
orthogonal to each p; so that pi -pj = 0.

Definition B.2 extends a point-based representation from Definition 3.1 to dimensions n > 2. The key idea is to represent
any m-point cloud A C R" relative to (a simplex of) any base sequence of ordered points p1,...,p,—1 € A. If the vectors
P1,--.,Pn_1 are linearly independent, they form with the vector p;- from Lemma B.1 a (not necessarily orthogonal) basis
in R™. Below we represent any point p € A by normalized scalar products, which are valid even if p1, ..., p,_1 are linearly
dependent.

Definition B.2 (point-based representation PR for n > 2). For any cloud A C R™ of m unordered points, the center of mass

isO(A) = % > p. Shift A so that O(A) is the origin 0 € R™. The radius of A is R(A) = I;leaj( |p|. For any basis sequence
peEA
of points p1,...,pn—1 € A, the squared distance matrix SD(p1, . .., pn—1) consists of |p; — p;|* fori,j =0,...,n — 1,
where py = 0. Let p;- be the vector in Lemma B.1. For any point ¢ € A\ {p1,...,pn_1}, the n X (m — n + 1) matrix
M(A;p1,...,Pn-1) has a column of scalar products q-p1, . .., q-pn. The point-based representation PR(A;p1, ..., pn—1)
is the pair
[SD(pl, cesPn—1), M(A;p1,. .., Pn—1) ]

The normalized representation NPR(A; p1, ..., pn_1) is obtained by dividing all components of PR(A;p1,...,pn—1) by
R2(A), except the last row of M(A;p1,...,pn_1), which is divided by R™(A).

Lemma B.3 (PR under isometry). Let a point cloud A C R™ have a base sequence (p1,...,Pn—1)-

(a) Any rigid motion f of R™ respects point-based representations from Definition B.2 so that

PR(A;p1,...,pn-1) = PR(f(A); f(p1); -, f(Pn-1))-

(b) For any orientation-reversing isometry [ of R", the representation PR(f(A); f(p1),-.., f(pn-1) differs from
PR(A;p1,...,pn—1) by reversing all signs in the last row of the matrix M (A;p1,...,Dn—1)-

16



Machine learning on rigid classes of Euclidean clouds

(¢c) The normalized point-based representation NPR(A;p1, ..., pn—1) in Definition B.2 is preserved by any composition of
rigid motion and uniform scaling.

Proof of Lemma B.3. (a) Since rigid motion preserves distances and scalar products, all components of the point-based
representation PR(A; p1,...,p,—1) are invariant.

(b) Using a composition with a suitable orientation-preserving isometry (rigid motion), one can assume that f is the mirror
reflection in a linear hyperspace H containing the origin 0 and the base sequence p1, ..., p,—1 of A. Since f preserves
distances, R(A) and SD(A;p1,...,p,—1) are invariant. Then f fixes all points from H including p1, ..., pn—1, hence the
vector p,, from Lemma B.1. Any point g € A\ p1, ..., pn—1 keeps its scalar product ¢ - p; fori = 1,...,n — 1 and changes
the sign of ¢ - p,,, because ¢ and its mirror image f(q) have opposite projections to p,,. The above arguments hold even
if the base sequence p1, ..., p,—1 is degenerate, not generating an (n — 1)-dimensional subspace in R™. Then there are
infinitely many choices of H above and p,, = 0, so the last row of M (A4;py,...,pn—_1) consists of zeros.

(¢) Under uniform scaling by a factor s, all squared distances and scalar products ¢-p;, 7 = 1,...,n — 1, are multiplied by s2.
The vector p,,lb from Lemma B.1 is multiplied by s” !, hence all scalar products g - p,, in the last row of M (A;p1, ey Dn—1)
are divided by R"(A). O

The affine dimension 0 < aff(A) < nofacloud A = {p1,...,pm} C R" is the maximum dimension of the vector space
generated by all inter-point vectors p; — pj, 4,7 € {1,...,m}. Then aff (A) is an isometry invariant and is independent of
an order of points of A. Any cloud A of 2 distinct points has aff (A) = 1. Any cloud A of 3 points that are not in the same
straight line has aff (4) = 2.

Lemma B.4 provides a simple criterion for a matrix to be realizable by squared distances of a point cloud in R™.

Lemma B.4 (realization of distances). (a) A symmetric m x m matrix of s;; > 0 with s;; = 0 is realizable as a
matrix of squared distances between points pog = 0,p1,...,pm—1 € R™ if and only if the (m — 1) x (m — 1) matrix
So0i + S0j —

S
9ij = 5 Y has only non-negative eigenvalues.
(b) If the condition in (a) holds, aff (0, p1, . .., pm—1) equals the number k < m — 1 < n of positive eigenvalues. Also in
this case, g;; = p; - p;j define the Gram matrix GM of the vectors p1, . ..,pm—1 € R", which are uniquely determined in

time O(m?) up to an orthogonal map in R".

Proof of Lemma B.4. (a) We extend Theorem 1 from (Dekster & Wilker, 1987) to the case m < n + 1 and also justify the

reconstruction of py, . . ., p,_1 in time O(m?) uniquely in R™ up to an orthogonal map from the group O(n).
The part only if =. Let a symmetric matrix .S consist of squared distances between points pg = 0, p1, ..., Pm—1 € R™. For
1,7 =1,...,m — 1, the matrix with the elements

S0i + S0j — Sij p? +p? — |pi — pj?
Gij = 2 = 2 =Di- Dy

is the Gram matrix, which can be written as GM = PT P, where the columns of the n x (m — 1) matrix P are the vectors
P1s.-.,Pm—1 - For any vector v € R™~!, we have

0 < |Pv|* = (Pv)T(Pv) = vT(PTP)v = vT GMu.

Since the quadratic form v” GMwv > 0 for any v € R™~!, the matrix GM is positive semi-definite meaning that GM has
only non-negative eigenvalues, see Theorem 7.2.7 in (Horn & Johnson, 2012).

The part if <. For any positive semi-definite matrix GM, there is an orthogonal matrix Q such that QT GMQ = D is the
diagonal matrix, whose m — 1 diagonal elements are non-negative eigenvalues of GM. The diagonal matrix /D consists of
the square roots of eigenvalues of GM.

(b) The number of positive eigenvalues of GM equals the dimension k = aff ({0, p1,...,pm—1}) of the subspace in R
linearly spanned by p1,...,p,—1. We may assume that all & < n positive eigenvalues of GM correspond to the first &
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coordinates of R™. Since Q7 = Q~!, the given matrix GM = QDQT = (Q\F )(Q\F) becomes the Gram matrix of
the columns of Qv/D. These columns become the reconstructed vectors py, ...,Ppm—1 € R™.

If there is another diagonalization QT GMQ = D for Q € O(n), then D differs from D by a permutation of eigenvalues,
which is realized by an orthogonal map, so we set D = D. Then GM = QDQ” = (Qv/D)(QvD)T is the Gram matrix
of the columns of Qv/D.

The new columns differ from the previously reconstructed vectors p1, ..., Pm—1 € R” by the orthogonal map QQT. Hence
the reconstruction is unique up to O(n)-transformations. Computing eigenvectors p1, . . . , p,—1 needs a diagonalization of
GM in time O(m?), see (?)section 11.5]press2007numerical. O

Though Lemma B.4 gives a two-sided criterion for realizability of distances by points py,...,p, € R", the space of
distance matrices is highly singular and cannot be easily sampled. Even m = 4 points in R? have 6 distances that should
satisfy a polynomial equation saying that the tetrahedron with these 6 edge lengths has volume 0.

So a randomly sampled matrix of potential distances for m > n + 1 is unlikely to be realizable by a cloud of m ordered
points in R™. Hence Lemma B.4 for m < n + 1 is complemented by Theorem B.7 describing the much more practical
realizabilty of a point-based representation.

Chapter 3 in (Liberti & Lavor, 2017) discusses realizations of a complete graph given by a distance matrix in R".
Lemma B.5(a) and later results hold for all clouds including degenerate ones, e.g. for 3 points in a straight line.

Any points p1,...,p,_1 € Ahave aff(p1,...,pn_1) < n — 2. For example, any two distinct points in A C R3 generate a
straight line. Lemma B.5(c) proves that PR(A4; p1, . .., pn—1) suffices to reconstruct a cloud A C R" for a suitable sequence
D1y - Pn—1. In R?, any point p; # O(A) forms a suitable {p; }. In R?, one can choose any distinct points p;,ps € A so
that the infinite straight line via p1, p2 avoids O(A).

If there are no such pq, ps, then A C R? is contained in a straight line L, so aff(4) = 1. In this degenerate case, the stronger
condition aff (O(A) U{p1,...,pn—1}) = aff (4) will help reconstruct A C L by using any point p; # O(A). The first step
is to reconstruct any ordered sequence from its distance matrix in Lemma B.5(a).

Lemma B.5 improves Lemma E.5 in (Widdowson & Kurlin, 2023) by justifying a time for a point cloud reconstruction
based on Lemma B.4.

Lemma B.5 (reconstruction). (a) Any sequence of ordered points p1, . . ., pm in R™ can be reconstructed (uniquely up to
isometry) from the matrix of the Euclidean distances |p; —p;| in time O(m?). If all distances are divided by R = max |pi
i=1,....,m

i

the reconstruction of p1, . . ., Dy, is unique up to isometry and uniform scaling in R™.
(b) If m < n, the uniqueness of reconstructions in part (a) remains true if we replace isometry by rigid motion in R".

(c) Any cloud A C R"™ of m unordered points can be reconstructed (uniquely up to rigid motion in R™) from a point-based
representation PR(A; p1, ..., pn_1) in time O(m3) for any py,...,pn—1 € Awith aff(O(A)U{p1,...,pn_1}) = aff(A).
Ifaff(A) = n, then aff(O(A)U{p1,...,pn-1}) = n— 1 suffices. Any cloud A C R™ has a suitable sequence p1, . .., pp—1
in all cases.

Proof of Lemma B.5. (a) By translation, we can put p; at the origin 0 € R™. Let G be the (m — 1) x (m — 1) matrix
2,2 2
Gy = pi +p; Ip pjl

By Lemma B.4 1f G has k < n positive eigenvalues, then p; = 0, .. ., p,,, can be uniquely determined up to isometry in
R* C R™ in time O(m?). If all distances are divided by the same radius R(p{m}), the above construction guarantees
uniqueness up to isometry and uniform scaling.

= p; - p; constructed from squared distances between p; = 0,...,p,, fori,j =2,...,m

(b) If m < n, any mirror images of p{m} C R™ after a suitable rigid motion in R™ can be assumed to belong to an
(n — 1)-dimensional hyperspace H C R™, where they are matched by a mirror reflection H — H with respect to an
(n — 2)-dimensional subspace S C H, which is realized by the 180° orientation-preserving rotation of R” around S.
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(c) We will reconstruct a cloud A C R™ so that the center of mass O(A) is the origin 0 € R™. If aff (A) = k < n, the cloud
A C R™ is contained in an affine k-dimensional subspace, which can be rigidly moved to the linear subspace R* C R™ for
the first £ of n coordinates in R™.

It suffices to reconstruct A C R¥ up to rigid motion in R”. Since aff (0, p1, ..., pn_1) = k, some k vectors (say) p1, .. ., Pk
from py, ..., p,_1 form a linear basis of R¥. The k points py, . .., py are uniquely reconstructed up to rigid motion in R¥
by part (b). Any other point ¢ € A\ {p1, ..., px} is uniquely determined by its projections (g - p;)/|p:|, which can be found
from the first k& < n rows of the matrix M (A;p1, ..., pn—1) for the point g, see Definition B.2.

In the generic case aff (A) = n, the condition aff (0, p1, ..., pn—1) = n—1 means that py, . .., p,—1 are linearly independent
and hence form a linear basis of R™ with the extra vector p;- from Lemma B.1. The sequence (0,p1,...,pn_1) of n
points can be uniquely reconstructed up to rigid motion in R™ by part (b). Any other point ¢ € A\ {p1,...,Pp—1} is

uniquely determined by its projections q| . ]|)z
bi
OfM(A;pla"'apn—l) forq. -

to the n basis vectors py,...,pn—1, p,,lb, which can be found from the column

Lemma B.5(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid motion in R?. For example, the
sides 3,4, 5 define a right-angled triangle whose mirror images are not related by rigid motion inside a plane H C R3, but
are matched by composing a suitable rigid motion in H and a 180° rotation of R around a line in H.

Lemma B.6 (smoothness of PR). For any cloud A C R™ and a base sequence p1,...,pn—1 € A, all components of
PR(A;p1,...,pn-1) have continuous partial derivatives (of any order) with respect to all (coordinates of) points of A as
long as R(A) > 0, so some points of A remain distinct.

Proof of Lemma B.6. The point-based representation PR(A;p{n — 1}) consists of squared distances in the matrix
SD(p{n — 1}) and scalar products in the matrix M (A;p{n — 1}) of all points ¢ € A \ p{n — 1} with the vectors
D1, ... ,Pn—1 from the base sequence p{n — 1} and the vector p,, L p1,...,pn_1 from Lemma B.1. All these components
are polynomials in the coordinates of the points of A, so have all continuous partial derivatives. O

Theorem B.7 extends Theorem 3.3 to dimensions n > 2.

Theorem B.7 (realizability of abstract PR). Let S be a symmetric n x n matrix of s;; > 0 with s;; = 0. Let M be any
n X (m —n+ 1) matrix for m > n. The pair [S, M| is realizable as a point-based representation PR(A;p1,...,pn—1) for
a cloud A C R™ of m points with O(A) = 0 and a base sequence p1, . ..,pn—1 if and only if (1) the (n — 1) x (n — 1)

matrix Gi; = 5(511 + 515 — sij) has only positive eigenvalues, which uniquely determines p1,...,pn—1 Up to isometry,
n—1 m—n—+1
and (2) Y (pi-pj)+ >, M;j=0fori=1,...,n, where p, = p; is the orthogonal vector from Lemma B.1.
j=1 Jj=1
Proof of Theorem B.7. The realizability of S as a matrix of squared distances between n points 0, py, . . ., p,—1 from the
base sequence p1, . .., pn—1 follows from Lemma B.4. The orthogonal vector pﬁ (also denoted by p,, here for uniformity)
from Lemma B.1 complements py, ..., p,—1 to a linear basis of R”. By Definition B.2, every element M;; of the matrix

M =M(A;p1,...,pn—1) equals p; - g forsome g € A\ {p1,...,pn—1}, Wherei =1,...,n.

n—1 m—n+1
Hence > (pi-pj) + >, M,;; =0canberewrittenasp;- (>, p)=0fori=1,...,n. These n equations mean that
j=1 j=1 pEA
1
O(A) = — > pisatthe origin 0 € R™.
m pEA
Conversely, for any M satisfying condition (2), we interpret every column (M, ..., M,;)” as a vector of scalar products
(¢-p1,--.,q - Pn), which determine a position of a point g € A\ {p1,...,pn—1} in the basis p1,...,pp. O

In Theorem B.7, condition (2) is equivalent to O(A) = 0 € R™ and implies that m — n columns of M consist of free
parameters, which determine the remaining column.

For n = 2, condition (1) means only that s12 > 0, so the distance between the points py = 0 and p; is positive.
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For n = 3, condition (1) about positive eigenvalues of the 2 x 2 matrix G means that 3 distances a < b < ¢ between
points 0, p1, po in R? satisfy @ > 0 and a + b > ¢, so the triangle on 0, p;, p is non-degenerate. By the cosine theorem
a2 %(a2+b2762)

e — L2 32 2 . _
p1 - P2 5(a® + b° — c*), so the matrix G ( L@ 45— ) B2

) has a? > 0 and a positive

determinant:

4det G = 4a?b? — (a® + b — ?)? =
(c? — (a® — 2ab + b)) ((a® + 2ab + b?) — ¢?) =
(= (a—b)*)((a+b)?—c*) > 0.

Assuming that 0 < a < b < ¢, the last inequality is equivalent to one triangle inequality a + b > c.

Now we extend a point-based representation from Definition B.2 to a complete invariant of a point cloud A under rigid
motion in R™. In applications, A can have distinguished points, for example, heavy atoms in atomic clouds, which can be
used to minimize choices for py,...,Pn_1.

Definition B.8 will extend Definition 3.4 to n > 2 by combining all PR(A; p1,...,pn—1) in a nested invariant by dropping
points p1,...,pn—1 € A one at a time. This invariant is needed only for comparisons (metric computations), while any
cloud A can be stored in computer memory as a single PR(A; p1,...,p,—1) due to Theorem B.7.

Definition B.8 (NDP : Nested Distributed Projection). Let A C R"™ be any cloud of m unordered points. For any ordered
points p1,...,pn—2 € A, let NDP(A;p1,...,pn—2) be the unordered collection of PR(A;p1,...,pn—1) for all points
Pn—1 € A\ {p1,. .. ,Pn_2} Similarly, forany 1 < k < n —2, let NDP(A;p1,...,pr_1) be the unordered collection of
NDP(A;p1,...,px) for all points pi, € A\ {p1,...,pr—1}. For k =1, the full Nested Distributed Projection NDP(A)
depends only on A.

For n = 2 and any cloud A C R?, the Nested Distributed Projection NDP(A) in Definition B.8 is the same as in
Definition 3.4, i.e. NDP(A) is the unordered collection of point-based representations PR(A4; p;) for all p; € A.

For n = 3 and any A C R?, the Nested Distributed Projection NDP(A) is the unordered collection of NDP(A; p; ) for all
p1 € A. Each NDP(A; py) is the unordered collection of PR(A; p1,p2) forall p; € A\ {p1}.

Similarly to Definition 3.4, if a cloud A has internal symmetries as in Example 3.2, one can collapse identical objects to a
single one with a weight to speed up computations. We avoid collapsing only to simplify arguments for n > 2.

Lemma B.5(c) implies that any cloud A C R"™ of m unordered points can be reconstructed from NDP(A) uniquely up to
rigid motion. Indeed, NDP(A) contains (nested) PRs depending on all possible n — 1 points p1,...,p,—1 € A. At least
one PR(A;p1,...,pn—1) satisfies Lemma B.5(c) and suffices to reconstruct A uniquely up to rigid motion.

In Theorem B.9 for n > 2, the equality NDP(A) = NDP(B) means a bijection 3 : NDP(A) — NDP(B) respecting the
nested structure of all PRs in Definition B.8.

In detail, for any 1 < k& < n — 1 and points p1, ..., pk, the bijection 8 matches NDP(A;p1,...,px) with a unique
NDP(B;q,-..,q) for some ¢q1,...,q, € B.

If n = 3, then § matches every NDP(A; p;) with a unique NDP(B; ¢ ) in the sense that this bijection NDP(4;p;) —
NDP(B; q1) matches PR(A; py, p2) for every p2 € A\ {p1} with PR(B; q1, ¢2) for a unique g2 € B — {1 }.

Theorem B.9 (completeness of NDP). The Nested Distributed Projection is complete in the sense that any clouds
A, B C R™ of m unordered points are related by rigid motion in R™ if and only if NDP(A) = NDP(B) so that there is a
bijection NDP(A) — NDP(B) matching all PRs.

Proof of Theorem B.9. The part only if : we will prove that any rigid motion f moving the cloud A to B = f(A)
implies that NDP(A) = NDP(B). By Lemma B.3(a) the rigid motion f matches every PR(A4;p1,...,pnp—1) from
NDP(A) with PR(B; f(p1),.-., f(pn—1)). Then, forany 1 < k < n — 2 and py,...,pr € A, we get a bijection
NDP(A;p1,...,pr) = NDP(B; f(p1),- .., f(pr)) Hence f induces a bijecton NCP(A) — NCP(B) between all PRs
respecting the nested structure in Definition B.8.
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The part if : NDP(A) = NDP(B) will guarantee a rigid motion f moving the cloud A to B = f(A). Choose any base
sequence pi,...,pn—1 € A that suffices for a unique reconstruction of A C R" up to rigid motion in Lemma B.5(c).
The given bijection NDP(A) — NDP(B) matches PR(A;p1,...,pn—1) with an equal PR(B;q1, ..., ¢,—1) for some
qi,---,qn—1 € B.

Lemma B.5(c) implies that a reconstruction of A, B from PR(A4;0(p1,...,pn-1)) = PR(B;q1,...,¢n—1) is unique up to
rigid motion in R™ so that A, B are matched by a rigid motion f as required. If aff (4) = aff(B) < n, this motion f may
not be unique. For example, any clouds A, B C R? that are contained in a straight line . C R? are pointwise fixed by any
rotation around the line L. O

C. Maps of cloud spaces and explicit computations of invariants

This section explains how cloud spaces can be visualized by considering the previously known and new types of 4-point
clouds (quads) in R2. This geographic-style approach extends to any number m of points in R”.

For any cloud A C R", the center O(A) = 0 € R™ is the origin. For n = 2, let p{1} consist of a single point p; € A with
Ip1| = R(A) = R. We can fix p; = (R,0) in R%. Then all points pa, .. ., py, are in the disk D = {z% + y? < R?}. Since

m

> pi = —p1 = (—R,0), pyp, is determined from po, ..., p,—1 € D that satisfy only one equation
i=2

m—1

B2 > [pul? = [(R,0)" + 3 pil = (R+2)* + 42,
=2

m—1
where (z,y) are the coordinates of s = > p;. The domain of s is the intersection J = D N {(R + x)? + y* < R%}.

i=2
For m = 3, we have s = (z,y) = pa. The symmetry ps <+ p3 allows us to choose any po in the left half (yellow) Ds of
the intersection J in Fig. 13 (left). Then the Rigid Cloud Space CRS(R"; 3) is parametrized by any radius R > 0 and
p2 € Ds. All equilateral triangles have py = (—%R7 i@R). All isosceles triangles have ps in the boundary 0 D3 whose
points should be identified under (z,y) — (x, —y). All p, = (z,0) with —R < z < —1 R represent degenerate triangles
with the vertices (R, 0), (x,0), (—R — z,0) in the same line.

equilateral Y rectangles YA — squares
\A

isosceles

Figure 13. The spaces in yellow for triangles (D3) and parallelograms (D) under rigid motion and uniform scaling in R?.

For m = 4, we can choose s = pa+ps € J, then any ps in the disk with the radius R and center s so that |ps| = |p3s—s| < R.
For any parallelogram in R?, its vertex cloud A has a longest diagonal between (say) p1, p3 that should be at (=R, 0). All
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possible s = po + (—R,0) € J mean that p, can be anywhere in D. Due to the symmetry py <> py, the left half Dy of D
in Fig. 13 (right) is the subspace of all parallelograms in DCS(R?;4) = CRS(R?; 4) /scaling.

Similarly for m > 4, n > 2, we can sequentially sample points pa, . .., pp—1 from allowed disks (high-dimensional for
n > 2) to get a unique representation of A under rigid motion. The symmetry f : (z,y) — (z, —y) on D identifies mirror
images of A. CIS(R™;m) is the quotient of CRS(R™; m) under (z,y) ~ (z,—y), take the upper halves of D3, D4 for
triangles and parallelograms, respectively.

We expand Fig. 13 above to illustrate severak important subspaces in the Isometry Cloud Space CIS(R?;m) and the
Similarity Cloud Space CSS(R?;m) for m = 3, 4. For simplicity, we call all clouds of 3 and 4 unordered points triangles
and quadrilaterals, respectively.

However, all these polygons are considered equivalent when we re-order their vertices. If all m points are ordered,
parametrizations of the resulting shape spaces were studied in geometry (Kapovich & Millson, 1996) and shape theory
(Kendall et al., 2009). We focus on the much harder quotient spaces of m unordered points.

Theorem B.7 explicitly describes all realizable Point-based Representations. Though the same point cloud A C R can
have many PR(A; p{n — 1}) depending on a base sequence p{n — 1} C A, we can easily sample any of them and always
reconstruct A, while random sampling distance-based invariants doesn’t guarantee the existence of A because of extra
relations between inter-point distances.

Though PR(A; p{n — 1}) consists of scalar products g - p; with basis vectors p1, . .., p,, it is easier to visualize the isometry
spaces by directly using some points ¢ € A as parameters instead of their projections.

Case m = 3 of triangles is the same in all dimensions n > 2. We consider R? for simplicity. Fig. 13 (left) showed the
Dilation Cloud Space DCS(R?; 3) of triangles A modulo rigid motion and uniform scaling in R?. We assume that the center
of mass is at the origin: C(A) = 0 in R2. After the radius R = 1 of A is fixed up to scaling, we also fix the first vertex at
p1 = (R,0). Then DCS(R?; 3) is parametrized by the second vertex po € D3, because the vertex ps is uniquely determined
by p1 + p2 +p3 = 0.

The blue boundary of DCS(R?; 3) consists of points ps that define isosceles triangles. The vertical part of the blue boundary
in Fig. 14 (left) represents all isosceles triangles with a unique angle (not equal to two equal ones) less than 60°. The round
part of the blue boundary in Fig. 14 (right) represents all isosceles triangles with a unique angle greater than 60°. These

boundary parts meet at the red points (— g, i@R) representing all equilateral triangles.

If po = (x,0) for —R < z < —%, then p3 = (—R — z,0), so the triangle generates to three points in the line. In the
yellow space D3 = CSS°(R?;3), the mirror reflection (z,y) + (z,—y) maps every isosceles triangle to itself, more
exactly, to an equivalent triangle under rigid motion. Hence all points of the blue boundary of D3 should be identified under
(z,y) = (x,—y). Then the space D3 of all triangles (including degenerate ones) under rigid motion and uniform scaling
can be visualized as a topological sphere S? whose the northern and southern hemispheres are obtained from the upper and
lower halves of Dj.

Case m = 4 of quadrilaterals in R?. Fix the center of mass O(A) = 0 € R? at the origin, the radius R(A) = R, and a
most distant (from 0) point p; at (R, 0). The other vertices ps, p3, p4 belong to the disk D = {22 + y? < R?} and have the
shifted center of mass 2212424 — (£ ). Hence, for a fixed radius R, the space CSS(R?;4) is 4-dimensional.

The subspace of parallelograms in CSS(R?; 4) is 2-dimensional. For any parallelogram A, its other most distant vertex is
ps = (—R,0) opposite to p; with respect to 0. Then py + py = 0 and the symmetry py <> p4 allows us to consider only po
in the yellow half-disk D4, which uniquely determines its symmetric image p,4 in Fig. 13 (left).

The round (blue) boundary of D, in Fig. 15 (left) represents all rectangles inscribed in the circle 22 + y? = R2. The
vertical (orange) boundary of D, in Fig. 15 (right) represents all rhombi with equal sides. The reflection (z,y) — (z, —y)
maps any parallelogram to its mirror image and preserves the equivalence class (up to rigid motion) of any rectangle or
rhombus, which are mirror-symmetric. Hence all points on the boundary of D, should be identified under (z,y) — (z, —y).
The resulting quotient is a topological sphere S? as Ds for all triangles, unsurprisingly because a parallelogram can be
considered as a double triangle.
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equilateral YA degenerate Y
™ triangles

D center
3 of mass

isosceles

Figure 14. The (blue) subspace of all isosceles triangles in CSS(R?; 3). Left: isosceles triangles with |p1 — p2| = |p1 — ps3|. Right:
isosceles triangles with |ps — p1| = |ps — p2|.

rectangles Y

Figure 15. The (yellow) subspace Dy of all parallelograms with p; = (R, 0) and p3 = (— R, 0) in CSS(R?; 4). Left: the (blue) subspace
of rectangles. Right: the (orange) subspace of rhombi.

Another interesting case is when one of the vertices ps = (z,0) belongs to the z-axis for x € [—R, R]. Then the
(horizontal line passing through) diagonal joining p;, p3 intersects another diagonal at its mid-point 22 ;rp 1 = (224,0) for
Tog = —# € [—R, 0]. The resulting cloud A can be called a quadrilateral with a median diagonal, briefly gmed. If a
gqmed A is also symmetric with respect to its median diagonal, the A has two pairs of equal sides and is often called a kite,

see the kite K in Fig. 2 (right).

Since any kite is mirror-symmetric, the points po = (x,y) and ps = (z, —y) represents the same kite up to rigid motion.
Hence the (yellow) subspace of all kites in CSS(IR?; 4) is the upper half K, of the disk D in Fig. 16 (left). For points py in
the vertical line x = —%, we get a degenerate kites whose vertices ps, ps3, p4 are in the same straight line. If p; = (2, 0),
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points p, for

Figure 16. Left: the (yellow) subspace of kites in CSS(R?; 4) parametrized by p» € K. Right: the subspace of gmeds is parametrized
by € [—R, R] and p2 in the yellow region.

the kite degenerates even further to the case of identical vertices ps = py.

So the subspace K of kites in CSS(R?;4) is 2-dimensional, while the larger subspace of qmeds is 3-dimensional,
parametrized by x € [—R, R] and a point py that can take any position in the intersection of the disk D = {2 + 3? < R?}
and its symmetric image with respect to the diagonal mid-point (z2 4,0) = (—%, 0).

The full space CSS(R?; 4) is parametrized by the sum s = p, + p3 in the intersection J = D N {(R + )% + y* < R?} and
then taking ps in the disk with the radius R and center s to guarantee that |p3| = |p2 — s| < R.

Case m = 4 of tetrahedra in R3. In R, we similarly fix the center of mass at the origin and the most distant points p; at
(R,0,0). The second most distant point py (if not in the line through 0 and p;) forms a base sequence p;, p2 and can be
fixed at (z,y, 0) with 2% + y? < R?, which determines the mid-point ps 4 2124 = (—2EE ¥ (). Due to the symmetry

2
p3 <> pg around ps 4, it remains to choose ps in the upper half ball with the center ps 4 and radius /22 + y2.

The clouds in Example C.1 are instances of C* from Example 4.5: K = C*, T = C~ for4a = b = ¢ = 4d = 2v/2 and
are easy enough to write their NDPs below.

Y4 trapezoid T o5 Y kiteK
s T e # o | 5
- ; H N o— o>
3 2 2 L X _ 0 X
o I»] —————————— o 3 ;
same 6 pairwise distances o--1-2

Figure 17. Non-isometric clouds of 4 points with the same 6 pairwise distances. Left: the trapezoid T has points (£2,1), (£4, —1). The
kite K has (5,0), (—3,0), (—1, +2).

Example C.1 (4-point clouds 7', K in Fig. 17). Both clouds T, K C R? in Fig. 17 have the center of mass at the origin.

(T) The cloud T has the points p1 = (2,1), po = (—=2,1), ps = (=4, —1), ps = (4, —1). For the basis point p; = (2,1)
with |p1|?> = 5 and orthogonal vector pi- = (—1,2) L py from Lemma B.1, the point-based representation is PR(T;py) =

B )

For the second point py = (—2,1) with |p2|> = 5, py = (—1, —2), we have PR(T; p2) = {5, ( :i (75 :g >] which
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differs from PR(T'; p1) by the sign of the last row (up to a permutation of columns). The symmetries under py <> po (above)
and p3 <> py (below) are explained by the reflection (z,y) — (—x,y) mapping T to itself.

For p3 = (—4,—1) with |p3|> = 17, p3 = (1, —4), we have PR(T; p3) = {17, ( :g 7—6 8_15 )]

For the fourth point py = (4, —1) with |p4|? = 17, pi = (1,4), we have PR(T; ps) = [177 ( g ;9 :é5 )]

So NDP(T) is the unordered set of the four PRs above.
(K) The cloud K has the points p1 = (5,0), p2 = (—1,2), p3 = (—3,0), ps = (-1, -2).
For the basis point p; = (5,0) with |p1|*> = 25 and pi = (0,5) L pi, the point-based representation is PR(K;p;) =
95 -5 —-15 =5
"\ 10 0 -10 /)|’

For the second point ps = (—1,2) with |ps|? = 5 and py = (=2, —1), we have PR(K; p3) = [5, ( :5 2 i >]

For the third point p3 = (—3,0) with |p3|?> = 9 and p3- = (0, —3), we have PR(K; p3) = {9, ( 815 36 2 )}

For the point py = (—1,—2) with |p4|?> = 5 and p; = (2, —1), we have PR(K;py) = {5, ( 1_05 174 36 )]

So NDP(K) is the unordered set of the four PRs above.
T 2 K are distinguished by (unordered) squared distances to their centers: 5,5,17,17 for T, and 25,5,9,5 for K.

Example C.2 finishes the computations of the Nested Distributed Projection (NDP) for the 4-point clouds C* C R? in
Fig. 2, which we started in Example C.1.

The simultaneous swapping a <+ d, b <+ ¢ maps each cloud C™ to its mirror image in the diagonal z = y in R2, hence the
metric between C* remains the same, which explains the symmetry of the top two plots in Fig. 18, 19, 20.

Example C.2 (4-point clouds C* in Fig. 2). In R?, consider the 4-point clouds C* = {pl,p2,p3,pff }, where p1 = (4a,0),
p2 = (b,¢), p3 = —p2 = (=b, —¢), pf = (0,4d), and p; = (0, —4d) for parameters a, b, c,d > 0.

After shifting the center O(C’+) = (a,d) to the origin (0,0), the points of C* become p{ = (3a,—d), p3 = (b—a,c— d),
py = (—a—b,—c—d), p{ = (—a,3d).

Each matrix SD(CT; p) is one squared distance |p|?.

(+,p1)—9a + d?,
D(C ,pz) (@ =0+ (c—d)?
(CHipy) = (a+0)* + (c+d)>,
( ,p4)—a—|—9d2

For the second cloud C~, after shifting the center O(C ™) = (a, —d) to the origin (0,0), the points become p; = (3a,d),
py =(b—a,d+¢), p; =(—a—0b,d—c), p; = (—a,—3d).

Hence C~ has the following squared distances to its center:

SD(C~;py) = 9a% + 2,
SD(C™;py ) = (a—0)* + (¢ +d)?,
( ’p3) a’+b) ( _d)27
SD(C~;p; ) = a® + 9d2.
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b=20,c=2.0

- 3.0

- 2.5

parameter: a

0.2 0.4 0.6 0.8 1.0
parameter: d

Figure 18. The Nested Bottleneck Metric NBM from Definition 4.4 for the 4-point clouds C* C R? with variable parameters a, d, see
details in Example C.1.

The (unordered) collections of squared distances above differ unless at least one of a,b, c, d is zero. Indeed, the squared
distances 9a®+d? and a®+9d? are shared by C* but SD(C™; p3) is unique and cannot equal SD(C~;py ) or SD(C~;p3 ).
Indeed, if all a,b, c,d # 0, then

(a—0)2+ (c—d)? # (a—b)?+ (c+d)? ored # 0,
(a—b)?%+(c—d)?# (a+b)?+ (c—d)?orab#0.

If d = 0, then pf = (0,0), so the clouds C* are identical.
Ifa = 0, then p; = (0,0) and C* are related by the 180° rotation around the origin: (x,y) — (—x, —y).

Ifb=0o0rc =0, then CT are related by the reflection (z,y) — (x, —y), so distances cannot distinguish these mirror
images. We compute NDP(C*) below to distinguish all non-rigidly equivalent C+ % C~, see Fig. ??.

For the basis point pf, the matrix SD(C'™T; pf) = 9a? + d? is the single squared distance. Lemma B.1 gives the orthogonal
vector ¢ = (d,3a) L pf. M(C*;pl) consists of the 3 unordered columns
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=0.5,d=0.5
4.0 [ 2.00
3.5 - - 1.75
3.0 1 - 1.50
o 2.5 - 1.25
@
£ 2.0 1.00
©
S
1.5 0.75
1.0 0.50
0.5 0.25

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
parameter: c

Figure 19. The Nested Bottleneck Metric NBM from Definition 4.4 for the 4-point clouds C* ¢ R? with variable parameters b, c, see
details in Example C.1.
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Figure 20. The Nested Bottleneck Metric NBM from Definition 4.4 for the 4-point clouds C*  R? with variable parameters a, ¢, see
details in Example C.1.

(pf-p?)_( 3a(a+b)+d(c+d))
pf a5 ) 3a(c+d)+d(a+0d) )
p;-.p;- B 2—b2—62+d2
(ot )= ("ot ™)
( gii th > _ < _aézzc—:_bg)—_?)éic(ia—i-_i_dl))) > The fourth point p; = (—a, 3d) has the vector qf = (—3d,—a) L p},
SD(C*;pf) = a® +9d%, M(C*;p}) has the columns
(pf-ﬁi)_( 3(a® +d2))
plqf ) —8ad ’
(ﬁ’ﬁi) (a(a—b)+3d( d))
2 3d(a —b) +a(d —c)
p}f D 2_ a(a +b) = 3d(c+d) . The Nested Distributed Proj NDP(C* h
i 3d(a + b) + alc + d) jection (C™) consists of the four pairs (of a
e.

squared distance and 2 x 3 matrix) abov.
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For C—, after shifting the center O(C~) = (a,—d) to the origin (0,0), the points of C~ become p; = (3a,d),
pg = (b a d+ c) p; = (—a—b,d—c), p; = (—a,—3d). The first point p; has the vector q¢; = (—d,3a) L p7,
,pl = 9a” 4+ d?, M(C~;py ) has the columns
3a( b—a)+d(d+c)
) ( b) + 3a(d + ¢) >
—Sa (b+a)+d(d—c)
d(b + a) + 3a(d — ¢) )’

—3(a® + d?)
—8ad
b) +(c+d)* M(C™spy) of

—a)+d(d+c)
73a c+d)+d(bfa) )’
-V -+ d
ac—|— bd) )
a —b) —3d(c+d)
(c+ d )+ 3d(a —b)
+b +(c—d)*, M(C™;pg) of
—3a(a+b)+d(d—c)
3a c—d) d(a+b) )
a? —b? — 2 + d? )

>. The second point p, = (b — a,d + c) has the vector ¢ = (—d — ¢,b—a) L ps,
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2

I
/\/\/‘\ /\/‘\

). The third point p; = (—a — b,d — ¢) has g5 = (c—d,—a —b) L p3,

V]

—2(ac+ bd)
( a+b)+3d(c—d)
— ¢) + 3d(a +b)
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8ad ’
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P (a +b)+3d(c—d)
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Shorter Example C.I justified that CT % C~ unless at least of the parameters a,b,c,d is 0. If a = 0 or d = 0, then
Ct = C~ are isometric. In the remaining cases b = 0 and ¢ = 0, the clouds C* are mirror images, which can be
distinguished by matrices M above, not by any distances.

Case b = 0. We write down the above matrices M (C"“;pj') with unordered columns after substituting b = 0.

( —3a>+d(d—c) —3a>+d(d+c) —3(a®+d?) >

a(3c — 4d) —a(3c+ 4d) 8ad
—3a®>+d(d—c) a®—c*+d*> a®+3d(c—d)
a(4d — 3c¢) 2ac a(c— 4d)
—3a®>+d(d+c) a®—c2+d* a®—3d(c+d)
a(3c+ 4d) —2ac —a(c+ 4d)
—3(a?+d*) a®>+3d(c—d) a*—3d(c+d)
—8ad a(4d — ¢) a(c+ 4d)

The mirror image C'~ has the following matrices:

( —3a®>+d(d+c) —3a®>+d(d—c) —3(a®+d?) >
a(3c+ 4d) a(4d — 3c) —8ad
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( —3a®>+d(d+c) a®—c2+d*> a®—3d(c+d)) )

—a(3c+ 4d) 2ac a(c+ 4d)
—3a®>+d(d—c) a®—c*+d* a®+3d(c—d)
a(3c — 4d) —2ac a(4d — ¢)

( —3(a*+d?) a®—3d(c+d) a®+3d(c—d) )
8ad —a(c+ 4d) a(c —4d)

By Lemma B.3(b), the reflection C* — C~ changes the sign of the last row in the matrix M from any point-based
representation PR. Indeed, changing the sign of the last row in each matrix M from NDP(C™T) makes this matrix identical
to one of the matrices from NDP(C™), up to a permutation of columns as always. However, with all signs kept, the above
unordered collections of four matrices are different unless all elements in the last row vanish, which happens only for a=0,
when Ct = C_ are identical.

Case ¢ = 0 is symmetric to the case ¢ = 0 under the reflection (z,y) — (y,x), which swaps b <> c and a < d.

We have considered only non-negative values of a, b, ¢, d because all other cases are obtained by symmetries. For example,
the reflection y — —y maps the cloud C™*(a, b, c,d) to C~(a,—b,c,d) = C~(a,b, —c,d).

Example C.2 importantly demonstrates that the invariant NDP is simple enough for manual computations.

A numerical experiment can only illustrate but not prove the conclusion of Example C.2 that all (infinitely many) non-rigidly
equivalent clouds C'* are distinguished by NDP.

D. Generalization of section 4 and all proofs in dimensions n > 2

This appendix extends the metrics to dimensions n > 2 and proves all metric results from section 4 in full generality.

The point-based representation in Definition B.2 included the matrix SD(p1, . .., p,—1) of squared distances, which can be
rewritten as a vector row-by-row.

Below we can take any norm on matrices and choose the simplest max norm below for consistency with the bottleneck
distance and for Lipschitz constant 2 in Theorem E.5.

Definition D.1 (max norm and metric on matrices). The max norm ||D||c = max |D;;| of a matrix is the maximum
i\j

absolute value of its elements D; ;. The max metric between matrices M, M’ of the same size is do = ||M — M'||.

Definition D.2 will extend Definition 4.2 to dimensions n > 2. Below the notation SD/R means that all elements
of a matrix SD are divided by R. The radius of a base sequence p{n — 1} = (p1,...,pn—1) C A is defined as
R(p{n—-1})= max |p;| in the same way as R(A) of a full cloud A. The notation M/ R means that all elements in the

first n — 1 rows of a matrix M are divided by R, and by R"~! in the n-th row, because p;- in Lemma B.1 is a polynomial
of degree n — 1. Then PRM and further metrics have units of original points. One more division by R makes all metrics
invariant under scaling.

Definition D.2 (Point-Based Representation Metric). Lef clouds A, B C R™ of m unordered points have base sequences
p{n — 1} = (p1,--,Pn-1), ¢{n — 1} = (q1,...,qn—1) of ordered points, from Definition B.2. The Point-Based
Representation Metric between the PRs above is

PRM = max{ |R(p{n — 1}) — R(¢{n — 1})|, wp, |R(A) — R(B)|, war }, where

wp = da <SD(p{n —1}) SD(g{n —1})

B M(A;p{n —1}) M(B;q{n—1})
R(p{n—1}) * Rlg{n—1}) > and e =B ( )

R(A) ' R(B)

Lemma D.3 (axioms for PRM). PRM in Definition D.2 satisfies all metric axioms from Problem (1.1b) on any point-based
representations from Definition B.S.
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Proof of Lemma D.3. The first axiom means that PRM(PR(A; p{n — 1}),PR(B;¢{n — 1})) = 0 if and only if these
PRs are identical. The part if: by Lemma B.5(c), equal PRs guarantee that the clouds A, B are rigidly equivalent, so
R(p{n—1}) = R(g{n—1}), R(A) = R(B), SD(p{n — 1}) = SD(¢{n — 1}), and M(A; p{n —1}) = M(B; ¢{n—1}),
so PRM = 0.

The part only if: by Definition D.2 the equality PRM = 0 means that R(A) = R(B) and wp = 0 = wy,. The coincidence
axioms for the max metric and bottleneck distance together with R(p{n — 1}) = R(¢{n — 1}) and R(A) = R(B) imply
that SD(p{n — 1}) = SD(¢{n — 1}) and M (A4;p{n — 1}) = M(B;¢{n — 1}). Then the point-based representations
become identical: PR(A;p{n — 1}) = PR(B;¢{n — 1}).

The symmetry axiom for PRM follows from the symmetry axiom for the bottleneck distance and max metric do.. Since
each of the distances |R(A) — R(B)|, wp, wyy satisfies the triangle inequality, then so does their maximum, see metric
transforms in section 4.1 of (Deza & Deza, 2009). O]

Definition D.4 extends Definition 4.4 to all dimensions n > 2.

Definition D.4 (NBM : Nested Bottleneck Metric). Let A, B C R™ be any clouds of m unordered points. For any ordered
points py ..., pn—2 € Aand q1 ...,qn—2 € B, the complete bipartite graph T'(A;p1,...,Dn—2; B;q1,-..,qn—2) has
m — n + 2 white vertices and m — n + 2 black vertices representing PR(A;p1,...,pn—1) and PR(B; q1,...,Gn-1) for
all m — n + 1 variable points p,—1 € A\ {p1,...,pn—2} and g,—1 € B—{q1, ..., qn_2}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by PR(A;p1,...,pn—1) and PR(B;q1,...,qn-1)
as PRM between these PRs, see Definition D.2. Then Definition 4.3 gives us the bottleneck matching distance
BMD(T'(4;p1, ... ,Pn—2;B;q1,...,qn—2)). We continue dropping points iteratively. For any 1 < k < n — 2 and
ordered points p;y ..., px—1 € Aand q1 . ..,qx—1 € B, the complete bipartite graph T'(A;p1, ..., pk—1;B;q1, ..., qk—1)
has m — k + 1 white vertices and m — k + 1 black vertices representing NDP(A;p1, ..., pr) and NDP(B; q1, . .., qx) for
all m — k + 1 variable points p;, € A\ {p1,...,pr—1} and q; € B—{q1,...,qrk-1}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by NDP(A;p1,...,pr) and NDP(B;q1,...,q;) as
BMD(I'(4;p1,...,pk; B;q1, - - ., qr)) obtained above. Then Definition 4.3 gives us the bottleneck matching distance
BMD(T'(A;p1, -y pk—1;B;q1y -« -, qe—1))- Finally, for k = 1, we get the Nested Bottleneck Metric NBM(A, B) =
BMD(I'(A, B)).

Lemma D.5 (metric axioms for the bottleneck matching distance BMD). Let S, () be any unordered distributions of the
same number of objects with a base metric d. Define the complete bipartite graph T'(S, Q) whose every edge e joining
objects Rg € S and Rg € Q has the weight w(e) = d(Rs, Rq). Then the bottleneck matching distance BMD(I'(S, Q))
from Definition 4.3 satisfies all metric axioms on such unordered distributions.

Proof of Lemma D.5. The coincidence axiom means that NBM(S, Q) = 0 if and only if the weighted distributions .S, Q
are equal in the sense that there is a bijection g : S — @ so that d(g(R), R) = 0 forany R € S.

Indeed, if the weighted distributions S, ) can be matched by a bijection, we get a vertex matching £ of I'(S, Q) whose all
edges have weights w(e) = 0. Definition 4.3 implies that BMD(I'(S, @)) = 0 as required.

Conversely, if BMD(I'(S, Q)) = 0, there is a vertex matching E in I'(S, Q) with all w(e) = 0. This matching E defines
a required bijection S — . The symmetry BMD(T'(S,Q)) = BMD(T'(Q, S)) follows from Definition 4.3 and the
symmetry of the base metric d.

To prove the triangle inequality
BMD(T'(S,Q)) + BMD(I'(Q, T')) = BMD(I'(S,T)),
let Esqg, Eqr be optimal vertex matchings in the graphs I'(S, Q),T'(Q, T'), respectively, such that
BMD(I'(S, Q) = W(Esq), BMD(I'(Q, T)) = W(Eqr),

see Definition 4.3. The composition Egq o Eqr is a vertex matching in I'(S, T'), so W(Esq o Egr) > BMD(I'(S,T)).
It suffices to prove that
W(Esq) + W(Eqr) = W(Esq © Eqr).
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Let eg7 be an edge with a largest weight from Fgq o Egr, 50 W(ESQ o EQT) = w(egr). The edge egr can be considered
the union of edges esg € Esq, eqr € Egr.

By the triangle inequality for the base metric d,

w(esq) +w(eqr) > wlesr) = W(Esq o Eqr)

implies that
W(Esq) + W(Eqr) > W(Esq o Egr)

because both terms on the left-hand side are maximized for all edges (not only esq, eqr) from Esq, Egr. O]

Lemma D.6 (metric axioms for NBM between NDPs). The Nested Bottleneck Metric NBM from Definition D.4 satisfies
all metric axioms on Nested Distributed Projections.

Proof of Lemma D.6. Inductionon k =n — 2,...,1. The inductive base k¥ = n — 2 follows from the metric axioms in
Lemma D.3 for PRM in Definition D.2. The inductive step from 1 < £ < n — 2 to k — 1 follows from Lemma D.5 and the
metric axioms in the inductive hypothesis for k. O

E. Generalization of section 5 and all proofs

This appendix proves Theorems E.5, E.8, and E.9 extending Lemmas 5.1, 5.2, and 5.3, respectively to dimensions n > 2 by

using auxiliary Lemmas E.1, E.2, E.4, and Proposition E.3.

Lemma E.1 (orthogonal vector length). For any sequence p1,...,pp—1 € R", set R = max |pi|. Then the orthogonal
i=

..... n—
vector p- | pi1,...,pn_1 from Lemma B.1 has a length satisfying |p3| = R, |p3| < R2, and |p-| < /nR" for any

n > 3.

Proof of Lemma E.1. For n = 2, the explicit formula p3 = (—y, z) for p; = (z,y) gives the exact equality |py | = |p1| =
R. For n = 3, p5 equals the vector product p; x ps whose length is [p3| < |p1| - |[p2| < R%. For > 3, the expansion

| N | €1
n . .

of the n x n determinant p;- = P1 eee Dnoi along the last column gives p- = i;(—l)"+’ det(7)e;, where

| ... | en
det(7) is the (n — 1) x (n — 1) determinant obtained from the n — 1 vector columns p1, . .., p,—1 by removing the row of
all i-th coordinates. Any determinant on vectors vy, ..., v,_; € R"~! equals the signed volume of the parallelepiped on
V1,...,Vn—1, Which has the upper bound |v1] - - - |[vp—1]-
Since each vector v; is obtained from p; by removing one coordinate, we get |v;| < |p;|. So each coordinate of p;- in the
orthonormal basis ey, . . . , e, has the upper bound |p1| - - - [p,_1| < R"~!. Then the Euclidean length has the upper bound
IpE| < v/n(R™1) = R, O
Lemma E.2 (vector perturbations). Let points q1, . .., qn—1 be e-perturbations of p1, ..., pn—1 € R™ so that |p; — q;| < e

foranyi=1,... n—1. Set R = max 1{\pi|, |gi|}. The orthogonal vectors p- 1 p1,...,pp_1and ¢- L q1,...,Gn1
i=1,..., n—
p3 — q3| < e2V6R forn = 3, and |p- — ¢-| < en(n — 1)R"2 for

from Lemma B.1 satisfy |py — q5| < € forn =2,
anyn > 3.

Proof of Lemma E.2. 1f n = 2, then py = (—y, ) forp; = (z,y),50 [p3 — g5 | = |[p1 — q1| < e.

Let z;(v;) be the i-th coordinate of a variable vector v; € R™ moving from p; to its e-perturbation ¢; foré,j =1,...,n
in the given orthonormal basis e, . . ., e,, where we set p,, = py and q,, = g;- for brevity. For each k = 1,...,n, the
coordinate x (vy,) is the scalar function fj(v1, ..., v,—1) of the (n — 1)? variables z;(v;) fori, j = 1,...,n — 1.

The upper bound for |p,, — ¢, | will follow from the Mean Value Theorem 5.10 from (Rudin et al., 1976) for the functions
f1,-- ., fn because the coordinates of the vector ¢;- are fi(q1,. .., q,_1) evaluated at close (coordinates of the) vectors
Qs qn-1sothat [p; —q;| <efori,j=1,...,n—1.
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First we estimate the gradient V fj of fj at any intermediate point in the line segment between (p1,...,p,—1) and
(q1,- -+, qn-1) with respect to the (n — 1)? variables z;(v;) for i,j = 1,...,n — 1. For k = i, the k-th coordinate of
| €1
Un =1y ... 1 is (—1)"** det(k), where det (k) is the (n — 1) x (n — 1) determinant obtained from the
| ... | en
0] Odet(k
n — 1 vector columns vy, . . ., v,_1 by removing the row of all k-th coordinates. Then L = —1)"““ A, which
dzi(v;) dz(v;)
equals O for k = ¢ because f;, is independent of the coordinate x(v;) forj =1,...,n — 1.

After expanding the determinant det(k) along the ¢-th row, the only terms containing the factor z;(v;) form the smaller
(n—2) x (n—2) determinant det(k, ) obtained from the n — 2 vector columns vy, ..., v;_1,Vj4+1, . .., Un—1 after removing
the rows of all k-th and i-th coordinates.

Then |v;| < R = max {|pL| |gi|} for any points (vy,...,v,—_1) in the line segment between (p1,...,pn—1) and
1=

RPN ¢

(g1,--,Gn-1). The (n 2) (n — 2) determinant det(k, 7) equals the signed volume on n — 2 vectors of maximum length

L3 | det(k,i)| < R"~2. The gradient V f} is the vector of (n — 1)
i (v;)

partial derivatives and can be considered a vector (V1 f, ..., Vp_1fk), where V; f, = ( Of ey O ) has
z1(v;j) Tn-1(v;)

R and hence has the upper bound B2, so

<+vn—1R""2.

Vife] <vVn—1 max
i=1,...,n—1

8:1% ('Uj)

We consider the k-th coordinate fj, of v, as a function depending on one parameter ¢ € [0, 1] when the point (v1,...,v,—1)
moves along the line segment from (p1,...,pn—1) to (q1, ..., ¢n—1). Then Theorem 5.10 from (Rudin et al., 1976) implies
for some intermediate point (vy, ..., v,_1) that

|fk(p17 v apn—l) - fk(q17~ .- ,Qn—1)| = |vfk(vla ce. 7Un—1) . (pl —q1,---3,Pn—-1 — Q7L—1)| =

n—1 n—1 -
Of
= Z B (o (2i(py) — xilgy)) | = Zvjfk'(pj_ qj) vak Ip; — gl <
ij=1 xZ(UJ) j=1 j=1
<e(n-1) max |V fel <e(n—1)vn—1R"2
j=1,...,n
Since eq, ..., e, form an orthonormal basis, we get

n
|pn - qn| - Z |fk(p17~ <. 7pn—1) - fk(q17 ce 7qn—1)|2
k=1

<+Vn max s paa) = filqs gl < vne(n—1)vn —1R""? < en(n — 1)R"?

.....

for any n > 3. If n = 3, the final upper bound can be improved to £21/6R. O

Proposition E.3 (Lipschitz continuity of PR under perturbations of a cloud). Let B C R™ and a base sequence g{n—1} C B
be obtained from a cloud A C R™ and a base sequence p{n — 1} C A, respectively, by perturbing every point in its
Euclidean c-neighborhood. Then

(@) [0(4) - O(B)| <
(b) PRM(PR(A; p{n — 1}),PR(B; ¢{n — 1})) < Ane for A2 = 6, A3 = 16, A, = 3n%, n > 3.

R(p{n — 1} — R(q{n — 1})| < 2¢, and |R(A) — R(B)| < 2¢;

Proof of Proposition E.3. (a) Let p; ..., p,, be all points of A so that the first n — 1 points py, ..., p,—1 form the base
sequence p{n — 1}. Let ¢; € B be an e-perturbation of p;, so ¢i ..., g, are all points of B and the first n — 1 points
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> pis

1
q1,---,qn—1 form the base sequence g{n — 1}. The radius of A is R(A) = max |p — O(A4)|, where O(A) = —
peEA m pEA

the center of mass. Then

m

m
Zpi - Z i
i=1 i=1

If the radius R(A) is attained at a point p; € A, then R(A) = |p; — O(4)| <

m

1

1
A)—O(B)| = — < — —qi| <e.
0(4) - 0(B)| = — SPIEIES

< lpi — @il +la; = O(B)| +|0(B) = O(A)| < e + max |g; — O(B)| + ¢ = 2 + R(B).

Swapping the clouds A, B gives the opposite inequality R(B) < 2e + R(A), so |R(A) — R(B)| < 2e. The radii of the
base sequences also differ by at most 2¢, i.e. |R(p{n — 1}) — R(qg{n — 1})| < 2e.

(b) All corresponding points of the given clouds A, B are e-close so that |p; — ¢;| < e foralli = 1,..., m. Any distance
|pi — p;| changes by at most 2¢ under perturbation, because

Ipi — il < pi — ail +1a — q5] + g5 — pil < @i — q;] + 2,
g — ;| < lai — pil + |pi — pj| + Ipj — qj| < |pi — pj| + 2e.
Hence | |p; — pj| — |gi — ¢;| | < 2 foralli,j=1,...,m.
To estimate the max metric do in (D.2), we rewrite the difference between the corresponding elements in the matrices SD/R

of squared distances normalized by the radii in the notations r(A) = R(p{n — 1}) and r(B) = R(¢{n — 1}). Without loss
of generality, assume that (A) > r(B).

i — pi|? i — gl i — il — g — q5]? B) —r(A
Then | P2 =Pl _ 14 — 4l < 1P — pil* = lai — gl |+|qi_qj|2|7"( ) —r(A)]|
r(4) r(B) r(4) r(A)r(B)
fori,j =0,...,n— 1, where py = O(A) and go = O(B) are centers of mass. In the first term above, we estimate the
difference of squares by factorizing:
| Ipi —JUj|2 —lgi — qj|2 | =1lpi —pjl —lai —qil |- (Ipi — psl +1gi — q;]) < 2e(2r(A) + 2r(B)).

: Ipi = pil* — 1 — a; | r(4) +r(B) [r(B) — r(4)]
U A) > r(B), the bound < 4 < 8, ¢ — ¢jI* ——nt <

sing r(A) > r(B), the bounds A < 4e (A) < 8, |¢; — g5l (A =
(2r(B))? - 2¢ . SD(p{n —1}) SD(¢g{n—1})
— <8 doo , < 16e.

) = r(4) "(B) )

To estimate the bottleneck distance BD between the matrices M /R in (D.2), which involve scalar products, we shift both
clouds A, B so that their centers O(A) and O(B) coincide with the origin 0 € R™. We keep the same notation p;, g; for all
points for simplicity. Since |O(A) — O(B)| < € by part (a), the relative shift by a vector of a maximum length ¢ guarantees
all corresponding points are now 2e-close, i.e. |p; — ¢;| < 2¢. Below we estimate the difference between scalsr products
involving any 2e-close points p € A\ p{n — 1} andq € B —q¢{n — 1} fori = 1,...,n — 1 (indexing points from the base
sequences) and ¢ = n for the orthogonal vectors p,, = p*, qn = q,f.

Case i =1,...,n — 1. The bottleneck distance BD has the upper bound obtained from estimating the differences below in
the M /R matrices for any point p € A\ p{n — 1} matched with its 2e-perturbation ¢ € B — ¢{n — 1}. Without loss of
generality, assume that R(A) > R(B). Then

‘p-pi_q-qi \p-pi—q~qi|+|q.q‘||R(B)—R(A)\
R(A)  RB)| = R(A) ITRURB)
R3(B) - 2¢

Due to |q - ¢;| < |q| - |¢;| < R%(B), the second term above has the upper bound < 2¢. Estimate the difference

R(A)R(B)
of products in the first term above:

lp-pi—q-al <|(p—q) pi+q-(pi—a) <I|p—ql-|pil + gl - [pi — @] < 2e(R(A) + R(B)).
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p-pi —q-al _, R(A)+ R(B)
R(A)  ~ R(A)
p € A\ p{n — 1} and its 2e-perturbation ¢ € B — ¢{n — 1}.

Then

=4e. Foreveryi=1,...,n—1, we get

< 6¢ for every point

Case i = n is for the n-th row of the matrices M /R in (D.2), where the scalar products with the orthogonal vectors p;-, g,
from Lemma B.1 are divided by R"~! instead of R.

Subcase i = n = 2 coincides with the case i < n above because R”~! = R. Combining the upper bounds above, we get

BD (M(A;p{n —1}) M(B;q{n—1})
R(A) ’ R(B)

the maximum of the bounds do, = |R(p1) — R(q1)| = ||p1] — |¢1|| < 2¢, |R(A) — R(B)| < 2¢, and BD above, so

PRM (PR(A; p1), PR(B; ql)) < 6¢, which finishes the proof of part (b) for n = 2.

) < 6¢ By Definition 4.2, the Point-based Representation Metric PRM equals

Subcase i = n = 3. Without loss of generality, we can assume that R(A) > R(B). The upper bounds of Lemmas E.1 and
E.2 imply that

p3| < R*(A), |¢5| < R*(B), |ps —q3| < 2e-2V6R(A).

We start estimating similarly to the case ¢ < n above:

p-ps —q- a3 | <|lp—q)-p3 +aq-(p3 —a3)| <Ilp—dal-Ipz|+1ldl-Ip3 — 3| <
2eR%2(A) + R(B) - 2¢ - 2fR(A):QaR(A)( (A) +4V6R(B)).

p-py  q-g3|_lp-ps—q-a3 |R?*(B) — R*(A)|
Then R?(j) N R2(§) < A) = el R(AR(B) -
2 _ N2 .
<2l b g < 0420 < m0) (gt )

We use R(A) < R(B) + 2¢ to bound last term:

R?(B) R*(B) R(B)
R(B) (1 - R?(A)) < R(B) <1 ~EB ¥ 25)2) < ®B T 25)245(R(B) +e) < de.

Pp3 4 a3
R2(A)  R*(B)

equals the maximum of

Then <2(1+ 2\/6) + 4e < 16¢. By Definition D.2, the Point-based Representation Metric PRM

doo = |R(p{2}) — R(¢{2})| < 2¢, |R(A)— R(B)| <2, ds <16e, BD < 16¢,
so PRM (PR(4; p{2}), PR(B; ¢{2})) < 16¢ which finishes the proof of part (b) for n = 3.
Final subcase i = n > 3. Assuming again that R(A) > R(B), Lemmas E.1 and E.2 give
Pl < VRRYHA), gy | < VaRYH(B),  |py — @y | < 2en(n — 1)R"72(A) forany n > 3.
We start estimating similarly to the case ¢ < n.

ooy —aq-ar| <lp—q) s +a oy — ) <Ilp—dl- o]+ la| - Ipit — | <
2¢ - /nR""Y(A) + R(B) - 2en(n — 1)R"2(A).

PPy q- g p-pr — 4 gl R"'(B) - R"'(A)
Then R1(A) - R 1(B) < R 1(A) +lg-qr| - ‘ Rnfl(A)Rnil(B) ’ <
_ 2e/nR"N(A) +2en(n— DR"X(AR(B) | il 1gL]- ‘ 1 ‘
= R—1(A) Inl" | Rn= (A) R(B)|~
< 2v/ne + 2en(n —1) + \/ﬁRn(B) <R”—11(B) - Rn—ll(A)> )
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We use R(A) < R(B) + 2¢ and the simpler notation R = R(B) to bound last term after factorizing the difference of the
(n — 1)-st powers as follows:

R(B) (1 - m> <R (1 = (R"_1> _ L (R+20)" 1 — Rl

R+ 2e)n—1 (R+ 2e)n1
R(R+2 —R) X 2R 2
- 2RI T 26)"2 < % (n — 1).
(R +2¢)n—1 JX:R+ R T (R+2e)" 1ZR+ 2 en—1)
(A;p{n —1}) M(B;q{n—1}) P Pn q-qn
Then BD < —
- ( R(A) ' R(B) R=1(A)  RL(B)|

2e(vn+nn—1)+vn(n—1)) =2ev/n(l+vnn—1)+n—1) <2ey/n(v/n(n—1)+n) =
2en(n + /n — 1) < 3en? because \/n — 1 < g For n = 4, the upper bound above is 3¢(4)? > 6¢ > d,. Hence the final
upper bound is PRM (PR(A; p{n — 1}), PR(B; ¢{n — 1})) < 3en. O

Lemma E.4 (Lipschitz continuity of BMD). Let I" be a complete bipartite graph with a vertex matching E such that any
e € F has a weight w(e) < e. Then BMD(T") < ¢

Proof of Lemma E.4. By Definition 4.3, the vertex matching E has the weight W(E) = max w(e) < e. Since BMD(T') =
ec

mbin W (E) is minimized for all matchings, BMD(T") < e. O

The Lipschitz continuity of NDP in Theorem E.5 extends Theorem 5.1 to any n > 2 by using Proposition E.3 and
Lemma E 4.

Theorem E.5 (Lipschitz continuity of NBM). Let a cloud B C R™ be obtained from a cloud A C R"™ by perturbing every
point of A within its Euclidean e-neighborhood. Then NBM(A, B) < \,&, where the Lipschitz constants are Ay = 6,
A3 = 16, \,, = 3n? forn > 3 as in Proposition E.3.

Proof of Theorem E.5. Order all vertices of the given clouds A, B so that every point p; € A has the same index as its
e-perturbation ¢; € B.

In Definition D.4, for any ordered points p1,...,pn—1 € A, there are points ¢i,...,¢,—1 € B, which are e-
perturbations of p1,...,p,—1, respectively, such that PRM(PR(A;p1,...,pn—1), PR(B;q1,...,qn-1)) < Ane by
Proposition E.3. These PRMs are weights of edges in the index-preserving vertex matching £ of the complete bi-
partite graph I'(A;p1,...,pn—1;B;q1,...,¢n-1) for any pi,...,p,—1 and their e-perturbations ¢, ...,q,—1. Then
BMD(T'(4;p1, .- yPn-1; B;q1,.--,qn-1)) < Ane by Lemma E.4. Since this conclusion holds for all (choices of)
P1y.--,Pn—1 € C, we iteratively apply this argument for the bipartite graphs I'(A;p1,...,pk; B;q1,...,qx) for
1 < k < n — 2 and finally conclude that NBM(A, B) < A,e. O

The upper bounds are higher than the real ratios NBM/BD in practical examples, see Fig. ??.

Lemma E.6 (time of PR). For any cloud A C R™ of m unordered points, any point-based representation PR(A; p{n — 1})
in Definition B.2 needs O(n3 + mn) time.

Proof of Lemma E.6. We find the center O(A) and translate the cloud A of m points so that O(A) becomes the origin
0 € R™ in time O(m). We compute the n X n matrix SD(p1, ..., pn—1) of squared distances between pg = 0, p1, ..., Dn—1
in time O(n?). The vector p+ from Lemma B.1 needs the n x n determinant computable in time O(n?®). For any
point g € A\ {p1,...,pn—1}, the column of scalar products g - p1,...,q - p, needs O(n) time. The n x (m —n + 1)
matrix M (A; p{n — 1}) needs O(mn) time. The point-based representation PR(A; p1, ..., pn—1) in Definition B.2 needs
O(n® + mn) time. O

Lemma E.7 (time of PRM). For any clouds A, B C R™ of m unordered points with base sequences p{n— 1} and g{n—1},
respectively, the point-based representation Metric on the equivalences classes of PR(A; p{n — 1}) and PR(B; ¢{n — 1})
is found in time O(n? + m"-5 log" m) with space O(n* + mlog™ > m).
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Proof of Lemma E.7. The centers of masses O(A), O(B) and radii R(A), R(B) are computed in time O(m).

The max metric wp between the n x n matrices in (D.2) needs time O(n?) and space O(n?). For the bottleneck distance
wps (o), the n x (m — n + 1) matrices of unordered columns are interpreted as fixed (not under isometry) clouds of
(m — n + 1) points in R™. Then w; can be computed in time O(m!> log™ m) with space O(m log" 2 m) by Theorem 6.5
in (Efrat et al., 2001). O]

Theorems E.8, E.9 extend Theorems 5.2, 5.3 forn > 2.

Theorem E.8 (time of NDP). For any cloud A C R™ of m unordered points, the Nested Distributed Projection NDP(A)
in Definition B.8 is computable in time O(n?*m™) with space O(nm™).

Proof of Theorem E.8. The given cloud A has @(m™~!) base sequences of n — 1 ordered points p1,...,p,_1 € A.
Lemma E.6 computes each PR(A;p1,...,p,—1) in time O(n® + mn) with space O(n? + mn) needed to store O(n?)

pairwise distances between the points p1,...,p,—1 and O(mn) distances from p1, ..., p,—1 to other points of A. By
Definition B.8, the invariant NDP( A) consisting of O(m™ 1) point-based representations can be computed in time O(n?m™)
with space O(nm™) because n < m. O

Theorem E.9 (time of NBM). For any clouds A, B C R™ of m unordered points, the Nested Bottleneck Metric NBM(A, B)
in Definition D.4 can be computed in time O(m>"~2(n? + m'5 log" m)) with space O(m?*(n? + mlog" 2m)). If n = 2,
the time is O(m?(n? + m'®logm)).

Proof of Theorem E.9. In Definition D.4, for any fixed 1 < k& < m — 1 and ordered points p; ...,px_1 € A and
q1---,qk—1 € B, the bipartite graph I'(4; p1,...,pk—1;B;q1,. .., qx—1) has V = 2(m — k 4+ 1) = O(m) vertices and
E = (m —k+ 1)? = O(m?) edges, hence O(m?) space.

For k = n — 1, the weight w(e) of each edge e equals PRM, which needs time O(n? + m!5log"” m) and space
O(n? 4+ mlog™ ?m) by Lemma E.7. For all O(m?) edges of I'(A; p1, ..., pn_2;B;q1, . .., qn_2), the time is O(m?(n? +
m!'5log" m)), the space is O(m?(n® + mlog" ?m)). The bottleneck matching distance BMD for such a graph is
computed by (Hopcroft & Karp, 1973) in time O(E+/V) = O(m??), which is dominated by the above time preparing the
weights.

For all O(m™~2) choices of ordered points py, . .., p,—2 € Aand all O(m™2) choices of q1, . . ., g,—2 € B, the Bottleneck
Matching Distances for all graphs T'(A; p1, ..., Pn_2; B;q1, - . ., ¢n_2) are computed in time O(m?"~2(n? +m!-5 log" m))
with space O(m?(n? + mlog" > m)).

For any next iteration K = n — 2, ..., 1 in Definition D.4, the parameter k£ goes down by 1 and the exponent of m drops by
2 each time. The sum over Kk = n — 1,..., 1 is dominated by the time and space of the first iteration.

For n = 2, the bottleneck distance between fixed m-point clouds in R? can be computed in time O(m!® logm) without an
extra logarithm by Theorem 6.5 from (Efrat et al., 2001), which simplifies the time to O(m?(n? 4+ m!-3logm)). O

Theorem E.9 improves the time O(m3("’1) log m) of another metric on rigid classes of unordered point clouds from
Theorem 4.7(b) in (Widdowson & Kurlin, 2023).

Proof of Theorem 5.4. As usual, we shift both centers of mass O(A), O(B) to the origin 0 € R2. By Definition 4.4,
the distance d = NBM(A, B) is the Bottleneck Matching Distance BMD(I'(4, B)) computed in time O(m?>® log m) by
Theorem 5.3. Here I'(A, B) is the complete bipartite graph on m + m vertices represented by PR(A4; p) and PR(B; q) for
all points p € A and g € B.

By Definition 4.3, BMD(T'(A, B)) equals the maximum weight w(e) of an edge e in a vertex matching F of I'(A, B),
which can be considered a bijection between the m-point clouds A — B. For any pair e = (p, p’) of matched points, the
weight w(e) is PRM(PR(A;p), PR(B;p)).

The distance NBM(A, B) = 6 > w(e) is an upper bound for | R(A) — R(B)

, where R(A) = max |p| and R(B) = max |p/|.
pEA p'€B
Choose a point p € A with [p| = R(A) and the positive z-axis in R? through p’ € B matched with p via E. Let f be the
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rotation of R? around 0 such that f(p) is also in the positive z-axis. By Definition 4.2, f(p), p in the z-axis have lengths
satisfying |p| = |f(p)], | [p| — |P'| | < d and hence are d-close: |f(p) — p'| < d.

b}

It suffices to show that the image f(g) of any other point ¢ € A\ {p} is 3v/2d-close to a unique point ¢ € B that
we will find below. Since all distances and scalar products are preserved under f, we use the matrix M (f(A); f(p))

M(f(A); f(p)) @) fp) flq)- flph)

instead of M (A;p) in computing PRM. Each column of consists of , where

R(A) [R(A)| ~ [R(A)]
fp) = (Ipl, 0), f(p*) = (0, Ip]), R(A) = |p|.
The distance BD <M(f(Rf(11i)f () , ]\ng’)q )> < d guarantees that the above column is d-close to the column of %,

q/ . pu_

|R(B)|

involving p, p’, we have

for a point ¢’ € B determined by computing the bottleneck distance BD above. For the first scalar products

fla)-fp) o ¢

< ¢, where the first fraction is the z-coordinate of f(q).

R(A) R(B)
To get the z-coordinate q]p',fl of the point ¢ € B, where |p'| is d-close to R(A) = |p|, use the triangle inequality:
‘f(q) fp) _d P ‘f(Q) ) _d v
R(A) P’ 7] R(A) R(B)
A | B~ ]| = d+ s R) - ]| <

d+|R(B) =Pl <d +|R(B) —[pl | + | Ip| = IP|| <
2d+ | R(B) — |p|| = 2d + |R(B) — R(A)| < 3d.

Then the z-coordinates of f(q) € f(A) and ¢’ € B differ by at most 3d. Applying the same arguments to the scalar products
involving the orthogonal vectors p-, p’*, which have the same lengths as p, p’, respectively, conclude that the y-coordinates

of f(q), ¢’ also differ by at most 3d. So | f(q) — ¢'| < +/(3d)2 + (3d)? = 3v/2d, set B(q) = ¢'. O
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