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Abstract—For robots to become efficient helpers in the home,
they must learn to perform new mobile manipulation tasks simply
by watching humans perform them. Learning from a single video
demonstration from a human is challenging as the robot needs
to first extract from the demo what needs to be done and how,
translate the strategy from a third to a first-person perspective,
and then adapt it to be successful with its own morphology.
Furthermore, to mitigate the dependency on costly human
monitoring, this learning process should be performed in a safe
and autonomous manner. We present SAFEMIMIC, a framework
to learn new mobile manipulation skills safely and autonomously
from a single third-person human video. Given an initial human
video demonstration of a multi-step mobile manipulation task,
SAFEMIMIC first parses the video into segments, inferring both
the semantic changes caused and the motions the human executed
to achieve them and translating them to an egocentric reference.
Then, it adapts the behavior to the robot’s own morphology by
sampling candidate actions around the human ones, and verifying
them for safety before execution in a receding horizon fashion
using an ensemble of safety Q-functions trained in simulation.
When safe forward progression is not possible, SAFEMIMIC
backtracks to previous states and attempts a different sequence
of actions, adapting both the trajectory and the grasping modes
when required for its morphology. As a result, SAFEMIMIC yields
a strategy that succeeds in the demonstrated behavior and learns
task-specific actions that reduce exploration in future attempts.
Our experiments show that our method allows robots to safely
and efficiently learn multi-step mobile manipulation behaviors
from a single human demonstration, from different users, and
in different environments, with improvements over state-of-the-
art baselines across seven tasks. For more information and video
results, https://robin-lab.cs.utexas.edu/SafeMimic/

I. INTRODUCTION

For decades, we have dreamed to teach robots a new task
in the same way we would teach it to another human: by
demonstrating it in from of them. This would bypass the
need for costly teleoperated data collection [1, 2, 3], which is
significantly complex and time-consuming for multi-step tasks
and those combining navigation and manipulation into mobile
manipulation. Recent advances in human motion perception
and parsing [4, 5, 6, 7] have brought us closer to this dream:
they have enabled new approaches that extract information
from human videos and use it to “seed” an exploratory
process in which the robot adapts the strategy to its own
embodiment [8, 9, 10, 11]. However, these techniques are
restricted to short horizon skills and require tedious human
supervision, tasked with ensuring that the robot exploration
is safe, resetting the task constantly and detecting success.
What is necessary to enable robots to learn multi-step mobile
manipulation tasks from a single human demonstration safely
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Fig. 1. Robot imitating a single video of a human-demonstrated mobile
manipulation task safely and autonomously with SAFEMIMIC. From a video
of a multi-step mobile manipulation task (top), SAFEMIMIC extracts an initial
motion strategy and adapts it to its own embodiment by exploring new actions
in a safe manner. It combines an ensemble of safety Q-functions that predict
future unsafe motions (red arrows, motion will collide) and a backtracking
mechanism (orange arrows) that enables autonomous exploration until a
successful action sequence is found (green arrows).

and autonomously?
Learning multi-step tasks from a human video in a safe and

self-supervised manner presents multiple technical challenges.
First, it requires for the robot to understand both the high-level
semantics of the task and the associated low-level motion. This
implies extracting from the video both the human’s motion as
well as the semantic changes they caused in the environment.
This information needs to be translated from a third to a
first person view so that the robot can execute the motion
and monitor the semantic changes with its onboard sensors.
When executed, the initial translated motion may fail due to
morphological differences or noise in the video parsing; while
finding small adaptations have been shown feasible through
trial-and-error learning in the real world [8, 9, 10, 11], it is still
unclear how to explore for longer multi-step tasks that require
a larger adaptation, e.g., for different grasping strategies.
Finally, such a real-world exploration quickly becomes unsafe
due to potential damage to the robot or the environment,
requiring another agent (human) to monitor and reset the
scene for further exploration. Safe and autonomous exploration
calls for a new method that allows the robot to predict when
something may go wrong before it happens and backtrack to
previous states to keep trying new strategies.

https://robin-lab.cs.utexas.edu/SafeMimic/


In this work, we introduce SAFEMIMIC, a framework for
safely and autonomously learning mobile manipulation behav-
iors from a single third-person human video. SAFEMIMIC
overcomes all aforementioned challenges: first, it parses the
third-person demonstration combining a human motion tracker
and a vision-language model (VLM), obtaining an initial task
plan composed of sequences of distinct human motion and
easy-to-detect semantic changes executable from a first-person
perspective. Then, SAFEMIMIC adapts the initial plan by
refining each segment using a safe exploration procedure in the
real world. At the core of our safe exploration sits an ensemble
of safety Q-functions pretrained in simulation that enable
SAFEMIMIC to attempt risk-free actions both for continuous
motion as well as discrete grasps, overcoming large differences
in morphology and manipulation capabilities. General safety
Q-functions have the potential to generalize across tasks as
they capture generic risks common to manipulation –such
as collisions, excessive forces, or grasp losses– and, as we
observe empirically, they require less precise sim-to-real align-
ment than direct policy transfer. When SAFEMIMIC detects
no safe actions to progress in the exploration, it backtracks
to a previous state and tries a different strategy, including
changing the grasping mode if necessary. Finally, when a safe
and successful adaptation is found, SAFEMIMIC associates it
to the geometry of the task so that exploration is reduced in
future attempts.

In summary, SAFEMIMIC introduces several novel contri-
butions:
• A comprehensive framework to parse a single multi-step

mobile manipulation video demonstration from a human
and adapt it to the robot’s capabilities in a safe and self-
supervised manner.

• A mechanism to parse human videos into sequences of
motions with unique and easy-to-perceive semantic effects
combining human pose tracking and VLM detections.

• A safe exploration in the real world with a predictive control
strategy informed by an ensemble of safety Q-functions
pretrained in simulation.

• A self-supervised mechanism to detect success and to back-
track to previous states to try new strategies, including
different grasp modes.

• A mechanism to learn from previous experiences to reduce
the amount of exploration necessary in future attempts.
We demonstrate the performance of SAFEMIMIC in seven

challenging, multi-step mobile manipulation tasks in different
environments with different human teachers, and observe
experimentally that our framework enables the robot to suc-
cessfully acquire the desired behaviors safely and more effi-
ciently than direct sim-to-real imitation learning approaches,
previous human-to-robot methods, and variants without safety
Q-functions.

II. RELATED WORK

SAFEMIMIC is a novel framework for safely and au-
tonomously learning multi-step mobile manipulation tasks
from human demonstrations. In this section, we contrast

SAFEMIMIC to prior efforts on learning from human video
as well as safe imitation and reinforcement learning.

Learning from Human Video directly has received in-
creasing attention as strategy to learn manipulation skills.
Some works have explored leveraging large collections of
human activity data [12, 13, 14] in order to learn cost
functions from video and language data [15, 16, 17, 18]. Other
works have explored human video modeling as a pretrain-
ing objective [19, 20]. Most closely related to SAFEMIMIC,
several works imitate human actions directly by tracking
the human pose and extracting actions using pose tracking
before finetuning with gradient-free RL [8, 21, 9, 10, 22, 11].
These works demonstrate impressive behaviors, yet typically
refine the initial policy obtained from the human in a naive
exploratory fashion. This has the potential to damage the robot
or environment, as actions are not checked for collision or
other potentially dangerous failures. Other works rely on mor-
phological similarity between humans and humanoid robots
to retarget motions directly [23, 24, 25, 26]. In contrast, we
focus on imitating and refining the demonstration safely when
the robot and human embodiments do not necessarily match.
Moreover, most existing works on learning from human video
focus on short-horizon tasks (e.g., opening a drawer) rather
than multi-step mobile manipulation behaviors.

Autonomous Real-World Learning prior methods have
examined learning to automatically reset the environment in
order to enable learning without human supervision [27, 28,
29, 30, 31, 32]. These works address the requirement of
autonomy, but generally sidestep the question of safety —
a critical challenge when learning mobile manipulation in the
real world. Further, these methods require extensive trial-and-
error learning not suitable for efficiently learning from a single
human video demonstration. SAFEMIMIC instead combines
both autonomous and safe exploration when learning from
human video and employs a simple but effective backtracking
strategy when failures are predicted for all sampled actions in
a given state.

Safe Imitation and Reinforcement Learning has received
significant study in order to reduce risks in the real world.
Design-time approaches [33, 34, 35, 36, 37, 38] operate during
data collection or model training in order to ensure robustness
to perturbation during execution. When learning from human
video, design-time approaches are infeasible, as they are
typically targeted for teleoperation when disturbances can be
injected. Deployment-time approaches [39, 40, 41, 42, 43]
filter actions and defer to a backup or recovery policy when
constraints are violated. Deployment-time methods usually
assume access to constraints in closed form, an unrealistic
requirement in novel environments and tasks. SAFEMIMIC
employs learned safety Q-functions that are pretrained from
simulation data, allowing it to learn from human video demon-
strations safely.

Safe RL methods [44, 45, 46, 47] provide a framework
for safe policy learning, enabling the discover of complex
behaviors from scratch while avoiding failures in a target
task. These approaches typically jointly optimize task and
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Fig. 2. Overview of SAFEMIMIC. From an RGB-D video of a human performing a multi-step mobile manipulation task acquired by the robot, SAFEMIMIC
uses a combination of human pose tracking models [4, 5] and VLM prompting to perform coarse-to-fine segmentation obtaining semantic changes –“what?”–
and human action trajectories –“how?”–, and translating them to the robot’s point of view (left, Sec. III-A). SAFEMIMIC then refines and adapts each task
segment safely by sampling and verifying actions before executing them thanks to an ensemble of safety Q-functions pretrained in simulation, Qsafe (top right,
Sec. III-B). If forward progress is not possible, SAFEMIMIC autonomously backtracks and tries different actions (orange arrows). When required to overcome
large differences in morphology, SAFEMIMIC explores alternative grasp modes (second row of samples), adapting the grasp to enable successful execution.
Successful attempts are detected by a VLM that verifies when the parsed semantic change of the segment is achieved. Successes are stored and used to train
a policy memory module with geometric augmentations (bottom right, Sec. III-C) that predicts actions (grasps or action trajectories) in subsequent attempts,
given a pointcloud and language task description, in order to reduce the need for exploration.

safety Q-functions during a pre-training phase, and do not
address the case of imitation learning or learning from human
video. In contrast, we employ task-agnostic data collection
in simulation, and learn directly from human teachers in the
real world. Constrained RL methods [48, 49, 50, 51] similarly
allow for policy learning while obeying constraints, though
typically require closed-form constraints available at runtime.
In the real-world, such constraints are difficult to acquire
in novel environments, much less in the presence of human
teachers.

Failure Prediction ahead of execution has received consid-
erable study in robotics, often with the goal of providing safety
certificates on policies for deployment [52, 53, 54, 55]. Many
works approach failure prediction through the lens of reacha-
bility analysis [56, 57] or design control barrier functions [58].
Recent work has sought to learn failure predictors with PAC
guarantees [59] or conformal prediction [60]. However, these
approaches assume access to a black box policy or dynamics
model of the environment, both which are unknown in the
case of learning a new task from human video in a novel
environment. Similarly, motion planning methods [61, 62]
enable collision-free motion generation for a given environ-
ment geometry but fail to capture other possible failure modes
involving contact, such as force-torque limit violations or grasp
loss. SAFEMIMIC provides a unified framework for failure
prediction when learning mobile manipulation behaviors from
human videos.

III. SAFEMIMIC FRAMEWORK

Our goal is to enable a robot to safely and autonomously
learn to adapt and imitate a multi-step mobile manipulation
task demonstrated in a single third-person human video. Fig-
ure 2 provides an overview of our framework, SAFEMIMIC.
In this section, we describe each of its components.

A. Factorizing, Parsing and Translating Human Videos

The first step to imitate a human video demonstration is
to extract information from it: what did the human do, and
how did they do it? In SAFEMIMIC, we identify the what by
detecting the semantic changes caused by the human in the
environment, and the how by tracking the motion of the human
that caused those changes. However, as we aim at imitating
complex multi-step mobile manipulation tasks, extracting mul-
tiple semantic changes and intricate human motion for the
entire video and learning to adapt it to the robot all at once may
be unfeasible. SAFEMIMIC factorizes the original video into
distinct segments where only a single semantic change hap-
pens. This naturally leads to segments with separate navigation
and manipulation to achieve single semantic changes such as
navigate_to, reach_for_and_grasp, open, . . . (see
full list in Appendix B) that can be adapted and optimized
sequentially in a self-supervised manner by the robot.

To factorize and parse the multi-step video into single
semantic change segments, SAFEMIMIC combines a body
and hand visual tracker [4, 5], a contact detector [6], and a
VLM [63]. An initial coarse segmentation is obtained based
on the tracked human motion by detecting if the human is



navigating or manipulating by thresholding the amount of
inter-frame body translation. Then, SAFEMIMIC annotates
each coarse segment with its semantic change and possibly
factories it further. Navigation segments are assumed to be at
the lowest level of granularity; SAFEMIMIC just needs to ex-
tract the semantic goal, the object/location that the navigation
segment tries to reach, obtained using a VLM. Manipulation
segments are further factorized by SAFEMIMIC as necessary
by combining information from a VLM and a contact detector
that separates manipulation phases without contact from the
ones with contact. This leads to a natural factorization into
segments that begin with a grasping action or with a change
in the contact interface, e.g., when a wiping segment begins.
Each segment is then annotated with its semantic goal, again
obtained with a VLM query.

The factorization and parsing process mentioned above
leads to a sequence of segments with a individual semantic
goals and motions of the body and/or arm of the human
(Fig. 2, left). While the semantic change is invariant to the
point of view, the motion is viewed from a third-person
perspective and needs to be translated into the robot’s reference
frame to be executed and monitored with the onboard sensors.
Similarly, the human grasps may need to be translated to the
robot morphology. To that end, SAFEMIMIC assumes that in
navigation segments, the robot starts from a location close
enough to the human initial location (no calibration needed!)
and translates the sequence of human navigation actions to
relative changes in base pose between frames. Similarly, for
manipulation segments, SAFEMIMIC first transforms the hand
pose to be relative to the human body and then computes
the relative motion of the hand between consecutive frames.
To translate grasps, SAFEMIMIC will detect grasp candidates
available to the robot [64] and match the one that is closest
to the grasp demonstrated by the human. However, other
grasp candidates will be explored as a result of our safe and
autonomous human-to-robot adaptation, as we explain in the
next section.

B. Safe and Autonomous Real-World Adaptation

The factorizing, parsing, and translating process described
above leads to an initial policy that the robot could directly
execute. However, this initial policy will fail due to differ-
ences in embodiment and tracking inaccuracies (see Exp. IV).
SAFEMIMIC implements an exploration and adaptation pro-
cedure in the real world to find the actions (close to the
ones demonstrated by the human) that will lead to the same
sequence of semantic changes and thus to success on the
multi-step mobile manipulation task. To that end, SAFEMIMIC
explores actions for each of the segments in turn, until the
semantic goal of the segment is achieved in a process summa-
rized in pseudocode in Alg. 1. In contrast to previous human-
to-robot approaches, SAFEMIMIC will perform this real-world
exploration safely and autonomously thanks to a combination
of safety Q-functions and backtracking capabilities (see Fig. 2,
right).

Safe Exploration with Safety Q-functions: We assume that,

at each segment, the robot’s objective is to achieve the seg-
ment’s semantic goal while avoiding unsafe states. We adopt
the standard MDP formalism and represent each segment by
the tuple M = (S,A, R, T, γ), where S is the state space, A
is the action space, R is a sparse reward based on task success
(e.g., semantic goal achievement), T is the transition function,
and γ is a discount factor. Using the Safe RL framework
proposed by Srinivasan et al. [45], we denote the set of
unsafe states Sunsafe = s ∈ S | I(s) = 1, where I(s) is an
indicator boolean function that triggers for any unsafe states.
This function can then be considered a composition of single
failure mode indicators, I(s) = max

i
Ii(s), where {Ii} a set

of functions for distinct failure modes, e.g., exerting too much
force, colliding with the environment, reaching joint limits,
. . . (for the complete list of unsafe state, see Appendix A).
Given this function, the robot’s objective is to find a policy
that maps states to the actions that maximize the task reward
while remaining safe, given formally by:

max
π

T∑
t=0

E(st,at)∼ρπ
[R (st, at)] s.t. Est∼ρπ [I (st)] = 0,

where ρπ denotes the state-action distribution visited by the
policy π.

Thus, to satisfy this objective, the robot requires a predictive
model of the actions that will result in failure. To achieve this,
we define a Safety Q-function that predicts the probability that
an action at taken in state st will result in a failure:

Qsafe (st, at) = I (st) + (1− I (st))
[
Est′∼T (·|st,at)I (st′)

]
As with the unsafe state indicator function, we can factor-
ize the Safety Q-function into an ensemble of Safety Q-
functions, {Qsafe,i}Ki=0, each one trained for each type of
failure, Qsafe (st, at) = max

i
Qsafe,i (st, at).

Training these Safety Q-functions in the real world would
be dangerous, as the robot needs to experience and learn what
actions may lead to unsafe states and when. Therefore, we
pretrain an ensemble of Safety Q-functions in simulation, one
for each type of unsafe transition. The ensemble of Safety Q-
functions is pretrained in domain-randomized environments in
the simulator OmniGibson [65] in different scenarios, includ-
ing articulated object interaction, rigid-body pick-and-place,
and base navigation by sampling random and noise-corrupted
task-related actions as generated by a motion planner. The
state representation consists of simulated pointclouds and
robot proprioceptive information (for details of the network
architecture, see Appendix A). Pointclouds provide a smaller
sim2real gap than RGB images, allowing us to train our
ensemble of Safety Q-functions in simulation and apply them
zero-shot to safely explore in the real world.

During the safe adaptation and exploration procedure,
SAFEMIMIC samples candidate actions around the human
demonstrated motion. For the grasping action, SAFEMIMIC
explores among a discrete set of options (3 grasps in our
case) provided by a robot grasp generator [64], first priori-
tizing the grasp closest to the human demonstrated one. For



Fig. 3. Multi-Step Mobile Manipulation Evaluation Tasks. SAFEMIMIC is evaluated on seven complex multi-step tasks combining navigation and
manipulation. From left to right: boxing an item, shelving an item, store_in_drawer, erase_whiteboard, refrigerating an item,
fill_pot, load_oven. The tasks involve risky contact-rich phases, grasping steps and the manipulation of constrained mechanisms. SAFEMIMIC is
able to adapt actions obtained from one single human demonstration safely and autonomously.

continuous motion, SAFEMIMIC explores action sequences
from a Gaussian distribution with the mean given by the
parsed human motion and variance adapted to encourage
exploration. Sampled actions with the lowest Qsafe are selected
and executed at each step, after which SAFEMIMIC evaluates
for segment completion based on the parsed semantic goal
of the segment and a VLM. If the segment has not been
completed, the process repeats with a new set of actions around
the human demonstrated one (see pseudocode in Alg. 1).

Autonomous Exploration with Backtracking Mechanisms:
Thanks to the previous process, SAFEMIMIC generates a safe
exploratory behavior around the human-demonstrated motion
that leads to adaptation. However, human monitoring would
still be necessary to reset the robot and the environment and
attempt new sequences of actions. We aim at reducing this
dependency in SAFEMIMIC. To that end, we implement a
simple but effective backtracking mechanism. During safe ex-
ploration, if no sampled actions are safe from the current state
(i.e., Qsafe(s, ai) > ϵ for all sampled ai), the agent backtracks
one step in the exploration: it executes the inverse to the last
action taken, i.e., performs the opposite motion. When inter-
acting with objects (e.g., opening a door or drawer, moving
a grasped object), this backtracking mechanism will bring the
environment to the previous state, allowing SAFEMIMIC to
explore a different branch of the state-action space, verifying
and executing actions until either the segment is complete or
the maximum number of attempts is reached.

The safe and autonomous exploration from above allows
the robot to find minor adaptations to the parsed human
trajectories for each segment. However, often, adaptation needs
to be larger than a small change in motion, especially when
it comes to adapting grasping strategies from a human to
a robot. When, after several iterations (50 actions in our
case) of the single-step backtracking mechanism, SAFEMIMIC
exhausts all safe motion alternatives, it backtracks until it
reaches a grasping segment, and selects a different grasp mode
to explore. We observe that this exploration of grasping modes
combined with trajectory-level probing is critical to adapt
multi-step human strategies into successful ones for the robot
(see Fig. 5 for examples of grasping mode exploration).

C. Learning from Previous Successful Exploration

Through our safe and autonomous exploratory process,
SAFEMIMIC adapts the motion and sequence of semantic
changes initially parsed from the human video. However,
successful strategies need to be learned in order to prevent re-

peated exploration for the same task. To that end, SAFEMIMIC
integrates a policy memory mechanism that biases exploration
based on previous successes. The policy memory biases the
exploration (of grasp modes and of motion actions) from the
human demonstrated to one that demonstrates success for the
robot. To that end, we then train an action prediction policy
network that maps point clouds, P and language description
of the task, l to actions, e.g., the grasping mode, g ∈ SE(3),
and sequence of post-grasp actions, (a0, . . . , aT ), that led
to success. The architecture for the action prediction policy
network is composed by a PointNet [66] encoder for the visual
information, and a SentenceTransformer [67] for the task
description, combined with an MLP head, and trained with
geometric augmentations (rotations and translations) of the
data from successful trials. This model associates successful
strategies to geometric and language information about the
task, and allows SAFEMIMIC to predict them from different
viewing angles, a critical capability to leverage successful
exploration for new instances of the same multi-step mobile
manipulation tasks (see Fig. 7). Furthermore, the model also
helps reduce future explorations for the same task (see Exp.
3, Fig. 7).

IV. EXPERIMENTAL EVALUATION

We evaluate SAFEMIMIC in 7 challenging multi-step mobile
manipulation tasks demonstrated by humans. The tasks all
consist of multiple stages and require navigation, rigid-body
pick-and-place, articulated object interaction, and contact-rich
control, all while avoiding common failure modes, including
collisions, joint limit violations, force-torque limits, and grasp
loss. We use these tasks to evaluate SAFEMIMIC’s task perfor-
mance, safety, generalization, and robustness to different users
and environments. In the following, we briefly explain each
task.
• boxing an item: Pick the object from the table and place

it in a box, requiring a top-down grasp by the robot to avoid
collision.

• shelving an item: Pick an object from the table and
store it on a shelf above the sink, or in a bookshelf, as
demonstrated. This task requires differentiating the human’s
semantic goal, and avoiding collisions and adapting grasps
for successful placement.

• store_in_drawer: Open the drawer, pick the object
from the table, store the object in the drawer, and close the
drawer. This task consists of several segments, including
an articulated object interaction that typically necessitates
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Fig. 4. Accumulated Success on Multi-Step Tasks. Accumulated success rate at each stage of each of the seven evaluated multi-step mobile manipulation
tasks, indicating the percentage of the five trials each method completed up to and including that segment. We compare SAFEMIMIC’s task performance to
five baselines: direct execution without safety Q-functions (SQFs), which requires human supervision, direct execution with SQFs, exploration without SQF,
Imitation Learning (IL) with all safe actions in simulation and IL only with the successful episodes. Note that the IL baselines were evaluated only on “Place”,
“Open”, and “Close” segments and were provided successful solutions for navigation and pick segments. Note as well that some lines overlap at the same
rate. Across all tasks, SAFEMIMIC significantly outperforms all baselines and achieves up to 100% success in exploratory adaptation, indicating a superior
ability to safely and autonomously refine the demonstrated behaviors.

adapting human-demonstrated grasps to avoid joint limit
violations.

• erase_whiteboard: Grasp an eraser and erase the
writings on a whiteboard. This task requires contact-rich
control, demanding that the robot avoid force-torque limits
in particular.

• refrigerating an item: Open the refrigerator, pick
the object from the table, store it in the refrigerator. This
task requires adapting the grasp poses and demonstrated
trajectories to open the large, heavy refrigerator door and
place the object in a constrained space.

• fill_pot: Pick a saucepan, place it in the sink, and toggle
on the faucet. This task necessitates adapting the commonly
used human grasp to one that the robot can use to lower the
pot into the sink.

• load_oven: Open the oven, pick the object, place it in
the oven, and close the oven. This task consists of several
segments, and requires a specific side-grasp to successfully
place the food in the small oven.

In all the experiments, we use a PAL-Robotics Tiago++
mobile manipulator. We control one arm’s end-effector pose
using IK control [68] and the base using relative position and
yaw commands. For perception, we use an Orbbec Astra S
RGB-D camera mounted on Tiago++’s head both to observe
humans and as input to the safety Q-functions, and an ATI
mini45 force-torque sensor mounted on the wrist to detect and
predict excessive force-torque violations. While SAFEMIMIC
is generic and can include many possible failure modes, we
consider the following in this work: arm collisions, base
collisions, joint limit violations, force-torque limits, grasp loss,
and dropping objects.

Throughout our experiments, we compare SAFEMIMIC
against the following baselines: Direct Execution
(w/o SQF) directly executes the actions obtained from the

video parsing module and does not verify those actions us-
ing the Safety Q-Functions (SQFs). Direct Execution
(with SQF) directly executes the human actions as well
but verifies the actions using SQFs, avoiding unsafe robot
actions. Exploration (w/o SQF) performs exploration
starting from the human tracking actions but does not use
SQFs. This baseline is SAFEMIMIC without the use of SQFs.
We also evaluate if the data generated to train our safety Q-
functions would suffice for training task policies: we include
Imitation Learning (IL) baselines based on a BC-
RNN Behavior Cloning policy with a PointNet encoder trained
on two types of datasets: IL (all safe actions) in
which the policy is trained on all simulation data where the
state-action pairs did not lead to safety criteria being violated,
and IL (successful episodes) which is trained only
on the subset of successful task executions in the simulator.
Since the data collection for navigation is task-agnostic (ran-
dom base commands), we can not train a task-oriented IL
policy on that data. Furthermore, since SafeMimic performs
picking action based on a grasp generator, we also don’t train
an IL policy for picking. Instead, we use the successful naviga-
tion and picking segments from the SAFEMIMIC trials for this
baseline. Hence, navigation to an object and picking always
succeeds and we focus the comparison on the manipulation
segments of ”Place”, “Open”, and “Close” for this baseline.
Note that we trained separate IL policies for each segment.

Experiments and Results

In our experiments, we aim to answer four questions:
Q1) Does SAFEMIMIC enable a robot to successfully
complete a multi-step mobile manipulation task from a
third-person demonstration? To evaluate SAFEMIMIC’s task
performance, we measure its ability to successfully imitate
and adapt demonstrations of the aforementioned tasks. For
each task, SAFEMIMIC and the baselines begin with the initial



Fig. 5. Grasping mode adaptation. Two examples (top and bottom
rows) of SAFEMIMIC’s grasping mode adaptation. Left column: human
demonstrated grasp. Middle column: robot failing when attempting the task
by matching the human grasp. Right column: robot succeeding in the task
through SAFEMIMIC’s grasp adaptation. In 6 out of 7 tasks, SAFEMIMIC’s
grasp adaptation is critical to overcome human-robot embodiment differences
and successfully imitate the demonstration.

trajectory obtained by tracking the human pose, broken into
semantic segments identified by the parsing module. Each
task is attempted five times, and success rates are reported
at each stage of each task. The success rate for each seg-
ment (e.g., “Navigated to object,” “Picked object”) reflects
the proportion of trials successfully completed up to and
including that segment. SAFEMIMIC’s real-world fine-tuning
takes on average five minutes per navigation segment and 15
minutes per manipulation segment, and success is confirmed
by prompting a VLM with the observation and semantic goal.

Fig. 4 depicts the results of our analysis. We observe
that SAFEMIMIC achieves a minimum of 40% final suc-
cess rate over the seven tasks, significantly outperforming
all baselines. The Direct Execution baseline achieves
0% final success rate on all the seven tasks, demonstrat-
ing the need for exploration in order to effectively adapt
the human demonstrations to the robot’s morphology. Al-
though Direct Execution (w/o SQF) and Direct
Execution (with SQF) achieve similar success rates,
Direct Execution (w/o SQF) required 82% more hu-
man interventions due to potentially unsafe actions as com-
pared to Direct Execution (with SQF), showing the
importance of our learned SQFs. Interestingly, we observe that
Direct Execution (w/o SQF) achieves higher suc-
cess than Direct Execution (with SQF) in certain
segments due to false positives of the SQFs. While the
imitation-learning baselines demonstrate some successes, they
fail to reliably perform the tasks, indicating that while the
small amount of noisy data we generate in simulation is
sufficient to train SAFEMIMIC’s SQFs, training robust imi-
tation learning policies has a higher data quantity and quality
demands.

Grasp mode adaptation proved to be essential to

Fig. 6. Safe exploration with Safety Q-function predictions. Examples of
predictions of the Safety Q-function (SQF) for two tasks: the opening drawer
segment in store_in_drawer (top-row) and placing a bottle in the fridge
segment in refrigerating (bottom-row). Red arrows indicate predicted
unsafe actions (Qsafe > ϵ) and green arrows show predicted safe actions. We
observe that the simulation-trained SQFs reliably predict unsafe actions such
as trying to open the drawer by moving in the wrong direction or trying to
place an object in the fridge by colliding with the orange bottle. This enables
SAFEMIMIC to safely explore and adapt demonstrations in the real world.

SAFEMIMIC’s success. For all but the erase_whiteboard
task, SAFEMIMIC adapted the grasp mode for one or more
segments in order to succeed. Fig. 5 depicts two such exam-
ples: for the fill_pot task, the robot is unable to place
the pot in the sink with the human-like grasp, as the arm is
predicted to collide with the edges of the sink as it attempts
to place the pot. Hence, the robot backtracks to the start of
the pick segment, samples and explores a top-down grasp,
and successfully places the pot in the sink. Similarly, for the
store_in_drawer task, the human-like grasp leads to joint
limits being reached and so the robot explores and adapts its
grasp to successfully open the drawer.

Q2) How effectively does SAFEMIMIC reduce safety-
critical failures? To assess SAFEMIMIC’s effectiveness for
safe exploration, we compare the number of unsafe actions that
happen during exploration with SAFEMIMIC to the baselines.
A human monitors the execution of SAFEMIMIC and the
baselines and flags unsafe actions. For each method, we
measure the percentage of unsafe actions (unsafe action
rate) as the ratio of all unsafe actions to the total number of
actions the robot executed (over all trials for the seven tasks).

As expected, we observe that methods that do not use
SQFs face the highest unsafe action rates. The Direct
Execution (without safety Q-functions) gen-
erates 13.4% unsafe actions and incurs safety violations in
nearly every task, commonly colliding during both navigation
and manipulation segments or reaching force limits mea-
sured by the FT sensor. Exploration alone (Exploration
without SQF) similarly results in 14.2% unsafe actions,
demonstrating the critical need for safety during exploration



absent in current frameworks for learning from human video.
Both the IL baselines, IL (all safe actions) and IL
(successful episodes) observe slightly lower unsafe
action rates at 10.8% and 9.5% respectively, but still not low
enough for safe deployment and adaptation. The inclusion
of the SQFs in (Direct Execution with SQFs) and
SAFEMIMIC results in an unsafe action rate of 0.5 % and
0.6%, reducing the number of safety violations by 13.6%,
demonstrating the efficacy of the SQFs. Fig. 6 includes
examples of predictions of safe and unsafe action samples
during store_in_drawer and refrigerate_item. It
can be observed that actions that do not align with the drawer’s
kinematic constraints or that would lead to a collision during
placing are correctly predicted to be unsafe by SAFEMIMIC’s
SQFs.

Q3) Can SAFEMIMIC help robots learn task-specific
actions to reduce exploration in future attempts?
SAFEMIMIC enables safe and autonomous learning of
a demonstrated task, and the policy memory module
(see Sec. III.D, Fig. 2, bottom right) allows the agent
to associate solutions to the task for future attempts.
To evaluate this capability, we applied SAFEMIMIC on
several tasks and trained a policy memory module with
successes. The memory module was trained to predict
grasps for the pick segment of the tasks boxing,
shelving, refrigerate_item, opening segments of
tasks refrigerate_item, store_in_drawer and
trained to predict the full action trajectory for the drawer
opening segment of store_in_drawer. During evaluation,
the objects to be picked and their poses were randomized,
and due to the inherent stochasticity in the exploration
phase of the navigation segments, the viewpoints are also
variable during the evaluation (a common problem in mobile
manipulation tasks). Three evaluation trials were performed
for each task after initial refinement attempts during the
first experiment. Fig. 2 (bottom-right) depicts two different
viewpoints of the drawer (and the corresponding action
prediction) that the robot sees after completing the navigate
to drawer segment. For the segments that are not learned,
we reuse the actions obtained from the human video parsing
module. Fig. 7 depicts the results of our experiments. For the
placing tasks, learning to predict successful grasping modes
from previous adaptations dramatically reduces the number
of waypoints explored during subsequent executions. In the
case of store_in_drawer, the policy memory module
enables the robot to manipulate the drawer successfully in
future attempts, further reducing action exploration.

Q4) Is SAFEMIMIC sensitive to demonstrations provided
by different humans or in different environments? To
further validate the robustness of SAFEMIMIC, we conducted
experiments with different users and in different environments.
Three users provided demonstrations for the shelving task
in the main environment used for previous experiments to
assess whether SAFEMIMIC performed similarly across human
demonstrators. Each human was free to perform the task as
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Fig. 7. Exploration Reduction with Policy Memory. Number of actions
explored by SAFEMIMIC with (right) and without policy memory (left).
Successful attempts from an initial exploration are recorded and use to train
the policy memory. Object poses are varied relative to the robot before
re-evaluating SAFEMIMIC with the learned policy memory on several task
segments. The number of exploratory actions significantly reduces in all tasks,
up to 67%, demonstrating that learning from prior successes is critical to
increase efficiency in mobile manipulation tasks.

they naturally would, resulting in potentially different grasping
strategies and trajectories, as depicted in Fig. 9. For all three
demonstrators, SAFEMIMIC was able to successfully recover,
parse and translate the demonstrated behavior. Interestingly,
the robot had to adapt the grasping strategy for each of the
three provided demonstrations, as all humans preferred a top-
down grasp but such a grasp did not allow the robot to place
the object in the shelf. We also tested one human demonstrator
across three environments on the shelving task to ensure
SAFEMIMIC is robust to different objects and room layouts.
We performed 3 trials with the robot. SAFEMIMIC achieved
100%, 100% and 66% success in each of the three environ-
ments respectively, demonstrating the method’s generalization
capabilities.

V. LIMITATIONS AND FUTURE WORK

SAFEMIMIC enables safe, autonomous learning of multi-
step mobile manipulation behaviors from third-person human
video demonstrations. However, there are some limitations
of the method that offer exciting avenues for future work.
First, the simulated training data for the safety Q-functions
must cover similar scenarios to those encountered during real-
world exploration. Despite not requiring task-specific demon-
strations or task successes in simulation, this does require
some engineering of simulated tasks. This limitation could
be alleviated by large-scale pretraining in simulation with
a multitude of tasks and assets. Similarly, we study only a
limited number of failure modes that we enumerate a priori.
Scaling to other types of safety violations or task failures
presents an opportunity for future work. Another limitation
is that SAFEMIMIC relies on initial correspondence in pose
between the human and robot such that actions represented
as relative motions yield similar trajectories. We obtain this
correspondence by estimating the initial human pose in the
map frame while the robot observes, and navigating the robot
there at the start of the episode. SAFEMIMIC also relies on
grasp pose generation methods in order to obtain feasible
grasps for the robot to explore — accurately inferring a
suitable robot grasp from the demonstrated human grasp is



an open challenge. A third limitation lies in the backtracking
strategy: backtracking is able to reset some aspects of the
environment, but is unable to recover from irreversible events
like dropping objects. Integrating autonomous resetting frame-
works [27, 28, 31] is a natural opportunity for future work.
Finally, an exciting avenue for future work is improving the
safety Q-functions given real-world data. While SAFEMIMIC’s
safety Q-functions demonstrate high accuracy and a low false
negative rate, learning from occasional observed failures in
the real-world could increase the robustness in future learning
attempts.

VI. CONCLUSION

In this work, we present SAFEMIMIC, a framework for safe,
autonomous human-to-robot imitation for mobile manipulation
tasks. SAFEMIMIC effectively parses human demonstrations
through a combination of pose tracking and VLM prompting,
inferring both semantic segments and corresponding motions.
The framework then safely refines the demonstrated behavior
by sampling and verifying actions using safety Q-functions
pre-trained in simulation, backtracking and exploring new
actions and grasp modes when necessary. The result is a policy
that adapts the demonstrated behavior to the robot’s morphol-
ogy, and can be associated with the task to reduce exploration
in future attempts. We validate SAFEMIMIC on seven multi-
step mobile manipulation tasks and find that it outperforms
representative baselines in both task success and safety met-
rics, and is robust across different environments and human
teachers. Through our experiments we show that safety Q-
functions learned in simulation outperform IL policies trained
in simulation due to the higher data quality and quantity
demands of the latter. Taken together, our work is a promising
step toward robots that can robustly learn new behaviors from
human teachers in their own home environments.
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APPENDIX

A. Model Details

The architecture of the SQFs is a PointNet++ [66] encoder
for processing point cloud input, 4-layer MLP encoder for the
action and 4-layer MLP encoder for the proprioception (end-
effector pose and the FT value). We categorize the continuous
FT value into 6 bins for better sim-to-real transfer. Features
from all the encoders are concatenated and input to an MLP
head. The action space is cartesian delta positions of the end-
effector with the delta actions in the range [0.0, 0.15].

We define several possible task failures: arm collision, base
collision, joint limit violation, force/torque threshold violation,
grasp loss during articulated object manipulation, and object
dropping.

During data collection, trajectories are recorded along with
the safety label for each state-action pair encountered (see
Fig. 10). The Q-functions are optimized using a cross-entropy
loss.

TABLE I
HYPERPARAMETERS FOR SAFE EXPLORATION, SQF TRAINING,

BASELINES, AND VIDEO PARSING.

Hyperparameter Q-function

SQF threshold ϵ 0.7
Exploration Standard Deviation σ 0.05
Grasp Mode Clustering? K-Mediods
Batch Size 16
Optimizer Adam)
Learning Rate 1e-3
SQF Dataset Size 9000
IL (all safe actions) Dataset Size 23471
IL (successful episodes) Dataset Size 4305
Nav/Stationary Pos Threshold 0.07
Nav/Stationary Ori Threshold 0.2

B. Human Video Parsing

SAFEMIMIC’s video parsing module extracts semantic task
segments, including the semantic goal of each segment and
the human actions to be adapted to the robot. The process
is depicted in Fig. 8. First, SAFEMIMIC extracts human
motion from the RGB-D video using the combination of
body Pavlakos et al. [5] and hand Ye et al. [4] tracking. Then,
SAFEMIMIC performs a coarse segmentation into navigation
and stationary manipulation segments by thresholding the
human hip motion.

The stationary segments are refined into segments with hand
contact and without hand contact using a coarse-to-fine second
segmentation. First, SAFEMIMIC queries a VLM at a low
frame rate (3 fps) to determine whether the human hand is
in contact with an object. We use OpenAI’s GPT-4o [63]
for segmentation and later labeling. To obtain a more precise
initial contact frame estimation, we refine the segmentation
using a visual contact detector Shan et al. [6] around the
frames where the VLM detects a change in contact state.

For all segments obtained (navigation and stationary ma-
nipulation, with and without contact), SAFEMIMIC identifies
and labels the semantic goal that will be used to enable

Algorithm 1 SafeMimic Execution Pseudocode
Require: Segment videos V1:N , video parser fparse, standard

deviation σ, num action samples m, safety Q-functions
Q1:K

safe , policy memory πmem

1: for segment i = 1...N do
2: τhuman, segment type, fsuccess ← fparse(Vi)
3: if segment type is grasping then
4: G ← sample_grasp_modes()
5: if πmem exists for this segment then
6: grobot ← πmem(st)
7: else
8: ghuman ← τhuman [−1]
9: grobot ← closest(G, ghuman)

10: end if
11: execute(grobot)
12: G.pop(grobot)
13: else ▷ Segment is nav or manipulation
14: if πmem exists for this segment then
15: Sample τ1:m ∼ πmem(st)
16: else
17: Sample τ1:m ∼ N (τhuman, σ)
18: end if
19: segment success ← False
20: while True do
21: segment success ← safe_explore(τ1:m)
22: if segment success then
23: break ▷ Go to next segment
24: end if
25: if G is not empty then
26: grobot ∼ G ▷ Explore new grasp
27: execute(grobot)
28: G.pop(grobot)
29: end if
30: end while
31: end if
32: if not segment success then return False
33: end if
34: end for
35: return segment success
36: procedure SAFE EXPLORE(τ1:m)
37: if len(τ1:m) == 0 then ▷ End of trajs
38: return fsuccess()
39: end if
40: Filter τ1:m if first action Qk

safe(st, a0) < ϵ ∀ k
41: Sort τ1:m by first action maxk Q

1:K
safe(st, a0) ascending

42: for each a0 in τ1:m do
43: execute(a0)
44: success ← safe_explore(next(τ1:m))
45: if success then return True
46: end if
47: execute(−a0) ▷ Backtrack one step
48: end for
49: return False
50: end procedure
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Fig. 8. Human video parsing by SAFEMIMIC. An initial RGB-D video
demonstration is processed by SAFEMIMIC using a body tracking solution
to obtain segments where the human is either navigating or performing
stationary manipulation. Initial stationary manipulation segments are further
segmented based on changes in the hand-object contact state. For all segments,
the navigation and the manipulation ones, SAFEMIMIC prompts a VLM
that provide a semantic description of the actions. SAFEMIMIC refines the
semantic labeling results by reprompting the VLM for backward consistency
between labels. The segmentation (motion and semantic labels) are used by
SAFEMIMIC to refine and adapt the actions in a safe and autonomous manner.

autonomous success detection. Labeling the segments is per-
formed with VLM queries that classify the segments into a
set of possible actions and the objects the actions apply to,
e.g., navigate to a can. Table II includes the list of actions the
VLM classifies the segments on.

TABLE II
SEGMENT TYPES AND POSSIBLE ACTIONS

Segment Type Possible Actions

Navigation Navigating to [object]
Navigating with [object1] to [object2]

Grasping Reach for and grasp [object]

Manipulation

Pick [object]
Place [object1] in [object2]
Open [object]
Close [object]
Wipe [object1] with [object2]

Since the segments are labeled independently, we observe
some temporal inconsistencies in the results. We removed
this effect through a backward correction method for the
semantic descriptions by prompting again the VLM with all
the descriptions in order, as well as frames from the entire
video, requesting it to correct any inconsistencies between
consecutive actions and objects. This helps significantly in
situations where objects are inconsistent across descriptions,
e.g., in the task of store_in_drawer, semantic segments

Fig. 9. Snapshots of three different human demonstrations of the same task
(top), and demonstrations of the task in three different environments (bottom).
We evaluate SAFEMIMIC’s abilities to parse initial demonstrations of different
humans, and in different environments. The performance of SAFEMIMIC is
not affected (Sec. IV), indicating that our method is robust to variations
in these dimensions and is able to explore and adapt actions in different
conditions.

Navigation Scenes Manipulation Scenes Objects for Randomization

Fig. 10. Simulation training domains for the safety Q-function functions of
SAFEMIMIC. We generate random and targeted actions in multiple simulated
scenes in OmniGibson [65]. To increase generalization, the scenes are domain
randomized using different objects and locations. We collect 43200 state-
action pairs. Point clouds and robot proprioceptive signals are collected during
data generation, as well as ground truth for different failure types, and used
to train the ensemble of safety Q-function functions that SAFEMIMIC uses
for real-world exploration. The process is cheap and scalable and does not
require solving the tasks in simulation.

include navigating to drawer and opening drawer. However,
the initial labeling may result in a first semantic label “nav-
igating to sink” due to a sink being next to the drawer. By
having access to the entire video and future labels, the VLM
detects and corrects the wrong initial description.

The segments obtained in this process, including both the
human motion and the semantic subgoal label, are transformed
into the robot’s initial motion for SAFEMIMIC to refine and
adapt through safe and autonomous exploration.

C. Robustness of the Human Video Parsing Module

We have already shown in Fig. 9 that SAFEMIMIC’s video
parsing module is robust to videos taken in different environ-
ments with different human demonstrators. However, to further
demonstrate the robustness of the module, we conducted the
following tests in challenging environments: We recorded
videos of humans performing the shelving task from different
camera angles, different lighting conditions and with “few” (1-
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Fig. 11. Backtracking actions in SAFEMIMIC. Example sequence of back-
tracking behavior in Shelving task. When no safe samples are available, or
when a segment exploration ends without success, SAFEMIMIC backtracks to
previous states by undoing the last actions, possibly stepping back to explore
a different grasping mode. This simple but effective mechanism enables
autonomous exploration and adaptation of human motion for multi-step mobile
manipulation tasks with SAFEMIMIC.

Fig. 12. Snapshots of the videos we evaluate SAFEMIMIC’s video parsing
module on in C. We test the module on videos with different camera angles
(left column), different levels of clutter (middle column), and different lighting
conditions (right column). Our results indicate that SAFEMIMIC is robust to
videos in varying and challenging environments.

3), “several” (3-5), and “many” (>5) distractor objects, and
measured success rate as the percent of correctly identified
segments in the video. We observe 86% success across differ-
ent camera angles, 100% across different lighting conditions
and 88% across different levels of clutter, indicating that our
activity segmentation is a robust first module for SAFEMIMIC.
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